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Paper

Semantic Indexing for Large-Scale Video Retrieval

Nakamasa Inoue †, Koichi Shinoda †

Abstract Video semantic indexing, which aims to detect objects, actions and scenes from video data, is one of impor-

tant research topics in multimedia information processing. In the Text Retrieval Conference Video Retrieval Evaluation

(TRECVID) workshop, many fundamental techniques for video processing have been developed and have been shown to be

effective for real data such as Internet videos. They include extensions of deep learning techniques and image recognition tech-

niques such as bag of visual words to video data. This paper reviews TRECVID activities with these techniques for semantic

indexing. We also show the TokyoTech system using Gaussian-mixture-model (GMM) supervectors and deep convolutional

neural networks (CNNs) with its experimental evaluation at TRECVID 2014.

Key words: Video Semantic Indexing, Semantic Concept Detection, Video Retrieval, Deep Learning, Bag of Words, Gaussian

Mixture Models, TRECVID Workshop

1. Introduction

To communicate with each other from all over the
world, video has become a popular choice on the In-
ternet. For example, in many online services such as
YouTube, users can easily upload videos to show their
activities. Applications using web cameras are devel-
oped for online meeting and surveillance. As a result, a
huge amount of video data has been made available on
Internet archives.

The role of video search engines is to provide relevant
videos based on a query given by a user. For example,
a person who wants to practice dance will be satisfied
if a video segment about choreography for the dance
is provided by search engines. To find such relevant
video segments, metadata such as tags describing the
contents should be attached to each video segment.

Most of recent search engines use text information
such as titles and short descriptions of video attached
by users. However, this information is often not enough
to search specific objects, locations, and scenes, because
detailed tags are missing. Since attaching detailed text
tags manually is costly, automatic detection of seman-
tic concepts including objects, events and scnes is de-
manded for video retrieval.

To promote development of video retrieval tech-
niques, the U.S. National Institute of Standards and
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Technology (NIST) sponsors Text Retrieval Conference
Video Retrieval Evaluation (TRECVID) workshop1).
In TRECVID, many research teams from academic and
industries can share video data, video-retrieval tasks,
and results.

Semantic indexing has been an important task in
TRECVID. It aims to detect objects such as Airplane,
actions such as Singing, and scenes such as Cityscape.
This task is a challenging task due to the semantic gap,
i.e., the lack of relation between low-level video features
and high-level semantic concepts2).

To bridge the semantic gap, most of approaches focus
on statistical pattern recognition, where they construct
a model for detecting semantic concepts by using la-
beled training examples. It has been shown that, as
the number of training samples increases, more com-
plex models with many parameters improve the detec-
tion performance. For example, recent trends are to use
probabilistic models such as Gaussian mixture models
and neural networks. Their effectiveness has been re-
ported in recent TRECVID workshops with more than
one thousand hours of video data shared with partici-
pants.

In this paper, we review TRECVID video semantic
indexing activities. This paper is organized as follows.
Section 2 overviews the TRECVID workshop. Section 3
and 4 show datasets and approaches for the semantic
indexing task, respectively. Section 5 shows details of
the TokyoTech semantic-indexing system at TRECVID
2014 with its experimental results. Section 6 describes
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Fig. 1 Overview of the TRECVID tasks from 2003 to

2015. Black bars show years by tasks.

challenges in the future. Finally, Section 7 concludes
this paper.

2. TRECVID Workshop

TRECVID1) is an annual international workshop
sponsored by the National Institute of Standards and
Technology (NIST). It began as a track of Text RE-
trieval Conference (TREC) in 2001, and became an in-
dependent workshop from 2003.

As shown in Figure 1, four to six tasks about video
retrieval are opened to participants every year. Most
of them are challenging tasks using real data such
as broadcast, Internet, and surveillance video. Since
large-scale video datasets and evaluation measures are
shared, it is easy to compare results obtained by differ-
ent systems.

Compared with image recognition challenges such
as ImageNet Large Scale Visual Recognition Challenge
(ILSVRC)59) and PASCAL Visual Object Classes Chal-
lenge60), TRECVID is more focusing on tasks for real
applications. Since TRECVID tasks have scenarios for
video search, editing, summarizing, surveillance etc.,
developing automatic and/or interactive systems is re-
quired in addition to developing video features and clas-
sifiers.

The number of participating teams for each year is
fifty to seventy from academic and industries. Each
team is required to submit its results at least for one
task to attend the workshop.

Recent long-run tasks are Semantic Indexing (SIN),
Multimedia Event Detection (MED), Instance Search
(INS), and Surveillance Event Detection (SED).

The SIN task aims to detect semantic concepts in-
cluding objects, actions, and scenes. Examples of the
semantic concepts are “Airplane”, “Cityscape”, and
“Dancing”. Many techniques have been developed from

Fig. 2 Size of data used in the Semantic Indexing task.

this task and they are applicable to the other tasks.
The MED task focuses on detecting complex events

described by a short sentence such as “batting in a run”.
Since an event is often described by a combination of
semantic concepts, outputs of a SIN system, such as
detection scores for each semantic concept, are helpful
for this task3).

The INS task is for delimiting a specific person, ob-
ject or place. A query is by an image in this task. For
example, given an image of a car, the goal is to find
exactly the same car from videos in database. Visual
features developed in the SIN task are often applied
to this task with feature matching techniques such as
BM255) and asymmetrical dissimilarity4)

The SED task aims to detect actions by surveillance
cameras at a specific place such as an airport. Com-
pared with the other tasks, detailed analysis such as
multiple person tracking is often needed since the main
purpose of this task is for improving security6)7).

In the following, we review datasets and approaches
for the SIN task. Notably, many techniques developed
in the SIN task can be applied to the other tasks since
various semantic concepts are targeted in this task.

3. Datasets and Measures

3. 1 Video data
Three types of video datasets are used in the SIN

task: Television News (TV), Sound and Vision (SV),
and Internet Archive Creative Commons (IACC). As
summarized in Figure 2, several hundred hours of video
clips are added every year.
Television News (TV)

The TV dataset8) used from 2003 to 2006 consists
of 400 hours of news videos. It includes news in three
languages: English (ABC World, CNN Headline, C-
SPAN, NBC), Arabic (LBC), and Chinese (CCTV4,
NTDTV). Since news videos are edited by professional
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Fig. 3 Three approaches for semantic indexing.

editors, the main object is typically in the center of an
image, and its short text description is often shown at
the bottom or top.
Sound and Vision (SV)

The SV dataset used from 2007 to 2009 consists of
400 hours of news, documentaries, and educational pro-
gramming provided by the Netherlands Institute for
Sound and Vision. Compared with the TV dataset, this
dataset has a large diversity. For example, differences in
illumination, background, and camera distance/angles
often make it difficult to detect semantic concepts.
Internet Archive Creative Commons (IACC)

The IACC dataset, which consists of 1,000 hours of
Internet video, is one of the largest datasets for video
recognition. This dataset is used from 2010. Video
clips are collected from Internet archives with creative
commons licenses. Compared with the SV dataset, the
quality of video is often low since most of video clips
are generated by consumers.

3. 2 Annotations
Shot boundary information9) is provided for each

video clip. It splits a video clip into 5-to-10 seconds
video shots.

For each video shot, positive or negative labels are
attached for each semantic concept. Here, a semantic
concept is an object such as “Airplane”, an action such
as “Dancing”, or a scene such as “Cityscape”.

346 types of semantic concepts are selected at
TRECVID with its basic selection criteria, which re-
quires semantic concepts to 1) be moderately frequent
(positive in 1.0% on average), 2) have clear definition,
and 3) be of use in searching. Here, definitions of each
semantic concept are given by short text descriptions.
For example, the definition of “Cityspace” is “View of
a large urban setting, showing skylines and building
tops”.

From 2007, a collaborative annotation system based

on active learning10) is introduced to generate labels.
In 2007, 711,566 labels for training data are produced
by 32 TRECVID teams participated in collaborative
annotation.

3. 3 Evaluation Measures
Overall performance is measured by Mean Average

Precision (Mean AP), which is the geometric mean of
APs over targeted semantic concepts. AP is a value of
the area under the recall-precision curve, which is given
by

AP =
1
R

N∑
r=1

Pre(r)Rel(r), (1)

where R is the number of positive samples, N is the
number of testing shots, Pre(r) and Rel(r) are preci-
sion and the label (1 for positive, 0 for negative) at the
rank r. In TRECVID evaluation, Inferred Average Pre-
cision (InfAP)11), which estimates AP from a subset of
labels on testing data, is introduced to reduce the cost
of annotation.

4. Semantic Indexing

Most of approaches to semantic indexing are based
on statistical pattern recognition. From an input video
segment, a semantic-indexing system computes detec-
tion confidence scores for each semantic concept.

In TRECVID Semantic Indexing from 2004 to 2014,
three main approaches 1) global features, 2) bag of
words, and 3) deep learning have been shown to be
effective. Notably, the main framework consists of fea-
ture extraction and classification as shown in Figure 3 is
common among them. In this section, we review stud-
ies related to these approaches and fusion of multiple
systems.

4. 1 Global Features
To detect semantic concepts visible in a video such as

“Airplane” and “City”, visual features including color
and texture information are effective. The idea of global
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features is to represent an image by a statistical feature
vector such as a histogram. For example, color his-
togram12) and color moments13) extract features from
each channel of a color space such as RGB and HVS14).
Gabor filter banks15) and edge direction histogram16) ex-
tract textures and edges. These features are invariant
to simple transformations such as shifting, and linear
scaling. However, they are not robust against illumina-
tion changes and viewing angle changes.

With these features, supervised learning techniques
are introduced to detect semantic concepts from each
video shot. Almost all of recent works focus on super-
vised learning techniques to construct a detector based
on training samples. Support Vector Machine (SVM)17)

is the most commonly used technique to train a discrim-
inative model. Logistic regression18) and probabilistic
output of SVM scores19) are known to be effective to
obtain probabilistic scores. See surveys by Snoek20),
Jain21), Xu22) for details of video retrieval and super-
vised learning techniques.

4. 2 Bag of Words
From 2004, bag-of-words methods23) are used with

heuristic low-level features. Its basic idea is to repre-
sent an image by an aggregation of local descriptors.
For example, in a car image, local descriptors extracted
from wheels, headlights, doors, and body line of the car
can be useful to represent the car.

A bag-of-words method often consists of two steps:
1) low-level feature extraction and 2) coding to obtain
aggregated representation. In the first step, a set of gra-
dient or color descriptors are extracted from an image.
Scale Invariant Feature Transform (SIFT)24) is the most
widely used features, which extracts histograms of gra-
dients from each interest point. Histogram of Oriented
Gradients (HOG)25)26) for tracking a person, which can
be viewed as simplified SIFT, is also introduced instead
of SIFT to reduce computational costs. Color SIFT27)

extends SIFT to color spaces such as RGB and Op-
ponent spaces. These low-level features are extracted
by using key-point detectors. To detect objects such
as cars, Harris-Laplace detector28) is applied to extract
corner points. To detect actions, space-time detectors
such as Space-Time Interest Points29) and Dense trajec-
tories30) are also introduced in addition to it. To detect
scenes, dense sampling31)32) for extracting features from
grid points has been shown to be effective.

The second step is coding of low-level features. The
simplest method is histogram coding23), which is the
zero order statistics to count the number of low-level

features for each pre-defined bins designed by apply-
ing vector quantization40). Soft assignment techniques
such as sparse coding35)36)37), Kernel codebook38), and
Gaussian mixture models39) are often introduced to re-
duce the quantization errors. Super-vector coding31)

and VLAD41) are their extension to use the first or-
der statistics. Fisher-vector34)33)32) and GMM superve-
cotr42)43)44) use the first and second order statistics by
ingroducing GMMs.

To model spatial characteristics, spatial pyramid
pooling45)46), which splits an image into 2x2 and/or 3x1
regions, is applied to the above coding techniques. This
is effective to classify an object and its background. For
example, in an image of a car, a road and sky are often
at the bottom and the top of the image, respectively.

To improve the speed of coding, tree-structures such
as kd-trees47)48), metric trees49)51)50), approximate near-
est neighbors52)53), and random forests54)55)56) are intro-
duced to the vector quantization step.

4. 3 Deep Learning
From 2013, deep learning techniques are introduced

to train low-level features automatically from a large
set of training data. Especially, recent works focus on
deep convolutional neural networks (CNNs). For exam-
ple, Alex Net57)58), a network with seven hidden layers,
have been shown to be effective for image recognition
at the ImageNET60)59) Large Scale Visal Recognition
Challenge (ILSVRC) in 2012. This is an extension of
traditional neural networks61) to a large-scale network
with 60 million parameters. To train the parameters,
1.2 million images for 1,000 objects on the ImageNET
dataset are used. Some recent works are focusing on
lager and deeper networks such as Very Deep Convolu-
tional Networks63) with 19 laygers, GoogLeNet64) with
22 layers, and combination with Fisher kernels65)66)67)

68)69) These networks outperforms the AlexNet on the
ImageNET dataset.

To semantic indexing on TRECVID, networks pre-
trained on the ImageNET are often introduced. The
simplest way to introduce a pre-trained network is to
use activation values at the last or second last fully con-
nected layer as a feature vector, which can be an input
vector of a support vector machine (SVM). Note that
the network parameters are trained on ImageNET and
SVM parameters are trained on TRECVID to save com-
putational costs in this case. Fine-tuning techniques to
update all network parameters are effective to further
improve the performance. Compared with the bag-of-
word methods, deep learning is often more effective for
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detecting objects, and less effective for detecting ac-
tions70). For actions, motion features such as dense tra-
jectories30) are known to be effective.

4. 4 Audio Features
To detect concepts related to audio such as “Singing”,

“Speaking”, and “Dancing”, audio features are shown
to be effective. For example, Mel Frequency Cepstral
Coefficients (MFCCs) are introduced to capture audio
information72)71). The Fisher vector framework32) is of-
ten applied to obtain audio representations by replacing
inputimage descriptors with audio MFCCs. To capture
information from speech, automatic speech recognition
(ASR) systems are applied to video data. It is known
that ASR outputs are effective to detect concepts from
news videos8), in which an announcer speaks about the
important topics in video clearly.

4. 5 Fusion of Multiple Systems
To capture various semantic concepts, fusion of differ-

ent systems often improve the detection performance.
For example, the best system at the TRECVID 2014 is
a hybrid system70) of bag-of-words and deep learning.

Late fusion, which combines scores obtained from
multiple systems, is the easiest way to combine different
systems. For example, a weighted sum of SVM scores
obtained by bag-of-words and deeply learned features
is used as the final score for detection70). Weight coef-
ficients are often optimized by using cross-validation.

Early fusion combines features or kernels before train-
ing models. For example, by concatenating histogram
of oriented gradients (HOG) and histogram of optical
flow (HOF) features at low-level feature extraction step
in bag-of-words, shapes and movements are captured si-
multaneously30). Multiple kernel learning73)74)75)76) pro-
vides a way to combine systems by taking weighted
sum of kernel or distance matrixes. For example, χ2

kernel77)78), RBF kernel, histogram intersection kernel
79)80), Fisher kernel34) have been shown to be effective
with bag-of-words representations. These kernels can
be inputs to MKL for training weight coefficients with
model parameters for detection. Since kernel methods
are computationally expensive, linear kernels or linear
homogeneous kernel maps81)82) are often introduced to
improve the speed of the testing phase.

5. TokyoTech Semantic Indexing System

Here, we describe the TokyoTech system71) in
TRECVID 2014 Semantic Indexing. It is a hybrid sys-
tem of GMM supervectors and Deep CNN as shown in
Figure 4.

Fig. 4 Overview of our semantic indexing system.

5. 1 GMM Supervector
The GMM supervector is an extension of bag-of-

visual-words to a probabilistic model. Its idea is to
measure distance between two sets of image or audio
descriptors by Kullback Leibler divergence. Here, we
extract the following six types of descriptors: 1) Harris-
Affine SIFT, 2) Hessian-Affine SIFT, 3) Dense SIFT, 4)
Dense HOG, 5) Dense LBP26), and 6) Audio MFCCs.

Let X be a set of descriptors extracted from a video
shot. The probability density function of a GMM is
given by

p(x) =
K∑

k=1

wkN (x|μk, Σk) (2)

where x ∈ X is a descriptor, K is the number of
mixtures, N is the probability distribution function of
Gaussian distribution, wk, μk, and Σk are the k-the
weight coefficient, mean vector, and covariance matrix,
respectively. The maximum a posterior (MAP) adap-
tation technique is used to estimate the parameters of
a GMM since the number of descriptors in a video shot
may not be enough to estimate parameters precisely.
With MAP adaptation, a GMM called the universal
background model (UBM) is estimated from all train-
ing videos first, and then only mean vectors are updated
for each shot by assuming weight coefficients and covari-
ance matrixes are common among all video shots. This
assumption makes it easy to compute Kullback Leibler
divergence between two Gaussian distributions.

From estimated two GMMs p and p′, distance be-
tween them are defined by the weighted sum of KLD
between corresponding Gaussian distibutions as

d(p, p′) =
K∑

k=1

wkKLD(pk||p′k) (3)

=
K∑

k=1

wk(μk − μ′
k)T Σ−1

k (μk − μ′
k) (4)

where pk and p′k are the k-the Gaussian distribution.
A GMM supervector is defined by

213

Invited Paper » Semantic Indexing for Large-Scale Video Retrieval 



φ(X) =

⎛
⎜⎜⎜⎜⎝

μ̃1

μ̃2

...
μ̃K

⎞
⎟⎟⎟⎟⎠

, μ̃k =
√

w
(U)
k (Σ(U)

k )−
1
2 μ̂k. (5)

where μ̂k is the estimated mean vector with the MAP
adaptation, and w

(U)
k , Σ(U)

k are the weight coefficient
and the covariance matrix for UBM. This GMM super-
vector is defined so that we obtain

d(p, p′) = ‖φ(X)− φ(X ′)‖22, (6)

where X and X ′ are sets of feature vectors, p and p′ are
two GMMs estimated from X and X ′ respectively, and
d is the distance given by Eq. (4). This GMM super-
vector is used as an input of support vector machine to
obtain a detection score.

5. 2 Deep CNN
The AlexNet57)58) with seven hidden layers is intro-

duced to extract features. The parameters of the CNN
is trained on ImageNET dataset, which has 1.2 million
images for 1,000 object categories.

To detect semantic concepts, support vector ma-
chines (SVMs) are trained with labels provided by
TRECVID with activation values at the second last
layer as its input. The dimension of input vector is
4096. Note that the final layer is not used since it is
often over-fitted to training data.

5. 3 Late Fusion
Finally, scores obtained by GMM supervectors and

Deep CNNs are linearly combined as

s =
∑
f∈F

αfsf , 0 <= αf <= 1,
∑

f

αf = 1. (7)

where F is a set of feature types. Combination coeffi-
cients αf are optimized on a validation set.

5. 4 Evaluation on TRECVID 2014
In the official evaluation at TRECVID 2014, 660,311

and 107,806 video shots from the IACC dataset are
used for training and testing, respectively. Evaluation
measure is Mean Inferred Average Precision (InfAP)11)

among 30 semantic concepts.
Figure 5 compares semantic indexing systems in

TRECVID 2014. The system described in Sec. 5
achieves 0.288 Mean InfAP, which was ranked third
among participating teams. In 2014, hybrid systems
deep learning and bag-of-words performed well. The
tendency is as follows. Convolutional neural networks
improve the performance for detecting objects such as
Airplane, and Car. Bag-of-words with densely sam-
ples image descriptors helps to detect scenes such as

Fig. 5 Comparison of Mean InfAP for Semantic Index-

ing at TRECVID 2014.

Cityscape and Forests. Examples of detected video
shots are shown in Figure 6. Notably precision at top 10
detected video shots was 80% on average. However, it is
still difficult to detect small objects such as basketballs.

6. Challenges

6. 1 More Precisely: Localizing Concepts
Where and when do semantic concepts appear in

video? Localizing semantic concepts, aiming to detect
their bounding boxes or segmentation masks, is an ex-
tended challenging task for semantic indexing.

For object localization, image segmentation methods
can be directly applied to video data. For example, se-
lective search83)84) is one of the most effective method
for detecting bounding boxes. It first uses hierarchy
segmentation to detect candidate bounding boxes and
then applies classifiers for each candidate. Recent works
such as Regions with CNN (R-CNN)85) and spatial
pyramid pooling for CNN86)87) apply selective search
to neural-network based frameworks. Scene segmenta-
tion for street view images88)89)90) could also be effective
to segment sky, road, buildings, and objects. Some re-
cent works91)71) focus on extending these methods to
capture motions in video, for example, by introducing
optical flow features for segmentation. However, these
methods are not always effective for all types of seman-
tic concepts. For example, actions can not be well lo-
calized with them since boundaries of actions are often
different from that of objects. For action localization,
clear definition of generic action classes to determine
boundaries is first needed to be designed. This could
help to make large-scale training data for actions.

6. 2 More Generally: Expanding Vocabulary
What should we do to make detectors for many types

of semantic concepts? The simplest way is to increase
the amount of training data. In TRECVID 2010, 500
semantic concepts are defined to be annotated in the
collaborative annotation. However, we faced the fact
that 150 of them have less than 3 positive samples in
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Fig. 6 Top 5 detected video shots for 10 semantic concepts.

200 hours of video data. This shows the difficulty of
increasing training samples.

Recently, zero-shot learning has been focused to make
detectors for unseen objects or scenes. For example, in-
termediate presentations such as attributes92)93) are in-
troduced to represent an object by them. Word embed-
ding methods94)95)96) are introduced to learn relations
between semantic concepts on text data and apply them
to image or video data, for vocabulary expansion98) and
sentence generation for images97)99). Textual informa-
tion such as video title or captions on images is also
utilized for zero-shot event detection100)101). In the fu-
ture, learning methods for integrating different types of
multimedia data such as videos, images, audio, and text
are needed to make it possible to detect many types of
semantic concepts.

7. Conclusion

TRECVID activities and approaches for video se-
mantic indexing are reviewed in this paper. Experi-
mental evaluation on TRECVID 2014 showed the ef-
fectiveness of our semantic indexing system using deep
learning and GMM supervectors. We conclude that new
topics such as localizing concepts video and expanding
vocabulary for many semantic concepts will be impor-
tant challenges in the near future to develop more ad-
vanced semantic indexing systems.
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