T2R2 東京工業大学リサーチリポジトリ Tokyo Tech Research Repository

論文 / 著書情報 Article / Book Information

論題(和文)	 骨組特性値に基づく変形増幅機構を有する制振構造の性能評価
Title(English)	Evaluation of Performance of Vibration Control Structure with Deformation Amplification Mechanism Based on Frame Parameters for Control
著者(和文)	
Authors(English)	Yoshimasa HOSOYA, Daiki Sato, Masato Ishii, Toshiaki Sato, Haruyuki Kitamura, Kazuhiko SASAKI, IWASAKI Yuichi
出典(和文)	┃ 日本建築学会大会学術講演梗概集, vol. B-2, ,pp. 309-310
Citation(English)	, vol. B-2, , pp. 309-310
発行日 / Pub. date	2016, 8
	 一般社団法人 日本建築学会

骨組特性値に基づく変形増幅機構を有する制振構造の性能評価

			正会員(⊃細谷	佳雅*1	同	佐藤	大樹*2	同	石井	正人*3
制振構造	粘性制震壁	実効変形	同	佐藤	利昭*4	同	北村	春幸*1	同	佐々木	和彦*5
変形増幅機構	骨組特性値	時刻歴応答解析	百	岩崎	雄一*5						

1. はじめに

制振構造に用いられるダンパーは,作用する変位や速 度により減衰力を発揮するものである¹⁾。これらのダン パーが高い制振性能を発揮するためには,作用する実効 変形を大きく確保することが重要となる。著者らは,制 振部材の設置梁にピン接合を設けることで,層間変形を 上回る実効変形を確保する変形増幅機構を提案し,応答 解析を通してその有用性を確認している²⁾。

本報では,文献 4)の骨組特性値に基づく制振性能評価 手法を用いて,変形増幅機構の適用が建物の制振性能に 与える影響を検討する。

2. 検討モデルの設定と解析条件

2.1 検討対象建物概要

本報では、純ラーメンの架構に粘性制振壁を適用した V構造と変形増幅機構を適用してピン接合を設けた P構 造を対象とする。検討対象建物は、全体曲げ変形が卓越 しやすい超高層建物を想定し、地上 30 階、高さ 121.5m の 30 層鋼構造建物を用いる。図 2 に軸組図と粘性制振 壁・ピン接合の配置箇所を示す。解析は、X 方向を対象と し、剛床を仮定した立体部材モデルで行う。主架構の 1 次固有周期 T_{f1} は V 構造で 4.479s, P 構造で 4.994s であ る。主架構は弾性とし、構造減衰は T_{f1}に対し 2%の剛性 比例型とする。

2.2 粘性制振壁概要

粘性制振壁の粘性減衰力 F_d は、 ダッシュポットの速度 V_d の指数乗 α に比例し、次式による。同式で D:粘性制 振壁のせん断隙間 (D=0.004m) である。

$F_d = C_d \cdot V_d , V_d /D < 1 (1/s)$	(1a)
--	------

$$F_d = C_d \cdot V_d^{0.59}, \quad 1 \le |V_d| / D(1/s)$$
(1b)

第 i 層の付加粘性減衰量 C_{di} は、付加粘性減衰定数 h_d を 用いて次式により定め、図 4 のように 5 層ごとの 6 段階 分布とする。本報では h_d をダンパー量と称し、検討パラ メータとする。

$$C_{di} = \frac{2h_d}{\omega_{f1}} \cdot K_{fi} \tag{2}$$

ここで, *a*_{f1}: 主架構の弾性 1 次固有円振動数, *K*_{f1}: 第 *i* 層 の主架構の水平剛性である。

2.3 入力地震動概要

入力地震動は、擬似速度応答スペクトル $_pS_v=0.8$ m/s および 1.6m/s (h=5%)を目標応答スペクトルとする模擬 波 ART HACHI(位相特性: Hachinohe 1968)および模擬 波 ART KOBE(位相特性: JMA KOBE 1995)を用いる。

Evaluation of Performance of Vibration Control Structure with Deformation Amplification Mechanism Based on Frame Parameters for Control

図5に擬似速度応答スペクトル(h=5%)を示す。

3. 変形増幅機構を有する制振構造の性能評価

3.1 時刻歴応答解析結果による評価

図6に、各構造におけるART HACHI入力時のダンパ 一量と最大層間変形角 R_{max} および入力エネルギーEに 対する粘性制振壁のエネルギー吸収量 $_{d}W_{p}$ の割合(エネ ルギー吸収率) W_{p}/E の関係について示す。本報では、 $_{p}S_{v}=0.8m/s$ 入力時の応答に主眼を置き、考察することと する。図6(a)の最大層間変形角に着目すると、ダンパ 一量の小さい場合には、P構造ではV構造と比較して応 答が低減しているが、ダンパー量が大きい場合にはV構

HOSOYA Yoshimasa, SATO Daiki, ISHII Masato SATO Toshiaki, KITAMURA Haruyuki, SASAKI Kazuhiko IWASAKI Yuichi

造とP構造で同程度の応答を示している。これは、図6 (b) に示すように、ダンパー量の増加に伴ってP構造 のエネルギー吸収率が減少し、ダンパー量の大きい場合 にはV構造を下回るためであると考えられる。以上よ り、変形増幅機構を適用した場合には、ダンパー量の小 さい時には高い応答低減効果を示すが、ダンパー量の増 加に伴って制振壁のエネルギー吸収率が低下するため変 形増幅機構適用の有無に関わらず同程度の応答低減効果 を示すことを確認した。*pSv*=1.6 m/s 入力時の応答解析 結果については、*pSv*=0.8 m/s 入力時の応答と同様の傾向 が認められる。

3.2 実効変形比と骨組特性値による評価

本報では、状態N解析および状態T解析により求められる骨組特性値 α_N ³⁾と、骨組特性値を用いて文献 4)の手法により求められる実効変形比の下限値 α_{es} を制振性能評価指標として用いる。

図7に、各構造におけるan、aesおよび時刻歴応答解析 結果から算出した実効変形比α。の関係について示す。こ こでは、横軸にダンパー量をとり、縦軸にan, aesおよび α_e の全層の平均値 $\overline{\alpha_N}$, $\overline{\alpha_e}$ および $\overline{\alpha_e}$ とする。図7を見る と V 構造, P 構造ともに, a が ART HACHI 入力時と ART KOBE 入力時で概ね近い値を示しており,実効変形の上 限値 α_N および下限値 α_{es} の間の値となっていること確認 できる。α に着目すると、ダンパー量の小さい場合には V 構造と比較して P 構造で大きな値を示しているが、ダ ンパー量の大きい場合には P 構造のα は V 構造と同程 度まで低下している。これにより、ダンパー量の増加に 伴って P 構造におけるエネルギー吸収率が低下し, 図 6 (b) に示すように、ダンパー量の大きい場合には V 構 造を下回ったと考えられる。また, pSv = 0.8m/s 入力時と 比較して PSv = 1.6 m/s 入力時の実効変形比が大きいため、 エネルギー吸収率が高くなっていると考えられる。 av に着目すると、V構造では1.0程度であるのに対して、P 構造では 3.2 程度となっており、変形増幅機構を適用す ることで、架構特性による制振性能が向上している。 α_{es} に着目すると, α と同様にダンパー量の小さい場合には P 構造で大きな値を示しているが、ダンパー量の大きい 場合にはV構造とP構造で同程度の値を示している。以 上より,変形増幅機構を適用した場合においても,文献 4)の制振性能評価手法を用いることで、時刻歴応答解析 結果と同様に評価できることを確認した。

4. まとめ

文献4)の骨組特性値に基づく制振性能評価手法を用いて,変形増幅機構の適用が建物の制振性能に与える影響 を検討した。得られた知見を以下に示す。

(1) 変形増幅機構を適用した架構においても, 文献 4)の 制振性能評価手法を用いることで, 時刻歴応答解析

*1	東京理科大学	*2	東京工業大学
*3	㈱日建設計	*4	九州大学大学院

*5 オイレス工業(株)

結果と同様に評価可能であることを確認した。

(2)変形増幅機構を適用した架構では、ダンパー量が小 さい場合には高い制振性能が期待できるが、ダンパ 一量が大きい場合には、実効変形比が従来の架構と 同程度まで低下するため、適切なダンパー量を用い る必要がある。

今後,変形増幅機構と耐震ブレースを併用した場合 ⁵⁾に おいても同様の検討を行う。

謝辞

本研究は、日建設計、オイレス工業、東京理科大学北村研究室、 東京工業大学佐藤研究室による制振研究会の成果の一部を用いた ものです。ここに記して感謝の意を表します。

参考文献

- 1) 日本建築構造技術者協会:応答制御構造設計法,彰国社, 2000.12
- 2) 戸張涼太,石井正人,佐藤利昭,北村春幸,吉江慶祐,宮崎充,佐々木 和彦,岩崎雄一:変形増幅機構を有する粘性制振壁を設置した制振シ ステムの提案,日本建築学会構造系論文集,第79巻,第706号,1741-1750,2014.12
- 石井正人, 笠井和彦:多層制振構造の時刻歴解析に用いるせん断棒モデルの提案,日本建築学会構造系論文集,第75巻,第647号,103-112,2010.1
- 4) 渡辺重仁, 添田幸平, 佐藤大樹, 北村春幸, 石井正人, 吉江慶祐, 宮崎 充, 佐々木和彦, 岩崎雄一: 粘性制震壁の配置位置及び設置タイプを 考慮した超高層建物の性能評価, 日本建築学会技術報告集 第19巻, 第 42 号, pp.425-430, 2013.6

5) 細谷佳雅,後上和也,石井正人,佐藤利昭,佐藤大樹,北村春幸,佐々 木和彦,岩崎雄一,吉江慶祐:耐震ブレースを併用した変形増幅機構 に対するダンパー特性の与える影響,日本建築学会関東支部研究報告, 2016.3

*1 Tokyo Univ. of Science

*³ NIKKEN SEKKEI *⁵ Oiles Corporation

 ^{*&}lt;sup>2</sup> Tokyo Inst. of Technology
*⁴ Kyushu Univ