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Abstract
The repeated use of out-of-vocabulary (OOV) words in a spo-
ken document seriously degrades a speech recognizer’s perfor-
mance. This paper provides a novel method for accurately de-
tecting such recurrent OOV words. Standard OOV word de-
tection methods classify each word segment into in-vocabulary
(IV) or OOV. This word-by-word classification tends to be af-
fected by sudden vocal irregularities in spontaneous speech,
triggering false alarms. To avoid this sensitivity to the irreg-
ularities, our proposal focuses on consistency of the repeated
occurrence of OOV words. The proposed method preliminar-
ily detects recurrent segments, segments that contain the same
word, in a spoken document by open vocabulary spoken term
discovery using a phoneme recognizer. If the recurrent seg-
ments are OOV words, features for OOV detection in those
segments should exhibit consistency. We capture this consis-
tency by using the mean and variance (distribution) of features
(DOF) derived from the recurrent segments, and use the DOF
for IV/OOV classification. Experiments illustrate that the pro-
posed method’s use of the DOF significantly improves its per-
formance in recurrent OOV word detection.
Index Terms: speech recognition, OOV word detection, recur-
rent OOV words, distribution of features

1. Introduction
Automatic speech recognition (ASR) systems normally use a
pre-constructed lexicon that defines a word set, i.e. vocabulary,
that can be uttered by users. Only in-vocabulary (IV) words can
be recognized correctly. However, in practical use cases, out-
of-vocabulary (OOV) words are likely to be input. For example,
names of people/places/products or technical terms are likely to
be OOV words since it is difficult to preliminarily define all of
them in the lexicon.

Moreover, names or technical terms are likely to be impor-
tant keywords in spoken documents such as conversations or
lectures, and are likely repeatedly uttered. Our examination of
academic lectures found 66% of OOV words were uttered 2 or
more times (see Section 3.1). When OOV words are repeatedly
uttered, speech recognizer’s performance is seriously degraded
since these keywords are never correctly recognized. In order to
deal with this serious problem, detecting the recurrence of OOV
words is important.

OOV word detection has been studied over the years, and
methods based on the word/fragment hybrid ASR approach are
widely used [1, 2, 3, 4, 5]. Hybrid ASR uses a hybrid lexi-
con consisting of not only words but also subword sequences
(fragments) and a hybrid language model (LM) trained on texts
in which low frequency words are replaced by fragment se-
quences. When an OOV word is uttered, fragments have high
posterior probability in the confusion networks [6] derived from

the hybrid ASR. Thus features based on the posterior probabil-
ity are extracted from each slot (and its context) of the confusion
networks and input to an IV/OOV classifier.

The conventional methods classify each slot of the confu-
sion networks into IV or OOV and does not take into account
the recurrence of OOV words. Features for classification are
extracted in a slot-by-slot manner. However, the slot-by-slot
features tend to be affected by the sudden vocal irregularities
(or disfluencies) common in real utterances, such as hesitation,
repairs, or sloppy pronunciations. Disfluencies are not OOV
words, but cause high posterior probability of fragments in the
confusion networks of the hybrid ASR. This sensitivity to dis-
fluencies raises many false alarms in the OOV detector, espe-
cially with spontaneous speech.

In this paper, we propose a novel method aiming at reduc-
ing the errors in detecting recurrent OOV words by utilizing
their multiple appearance in spoken documents. When the same
OOV word appears in multiple segments, the posterior probabil-
ities of fragments in those segments become consistently high.
Our key idea is that the sensitivity of the slot-by-slot features
can be offset by focusing on this consistency. The segments in
which the same word appears (recurrent segments) are detected
by open vocabulary spoken term discovery using phoneme rec-
ognizers [7, 8, 9]. The mean and variance (distribution) of the
slot-by-slot features of the recurrent segments capture the con-
sistency, e.g. if the recurrent segments are OOV, the fragment
posterior probabilities of the segments should have large mean
and small variance. The proposed method uses the distribution
of features (DOF) for OOV classification. Since DOF reflects
the statistics of multiple samples, it should be robust to irregu-
larities such as disfluencies.

One previous method detects recurrence of OOV words [4].
This method detects individual OOV words by conventional
slot-by-slot classification and applies bottom-up clustering to
detect OOV word clusters. This method is effective when in-
dividual OOV word detection is very accurate. Note that we
assume a different situation where individual OOV word detec-
tion is made difficult due to the presence of many disfluencies.

This paper is organized as follows. Section 2 details our
recurrent OOV word detection method; it uses the DOF derived
from pre-detected recurrent segments. Conditions and results
of OOV word detection experiments on spontaneous speech are
presented in Section 3, and Section 4 concludes this paper.

2. Method for recurrent OOV word
detection

The whole scheme of the procedure of our recurrent OOV word
detector is illustrated in Figure 1.

An input spoken document, e.g. utterances in a lecture, is
decoded by both a phoneme recognizer and a word/fragment
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Figure 1: Recurrent OOV word detection using distribution of
features.

hybrid recognizer. From the output of the phoneme recognizer,
recurrent segments in which the same word is uttered, are de-
tected by the recurrent segment discovery module. Standard
slot-by-slot features are extracted from the confusion network
yielded by the hybrid recognizer. DOFs are computed by using
the slot-by-slot features that correspond to the recurrent seg-
ments. The slot-by-slot features and the DOF are concatenated
and input to the IV/OOV classifier, and each recurrent segment
is classified as either IV or OOV.

Note that Figure 1 shows the simplest case in which only
one pair of recurrent segments are detected. Actually many re-
current segments (no overlaps) are detected and the DOF com-
putation and IV/OOV classification are applied to each recur-
rent segment.

Details of each module are given below.

2.1. Phoneme recognition and recurrent segment discovery

The input spoken document is converted into a 1-best phoneme
sequence by a phoneme recognizer using a deep neural
network-based triphone HMM (DNN-HMM) acoustic model
and a phoneme 3-gram LM. In our experiments on 2701 lec-
tures in the Corpus of Spontaneous Japanese (CSJ) dataset [10],
the phoneme error rate was 13.7%.

The objective of recurrent segment discovery is detecting
segments where the same word is uttered. We borrow the idea
of subword-based open vocabulary spoken term detection [7,
8, 9], and assume that similar sub-sequences appearing in the
1-best phoneme sequence can be treated as the same word. In
the proposed method, similar sub-sequences are extracted by
two steps: 1) Detecting sub-sequences whose frequency is at
least N and length (number of phonemes) is at least L, and 2)
clustering similar sub-sequences.

All sub-sequences that have at least frequency N and length
L can be efficiently extracted by the PrefixSpan algorithm [11]

which is widely used for frequent sequential pattern mining. We
set L to 5 since most OOV words have at least 5 phonemes
(approximately 3 Japanese moras), and N to 2 for extracting
as many as possible recurrent segments (i.e. OOV word can-
didates). Sub-sequences are extracted with timestamps in the
spoken document, and if detected sub-sequences overlap, they
are merged into one longer sub-sequence.

Even if the same word is uttered, the decoded phoneme se-
quences are likely to be slightly different because of ambigu-
ity in pronunciation or phoneme recognition errors. In order
to overcome these small differences, we collect similar sub-
sequences based on the edit distance between sub-sequences.
The distance between two sub-sequences, s1 and s2, is calcu-
lated as normalized edit distance:

D(s1, s2) =
edit(s1, s2)

max(|s1|, |s2|)
, (1)

where edit(s1, s2) is the edit distance between s1 and s2, and
|s1| and |s2| are the number of phonemes in s1 and s2, respec-
tively. D(s1, s2) becomes 0 when s1 and s2 are the same, and
1 when s1 and s2 are completely different.

Since the number of unique words in the spoken document
is unknown, the number of clusters cannot be pre-determined.
Thus, we employ a graph-based clustering method that detects
the appropriate number of clusters automatically. A similar-
ity graph of sub-sequences is constructed based on the normal-
ized edit distance (similarity is 1−D(s1, s2)), and input to the
graph-based clustering algorithm. In our experiments, the Chi-
nese Whispers algorithm [12] is used as the graph-based cluster-
ing method, as it is parameter-free and good performance was
reported in [13]. Sub-sequences in the same cluster are treated
as recurrent segments.

2.2. Hybrid ASR and slot-by-slot feature extraction

The input spoken document is also processed by the
word/fragment hybrid ASR to extract slot-by-slot features.

Fragments (phoneme sequences) used in the hybrid ASR
system are selected by the strategy described in [1]. The LM
training texts are converted into phoneme sequences by the
grapheme-to-phoneme converter. Then a phoneme 5-gram LM
is trained using the converted texts, and entropy-based pruning
[14] is applied to select important fragments. In experiments,
we adjusted the pruning parameter so as to select 10K frag-
ments. The hybrid lexicon and 3-gram LM are constructed on
the LM training texts in which words with frequency 1 are re-
placed by their fragment sequences.

As the slot-by-slot features, we use word/fragment poste-
riors and LM-related scores obtained from the confusion net-
work of the hybrid ASR. The effectiveness of these values was
reported in previous studies [1, 2]. Specifically, we extract the
following values from each slot of the confusion network:

• Fragment posterior: Sum of posterior probabilities of
fragments in the target slot:

FragmentPosterior =
∑
f∈S

P (f |S), (2)

where f denotes a fragment in the hybrid lexicon and S
denotes a set of words/fragments in the target slot of the
confusion network.

• Word entropy: Entropy of posterior probabilities of
words in the target slot:

WordEntropy = −
∑
w∈S

P (w|S) logP (w|S), (3)
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where w denotes a word in the hybrid lexicon.

• 1-best posterior probability: Maximum posterior prob-
ability in the target slot.

• LM score: LM score of the word/fragment that has the
largest posterior probability in the target slot.

• LM back-off order: The back-off order of the 3-gram
of word/fragment with the largest posterior probability
in the previous 2 slots and the target slot.

These five values are computed for each slot, and the values of
surrounding slots are concatenated as context features. We set
the context window size to 2, i.e. previous 2 and post 2 slots are
used as the context, and a concatenated 25 dimensional vector
is used as a slot-by-slot feature of the target slot. We don’t use
the word itself as a feature since the raw lexical information
is highly dependent on the domain (topic) of the LM training
texts.

2.3. DOF computation

In order to capture the consistency of the slot-by-slot features
from the multiple appearances of the same word, distribution
of features (DOF) are computed using the sub-sequence cluster
(i.e. recurrent segments) obtained in Section 2.1.

The DOF consists of the means and variances of slot-by-
slot features. If recurrent segments in a cluster are recurrent
OOV words, the segments are likely to have consistently OOV-
like features, e.g. large fragment posteriors. This consistency is
captured by taking the means and variances in the cluster, e.g.
large mean and small variance of fragment posteriors strongly
indicate that the recurrent segments in the cluster are recurrent
OOV words. These statistics should be a more robust indicator
of OOV than individual slot-by-slot features.

A DOF is computed for each cluster as follows:

1. Slot-by-slot features corresponding to the cluster are se-
lected based on timestamps. For each recurrent segment
in the cluster, a slot-by-slot feature that has the longest
overlap is selected as the corresponding feature.

2. The DOF of the cluster, d, is computed as the element-
wise means and variances of the selected slot-by-slot fea-
tures:

d = [µTσT ]T , (4)

µ =
1

M

M∑
m=1

vm, (5)

σ = diag

{
1

M

M∑
m=1

(µ− vm)(µ− vm)T
}

(6)

where M denotes the number of recurrent segments in
the cluster, and vm denotes the corresponding slot-by-
slot feature of the m-th recurrent segment. T denotes
vector transposition and diag represents the vector con-
sisting of the diagonal elements of the matrix.

Finally, the m-th recurrent segment in the cluster has 75 (25
slot-by-slot and 50 DOF) dimensional feature vector, [vT

mdT ]T ,
and this vector is used for IV/OOV classification. Note that re-
current segments in a cluster share the same DOF. By applying
the above procedure to all clusters, all recurrent segments are
assigned their own 75 dimensional feature vector with DOF.

Table 1: Amounts of data sets.

Group #lectures Time length Vocab. size
A 1351 266h 62741
B 1350 265h 62887

Table 2: Data used in the experiments.

Group Test 1 Test 2 Test 3 Test 4
A-1 ASRtrain ASRtrain OOVtrain Test
A-2 ASRtrain ASRtrain Test OOVtrain
B-1 OOVtrain Test ASRtrain ASRtrain
B-2 Test OOVtrain ASRtrain ASRtrain

2.4. IV/OOV classification

IV/OOV classification is based on the standard supervised train-
ing framework. A training set, a set of spoken documents in
which true OOV segments are known, is used for training a
classifier. The timestamps of the true OOV segments can be
obtained by forced alignment using manual transcriptions. The
trained classifier is used for labeling recurrent segments in the
test spoken documents with either IV or OOV. Feature vectors
with DOF described in Section 2.3 are used for classification.

Several binary classifiers can be used for IV/OOV classi-
fication. We use the multi-layer perceptron (MLP) as a clas-
sifier since the proposed DOFs are real values and MLP can
use real values as input without any quantization. Note that se-
quence classifiers such as the conditional random field or the
recurrent neural network are not suitable since the classification
targets (recurrent segments) do not necessarily form a sequence
as shown in Figure 1.

3. Experiments
3.1. Data

Corpus of Spontaneous Japanese [10] was used for OOV word
detection experiments. It consists of 2701 academic lectures
(531 hours, 7M words) with manual transcriptions. Each lecture
was treated as one spoken document.

The lectures were randomly split into two groups to make
ASR training sets so that the amounts of the two groups were
balanced. Table 1 shows the size of the groups. The DNN-
HMM acoustic model, the hybrid lexicon and the hybrid 3-gram
LM trained on Group A were used for recognizing Group B, and
vice versa. The DNN of the acoustic model had 8 hidden layers
with 2048 sigmoid units and a softmax output layer with 3072
units, which was initialized by discriminative pre-training [15]
and fine-tuned by SGD with momentum. 11 consecutive frames
(center, previous 5 and post 5 frames) of 38 dimensional acous-
tic features (12MFCC, 12∆MFCC, 12∆∆MFCC, ∆power and
∆∆power) were concatenated and input to the DNN. JTAG [16]
was used as the grapheme-to-phoneme converter in training of
the hybrid LM. Decoding was performed by the WFST-based
decoder VoiceRex [17, 18]. Word error rates of Group A and B
were 22.9% and 23.0%, respectively. In this setting, total num-
ber of OOV words in Group A and B was 79826, and the OOV
rate was 1.1%. Figure 2 shows the histogram of the number of
OOV word repetitions per lecture. According to the histogram,
66% of OOV words in a lecture appeared 2 or more times.

To make a training set for the OOV classifier separately
from the ASR training set, we conducted two-fold cross vali-
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Figure 2: Histogram of number of OOV repetitions in a lecture.

dation. Table 2 shows the data used in our experiments. All
2701 lectures were used as a test set through the four tests, and
the overall results are reported in Section 3.3.

3.2. Experimental conditions

The parameters of recurrent segment discovery, hybrid ASR and
slot-by-slot feature extraction are described in Section 2.1 and
2.2. The MLP for IV/OOV classification has 2 hidden layers
with 64 sigmoid units and a softmax output layer with 2 (IV
or OOV) units. It was trained by standard stochastic gradient
descent (SGD) with momentum.

The true OOV segments in the lectures were labeled by
forced alignment using manual transcriptions. Recurrent seg-
ments and their feature vectors were extracted by the method
described in Section 2. In training, recurrent segments that over-
lapped the true OOV segments were treated as positive samples,
and those did not overlap the true OOV segments were treated as
negative samples. In testing, the MLP gave OOV probabilities
to recurrent segments, and the segments that have higher OOV
probability than a decision threshold were classified as OOV.
Note that the segments that were not extracted by recurrent seg-
ment discovery were not classified as OOV. The segments that
were misclassified into OOV were counted as false alarms, and
the true OOV segments that did not overlap segments classi-
fied as OOV were counted as misses. The performance was
evaluated by the detection error tradeoff (DET) curve, contour
of false alarm probabilities and miss probabilities formed when
the threshold is varied.

In order to evaluate the effectiveness of DOF, we compared
the following two conditions:

• Baseline: Classify recurrent segments using only slot-
by-slot features described in Section 2.2.

• Baseline+DOF: Classify recurrent segments using fea-
tures with DOF described in Section 2.3.

Moreover, the performance of DOF may be dependent on the
number of OOV word repetitions since DOF represents the
statistics of multiple features. Thus we compared the detec-
tion performance of OOV words repeated 2 or more times and
that of OOV words repeated 5 or more times in a lecture. The
true OOV segments appearing once in a lecture are ignored (i.e.
not classified as OOV and not counted as misses) in “freq ≥ 2”
condition, and those appearing 4 or less times in a lecture are
ignored in “freq ≥ 5” condition.
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Figure 3: Detection error tradeoff curves of recurrent OOV
word detection with/without DOF.

3.3. Results

The DET curves of all conditions are shown in Figure 3. The
two curves yielded with DOF were below the curves created
using only slot-by-slot features. This result confirms that the
DOF extracted by the proposed framework dramatically reduces
detection errors of recurrent OOV words.

In both “Baseline” and “Baseline+DOF” conditions, detec-
tion error rate in “freq. ≥ 5” was lower than “freq. ≥ 2” con-
dition, but larger improvement was yielded when the DOF was
used. This means that our framework effectively utilizes the re-
peated appearance of OOV words. Although the DOF is still ef-
fective to detect OOV words repeated 2 times, it becomes more
powerful as the number of OOV word repetitions increases.

When the decision threshold was set to yield the false alarm
probability of 5%, the ratio of the number of false alarms in dis-
fluency (filler) segments to the total number of false alarms in
“Baseline (freq ≥ 2)” and “Baseline+DOF (freq ≥ 2)” condi-
tions were 17.2% and 9.4%, respectively. This confirms that
the DOF can effectively reduce false alarms due to the vocal
irregularities as expected.

4. Conclusion
In this paper we proposed a novel framework to extract effective
features for detecting recurrent OOV words in a spoken docu-
ment, which would normally degrade speech recognizer perfor-
mance significantly. In order to improve the robustness of OOV
word detection by utilizing recurrent OOV words, the proposed
method discovers recurrent segments wherein the same word is
uttered by using a phoneme recognizer, and uses the means and
variances of slot-by-slot features corresponding to the recurrent
segments as DOF for IV/OOV classification.

Experiments on CSJ 2701 academic lectures showed that
the use of DOF dramatically reduces the detection errors of re-
current OOV words. We also confirmed that our framework ef-
fectively reduces false alarms due to disfluencies by utilizing re-
current appearance of OOV words, and the DOF becomes more
effective as the number of recurrences of OOV words increases.
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