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Chapter 1

Introduction

1.1 Motivations and Background

Organic molecular materials, crystalline or amorphous, are essentially composed of
organic molecules which, even in the condensed phase, preserve their physical identity
well. In organic crystals, the electronic-energy state is known to form a band structure
with only small band gaps of the order of 100meV. Electronic transport is well
described by a band model, and charge mobility is field independent [1-3]. For
amorphous (or disordered) organic materials such as polymers, molecularly doped
polymers, and glasses, the features of isolated molecules are more pronounced than in
crystals. Electronic transport is well described by a random walk by electrons and
holes consisting of a series of thermally activated hops between the isolated molecules.
Characteristics of hopping conductivity in these systems, such as the electric-field and
temperature dependence of the mobility, has been studied for over three decades by
experimental approaches [4-6], theoretical approaches [7,8] and numerical simulations
[9-11].

Another important class of organic materials which have been used as electro-
. optical materials are the liquid crystals. Liquid crystalline materials represent an
intermediate class of materials between single crystals and amorphous disordered
materials, and have only recently received attention [12-17]. The interest in liquid

crystals stems from the numerous potential applications where electronic charge



1. Introduction

generation and transport processes are involved. However, the charge transport
mechanism in liquid crystals is not well understood and there is no comprehensive
charge transport theory available at present.

Liquid crystals have the electronic properties of both crystalline and amorphous
materials because they exhibit complicated features depending on the molecular
structure of constituents and also on the condensation conditions such as temperature,
preséure, existing impurities, and applied electric field. In this respect, it is of interest
here that recent studies by Funahashi and Hanna and others have shown that some
liquid crystals exhibit remarkably fast electronic conduction. The mobility obtained
were over 102 ¢cm?/Vs in columnar mesophases of discotic (disk like) liquid crystals
[18-20] and also in smectic mesophases of calamitic (rod like) ones [21,22], whose
charge transport, especially in the calamitics, had been believed to be ionic inherently
for a long time because of its liquid-like fluidity.

In addition to above mentioned features, which are of interest from the fundamental

point of view, the liquid crystals enable cheap, lightweight, portable, and large area
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1. Introduction

displays, with promising applications for various fields. Very attractive electronic
behaviors are reported that seldom happen in the disordered solids, such as bipolar
carrier transport [22] and field- and temperature-independent mobility [22-24]. The
liquid crystal is being recognized as an important new class of molecular
semiconductors, i.e., self-organizing molecular semiconductor. Self-organizing organic
semiconductors will possibly find useful applications in fabricating new devices.
Ordered organic molecular materials exhibiting high charge carrier mobility and stable
current may provide new LEDs. They may also be used for LC-displays without back
light, and possibly for use as plastic lasing materials.

Electronic transport in organic solids is generally slow because exchange of a
conduction electron or hole between neighboring molecules is not a very efficient
process. The mobilities of such systems are low and exhibit a strong temperature and
electric field dependence. Thus, previous studies [21-24] have focused on charge
transport mainly attributable to hopping. However, high carrier mobilities, varying
only weakly with electric field, are generally desirable for application purposes. For
this purpose, it is essential to fully understand the fundamental physics of electrical

transport through liquid crystals.

1.2 Aims of this Study

The purpose of the present work is to fully understand the fundamental physics of
charge transport in liquid crystalline phases, 'particularly in smectic mésophases.
Molecules in smectic mesophases are known to form two-dimensional molecular
layers. We can investigate transport property in the materials with regard to molecular

movement or orientation as mentioned in a previous section. The method for this
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study is to employ time-of-flight (TOF) technique to observe transient current-time
curve for the liquid crystalline sample and attempt to understand the physics of charge
transport by using the multiple-trapping model (MTM) to analyze the experimentally-
observed phenomena (phenomenological approach) and also by using Monte Carlo
simulation to examine the validity of disorder model (microscopic approach).

In TOF experiments for the liquid crystalline phases, the sample is sandwiched
between two blocking electrodes. A laser-pulse generates charge carriers near the top

‘electrode and these charges are swept toward the counter electrode under applied
electric fields, while the current being recorded. The transit time at which most of the
charges arrive at the counter electrode may be measured, from which the mobility may
be determined.

The multiple trapping model is a heuristic description of charge transport, in which
the hopping sites are divided into two groups, the free sites between which transport
can take place, and the trap sites into which charges may become immobilized for long
periods of time. Its advantage is that it is analytically tractable, and lends itself easily
to comparison with experimental data. Its disadvantage is that in the real system the
distinction between free states and trap states may become blurred. The method of
Monte Carlo simulation is superior to the MTM in that it enables us to study the exact
microscopic aspect of charge carrier transport in the materials and how it depends on
possible models for the underlying hopping rate. Its disadvantage is that it is more

difficult to make quantitative comparisons with experimental data.

1.3 Contents of the Thesis
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The present thesis is composed of three parts: The first part includes Chapters 1 and
2. Chapter 1 describes the backgrounds, research motivations, and aims of the work.
Chapter 2 summarizes the properties of smectic liquid crystals as promising new
electronic organic materials, and charge transport mechanisms in crystalline and
amorphous organic solids which have already been studied, together with
consideration of the predicted charge transport properties in liquid crystals. The
validity of the Time-Of-Flight measurement for use as evaluation method of charge
transport properties in materials will be discussed.

The second part includes Chapters 3, 4, and 5. Here, an attempt is made to analyze
the information obtained from the experimental TOF-photocurrents on the basis of
multiple-trapping model (MTM). In Chapter 3 we discuss charge transport due to hole
migration in smectic-liquid phases, comparing the calculated results with experiments.
A field-independent mobility which is consistent with the Einstein relation was found
for the first time for smectic phases in low electric field region. This has never before
been observed for disordered organic solids. In Chapter 4, experimental finding of
jonic transport_occurring in smectic phases is demonstrated. We introduce a useful
model to clarify the phenomenon and distinguish electron transport from ionic
transport. In Chapter 5 we introduce a new method based on the MTM for obtaining
the trap-density distribution in the material from transient TOF-photocurrent decay
curve. We demonstrate this procedure by applying it to measurements taken on the
smectic phase.

The third includes Chapters 6 and 7., Here we attempt to deterimine what aspect of
disorder is dominant in determining carﬁer dynamics. This is followed by a
presentation of the useful results obtained in this work for fabrication of new electronic

devices.
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Chapter 2

Charge Migration in Liquid Crystals

2.1 Introduction

In this section we introduce the structure and properties of liquid crystals with particular
emphasis on smectic liquid crystals (SmLCs). We then discuss the general electrical
transport properties of disordered organic materials. We assume that the mechanisms for
hopping transport process in disordered organic materials are also applicable for SmLC.
Although smectic liquid crystals have molecular orientation, the reason that band-like
transport does not occur, at Jeast for a scale larger than tens of angstrom, is because the
long-translational order is broken by thermal fluctuations [1-5]. Measurements in TOF
experiments show that the mobility is independent of the field and temperature [6]. This
feature is completely different from organic disorder materials. However, we need to be
careful in our interpretation of the TOF measurement, because most of photocurrent signals
are broadened by diffusion and trapping process of charge migration. The analytical
method for extracting the information of carrier transport in SmLC is presented on chapter
3. Here, we also show the experimental set up of TOF and the experimental result. The
results are useful for understanding the carrier transport in SmLC.

The procedure of this chapter is therefore as follows. First we introduce the materials of
liquid crystals which show electronic conduction. Then we explain the significance of the
TOF measurement, the TOF experiment set up, and the experimental result. Finally, we
review the carrier transport properties of conventional organic disorde;ed materials, for

comparison with the properties of SmLC.



2. Charge Migration in Liquid Crystals

2.2 Smectic Liquid Crystals

2.2.1 Liquid Crystal Showing Charge Conduction

Liquid crystals having electronic conduction were only found in the past decade, and
include the following types: discotic LC [7-11], smectic LC [5, 12] and Polimeric LC
[13,14] (Fig. 2.1).

Discotic materials consist of molecules with a flat, disk-like aromatic core which is due to
the fact that the orbital overlap between the p-orbitals of adjacent core atoms is optimal for
a planer conformation. This results in extensive molecular n-orbitals, above and below the
plane of disk, in which the p-electrons are delocalized. Peripherical substitution of these
aromatic macrocycles with long hydrocarbon chains can result in materials with

mesomorphic properties. Thus, in addition to a crystalline solid phase, they often display an

Discotic LCs Smectic LCs

Phthalocyanines

Triphenylenes 2-Phenylbenzothiazoles

CsHnO OCsHit C1His0 —O—cn
SCuHis
2-Phenylnaphthalenes
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R CsHr?
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Carboxyldumldo- peri-hexabenzo- Terthiophenes
perylenes coronenes

h R R
0O, ) 4] !
CraHz Crabs
Polymeric LCs
Polyfluorenes
CizHz Cuflzs .
& .
CuHis H1:Cs CsHni

Fig. 2.1 :Typical Liquid crystals showing electrical conduction
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2. Charge Migration in Liquid Crystals

intermediate liquid crystalline phase prior to melting to an isotropic liquid phase [15]. The
dischotic mesophase has the ability to form self-assembling, one-dimensional conducting
pathways. The molecules self-organize into long columnar stacks which are packed in a
two-dimensional hexagonal lattice (Fig.2.2-(a)). With in the columnar aggregates, the 7-
systems of neighboring aromatic cores overlap and a one-dimensional pathway for charge
transport along the axis of the columns is created. The resulting “molecular wires” are
coaxially insulated from each other by their long hydrocarbon chains.

Smectic materials also consist of molecules with a flat, aromatic core. But this time, the
core component is not disk-like. The molecules have a rod-like component with long
hydrocarbon chains on both sides of a core component. This results in also extensive
molecular m-orbitals, above and below the plane of the core component in which the p-
electrons are delocalised. Peripherial substitution of these aromatic macrocycles with long
hydrocarbon chains can result in materials with mesomorphic properties. They often
display an intermediate liquid crystalline phase prior to melting to the isotropic liquid. The
molecules of the smectic mesophase also self-organize, but this time, they are packed in a

two-dimensional plane layer structure (Fig:2.2-(b) ). In the SmA phase, molecules are

= 1x103cm?*/Vs, p= 106cm?/Vs =5 %103 em?/Vs

(a) (b)

Fig. 2.2 :Discotic LC and Smectic LC: Self-assembly of
disk-like and rod-like molecules

11



2. Charge Migration in Liquid Crystals

(a) SmA (b) SmB (c) SmE

Fig. 2.2 :Smectic mesophases and molecular alignment

aligned randomly in the layer with a perpendicular orientation to the plane. The SmB phase
and SmE phase form self-assembling and two-dimensional conducting pathways. The
molecules are aligned in a hexagonal and rectangular lattice in the layer, respectively.
Within the aggregates, the 7n-systems of neighboring aromatic cores overlap, and a two-
dimensional pathway for charge transport along the plane layer is created. The resulting

“molecular planes” are insulated from each other by their long hydrocarbon chains.

2.2.2 Molecular alignment in Smectic phase '

As we discussed previously, the primary feature of the smectic mesophase is that the
molecules stack with layer structure. In the SmA phase, their alignment in the layer is
random, as it would be in a liquid. On the other hand they behave elastically for the other
direction. The long range order of the layer structure, however, is broken by root-mean
square of positional fluctuation (Landau-Peierls instability) whose radial distribution
function decays as ~r™ where r is the distance between molecules and nis the exponent

depending on temperature. On the other hand, in the SmB and SmE phases, the molecules

12



2. Charge Migration in Liquid Crystals

have a long-range order of bonding-orientation and a short-range order of translation; the
direction of the bond between molecules has long-range order, but the order of translation
is broken at a few times the intermolecular distance. The layer structure also shows

Landau-Peierls instability. There is no inherent periodic alignment in the layer. (Fig.2.2)

2.3 Detection Techniques of Charge Migration '%!”

The movement of charges in the medium needs to be proved for understanding the
charge migration. Several detection techniques have been developed, some of which make
use of a constant electric field (dc) and others implementing an oscillating electric field (ac).
The dc techniques use a pulsed excitation, and rely on a time-resolved measurement. An ac
field can be established with a contacting electrode, or by means of microwave radiation.

Here we discuss dc techniques.

2.3.1 Carrier Densities and Detection

The processes of charge injection and carrier transport govern the electrical
characteristics of organic electric devices. Without charge injection, disordered organic
materials have negligible intrinsic carrier concentrations and a very high room temperature
resistivity. One way to introduce charges is through optical generation of electron-hole
pairs which dissociated under the applied field. Two general approaches are then used to
measure the carrier mobility:

(1) Measuring the transit time across thin ﬁlﬁls [18,19].

(2) Fitting the I-V curve of diodes or FETs [20-23].

Although charge carriers can also be introduced into organic materials by doping, the
dopant ions significantly modify the intrinsic electronic transport properties. Consequently,
introducing excess charges in this manner is not particularly helpful for understandig the

intrinsic mechanisms for carrier transport [24]. Conventional Hall effect measurements

13



2. Charge Migration in Liquid Crystals

have also not been useful for determining carrier mobilities in these insulating organic
materials and photo-Hall measurements are complicated by short carrier lifetimes and
relatively large exciton binding energies. Hopping transport in a disordered organic
material leads to a mobility that often depends strongly on both electric field and carrier
density. Organic diodes typically operate at an electric field of several times 10° V/cm and
at carrier densities of up to a few 10'’cm™ [25]. In contrast, field-effect transistors operate
at lateral electric fields of few 10*V/cm and at carrier densities above 10'3cm™. For carrier
densities below about 10'7cm™, typical of diode operation, the mobility does not depend
strongly on the carrier density[26]. In this low density limit, interactions between carriers
and state filling effects are not significant. In contrast, for carrier densities above about 10'®
cm>, typical for FET operation, the occupation of lower energy hopping sites enhances the
carrier mobility. Because of the random molecular structure and differences in the
operating regimes, the transport in these limits can be very different.

Three techniques have been used to determine carrier mobilities in disordered oraganic
materials: (i)time-of-flight (TOF) transient current measurement ,(ii) fitting of single-
carrier space charge limited (SLC) diode I-V curves and (iii) analysis of field-effect
transistor I-V curves. These three mobility measurement techniques sample different
electric field and charge density regemes. TOF techniques can measure the carrier mobility
for electronic fields up to 10°V/cm but they are restricted to very low volume averaged
carrier densities of about 10°cm™ or less. Because the TOF technique is restricted to very
low carrier densities, it is difficult to measure the carrier mobility in the presence of
extrinsic trap states. Fitting the single carrier SLC diode I-V curve can provide the mobility
for electric fields densities from about about 10° to 10° V/cm and for carrier densities form
10'°to 10"8%cm™. These measurements are much less sensitive to trapping effects than TOF
measurements because the comparatively large density of injected carriers can fill moderate
densities of traps without significantly perturbing the mobility measurement. In SCL diode
measurements, the electric field and carrier density are functions of position within the
device structure. Thus, fitting the measured I-V curves requires assumptions about the
carrier density and electric field dependence of mobility. Nevertheless, the TOF methhod
and the SLC diode method usually yield consistent results for the mobility.

14



2. Charge Migration in Liquid Crystals

In FET mobility measurements, the lateral electric fields that are responsible for current
flow are typically in the 10* V/cm range and the charge is confined to a thin region of
organic disordered material adjacent to the gate insulator. This leads to very high charge
carrier densities of about 10'°cm™. These carrier densities are high enough to significantly
modify the mobility due to changes in the occupation of hopping sites. In addition, the
results are sensitive to the local molecular structure near the interface that may differ
significantly from that typical of bulk films[27]. The FET mobilities are often significantly
larger than TOF and SCL diode results made on the same material. The higher mobility
inferred from FET measurements is attributed to either the different carrier density regimes
in which the measurements are made, or to variations in the local molecular structure in the

two kinds of devices.

2.4.2 Time-of Flight Mobility Measurements

In the Smectic materials which we investigate here, about the carrier density is low, on

the order of 10'°~10'2 cm™. We treated very thin cells in which the sample thickness Z is

* e LA XX ]

—_ L.C.sample cell L . Preamplifier  Digital oscilloscope

Fig. 2.4 :Time-of-Flight set up
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2. Charge Migration in Liquid Crystals

about 5~20um. In this case, we think the TOF technique is best application, provided that
we are careful to reduce the pulsed light intensity in order to prevent space charge effects.
The TOF set up is as follows (Fig.2.4). Our SmLC sample is mainly composed of 2-phenyl
naphthalene derivatives (6-(4'-octylphenyl)-2-dodecyloxynaphthalene (8-PNP-012). The
LC sample was sandwiched by ITO or Al coated glasses spaced by a silica spacer. An N,
dye Laser (Laser hotonics LN203C, wavelength =337nm, pulth width =600ps, and power =
40 wl/pulse) was flushed from the side of +biased electrode for hole transport or — biased
electrode for electron transport. The photo-excitation of SmLC by Laser irradiation
(A=320nm) into the main absorption band of the SmLC resulted in the creation of electron-
hole pairs in a very thin layer ( Light penetration depth less than 1jum) near the illuminated
electrode. Depending on the polarity of the applied electric field, one charge carrier is
eliminated at the illuminated electrode, while the other one moves through the sample
towards the counter electrode. The charge motion creates a displacement current, which is
measured by a digital oscilloscope (Nicolet Pro92).

In principle, if the moving charge packet had no dispersion, the current shape would be
of a rectangular form. The ideal current signal would then have a “cut off” at the time when
the carriers arrive at counter electrode. From the time of “this cut off”, i.e, transit time, we
can determine the drift velocity, and thus the mobility of the carrier transport. However, in
reality, the transit time for different carriers has variation due to trapping and diffusion
processes. For this reason, the real photocurrent signals have dispersion. In such a case, the
conventional way to determine the transit time is to measure the “kink point” at the
transition between the plateau and the tail. This is different from the “true transit time” and
the manner in which it deviates from the “true transit time” depends on the underlying
processes which contribute to the dispersion. This problem is discussed on Chapter 3. An

example of the mobility as determined by the kink poin is shown in Fig.3.2.
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2. Charge Migration in Liquid Crystals

2.4 Charge Transport Processes [16,17,28}

2.4.1 GillI’s Empirical Law

In this section we will survey the properties of carrier transport in disordered organic
materials such as polymers and molecularly doped polymers. In MDPs, isolated dopants
exist in polymer host. Charges hop between the dopant molecules in a matrix of host
polymer. The first TOF measurements on molecularly doped polymers (MDPs) showed a

field-dependent mobility with a Poole-Frenkel field dependence [29,30],
pocexp(yVE)- @2.1)
The “Poole-Frenkel factor” y was found to be a decreasing function of the temperature. A

phenomenological description of this dependence was proposed by Gill, who introduced a

fitting formula for poly (N-vinyl carbazole)-trinitrofluorenone (PVK-TNF) complexes,

specifically [30]
A, - BVE
= pyexp ~ 2 PVE | 22)
kT,

where A, is a low field activation or barrier energy, fa constant, k the Boltzmann constant,

T the absolute temperature, and

S N 2.3)

T, T T,
T, being the compensation temperature at which, hypothetically, the mobility becomes
field-independent. In the Gaussian disorder model explained below, we will see that the
microscopic origin of Tp is attributed to a competition between the energetic disorder and

positional or orientational disorder [31].

2.3.2 Scher-Montroll Theorym]

One of the early problems with analyzing the tirhe of flight experiments was that the
mobility could not be directly related to the transit time because the photocurrent transients
were highly dispersive. An understanding of dispersion could be had through an analysis of

a continuous-time-random-walk (CTRW) model between sites where the carrier is time-

17



2. Charge Migration in Liquid Crystals

dependently released (waiting time distributions, WTD’s). It was expected that disorder
should give rise to a broad distribution of WTD’s. By introducing a WTD of the form
w(t)~t ), (2.4
Scher and Montroll were able to show that the associated current must feature a time
dependence of the form
-0 t<t
I() ~ {t ’ r 2.5)

—(1
(+a)’ 1>t

« is the dispersion parameter, and f, the effctive transit time. The CTRW formalism for
exponential density of state (DOS) leads to the same behavior as the multiple trapping
model [33]. The motion of the independent charge carriers at the edge of the transport state
(or valence band) is interrupted by temporally trapping events by localized states. This

model is described in detail and discussed to apply to our material in Chapter 3.

2.3.3 Gaussian Disorder Model

Bissler and coworkers extensively studied the Poole-Frenkel type field dependent
mobility in disordered organic materials by using Monte Carlo simulation on the basis of a
three-dimensional Gaussian disorder model (GDM) [34, 35]. For organic disordered system,
where the carrier transport occurs through hopping process, we can reasonably assume that

the energy localized state is usually characterized by Gaussian density of states (DOS)

1 &’
exp| — , 2.6
Yo p[ 2a’] (2.6)

where o'is the energy deviation of DOS, the energy being measured relative to the center of

DOS. The energetic disorder characterized by o reflects the fluctuation in the polarization
energy as well as dipolar interactions in the case of asymmetric molecules or impurity
molecules at a low density. A reasonable transition rate for hopping process was suggested
by Miller and Abrahams [36]. It is the product of pfe-factor W, a carrier wave-function
overlap factor, and a Boltzmann factor for Jjumps upward in energy, i.e. the jump rate .

between sites 7 and j, the distance between the sites being ry, is
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g,—¢—€eE-r, "
V. =V, exp(—zrij L T (for &, =&, ~eE -1, >0.)
i

a

1 (forg,—¢& —eE-r; <0.)
2.7

Here a is a specific decay length of the wave function in the localized states and k is
Boltzmann constant. This formulation assumes an electron-phonon interaction for phonon-
assisted thermal activation hopping process neglecting polaronic effects. Using extensively
the computer aided random walk of Monte Carlo simulation, they thought that they found
the Poole-Frenkel like field dependent mobility vwere observed in their simulation. But this
dependence of simulation appear in much higher field than that of experiment and that

region is very narrow. They derived the disorder formalism as

iy = My exp‘:— (o.m%)Z}xp{c[[%)z —22}/'5} 2.8)

for £>1.5, by asymptotic fitting to the simulation-result.

Garstein and Conwell [37] showed that a spatial correlation in the site energy
distribution for the carriers can explain the experimental field dependent mobility. If there
is a spatial correlation of energy between sites, the energy of neighboring sites may become
close to one another. In such a case, a charge can easily hop between neighbors. A strong
field dependence of the mobility then occurs when the potential difference (eEl) across a
relevant length scale / becomes compatible to £7. In the uncorrelated case, / = a, a distance
which is so small that field dependence only occur in high field region. A spatial
correlation introduces a new I, over which the site energies are correlated. The correlation
must be occur in order to cause a field dependent mobity in the low field region where it is
often observed. ‘

Novikov and Vannikov [38] investigated a plausible mechanism for correlations in the
disorder. The showed that the charge-carrier and permanent dipole interaction gives rise to
a long-range correlation that falls off algebraically with distance y, as 1/y. A one-

dimensional Master equation with nearest neighbor hopping has been exactly solved by
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Derrida [39]. In the case of correlated disorder, Dunlap et al, [40-42], showed that, in the
continuum limit, the result is [40],40,41,42

7
y f dye™ <O (0)+ﬂe<y>> 29)

where y = ZeE, E the electric field, &) is the site energy at position y. u is the mobility if

all site energies were the same. Using a Gaussian approximation to calculate the correlation
function and the (1/) dependence for the correlation function < &(y)&(0) > given by both

the charge dipole interaction gives

poe”? (2.10)

(2ﬂa1/ﬂeEa)K (2B0 | feEa)

where o is the standard deviation of the density of site energies, a the lattice constant, and

Ki(2) is the first-order modified Bessel function of the third kind. In the charge dipole

disorder model the standard deviation of the site energy distribution is

o=+ ePn,/127¢%a, @.11)
where P is the dipole moment and n is density of dipoles. Using an asymptotic expansion

for K;(z) (~(7n’2z)”2exp(—z)), the the mobility becomes
1= py(Eyexpl- 0* Jexp(2 for [ feEa ). 2.12)

This solution obeys the Poole-Frenkel like form Eq.2.1). Novikov et al [43] have
performed simulations on the correlated dipoler-disorder model (CDM) in three dimensions
which confirm the findings of the analytic result in one dimension. A parameterization of
these simulations over a wide range qf parameters has shown that the Poole-Frenkel
mobility may be described by the formula

1= poexp[-4,6" + 4,(6" - A,)\JeaE /o] ,' '(2.13)

where 4;, 4> and 4; are constants, and n=m=2 in the standard in the standard GDM. The

CDM formula provides the first direct method to link the parameters for a microscopic
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“model for the Poole-Frenkel mobility to the results of experiment. A physical

interpretation of the role of correlations is discussed in reference [44],

2.5 Discussion

In the sections above we have overviewed the structure of the Smectic liquid crystal
(SmLC), the TOF experimental set up, and disorder formalism as applied to a disordered
organic solid. We should now consider what kind of models is applicable to the smectic
liquid crystal, how we should interpret the experimental results, and how we can compare
the experimental result with the model. First we saw that the molecular alignment in the
smectic layer does not have long-range order of translation. The periodical alignment is
broken in the short length order of the distance from a few times the inter-molecular
distance. For this reason, we think that carrier transport is dominated by hopping transport
as it is in the disordered organic materials. The molecules of our material, 8-PNP-O12,
almost never have a permanent-dipole, and the observed experimental mobility does not
have field dependence for the range of measured field range. It is therefore inappropriate to
apply the CDM of charge-dipole interaction. For this reason, we adopt GDM for SmLC in
Chapter 6. Before we examine the GDM to SmLC, we should consider the estimation of
TOF-application to SmLC. Then we tried to analyze the TOF photocrrent by using

phenomenological way, mutiple trapping modele as showed in next chapter.
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Chapter 3

Macroscopic Analysis Using
Multiple-Trapping Model
and TOF Technique

3.1 Introduction

In recent years, time of flight (TOF) measurements have been employed for studying
electron and hole transport in discotic (DLCs) [1-8] and smectic (SmLCs) [9-15] liquid
crystals. As we have discussed in Chapter 2, the TOF technique is used to obtain
photocurrent transients from which time of flight is determined as it would be for
conventional disordered organic materials [16-18]. The behavior of the mobility for liquid
crystals, however, differs from that for disordered organic materials. The charge carrier
mobility in liquid crystals exhibits only a week dependence on both the electric field and
the temperature, although for some cases a strong field and temperature dependence for a
wide range of field and temperature has been observed [3,19,20]. In contrast, the mobility
in disordered organic materials noramlly has a strong temperature and electric field
dependence. The shape of the photocurrlent transient in SmLC is also less dispersive as
compared with that which is normally observed in highly disordered materials [16,17,18].
The TOF current in SmLC might even be called “nondispersive” were it not for the fact
that it tends 1o have an unusually long tail which  vanishes  very
slowly.

Although the charge transport properties of liquid crystals are somewhat different from

what is found in conventional disordered organic systems, W€ suggest that they can be
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Fig. 3.1: Typical transient photocurrent in SmB phase of 8-PNP-O12 (a) at
E=2 10" V/cm and (b) at E=10° V/cm. Insets are on double log scale.

explained by the same disorder formalism, beginning with the assumption of the Miller-
Abrahams type hopping rates which have been discussed in Chapter 2.

In the TOF method, a thin-film sample sandwiched between two electrodes and
subjected to an applied field is illuminated with pulsed-laser flash producing a thin-sheet
like-shaped carrier distribution near one electrode. The current is then monitored as a
function of time. The observed photocurrent transients have an initial spike, a plateau, and a
long tail (see Fig. 3.1)- Normally the transit time Zs is measured from the intersection of two
asymptotes, one to the plateau and the other to the trailing edge of the transient
photocurrent [21]. Because the carrier distribution spreads with time as it moves across the
film, charges arrive at a variety of different times, and consequently the photocurrent
transient does not have a purely rectangular-current shape. Since the drift velocity v=L/1a

is the sample thickness divided by the transit time, the mobility of the charge carriers, fa,

can be calculated from /g according to

I? '
-, 3.1
H, 7 3.1

where L is the sample thickness and V the applied voltage. Figure 3.1 shows the typical
transient photocurrent signal in the smectic liquid crystal (a) for high-applied field
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3. Macroscopic Analysis Using MTM and TOF Technique

(104V/cm), and (b) for low-applied field (~103V/cm). In most organic disordered materials,
the TOF current signal can not be measured at such low-applied field on the order
~10°V/em. In liquid crystals, on the other hand, a relatively sharp photocurrent signal can
even be measured at low-applied fields. Figure 3.2 shows the field dependence of the
mobility which is obtained from ¢, by using Eq. 3.1).

In order to understand the nature of the charge transport in bulk samples, we want to
measure the “mean mobility” fim rather than y,. If we want to find um by using Eq. (3.1),

we must measure a “real” transit time £, (not z;) which is defined as,

__L (3.2)

- >
<v>

ir

where <v> is the average drift velocity. If the carrier distribution were to remain narrow,
there would be no distinction between these two, for in such a case the current time curve
would have a rectangular shape, and two transit times 1, = t» are the same. The difficulty
arises because the current-time curve is broadened from the ideal rectangular shape by
dispersion of the carrier distribution. We consider here three sources for dispersion. First,

diffusion brings about a broadening of the transient when the applied field E is low (or the

sample is thin) so that after a time #, the rms of the charge distribution, /2D¢, , is

3
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Fig. 3.2 :Field dependenceof the mobility in SmB pahse of 8-
PNP-012 derived from conventional method.
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Fig. 3.3: Schematic image of dispersion of transient photocurremt (a) due
to diffusion and (b) due to delay of charge transport caused by trapping
and de-trapping process.

comparable or greater than its displacement vZ- due to drift. Since L = vt, and D =kTv/eE, if

the Einstein relation holds, we can express this criteria,

2kT
2>, 3.3
\f 7 (3.3)

in terms of the ratio of the thermal energy kT to the voltage V = eEL. Thus, for kT = 30.4
meV which corresponds to 80°C in SmB phase of 8-PNP-O12, diffusion should have a
small effect for E larger than 10° V/cm. The second source of broadening may be caused by
slow equilibration in the transport manifold due to extensive spatial and energetic disorder.
The third source is the delay of charge transport caused by trapping and de-trapping process,
with the trap-site energy, which is lower than the transport-state energy and distributed
more or less at random in the bulk film.

In the transient current, the first and second sources tend to increase the transit time ¢,
(Fig. 3.3-(a)), which causes the measured kink time #, to become smaller than 7. The third
source causes a delay of the driﬁving charge, because the kink point is not particularly
sensitive to the effect of deep trapping, 1, is almost the same as Z. Understanding of the
distinction between #, and f,- in disordered organic materials has been carefdlly studied for a
long time [22-30]. Until now, only the conventional measurement of 1, had been
determined in experiments on SmLC, under the expectation that the dynamics of the carrier

distribution in SmLC should be almost the same as that found in disordered organic
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materials. Here, we try to go further and examine the TOF photocurrent based on a
combination of the diffusion equation and the multiple-trapping model (MTM) suggested
by Noolandi [23,24]. We found there that the carrier transport in our materials can be
explained by MTM with diffusion under the assumption of a Gaussian distribution of traps.
Furthermore, in the low field region, the carrier transport properties are consistent with
Einstein relation. The Einstein relation has never been directly observed in organic

disordered solids.

3.2 Multiple-Trapping Model without Diffusion

3.2.1 Generalized MTM with D=0

In this section we discuss the applicability of the well-known multiple-trapping model ,
a two state heuristic model which assumes that charges are free to drift in a transport
manifold under the action of an applied field, but occasionally become localized in
randomly placed traps. It is simplest form, the effects of diffusion in the transport manifold

are considered to be unimportant as compared to the dispersion caused by trapping and
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release events We will show that this simple model is not applicable to the SmLC material,
and that the inclusion of both effects, trapping and diffusion, is required to provide an
adequate description of the photocurrent transients.

This MTM is discussed in detail in Refs [23,26]. It is a heuristic representation of the
real trapping process that go on in the sense that the importance of the spatial location of
the individual traps is neglected. Instead, trapping events are simply described by two rates,
a trapping rate y and release rate R. The term “trap state” is used for any localized states in
which a carrier cannot move for some time. In contrast, the term “transport state” is used
for any fundamental state which define the microscopic mobility, s of a charge carrier.
We assume that the density of traps is small enough so that the traps are spatially isolated
from each other, so that direct transitions between them are negligible. Transport states, on
the other hand, are spatially interconnected so as to allow transport with an observable drift
speed. Thus the microscopic mobility is determined by transitions between transport states,
whereas 7 and R determine the transitions between transport states and traps. A schematic
description of the model is shown in Fig. 3.3. Consider, for example, the case of positive
charge (hole) transport. Let us assume that the distribution of holes is generated in
immediate vicinity of the illuminated electrode (cathode), and denote the location of the
charge packet to be x = 0 at time ¢ = 0. The holes subsequently drift (under the applied field
E) toward the anode located at x = L (sample length). The transitions that take place in the
MTM are described by two coupled master equations,

0pu6) _ _, 0D o (o 1)+ Rp, (x,0) + 5(x)S), (3.4)
ot Ox
5D _ 5 )~ Rp (1) (3:5)

where p, (x,1) and p, (x,f) are locally-normalized population of the transport state and trap
state, respectively. In equations (3.4) and (3.5) we have only included one variety of trap
state. If the system has n species of traps, each'having a different trapping rate » and

release rate R; (i = 1~ n), the model can be expressed by n+1 equations as

apha(:'at) ==V, ap;,a(x,t) _Z}/lph(x,t)‘l'ZRlp"(x’t) +6(x)5(t) (3.6)
X i :
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0p, (x,1)
ot

where i is the label for each traps, i-th localized state. Here we define the total trapping rate

=}',ph(x,t)—Rp,,.(x,t), (37)

as y = Z 7, - The contribution of y for each i th trap depends on distribution of traps, so,

Y=, (3.3)

where W; denotes the weight for i th trap distribution normalized as ZW, =1. The

equations (3.6) and (3.7) can be solved using Laplace transforms. The Laplace transform of

Pu(x,t) and p, (x,f) are defined as

B, (x,8) = f dip,(x,0)e™" (3.9)

B.(x.5) = [ dip,(x,H)e™ (3.10)
Then the Egs. (3.6) and (3.7) are transformed in the Laplace domain as

5P, (x,8) =, 6_516(;@ — 1P, (x,5) + Z RB,(x,5)+8(x) (3.11)

5P, (x,8) =7,p,(x,8)— Rp, (x,s). (3.12)

Substituting the solution for g, (x,s) from Eq. (3.12) into Eq. (3.11), we find a closed

equation for p,(x,0);

- B0 RW,
x5 ==, P, 1,904y T p s v @Y

Equation (3.13) is easily integrated. By imposing the normalization condition that the total

charge is 1, we find that gives

5,,(x,s)=1exp(—Ls)x), (3.14)
Y L :
and
~ Y _A(s)x }
pi(x’S)_V(S+Ri)exp( L )a (315)

where the function:
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As) = 50(s), (3.16)
v
depends on the trapping time
7(s) = —1—+ ! for one trap, (3.17)
y s+R
= 1 + 1_—_%(_32 for multiple traps. (3.18)
¥ s

In equation (3.18) we have introduced the average trap dwell time distribution function,

- RW
@ (s) =Z s

s+R,.'

(3.19)

Writing the trap state distribution as a function of £ measured from transport state, the
summation in (3.19) may be replaced to the integral, i.e.,

R(£)
s+R(g)

i = [ de p(e) (3.20)

where p(g) is distribution of trap energies. Combining (3.14) and (3.15), the total carrier

distribution in the Laplace domain is given by

B0,5) = By + B =2 exp(— A(Z)x) . (3.21)

It can be shown that the normalized photocurrent [ (t)/T(O) , which is the current
divided by total charge Q = 1(0), is given by

TL% = %%[ f duxp(xe,t)+L [ dxp(x,t)] : (3.22)

The first term is the expectation value of the location of carrier in the bulk. Then the
derivative of time becomes drift velocity. The reason why we need the second term is as
follows. The holes that arrive at the anode cannot move, because they strongly recombine
with the electrons at the anode. Substituting Eq. (3.21) into Eq. (3.22), we find that the

Laplace transformed normalized current of Eq. (3.22) is given by
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1@ _ ~ ~
7(—(5 =$ fdxxp(x,s) +sL fdxp(x.s)

1 s
=7(S—)(l—e Ay, (3.23)

The photocurrents can be obtained from Eq. (3.23) by using a numerical inverse Laplace
transform. In this manner, we can handily produce current-time curves for any trap
distribution. There are several ways to implement these types of calcuations [24].Figure
3.4-(a) shows the derived photocurrent as obtained from the inverse Laplace transform of
Eq. (3.23) for the one-trap model described by Eq. (3.17). Although we have implemented
a numerical procedure, we should point out that the photocurrent of one-trap model can be
obtained analytically as described in Ref [24,25].

Figure3.4-(a) shows the photocurrent traces, parametric in trapping rate y. The sample
length L = 5y m, drift velocity v - 40 cm/s and release rate R = 0.12ps™". In this case, thus,
the transit time #,= L/v = 12.5 ps. 1/y is the average lifetime of a free canif:r. If the 1/y > tn,
a trapping event is not important for dispersion of the current, because most of the carriers

will not be trapped before the transit time. In such a case the shape of photocurrent will be

close to rectangular (See the current for Y= 0 and 0.05 ps’l; 1/y = o and 20usin Fig 3.4-
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(a)). As y becomes large, trapping events occur more frequently, causing a dispersion of the
transient. As long as there is a reasonable probability that a carrier may not be trapped, a
sharp kink point may still be observed. This sharp kink point becomes smaller as 7
increases further. For comparison, we have plotted the experimental data. We note that
when y=0.25 p.s'l, the shape of the derived photocurrent from the model is close to the
results found in experiment. We fitted one trapping model to the experimental data by using
the method of least squares. A total of 30 sampling points in the experimental data in the
neighborhood around the kink point were used. The best fits are reasonable in the
neighborhood of the kink point, but it is difficult to fit the tail for long times. This suggests
that one trapping model can not explain the features of charge transport delay observed in
the experiment. Another indication of this failure is that the model predicts that the derived
parameters (¥ and R) must be independent of field. Unfortunately, the fitting parameters
change systematically with field, as shown in Table 3.1. In Fig. 3.5, we fixed parameters
y=0.126 us” and R= 0.44us'1, and we examined the dependence of the photo transient on
remaining parameter v. The fixed parameters were chosen to be a best fit for experimental
photocurrent at V= 3V. In the current of one-trapping model, most carriers are trapped but
can be released (1/R = 22 ps). This cannot lead to a sufficient dispersion of the current. In
high-field region, carriers can drift without being trapped (1/y =7.9ps). The carriers, which
are not trapped, produce a sharp kink point which could not be observed, however, in our
materials in high-field range (103~5x105 V/cm). If we extend the analysis to include two
traps, or three traps, the fitting improves. However, we find an inconsistency in that the

the trap parameters must change systematically with field in order to fit the data.

Thus, we think that trapping alone is insufficient to describe what is happening in our

TABLE 3.1 Derived parameters by fitting of one-trapping model

v (V) 10V 5V 4V 3V 2V 1V
v(cm/s) 39 26 17 14 65 5.2
yus 028 0.22 0.18 0.13 0.11 0.082
Rus™ 015 0.12 0.12 0.044 0.053 0.0395
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materials.

3.2.2 Diffusion equation
Diffusion can also be considered as one of the sources of the current dispersion. For

an initially photo-generated delta-function like charge distribution inside the sample, at
x=a, the diffusion equation is expressed as

opu(et) _ _,, p5l) | p&PED | 55— a)s(0), (3.24)

ot ox Ox

where D is diffusion constant. To describe charge which is injected at the anode, at x=0, the
limit a—>+0 will be taken. Equation (3.24) is transformed in Laplace domain as

sﬁh(x,s)=—vh@’—'a£?—9+Dgz—é§’—s—)+5(x—a). (3.25)

Then, using a Fourier transformation over space, the general solution can be derived as

_ _ | R
B, (x’ S) - Cle(l+x)vx/2D +C2e(l x)vx/2D +__e(l x)¥x—a)/2D for x>a ,
KV
- 1 -
Cle(l-H()vx/ZD +C2e(l xyx /2D +_e(l+K)(x a)/2D for x<a s
Kv
(3.26)

where

Kk =+1+4Ds/v*. 3.27)

We take the boundary conditions as reflection at the anode (carrier injection) and

absorption at the cathode , i.¢.,

J(x=0)=vp,(x,0)~ Di’ﬁé’fﬁ =0 at anode, (3.28)
-x x=0

p,(x=L)=0 at cathode. (3.29)
By using condition Eq. (3.28) applying to Eq. (3.26) forx < a and condition Eq. (3.29)

applying to Eq.(3.26) forx2a, the constants C; and C; may be determined;

2e—K\'L/2D

C=_ ; 330
T k14 (e -De™’ (3.30)
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_ (K—l)(l—-e_muD)#
2 e F 1+ = e @3

If we decide

2evL/2D

Cl=- : 3.32
L T | 32

expression for the Laplace transform of the current may be written as follows:

Is) _ D (Cl,e-(,mvd,m v 4k )+ 2DC]_(_ gwerarnv), 20C K7 (1 goran)
I1(0) vL x) vL(l+xk) vL(l1-x)

(5.36)
The photocurrent can be obtained by a numerical inverse Laplace transform of (5.36), as
described in Fig.3.6. The carrier distribution for various times for a sample length L= 10
m is also shown in Fig. 3.7. (In the figure, x = 0 is the position of cathode and x = 10um is
the position of anode.). The experimental results were fitted numerically as shown in Fig.

3.10. From this figure, we can see that the measured transit time f, is the time when the
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—
~

e
I}ngﬁ:: ‘L 10
~ X
lE = 8
3 E p
E 5
L4 -
X 2
/\/ g
>
N 3 0
4 6 8 10 0 50 100 150 200 250 300
x (pm) t (us)

(a) v=10 cm/s, D =10 cm?/s

1.4 =2 ps — "T«: 16

12 GRus—1 g M

—T; 1 312
[

2 08 3 10

< £ 8
-

0.4 4

0.2 2
-

o - 1]

0 2 4 6 8 10 0 20 40 6D 80 100 120 140 160 180 200
X (um) t (ps)

(b)v=10 cm/s, D=5X 104 cm?/s
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Fig 3.7 :Diffusion model: Carrier distribution traces in parametric time

(left side) and corresponding transient current

carrier distribution begins to arrive at the anode, and 7, is

the time at which the center of the

carrier distribution to arrives at the anode. These features have been studied

in detail by Hirao et al [29,30]. Figure 3.9 shows the current and corresponding carrier

distribution for each D values. In this case, diffusion dispersion is very large as diffusion

motion is faster than drift motion (\/? x* > =\EDt,, =14um >L). If diffusion is

independent of field, ¢, will be found to be field
independent, and the mobility will appear to
decrease with increasing field. On the other hand, if
length is large

the sample enough, so

that+/< x? > ~/f , the drift (x~f) is more important
than diffusion , and the mobility will appear to be a
constant. In a dispersive transient, the conventional
1, can be measured easily plotting the transient on a
double log scale, as shown in Fig. 3.10. The

condition under which this dispersive current
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behavior occurs, denoted in Eq.(3.3). We may conclude that the filed dependent mobility
can be observed in Fig. 3.2 for low field region.

Fitting the data with the diffusion model was carried out using the method of least
squares. We fitto a reduced data set consisting of 30 points per transient. The quality of the
fits is quite good, as shown in Fig. 3.10. There are only two fit parameters, the mobility u
(which is calculated by v/E) and the diffusion constant D. In order to maintain good fits for
all the data, these values must change with field, is shown in Fig.3.11. When we look at
fitting photocurrent in detail, we find that w fail to fit the long-time tail (see double log plot
in inset of the figure). This means that features of dispersion are are not due to diffusion

alone. Furthermore, the derived parameters in Fig. 3.11 show a strong field dependence.

@

[

0 100 200 300 400
Time £ (us) Time ¢ (u5)

Normalized Current I(tj (>£10-2ps-1)
Normalized Current I(7) (x103us™)

Fig.3.10 Fitting the diffusion model to experimental data
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Fig. 3.11 :Field dependence of derived parameter
1D form diffusion model
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This field dependence seems to change in low field (< 2%10° V/em) range for which the
mobility dependence measured by conventional method is shown in Fig. 3.2. If the model is
appropriate, such a change of the intrinsic parameters with field must not occur. Thus we

may conclude that convection and diffusion alone cannot explain transport in SmLC.

3.3 Multiple-Trapping Model with Diffusion

3.3.1 Formulation

In a previous section we showed that neither the simple MTM nor the diffusion model
alone can explain the behavior of experimental photocurrents. It is natural to ask, therefore,
if a combination of trapping and diffusion will provide a suitable description of transport in
SmLC. We suggest that the dispersion is dominated by diffusion in low field region (~103
V/cm), and that diffusion is as important as the trapping in the low and middle-field regions
(~104 V/cm). The higher-field region ao* ~10° V/cm) will be discussed in Chapter 6.

To modify the multiple trapping model to include diffusion, we simply add a diffusion

term to the equations of transport state;

2
A -v, M+DM—Z}/,ph(x,t)+ZR,.p,,.(x,t)+5(x—a)6(t)

ot Ox ox®
(3.37)
op, (x,t
_-’-’La(t——)= y.p, ()~ Rop, (D). (3.38)

After Lapace transformation of Egs. (3.37) and (3.38) and setting p, (x,s) to zero, we find

that

~ op, (x,t 0*p, (x,1)  ~ RW,
sph(x,s)=—v,,—/—)-"a—(x——)+D—/—g;—c(2——)-—f}'ph(x,s)+yZﬁph(x,s)+5(x—a).

(3.39)
By combining Egs. (3.16) ~(3.19), equation (3.39) may be written as
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Av op, (x,t) 82 p, (x,1)
2 Bi9) =, ”"ax +D ’;hxz +8(x—a) (3.40)

By comparing Eq. (3.40) with Eq. (3.25), and considering the same boundary conditions as
used in the diffusion model, the solutions are formally the same as in the diffusion model,
i.e., Eq. (3.26) and Egs. (3.30)~(3.36) except for the definition of x; instead of Eq. (3.27),

we have

xk=~1+4DA/VL . (3.41)

3.3.2 One or Two trapping

Figure 3.11 shows the results of fitting by
a two-trap model with diffusion. We fitted
the experimental data for V=5V with the six

parameters; v, D, %, % R: and R,.. After

fitting the 5V data, the trapping parameters,

%, ¥ Ri and R;, were fixed. We then fitted

the data for the other voltages,1~4 V,

adjusting only two parameters, v and D . The 0

fits in the tail region have improved.. With 200 400 600 800
Time 7 (us)

Fig. 3.11 :Fitting by using two
trapping model with diffusion

decreasing field, however, the fits are not as
good as they were for the fits of the
convection-diffusion equation alone, with no
traps. . Apparently the trapping parameters must also be allowed to change with field in

order to fit a wide range of voltages with the two-trap model..

3.3.3 Exponential distribution of traps'

As a few- (one- or two-) trap model could not explain the field dependence over a wide
range, we considered the MTM with a continuous'distribution of traps. We examed two
cases: (i) an exponential distribution of traps, and (ii) a Gaussian distribution of traps. Let
us first discuss the exponential distribution. We can reasonably assume that trapped carrier

will be released by by a thermally activated rate, i.e.
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R() =V, exp(— 7%) , (3.41)

where the energy ¢ is the trap depth and v, is attempt frequency. An exponential trap
distribution can be described as

p(&) =nexp(-7¢) - (3.42)
After subsituting Eqgs. (3.41) and (3.42), Eq. (3.20) becomes

—pe
(s)= [ dene™ Lt (3.43)

s+vee
Using the normalization fdgne"”g =1,

it follows that

- vee sn e
1- = [ dene™|1-——— |=— | de———> 3.43
vs) f " [ s+vee” | v, f s/vy+e ™™ (3.43)

where = 1/kT.
Substituting z =exp(-f¢) , and «a =n/p (<1 for convergence of integration),

expression (3.43) takes the form,

a-1

1 =S (25 (g,

v, 2 sivptz Y, slvy+z
sa z¢! z*!
=—1| | dz -1 4 . 3.44
vo{f slvy+z rzs/v0+z] (344

Extending the integral over a contour in the complex z plane, the principal value of the

first integral in (3.44) is

a-1

a-1
[ 2 _zslay (3.45)
s/vy+z  sin(ra)

This same integral is discussed in more detail in Chapter 5. The second integration in (3.44)

can be performed for small s << 1 ,i.e.,

1
dz—= 520y (" ozt = ———. 3.46
'rzs/vo+z rzz a-1 (3.46)

It follows that asymptotically,
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Fig.3.13 Fitting of the exponential trap model
with diffusion to experimental data

1-7(s) Hb,s—"i{”(” LN } . (3.47)

v, | sin(za) l1-a
As transit-time scale is large compared with reciprocal of the attempt frequency nu0, the

asymptotic approximation is a good one. Substituing (3.47) into Egs. (3.16) and (3.18), we
find that the trapping function may be expressed as follows:

A== s(l—y"’/"°)+ ma (5| L ma () (5
v l-a sin(ma)\ v, y sin(za)\ v,

Subsituting (3.48) into (3.36) then gives an expression for the current in the Laplace

domain which can be readily inverted.

The fitting was performed by numerically inverting the Laplace transform for 30
representative data points from each of the transients. The results of the fitting are shown in
Fig. 3.12. The theory seems to work quite well, even in the region of the tail. The field
dependence of the fitted parameters is éhown in Fig. 3.13. The mobility is calculated by
dividing v by E. v/E, and the ratioD/s, shows the deviation from the Einstein relation. We
see that the mobility is field independent for the low field region (~103 V/cm).However, we
can see a field-dependent region at higher fields. This may be caused by “the second
source” mentioned in introduction of this chapter. We will discuss this high-field region

further in Chapter 6. The diffusion constant Dseems to aquire a field-dependence between
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low field region (~103 V/cm) and
high field region (~104 V/cm). In
low field region, however, D is
almost field independent and the
value of D/p is close to kT/e=0.030.4
V which is what would be expected
from the Einstein relation. Thus both
D and mu are field independent in
the low-field region. Although this is
what one would expect, we should
remark that a field-indpendent
mobility together with a field-

independent diffusion constant have

~ 3x10°3
~ X -3 = ¢
E 2x10
2 3
< 1x10
0
E: 10!
3,
102 . .
- 0.2
g 01} .
N PP S
0 103 104

Fig. 3.14:Derived parameters from fitting
exponential trap to experimental data

never before been inferred from time of flight measurements on a disordered organic

semiconductor mAt higher fields, the mobility begins to acquire a field dependence. The

flaw in all of this is that trapping rate ¥ exhibits a strong field dependence, decreasing with

increasing E. This is not consistent, for since D is constant, the diffusion-limited trapping

w
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Fig.3.15 Fitting of the Gaussian trap model
with diffusion to experimental data
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with diffusion to experimental data

rate should also be constant. Thus, we must conclude that an exponential distribution of

traps is inadequate.

3.3.3 Gaussian distribution of traps

In this section we will examine the Gaussian trap distribution , described as

exp[— (iig)i] (3:49)

E)=
p(&) — o

where o is the standard deviation and & is the mean. The fitting procedure is the same as
that which we followed above for the case of the exponential trap distribution. In this case,

however, we will obtain an expression for A(s) in the form of a series expansion,

~ Al 7t T2 (1—8) [ g j
i =1-2|1-2-62 +—06* | Exf o |+ Erf| ——
4 2( 3° s ){ 20 2o

where the operator 5=p"0/04.The details of this expansion will be explained in section

(3.50)

A=ktln(s/vo)

5.4.1, Chapter.5. We truncated the series after the 5™ order in delta, and then performed the
numerical Laplace inversion to fit the data at this level of approximation. In addition, we
assumed the validity of the Einstein relation, D = ukTle. Figure 3.14 shows the results. The
model seems to work well, even for describing the tail region of the transient. The field
dependence of the fiterived parameters is shown in Fig.3.14. The mobility is field-

independent, and as is the diffusion constant. The standard deviation of the Gaussian trap
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distribution is also a constant. This
is all consistent with the idea of
field-independent  trap distribution.
Unfortunately, » seems to change
with field. However, the region over
which yis field-independent is much
broader than it was in the case of the
exponential trap distribution. We
conclude that the model is internally
consistent in the range E<10* V/em.

In evaluating the Gaussian trap

distribution, the standard deviation &

is found to be 60 meV. This is

comparable to the energetic disorder, as explained in

compared that found in most disordered organic materials .

the parameter &,

frequency W, which we have assumed arbitrarily,

3.4 Conclusion

trapping together with diffusion are important for describing

examined the results for several assumption

and TOF Technique
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of . This means that we can evaluate the width of the Gaussian trap distribution,

Chapter 2 but it is rather small
By fitting, we can also derive
but this is meaningless because we do not know the value for attempt

and the value of & depends on our choice

but we

can not find its absolute location relative to the energy of the transport manifold.

We have investigated carrier transport in smectic-liquid crystals (SmLC) by applying the

multiple-trapping model (MTM) to describe the experimental photocurrent transients. We
find that neither the simple MTM with convection but without diffusion, nor the

convection-diffusion model without trapping, mare sufficient. We conclude therefore that

the dispersion of the

transients.. We then fit the experimental data with the MTM together with diffusion, and

s of the underlying trap distribution. We found
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that a Gaussian trap distribution with a standard deviation of 60meV can explain the carrier
transport in SmLC for a wide range of electric field in the low-field regime. These fits can
be achieved while maintaining a field-indpendent mobility and agreement with the Einstein
relation. has Although agreement with the Einstein relation is expected for low fields, it has

never before been verified for a disordered organic system.
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Chapter 4

Study of Ionic and Electronic Transport

4.1 Introduction

In the previous chapter, the TOF-transient photocurrents for hole-transport in
smectic liquid crystal (SmLC) materials were measured and analyzed using multiple-
trapping model (MTM) with diffusion. In this chapter, we will concentrate on the
transport of negative charge. Recent works [1,2] have shown that some smectic
crystalline materials exhibit bipolar conduction in which the transport is quite different
for positive and negative carriers. In TOF measurements for some negatively biased
SmLC cells the photocurrent shows two kink points. We believe that the first kink point
is due to the arrival of electrons, and the second signifies the arrival of anions. It is
possible that the anions were originally neutral impurities which became ionized in the
process of photoinjection. . Tonic conduction is not a new phenomenon in liquid crystals,
and has been studied for a long time in the nematic phase [3-8]. In this chapter, we
analyze negative carrier transport and investigate the relation between electronic
transport and ionic transport by modeling the electron transport with the MTM, and

modeling the ionic transport with the convection-diffusion equation.

4.1.1 Tonic transport in nematic liquid crystals

For the last three decades it has been believed that charge carrier transport in
liquid crystalline materials is dominated by ionic conduction. . In most cases of NLCs,
in fact, transient current studies have shown that the charge carriers are mobile-impurity
ions. The effect of impurity ions in NLC has been extensively studied for the
improvement of the device performance of NLC displays. The experimental techniques
include measuring absorption current [3], transient current [4-6], leakage current [7] and
complex dielectric constant as derived from the effect of ionic-space chargepolarization

[8]. Mobile-impurity jons are a problem in displays because they build up at the
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electrodes, causing an electrical field change in the bulk. This causes a degredation of
the transmission-voltage characteristics.

Over the past five years, Sawada ef al, has measured the complex dielectric
constant of NLC(5CB) in low frequency regions (<103Hz) quantitatively in order to
assess the effect of ionic-space charge polarization [9]. They measured the complex
dielectric constant of 8CB for the temperature region in which the material exhibits both
Nematic and Smectic phases [10]. The mobility was found to be on the order of 10
10.:42/Vs for the SmA phase , showing an activated temperature dependence. There was
no indication of a discontinuity of the activation energy as would be expected from a
phase transition.. In accordance with the Walden rule or, furthermore, Stokes-Einstein
equation, the relationship between the mobility u and the viscosity 7 can be expressed
as,

e

(4.1)

M=

where 7, is the Stokes radius. If the ionic species remains the same in each phase, the
product of the mobility and the viscosity should be a constant, independent of
temperature. However, the product diverges near the vicinity of Nematic-Smectic phase
transition in Nematic phase region, where the viscosity diverges . The divergence
occurs due to the appearance of cybotactic clusters in the SmA phase [11]. Mobile ions
can drift through the regions outside of the cybotactic clusters, i.e. regions with much

lower viscosity (Fig.4.1), and for this reason the mobility does not depend on the

) b

Fig. 4-1 : Image of pretransitional fluctuation: cybotactic
cluster of SmA appears in Nematic phase. Jonic impurities
conduct around the clusters
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viscosity of the bulk.

4.1.2 Ionic Transport in Smectic Liquid crystals

The molecules of the cyano-biphenyl derivatives, such as 5CB, or 8CB, have only
one alkyl chain. The aromatic core moieties have a n-conjugated overlap, which is
responsible to stacking of condensed matter. Because the molecules stack very close to
the alkyl chains of molecules in the adjacent layers of smectic phase,, there is no space
for impurity to transport between layers without breaking the smectic phase stacking.
On the other hand, the aromatic cores of the molecules composing SmLC, such as 2-
phenyl naphthalene derivatives, as 8-PNP-O12 or 8-PNP-O4, have two long alkyl
chains which are very far from one another (30A~40A). Impurity ions in this case can
travel between the layerswithout affecting the mn-= conjugated stacking between
aromatic cores (Fig. 4.2).

Fast ionic conduction in SmLC can therefore occur in the “solvent” of the alkyl
chains between smectic layers as long as the cohesive forces holding together the
aromatic core moieties strong enough to prevent micro phase separation. One way to
maintain the micro phase separation is to dimerize the molecules [12]. And another way
is to synthesize the SmLC molecule so that it has long alkyl chains at both ends of the

aromatic cores.

phenylnaphthalene
Core

~10A

Alky!
Chain

~30A

(2)8CB (b)8-PNP-012

Fig. 4-2 :Schematic illustration of ionic impurity
conduction for smectic liquid crystal
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4.1.3 Electronic and ionic conduction in smectic liquid crystals
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Fig. 4.3 : Transient photocurrents for negative carriers in SmA
phase of 8-PNP-O12 at 120°C with (a)linear and (b)double
logarithm plot. Two kink points were observed.

The details of the TOF measurement in SmLC of 2-phenylnaphtalene derivatives,

i.e. 8-PNP-012 is reported in detail in reference [2]. Even if the ionic conduction occurs
in inter-layers, electronic conduction can independently occur through aromatic cores in
intra-layer. An optical microscopic observation (Cross Nicol) shows that domain size is
much larger than the sample thickness. A charge carrier can therefore move from one
end of the sample to the other without having to cross over domain boundaries. As
mentioned above, the transient photocurrent for negative carriers shows two kink points
(transits) in both SmA and SmB phases (Fig.4.3). The idea that the first one is due to
electrons and the second one is due to anions can be confirmed from two facts. One is
concerns the temperature dependence of the mobilities which are calculated from the
two transit times. The first transit time implies a mobility with no temperature
dependence, which is similar in magnitude to the hole mobility obtained from a
positively biased TOF measurement (~2.4x1'0"4cm2N s in SmA and ~1.6x107 cm?/Vs in
SmB[2]). On the other hand, the second transit time implies a thermally activated
mobility (2~6x10’5cm2/V s), having an activation energy of 0.23eV in the SmA phase
and 0.31e in the SmB phase. These are typical values for the activation energies for ion
transport in other fluids. The other fact is that, when the sample is diluted with n-

dodecane (20mol% dilution in experiment), the mobility as calculated from the first
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transit time shows little change as compared to the mobility in the pure sample, whereas
the mobility calculated from the second transit time varies greatly with dilution. The
dilution-dependence implies that n-dodecane does not migrate into the intra-layers but
only into the inter-layers. Thus, the n-dodecane does not enlarge the distance between
the nearest neighbor molecules in intra-layer, which are responsible to the mobility due
to electron hopping. On the other hand n-dodecane reduces the viscosity in the inter-
layers, which results in higher mobility for the diluted sample than that for pure sample

by lowering the viscosity. These details are discussed in reference [2].

4.1.4 Photocurrent of Electronic and ionic carrier in smectic liquid crystals

In this thesis, we concentrate not on injecting current but on photocurrent of the
cell sandwiched by blocking electrodes. Then, all of the detected charges, including
both electrons and ions, are derived from charge separation due to exciton generated by
light of pulsed laser. Thus the ionic impurities contributing to the photocurrent were
neutral impurity before the pulsed laser was flashed. So, the simple question arises, i.e.
“When is the neutral impurity ionized?” In this chapter, we analyze a negatively-biased
TOF photocurrent, modeling the transient with a combination of MTM and convection-
diffusion. We attempt to fit the experimental results of the TOF photocurrent, and we
discuss our findings. Lastly, the physical implications of the parameters obtained from

the fits will be discussed.

4.2 Models

Following the model developed in Chapter 3, we suppose here that the electron
transport can be described by the MTM. Let us suppose that electrofls travel with
velocity v.. To simplify the problem, let us consider the one-trap model, and neglect
diffusion in the transport manifold. Let us further suppose that ionic transport can be
described by the convection-diffusion equation with a drift velocity vi,, and a diffusion
constant D,

Let us assume that the ions are generated by the same laser pulse which generates

the electron-hole pairs for electron transport. In such a case, all photo-carriers detected
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in the TOF photocurrent must originate from the charge separation of the excitons
which are generated in the SmLC molecules. Mobile ions may form according to two

models:

Model 1 : Bulk Ionizing Model

After the charge separation of an exciton occurs, initially all of the charge carriers
are electrons. Ionic transport then follows electron transport when an electron is
captured by an impurity molecules which is free to drift (impurity ionization

process, Fig.4.4).

Model 2 : Interface Ionization Model

The charge separation of the exciton occurs by two processes. One process occurs
on SmLC molecule, the other occurs on the impurity near the electrode interface.
In this electronic and ionic conduction occur simultaneously and

independently.(Fig.4.5)

4.2.1 Model1: Bulk Ionization Model (Fig.4.4)

This model assumes that the initial condition is such that the electron distribution isa
delta function near the surface of the illuminated electrode, and that there are initially no
carriers in trap states, and no anions in the bulk. Let us suppose that the total trapping
rate y is the summation of the “ordinary trapping rate” with which the carriers are
shifted between the transport manifold and the trap manifold, and the “ionic rate” with
which the carriers are shifted from the transport manifold to the impurity manifold.
Taking Xj,n to be the ratio of the ionic trapping rate to y., the “ordinary trapping rate”
will be denoted as ¥ (1-Xion) and the “ionic rate” will be denoted as ¥ Xion - The rate R
will be the release rate with which the carriers are able to move from a trap state to a

transport state. We will assume that there the return rate from the ionic manifold to the
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(a) (b)
Hopping »ve

LUMO

Ionic transport- - L—»

Fig. 4.4 :(a)Schematic illustration and (b) picture notated parameters of
“jonizing on bulk model” : Impurity ionizing process occurs by
capturing electron carrier on the impurity

transport manifold may be neglected. The MTM equation for electron transport state is

therefore expressed as follows:

Opent) __, OpeB) s (1 1)+ Rp,(x,0) +8(x)S (). (4.2)
ot ox
%éTx’t—L7(1—X,-,,,,)pe(x,t)—Rp,(x,o- (4.3)

where x is the distance from illuminated electrode; po(x.f) is the probability that an
electron is in transport state, and p(x,f) is the probability for an electron to be in a trap
state. The last term in equation (4.2) is the initial condition. For ionic transport, we

apply the convection-diffusion equation, ie.,

azpion(x’ t)
6x2

apion (x’t) =y apion (x’t) +D~
at ion ax ion

The last term describes the increase in the ionic charges as supplied by capture of

+}/ Xionpe(xﬂt)' (4'4)

electrons by impurities, and pion(x.f) is the normalized density of ions.

Let us now introduce the Laplace transforms of equations (4.2)~(4.4).

578 = v, P (1,94 B (5,9) + 509 @5

sf),(x,s)=7(1—X,.0,,),T)'e(x,s)—R,5,(x,s). (46)
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~ 2~
5ion (x’ S) = _vion apiona(xx’ S) + Diﬂn a pg;gx, S) + }/ Xion 5{: (x’ S) ¢ (47)

where s is Laplace variable; The tildes denote the Laplace transform. The function.

P, (x,) is derived from eq.(4.6), i.e.,

1-X,) ~
Y= Xi) 3. (4.8)
s+R

Substitution of eq.(4.8) into eq.(4.5) gives

Pi(x,8) =

5. (r.5)=—v, P _ 5 0 1 B Xin) 5 () 4 60). 4.9)
ox s+R
Solving equation (4.9) for rho-¢, we find
- 1
- P (x,5) = —exp[-T(s)x], (4.10)
ve
where r(sy= By Ly ST R n | 4.11)
v,|7y s(s+R)

The trap state density may then be obtained by substituting (4.10) into (4.8), giving

P, (x,5)= Z(l——)i""—)eXp[— I'(s)x]. (4.12)
ve

The normalized carrier density of the ions may be obtained by substituting eq.(4.10)
into eq.(4.7);

~ 2 —~

Pion(X:8) ==V, QB’—‘”'ag’-Q +D,, 9 pg;ﬁx’s) +7 Xion exp[— F(s)x]. (4.13)
It follows that

5. (x,5)=CefM +C pE0ox _ X ion exp[— F(s)x] (4.14)

fon 2 ! 2 v, D, (s)* +v,,[(s)—s ’

where

éE=v, /12D, , (4.15)
and

¢ =\1+4D,,s/v,, . (4.16)

In the experiment, the sample is sandwiched by blocking electrodes. We will model
this by taking a perfectly reflecting boundary at the injecting electrode and a perfectly

absorbing boundary at the counter electrode, i.e.,
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T (£ = 031) = O8)~ Dy LD 20 @.15)
Ox
and
Pion(L:1)=0. (4.16)
Under these conditions, we can determine the constants appearing in eq.(4.13);
C = —QX—’Q’-(D , 4.17)
ve
and
C, =——g—2X—‘i"—‘I’, (4.18)
VE
where
4
= , 4.21
DU(s)> +v,,L(s)—s (421
£0-9)L _
—E(+g)+E-g)e”
and

v =_§(3—g-2cp)+r(s) . 4.23)
£(+9)

An expression for the total charge in the sample, O(f) , may then be drived by
substituting (4.5)~(4.7);

0w _ 4 P
dt —dtf o (51 + P, (51) + Pan(3:D) = Din ™) - (429

Tt follows that the current is given by

a0

fdxx Lo+ Pt + Pon (D=

= %[pion (0) = Pion (L)]"’Z de[Vepe (x?t) + V0, Pion (x,t)]. (425)

Substituting eqs.(4.10), (4.12) and (4.14) into eq.(4.25), we obtain a closed form for the

current in the Laplace domain,

T(s)=—— ( e—r(s)L) +QX ion {CD[ Dione—ﬁ(n:)L 4 Vion (1_ oSO )]

I'(s)L v §1+4)

e
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+
s(1-¢) I'(s)

_\P[Dm Vi (e:a—c)L_l)}_[Der ﬁon_(l_e—mn)]} . (4.26)

4.2.2 Model 2: Interface Ionization Model (Fig. 4.5)
In this model, electrons and ions move independently. We begin by defining the

initial ratio of ionic charge as

ion = 9D ) 4.27)
Q. (0)
where Qion(f) and Qu?) are the total ions in the sample and the total negative charges in
the sample, respectively. The initial distribution of electrons in the transport state is
given by

rhoe(x,0)=(1-Wn)*delta(x).
The initial distribution of ions in the ionic transport path between smectic layers is
given by

thoi(x,0)= Wion *delta(x).

The trapping rate y is the rate with which carriers are shifted from the transport
manifold to the trap manifold, and R is the rate of return. The MTM equations for

electronic transport are as follows:

. __y, %P _ _
Vo 0. + Rp, +(1=W,,)8(x)5(1) -, (4.28)
(a) (b)
Hoppin -y
Iy
RVAVAVA = LUMO P, 1-— W,-
Vi |R
‘ P
hv
WM ——> 1 W
F Ionic transport---| f vis D } i

Fig. 4.5 :(a)Schematic illustration and (b) picture notated parameters of
“jonizing on interface model” : Impurity ionizing process occurs by
charge separation on interface independent from electron carrier
generation
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el A —Rp,. 4.29
o P TP (4.29)
is the ionic transport is completely described by the convection-diffusion equation,
op, op, d’p,
P __y, Pun  p2 P L1y, 5(x)5()- (4.30)
ot o ox ox’ 8@

Equations (4.28) and (4.29) are equivelent to those used in the one-trap modela. The
only distinction is that the total electronic charge is normalized to 1 — Wion. The

solutions to eq. () — () are as follows:

B (x.5) = e expl-T(5)1] 431)
ve
H”:EF%—LJ 4.32)
v,|y s+R
N (o A S
A= exp[-T'(5)x] (4.33)

The solution to equation (4.30) is given by

- _ /4 Ve
Pion(X,8) = Cet™ + C, et 4 -9 for x2a, (4.34-a)
2Dion§
and
- - w. -
Pion(X,8) = C,et + C,ef 9" +?D—"3"—§-e‘f(“¢x" 9 forxza (4.34-b)
ion

Here a is the location of the intial electron density, which we will set to zero. i.Under

the same boundary conditions used in the bulk ionization model, the constants C1 and

C2 are given by
24
C == Wit a1 (4.35)
D l+¢ +a-)e ]
- _o
(%z_W@O {)1-e") 436)

1+¢+(1=-0)e?®
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wherea and S are given by eq. (4.16).

Finally, we obtain a description of thephotocurrent in the Laplace domain, i.e.,

T( ) 1-VVion (l_e—I'(S)L)

s)=
T(s)L

D€ 4 Cy) e e
I 2

VionC1 ] — gS0-0L ] + VinCo [1 _ e—:(l+c)L]
E1-9)L E1+4)L

— VionW ion [1 B e-:(l+¢>L]
24: (1 + g)DionL

(4.37)

4.2.3 Mixture Model 1& Model 2
There is a possibility that the bulk-ionization process and the interface-ionization
process occur simultaneously. This can be modeled by combining the two models, as
follows:
(1) All negative carriers multiplied by Wion initially ionize and transports as ions,
such as the ions in Interface-Ionization Model.
(2) All negative carriers multiplied by (1-Wi,n) transport accordingly as Bulk-
Tonization Model.
In this manner, we find a form describing the Laplace transformed photocurrent for the

combined model,

T 1 I/Vion - _
’(S)"IYSTE(I exp(-T'(s)L))

L =W)X, {q,[ Do+ Yen(i_ g )]
v a

e

_ IP[D,O,, + %”(eﬂ —1)} —{D,lm + Fv(—s_)(l —e Tk )]}
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+—@{[Dion (C,+C)+ 1 }
L a+p

VionC - VinCa [y _ - Vion -
e S ey o @]}

(4.38)

Finally, we may also consider the inverse process of Model 1; Ionic transport due to
impurity ions generated at the illuminated cathode may change into electronic transport
in SmLC molecules after thermal excitation. But this process would result in a rapid
increase of the photocurrent because the electron mobility is approximately ten times
higher than the ionic mobility. We will not consider this possibility, as such behavior of

thetransient has not been observed experimentally.

4.2.4 Analysis of experimental results
We have used the three models explained in 4.3 to fit the experimental photocurrent
transients, normalized to the total integrated charge. For this study, the sample was 8-
PNP-O12 sandwiched between ITO electrodes, and the cell thickness was 9 pm. The
temperature ranged from 80°C to 125°C (SmA and SmB) the voltage ranged from —20V
to —100V. the number of sampling data for the fitting was between 30 and 50 points
for each transient. The parameters extracted from the fits were ve, 7 R, Vion, Diony Xion

and Wion.

4.3 Photocurrent in Smectic A phase

4.3.1 Application of Bulk Ionization Model

In this section we will apply Model 1, the Bulk Ionization Model, in order to
describe the phototransients for the Smectic A phase. We will see that it is not possible
to fit the data, even when adjusting all 6 parameters. . First, let us focus on fitting the
parameters concerning ion transport, i.e. Vion, Dion, and ¥Xion, while holding the other 3
parameters concerning electron transport constant. We began by fitting 30

representative points in the neighborhood of the second kink point. As expected, the
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Fig. 4.6 : Applying Bulk Ionization Model to SmA phase: the procedure of (a) is
fitting the parameters concerning ionic transport first, followed by fitting the
parameters concerning electronic transport. The procedule (b) is fitting the
parameters for electronic transport first, followed by that for ionic transport.

fitting around the second kink point was very good, but the fit was poor in the
neighborhood of the first kink point. We then held these ionic parameters constant, and
attempted to fit the electron transport parameters v,

R and H(1-X,n), taking 30 points of sampling data around the first kink point.
However, the theory was not flexible enough to reproduc the signal around the first kink
point. The result of this fitting is shown in Fig4.6-(a).

The reason for the failure is as follows. The transported ions are generated by
electron capture of impurities present. To reproduce the second kink point, therefore, a
high enough density of charge must be captured in the within thetransit time of the
second kink. This capturing occurs too rapidly for the electron density to produce the
current signal around the first kink point. On the other hand, we also tried to fit by
inverse procedure, i.e., fitting the glectron kink first, followed by the fitting of the ionic
kink To carry this out, the parameters v, R, and y(1-X;,n) were chosen to fit around the
first kink point while holding the ionic parameters fixed. After this fitting, we tried to
find Vign, Dion, and 32X, to allow the theory to pass through the second kink point. Again,
the theory was unable to fit both kink points simultaneously, as shown in (Fig.4.6-(b)).
To reproduce the first kink point of the current signal numerically, requires a high

enough density of electrons. This requires that most of the negative carriers remain as
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Fig. 4.7 : Applying Interface Ionization Model to SmA phase: (a) Numerical current
fitting for experimental photocurrent and the current of ionic contribution. (b) The
fitting for various field. (inset is on double logarithmic scale)

electrons, arriving at the counter electrode before being captured by impurities. Thus

there remains little ionic charge to reproduce the second kink point of the current signal.

4.3.2 Application of Interface Tonization Model

We next attempted to describe negative carrier transport in the Smectic A phase with
Model 2, the Interface onization Model. In this case, the 5 parameters, Ve, % R, Vion,
Dion and Wio,, were fit simultaneously to 50 representative points, 20 of which were
taken around the first kink point and the remaining 30 taken around the second kink
point. The fitting worked extremely well, for the numerically calculated current was
able to reproduce both kink points, as shown in Fig.4.7-(a). The failure of the Bulk
Ionization Model, and the success of the Interface Ionization Model, implies thatthat the
formation of impurity ions occurs primarily near the interface. Apparently, impurity ion
formation due to capture of electrons transporting in the bulk is not as efficient a
process. '

The contribution from ionic transport of Bulk Ionization Model to the current is
plotted in the Fig.4.7-(a). The difference between the fitting current and ionic
contribution to the current is the contribution from electronic transport. The figure

shows that major part of the numerical photocurrent comes from the contribution of
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ionic transport. Namely, ionic conduction is dominant in negative charge conduction in

thin cell of SmA material.

4.4 Photocurrent in Smectic B phase

4.4.1 Application of Bulk Ionization Model and Interface Ionization Model

In our examination of negative carrier transport in the SmB phase we repeated the
same analysis used for the SmA phase. The best fit curves for the Bulk Ionization
Model are shown in (Fig4.8-(a)). Just as in the SmA case, the Bulk Ionization Model
was unable to fit both kink points.,

Unfortunately, the Interface Ionization Model was also unable to fit the data. Just as
in the SmA case, the 5 fitting parameters, Ve, % R, Vion, Dion and W, were adjusted
simultaneously for 20 sampling points around the first kink point and for 30 sampling
points around the second kink point. Although the theory can produce two kink points,
as shown in Fig. 4.8-b, the location of these kink points can not be made to coincide
with the two kink points in the data. To summarize, neither ionization processes in the
bulk nor ionization processes at the interface appear to be dominant in SmB phase. This
raises the question as to whether or not the transients in the SmB phase can be fit by a

compbination of both processes, a model which we will call model 3, the Mixture

o 90°C SmB ITO/ITO 9 pum 90°C SmB ITO/ITO 9um

o . d 60V D -60V -
g. — n::erical current 3 107 fir —
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Fig. 4.8 : Applying the models to SmB phase: (a) Application of Bulk Ionization
Model and (b) Application of Interface Ionization Model.
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Fig. 4.9 : Appling of the Mixture Model to SmB phase: () Numerical current
fitting for experimental photocurrent and the current of ionic contribution.

(b) The fitting for various field.

Model.

4.4.2 Application of Mixture Model
Figure 4.9 shows the application of the Mixture Model to the experimental

photocurrent in the SmB phase. When all 6 parameters are adjusted at the same time we
find that we are able to describe the data.. Thus, Mixture Model can explain the
experimental data. Fig.4.9-(a) also shows the ionic contribution separately. We can see
that the ionic current changes behavior after the first transit time. The reason is because

after the first kink, most of the electrons have reached the counter electrode, and so few

remain which can still convert to mobile ions.

4.5 Results & Discussion

We have examined the several models to explain TOF photocurrents in both SmA
and SmB phases of 3-PNP-12. The photocurrent in SmA phase can be explained by
Interface Ionization Model. The photocurrent in SmB phase can be explained by
Mixture Model. Both of the models yield various fitting parameters, including the total
trapping rate  release rate R and ionic trapping rate yX. The initial ratio of ionic carrier

W,on can also extracted, this parameter depending on liquid crystalline phase.
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Let us focus, however, on the electronic-intrinsic and jonic-intrinsic mobilities which

can be inferred from the two velocity parameters.

4.5.1 Mobility

Figure 4.10 shows the field and temperature dependence of the mobility for both

electrons and negative ions for the SmA and SmB phases. The calculated intrinsic
mobility are the same as usually derived from experimental results, i.e., via the direct
measurement of the transit time as determined from the kink [2,14,13]. The electric
mobility is 9 4x10™*cm?/Vs , and does not have field nor temperature dependence in the

range measured. The jonic mobility does not have field dependence but it does have an

activated temperature dependence
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Fig. 4.10 : Intrinsic Mobility of electron and jon worked out fitting
parameters. (a)Field dependence and (b) Temperature dependence

are showed.

as shown in the Arrhenius plot of Fig.4.10-(b). The typical ionic mobility is 1.4x10°
5cm?/Vs for SmA phase at 110°C and 1.1x105cm?/Vs for SmB phase at 90°C, as
showed in Fig.4.10-(a). These values are about 1/3 of the value evaluated by a direct
measurement of the transit time at the kink' point. The reason for the discrepancy is that
the time measured at the kink poin is the time when the carrier distribution starts to
arrive the counter electrode., and so does not represent the average drift speed. The

activation energy are determined from the slopes in Fig.4.10-(b), and are given by
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0.35¢V for SmA phase and 0.31eV for SmB phase. These are typical values for the

activation energies of ions moving in a fluid media.
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Fig. 4.11 : Ratio of initial ionization charge worked out by fitting.
(a)Field dependence and (b) Temperature dependence are showed.

4.5.2 Ratio of initial jonic carrier Wion

Figure 4.11 shows the field and temperature dependence of the ratio Wion of the
initial number of ions to the total number of injected charges.. In the SmA phase, about
95% of carriers initially contributing to photocurrent are impurity ions at 110°C. The
ratio Wion has no field dependence but has a little temperature dependence. As the
temperature inCreases, the ratio decreases slightly. In the SmB phase, about 65% of the
carriers contributing to the photocurrent are comprised of impurity ions at 90°C. The
ratio increases with increasing field, but has a little temperature dependence. . The
sample thickness dependence of the ratio of total electric carriers to all carriers, 1-Wion
is discussed on Jino et al in ref.2 (, i.e., (Q/Qa)a=0 in ref.2). They measured the sample-
thickness (d) dependence of 1-Wio in the sample and derive 1—W,,n by extrapolation,
d—»0. They found that the extrapolated value did not become unity. They thought that a
certain amount of negative jons is initially formed before the photo-generated electron

transport start. This conclusion is consistent with the results here.
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It is interesting that the initial jonization process is dominant compared with bulk
jonization process. The fraction of carriers which become impurity ions before
electronic transport starts is 0.95 (in SmA) and 0.65 (in SmB) The fraction strongly
depends on the phase of the liquid crystal. We think that the initially ionizied impurity
is created from the neutral impurities which are distributed on the interface of the
illuminated cathode. For example, it is known that dissociation of excitons occurs
favorably for highly ordered SmB phase, whereas, for the SmA phase, dissociation of

excitons occurs in the presence of impurities at the cathode [16].

4.6 Conclusions

In this chapter we analyzed the negative carrier transport in SmA and SmB phases.
The photocurrent decay curves having two kink points (transits) , the first having to do
with the arrival of electrons, and the second having to do with the arrival of ions.We
attempted to fit the photo transients with three multiple trapping models describing
simultaneous transport of electrons and ions. We concluded that the Interface Ionization
Model can explain the photocurrent in SmA phase, and the Mixture Model, which
combines the processes of bulk ionization and interface ionization, can explain the
photocurrent in SmB phase.

We then analyzed the parameters which are derived from the fitting of theses
models to the experimental data. The temperature and field dependence of the mobility
of the electrons, and of the ions was determined. The mobility of the ions was found to
be about 1/3 of what you would expect based on estimating a transit time from the

second kink point in the transient.
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Chapter 5

Analysis of Trap Distribution using

Time-of-Flight Spectroscopy

5.1 Introduction

In previous chapters (Chaps. 3, 4), we applied the Multiple-Trapping Model (MTM)
[1,2] to Time-of-Flight (TOF) photocurrent analysis for studying carrier transport of
positive and negative charges in smectic liquid crystalline phases. For applying the model
to the biased photocurrents due to positive charge transport in Chapter 3, we assumed the
Gaussian distribution for hole trapping and obtained the results which could reproduce well
the experimental photocurrents including the effects of applied electric field, temperature
and sample length on the current. Here, the MTM with a few trap states only could
reproduce the currents for a specific experimental condition, but not enough for other
experimental conditions. Other trap states needed to be supposed to explain the whole
photocurrents observed at all the conditions. As for negative charge (electron) transport in
Chapter 4, we need not assume the trap-state distribution for electrons, as ionic carriers
were so dominant that the current due to electrons was not separated clearly. So it may be
concluded that the adequate assumption is very important in determining the carrier trap
distribution and obtain the results explaining the whole experiments.

In this chapter, we try to extract directly the information of hole-trap distribution from
the experimental photocurrent, not based on any assumption about the distribution. This is
the reverse procedure of the MTM fitting to thé photocurrent described in Chapter 3. The
fitting procedure in Chapter 3 was:

(1) Assuming the trap distribution
(2) Constructing MTM based on trap distribution



5. Analysis of Trap Distribution using TOF Spectroscopy

(3) Deriving the Laplace transformed current from the Laplace transformed Solution
of Laplace transformed MTM

(4) Obtaining the inverse Laplace transform and fitting the parameters
Thus, we may extract the trap distribution, at least in principle, by the following (reverse)
procedure:

(1) Direct Laplace transformation of the photocurrent

(2) Applying the Laplace transformed MTM to Laplace transformed current

(3) Extracting the function concerning trap distribution

(4) Deriving the trap distribution from the function

This method has been attempted to apply to the photocurrents in organic materials for a

couple of decades [3,4]. But the application to organic disordered materials is difficult,
because (i) It is quite difficult to separate the contributions from diffusion and trapping

process to the observed transient photocurrent. (ii) #(s), as explained in 3.2.2, Chap. 3,

concerns the function in procedure (3) above and has an integrated form. This integration

can not be solved without the trap-distribution function included in the integrand of ¥(s).

(iii) Fitting can be well performed for a given condition by using only a few trap states, but
not for other conditions: e.g., field-, temperature- and sample length-effects. Here, a
possibility may exist that the trap distribution should be replaced by any other distributions.
How can we resolve this problem?

Meanwhile, in studying biased photocurrent due to charge transport in SLC, we found
that there exits a region where Einstein relation holds in low field region (in Chapter 3). In
this region the diffusion constant must be field-independent. So we need not to worry about
the problem (i) for SLC in the low field region. In this chapter we will show how we can
solve the problem of (ii). We will explain the method how to extract the trap-state
distribution from the experimentél transient photocurrent. Using the trap-state distribution
thus obtained, we may hopefully extend our discussion on other effect such as temperature,
as mentioned in (iii). |

We measure TOF photocurrent signals for 8-PNP-0O12 under applied low field where the
Einstein relation holds. In this region, we only observe the charge decay caused by trapping

and diffusion of holes where carrier transport occurs in thermal equilibrium.
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We will also show the limitation of the method as well, but the limitation coming from
the measurement and not from the theory. Lastly, the function mentioned in procedure 3
or an universality curve A(s), which may be used for the trap distribution, will be suggested.

It is useful to understand how does the trap distribution contribute to the transient current.

5.2 Analysis of Trap Distribution

5.2.1 Average time between trapping events 7(s)

To derive the equation for trap distribution from the photocurrent, we discussed the
method for calculating Laplace transformed current 1(s). In Chapter 3 we examined the
MTM with carefully considering on boundary conditions at the anode (carrier injection)

and cathode (carrier absorbing). We could derive the conventional solution of 1(s),ie.

T(S) 1 —A(s)

= 1- .
70) A(s)( e ™), ¢.1
A(s)=Ms 7(8), 5.2)

where s denotes Laplace variable and M= yL/v (yis the total trapping rate, L is the sample
length and v is the velocity of transporting carriers, as discussed in detail in Chapter 3). o(s)
is the average time between successive-trapping events for a carrier. In terms of the

detrapping or release rate R

(s)= 1 + for one-trap model, (5.3)
y s+R
= 1 + l;'/&)— for trap-distribution model. (54)
4 s ‘

The s dependence in Eqs. (5.3) and (5.4) reflects an initial condition that none of the
charges are trapped yet, and thus the dwell time for a carrier spent in a trap state increases
with time as a consequence of equilibration. For a spread of release rates R(&) coming from
a distribution of trap energies p(€), the dependence on s may be expressed in terms of the

average distribution of dwell times,
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R(e)
=146 PO 75 (5.5)

Inverting Eq. (5.1) we observe that the trapping function
1(s)/ )
A(s (5.6)
0%
depends on the normalized transient I (s)/T(O) through the iterated log function
lln(_ l)
x x

L SR D S . 7
f)=— +In _ln(l“(“%))

T

(5.7)

Assuming convergence of Eq. (5.7), it is therefore possible to work backwards to determine
the trap and release function #(s) from the current vs. time curve. We should point out that
1(s) depends only on the trapping and release rates, and is independent of field, at least for

low fields [5].

5.2.2 Calculation of the trap distribution Jo )

From the function 7(s), we can determine the trap energy distribution () if we assume

release rates from all traps of the Arrehnius form
R(&) =V, ex( ‘9) (5.8)
o €XP| T .
where the energy s the trap depth and wis the attempt frequency. Then,

~ A
1= [[deple) ooty (59)

where = 1/kT. As we pointed out in previous section 5.1, this integration can not be

solved for arbitrary trap distribution function with the same form remaining. Here, we

introduce what plays the role of the chemical potential 4, i.e.,
s=v,exp(-B1). (5.10)

In such a case, the function
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o 1
- = fdgp(g) P TPy (5.11)

can be written in the form of a
backwards  Fermi-Dirac  integral

through substitution of Eq. (5.10). This

integration can be calculated by a
convenient way to generate the
Sommerfeld corrections to the T = 0

(see Fig. 5.1) by the approach followed

by Blankenbecler [6,7] for averaging a

function of energy over Fermi-Dirac  Fig 5.1 Sommerfeld expansion: When we take
derivative of Fermi-Dirac (FD) function, it becomes

distribution. Integrating Eq. (5.11) by  delta-like function. Taking series of differentiations

. around A and FD energy as large compared to kT, it
parts gives converges ranidlv.

Y dQ(e) 1
1-¥(5)= f de de exp(-p(e—A))+1

_ 09 | _ry Bexp(-B(s - 1) 512
1+exp(-Be— ), [ ”Q(E)[Hexp(—ﬂ(a—ﬂ.»]” G129

where we have introduced the cumulative density of states

0(e) = f de'p(e’). (5.13)
In Eq. (5.12) the first term is equal to 1, because Q(&) is cumulative (&) which is
normalized to 1 (Q() =1). The integrand except for Q(¢) in Eq. (5.12) is normalized with
respect to £ and localized exponentially at £=1 with a width of the order of kT (see Fig. 5.1).

Therefore, for a density of states sufficiently smooth on the scale of kT, we can

approximate Eq. (5.1 2) as
()~ Q) scsrisiv (5.14)

providing a convenient relationship between the density of states and the distribution of
dwell times. This has been noted, for example, in reference [3]. Essentially we are replacing

the Fermi-Dirac distribution function by a step function, so that its derivative goes to a
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delta function. First, the formal definition of Q = 0 when & <0 allows us to extend the lower
limit of the integration to —co. With changing the variable of integration into x = £— 4, we

can write
e ?*
1+e?~

1-§(s)=1- B [ dxQ(x+2)

e ’*

=1—ﬂ[‘;dx—————eﬂ*3Q(,1) (5.15)

(1+e?*)’
where Q(A) in the second line is operated on by the displacement operator exp(fx ). Here,

5= B 815, then Q(x+2) can be expanded around Q(4),

O(z+2)=0(A)+ xBSO(A) + QC—'?—Q( Q)+ eeeree

=P Q1) (5.16)
There is considerable simplification of Eq. (5.14) with 7= exp(8x)
)
1-i(s)=1- qu(lzn)z o). (5.17)

The evaluation of the integral over 77can be done as a contour and the calculation of
residues. Consider
é

ddz (1iz)2 =2ria, - (5.18)

A pole of order 2 exists at z =1 with resulting in the residue a_; = 6 e™'%, and a branch

point exists at z=0. We use contour integral shown in Fig. 5.2,

o+l + Lo+
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4y

4 B Branch Line
—

LX
-
S

C x

Fig. 5.2 :The contour integral used to
evaluate fd o8 (n+1)°

f”d@I'Re"g(l'ee“g)‘§ +£ )2 f zae’a(z-:e"’)

§
= fdn dl =+
(+n)

(1+Re”)? 1+17e
=2ribe™” (5.19)
In the limit of R — o and £ 0, the second and fourth integrals vanish. Then
. s n
1—e Y [ dp—L—=2ride™” 5.20
( Wi (5:20)
or
(5.21)

g b
(1+n)° sinzé
Thus the remaining integral in Eq. (5.16) over &can be done as a co

1-7(5) =1~ 0D (522)

SIn 72 A=—kTn(s/vp) -

ntour, leaving

Multiplying both sides of Eq. (5.21) by /7 sin 76 from the left gives

B

B6 O(2) =—;sin wSF(s) (5.23)
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The density of states, however, p(e)=0Q(1)/ 04 = ,33 Q(A), so we are left with an exact

expression for the density of states in terms of the average dwell-time distribution,

B sinnbip(s) . (5.24)

7 s=vyexp(—f A)

p&) =

Thus we see that a simple operation on @ (s) will give the density of trap states. The first
term in the expansion of sin 76 already gives the approximation of equation Eq. (5.14).
Unfortunately, the quantity which is experimentally accessible is not (s)but rather the
trapping function, Eq. (5.2), 1.e.
A(s) = M(sy™ +1-7(5)) (5.25)
having an unknown prefactor M and the trapping rate 7™, and so it would seem that to
determine the density of trap states we will have to find a way to extract (s) from this

composite function. We should consider, however, the operation

ﬁsin 70 A(s)=M —/isin 0 s-M —’B—sin 72’5’\!/7 (5.26)
7 Ty /4
The operation causes the additional term which is linear in's in A(s) to vanish
sin7zd s = sin(zrﬂ" —(%)voe"f”1 =-v,sinz=0. (527
It therefore follows, by introducing Eqgs. (5.24) and (5.27) into (5.26), that operation on A(s)
B Gin 18 a(s)= Mp(e) (5.28)
T

gives the density of states up to a simple constant of proportionality. For numerical

calculations, it is convenient to represent the operator & in terms of s, such that

Then

(5.30)

Ins .

p(e)= —I\%gsin(ﬁ 3 0 )A(s)

s=vpe

The unknown factor M can be determined by requiring that p be normalized.
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Although this procedure determines the functional form of the density of trap states, it
determines only relative energies rather than absolute energies, because the attempt
frequency W 1s undetermined. For example, we can always introduce a new frequency
v, = v, exp(fe,) , where &, is an arbitrary energy. Since the density of states is to be
evaluated by setting s = wexp(fe), changing wto V, is equivalent to shifting the origin of
the density of states by &,. Therefore, the only way to estimate the absolute location of the
density is to perform experiments at different temperatures and find the activation energy.
Once this is specified, then w can be estimated. Without this information, however, the best

we can do is to place a lower bound on v by requiring that the trap energies be positive.

5.2.3 Calculation of the trap distribution in the case of MTM with D#0

In this section we extend the analytical method of trap-distribution extraction explained
in previous section to cases in which diffusion process is not ignorable. In Chapter 3 we
also solved the MTM with D # 0, as the same way as for the MTM with D = 0, by carefully

reflecting of boundary conditions at the anode (carrier injection) and cathode (carrier

absorption). We could derive the conventional solution of 1(s),i.e.

1(s) - P_(Cle—(lﬂr)vd/ZD +C,+ 1 ) 2DC, (1 __e-(l+x)vd/2D)_ 2D(C, + ’f—l) (l_e(l—x)vd/ZD)

T0) vL vL(1+x) vL(1-x)
(5.31)
where
x =[1+4Dsyr/v* =1+ 4DA(s)/vL (5.32)
2evL/2D
C =- 533
P e I (e - De ™ - (33
_ _ —xvL/D
(x=DA-e™) (5.34)

2=—;Fc+1+(x—l)e‘“w]
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Then we may conclude that the normalized Laplace transformed current (5.31) will be a

function of only two parameters, xand vd/2D, i.e.,
Z(S) = g(—‘ili-;l()
1(0) 2D

_ g[ oL [, 4DA(s))

.2_5; vL
_ {1 44(s)
—g(zﬂeV, ﬂeV) (5.35)

We have simplified the expression of the third line by using the Einstein relation. After D is
omitted by using Einstein relation, we can numerically invert g to obtain A(s) from the
1(s) vs s curves using Newton's method. Then we may derive the A(s) vs. s curves for

different voltages. As in the same manner for D = 0 case, we can derive trap-density

distribution from A(s) by using Eq. (5.30)

5.3 Deriving Trap Distribution from Experimental-TOF Photocurrent

This provides a test for the applicability of the MTM through a procedure which we

outline as follows. Measurements on a single sample at a single temperature T yield a

family of normalized I(H)(or I(t)/T(O) = J(t)/(total charge) ) vs. f traces, parametric in

applied field. A corresponding family of T(s)/1(0) vs. s curves, parametric in E can then
be determined by performing a numerical Laplace transform of each trace. Substitution into
Eq. (5.7) for D=0 or numerical calculation of inverted g using Newton's method for D # 0,
gives a family of A(s) vs. s curves. While the factors M=y L / v are not determined
explicitly, for linear response, M is inversely proportional to the field. If the multiple-
trapping model is applicable, it should be possible, therefore, to obtain a single universal
AV vs. s curve by their respective voltages, because AV=(MV)sz, then, MV is not field
dependent. And we derive the figuration of p (¢) from collection Eq. (5.30),
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Fig. 5.3 :Double-log plots of photocurrents in SmB of 8-PNP-012
for each applied voltage

_pf( 2N M, o),
P (8)—WL[(”alns) 3!(”61nsj " }4(3)

The present method will be applied to experimental transient photocurrents. The currents

(5.36)

s=v0e‘p‘

were measured by conventional TOF set-up explained in Chapter 2. The sample is 8-PNP-

012 sandwiched by Al electrodes. The cell thickness is 5 pm. A measurement range of

T()A©
e © 9 g
9 (] Fy (-, (- -]
292
S
<

0
0 0.5 0.1 0.15 0 0.005 0.01 0.015 0.02
s (us™) s (ps)

Fig. 5.4 :Laplace transformed photocurrents in SmB of 8-
PNP-O12 for each applied voltage
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applied voltage V'= 0.4V ~ 10V. Temperature is maintained at 7= 80°C (SmB) because we
cannot see temperature dependence for such a narrow temperature range of SmB phase.
Photocurrents are dealt with computer for Laplace transform and Newton method to extract
A(s), then p(&).

In Fig. 5.3 is shown the corresponding family of experimentally normalized current

10

\

=

< 03V -
e
oev
05V -
04V

01
103 102 10! 1 103 102

s(us™) s (psh)

Fig. 5.6:Double-log plots of A(s) vs. s in SmB of 8-PNP-O12 for each
applied voltage with assumption D=0

I/ 1(0) vs. t curves. Evaluated Laplace transformed currents I(s)/ 1(0) vs. s curves are
shown in Fig. 5.4. The lower and upper limits of s should be in the order of the reciprocals
of the maximum and minimum times in the I(?) vs. ¢ curves. The maximum value of s is
ultimately set by the time interval between data points in the current-time curve without
considering RC problem. However, we did not take the minimum time of the current signal
but the minimum time in which the signal delay due to RC problem did not affect the
photocurrents. We took the order of reciprocals of the maximum time for the minimum s.
The minimum value of s is determined by the maximum time on the current-time curve.

Therefore, we only have reliable information concerning the shape of p() between the
minimum and maximum energy, respectively, i.e.,

e =—kTIn(s_, /v,) (5.37)

min
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&, ., = —KTIn(s /vy) (5.38)
If we attempt to go far in either direction, the shape becomes unreliable. It is easy to
determine the range of & in which the data should be reliable,
Ae =&, —Epn = —RIN(S /18.0)-

First we applied the method to the case with D =0 based on Eq. (5.6) to obtain the A(s)
vs. s curves as shown in Fig. 5.5. Since M should be inversely proportional to the field, A(s)
is inversely proportional to applied voltage V. Thus, AV must be constant for each voltage.
Fig 5.7-(a) shows the AV vs. s with assumption of D = 0. These curves form a slightly
progression to higher AV for higher voltage, which shows that they are not universal. This
lack of universality shows that the MTM with D = 0 is not entirely applicable. This may be
due to the fact that the multiple trapping model neglects the contribution of diffusion to the

broadening of the transients. The experiment was performed at 7'= 350K, so that at the low

voltage end, ca. 1 Vv, W = 1/5. While this is certainly smaller than 1 it is not zero,
and, after all, the important question for the validity of the MTM is whether the diffusion
broadening can be neglected as compared to the broadening due to trapping. In view of the
failure of the universality of AV in the case with D=0, we therefore go to the case including
the diffusion process.

Figure 5.7-(b) shows the evaluated A(s) vs. s by using computer aided Newton’s method
with concerning diffusion. These curves were improved better than those in Fig. 5.7-(b).
We can hardly see the progression to higher AV for higher voltage. Although these curves
still have difference from each other, this difference is not systematic. We think this
difference comes from error in measurement of the voltage. In measurement, it was
difficult to adjust the voltage in the order 0.01V in our setup. Moreover, the internal voltage
may be different from external applied voltage in the order 0.01V, because we cannot
control the resistance at contact surface between Al electrode and organic sample. Thus we
concluded that the curves in Fig. 5.7-(b) are identical with each other within the error of
measurement and that AV curve is universal. This is very important because AV curves,
where we think no difference of trap condition exists for each field, show no difference

from each field
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Fig. 5.5:Double-log plots of A(s) vs. s in SmB of 8-PNP-O12 for each
applied voltage with assumption D=0

Finally we derive the trap distribution (&) based on Eq. (5.36) using A(s) derived with the
method D # 0. As stated before, unfortunately, we do not know the attempt frequency v
nor M(V). Here we set w= 5%x10* s, arbitrarily and we set

M=V,/V (5.39)
where V is applied voltage and V=100 V, arbitrarily. This M value is improved after p(¢)
is derived by normalization. We try to calculate p(¢) for each field by using computer. But

most of the signal of evaluated p(¢) is hidden in noise and is monotonically increases with

10% 10%
v oo
oY v -
102} & 102} 2V -
2V - 1V -
1V - Qgv -
> Y > o
@ 10155 = 10 |88 ¢
~ < 04y -
1 1
(a) (b)
10! 10~
104 10 102 100 1 10 1% 10° 102 100 1 10
s (ps™) s (us)

Fig. 5.7:Double-log plots of A(s)V vs. s in SmB of 8-PNP-012 for each
applied voltage : (a)D=0, (b)D+0
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decreasing ¢ even if we take higher order of the series. These depend on sampling number

2

!

:

1.5 } ° 7
9

4 % 0O

gaussian fit —

1

0.5

p(g) (x10°meV)

S50 0 50 160 1.50 2;)0 2;0 300
& (meV)
Fig. 5.8 Trap distribution: For SmB of 8-PNP-O12 with applied voltage of 0.7V.

of the data. Furthermore, s range is too narrow to configure whole p(£). So, we try again to

take s range to allow large s corresponding to small ¢ in the range where there is a
possibility to affect delay of RC. Then, Fig. 5.8 shows the derived p(¢) for the current data
¥ = 0.7 V. Numbers correspond to the order in Eq. (5.36). As the order of the series

increases, calculated p(¢) is becoming close to Gausssian function. The line in Fig. 5.8
shows the fitting of Gaussian function to the series of p(¢) having the order 9. Evaluated

Gaussian function is

i ~74)?
_1.07x10% exp| ~E=TD_ 1 5.40
g(e) x Xp( T ) (5.40)

Normalization so as to f de g(&)=1 gives:

i —74)?
_1.48x102exp| - EZTD 1. 5.41
g(&) X eXP( YTY ) , (5.41)

and we may conclude that our material, SLC, has a trap distribution of the Gaussian type.
Therefore, by using one of the experimental results of TOF-transient photocurrents in SmB

of 8-PNP-012, we analytically derived the trap distribution of the Gaussian type with
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standard deviation o= 48 meV. One may also conclude that the center of the Gaussian
distribution is 74meV lower from the transport level, but this means nothing because we
arbitrarily assume v = 5x10* 1. So, if the correct value of v, was found, the distribution
slides by kT In ((correct value of wo)/(arbitrarily assumed value of 1)). The important thing
we can say is that, without assuming the Gaussian type for trap distribution, we have

derived the Gaussian distribution as the result of direct analysis of TOF-transient current.

5.4 A New Method for Fitting based on MTM

In this section we suggest a new method for fitting based on MTM. In previous
section, we tried to extract the trap distribution from TOF-transient photocurrents. We
could scarcely extract the trap distribution from a photocurrent signal. Most of the
photocurrents with noisy signal and narrow-time range can not give the trap distribution. In
Fig. 5.7-(b), on the other hand, we found that A(s)V curve including all the information of
trap distribution showed no field dependence. This is consistent with the idea that the trap
distribution should not changed directly by the field or temperature. Here, a new idea arises
that if we do not fit the current-curves but try to fit the A(s)V-curves for a wide range of
field, the A(s)V-fitting may work better than the current-fitting. This method has another
merit from the numerical side. For current-fitting, we must calculate the inverse Laplace
transform and also employ the least square method at a time. But we need not calculate the
inverse Laplace transform in the new method. A(s)V-curves are fitted directly by using the

least square method.

5.4.1 Formula of A(s) for various trap distribution

To fit A(s) we must derive the formula of A(s) for each trap distribution. These
calculations were more often than not compiicated and their calculations are vexatious
complex. But now we have Eq. (5.22), we can discuss systematically for each trap
distribution.

(i) One trap-state
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One trap-state can be denoted as delta function, & (& —g&), where & is energy measured

with respect to transport-state. Delta function is denoted as

1 _
S(e—g,)=— | dke* ™, 5.42
(e-e)=5-[. (5.42)
in Fourier transform. Then, cumulative function is
0(4) = f de8(s - 50)
lk(l —&) ~ikegy
- dk te (5.43)
2 ik
By inserting Eq. (5.43) into (5.22),
_j=1- f dk _m(k!p) |, ma-s0) _e—ike(,]
27 += k sinz(ik/ ﬂ)
(5.44)

=1- 1+e’”(“”")
luding complex integration to derive

We do not present here the details of calculation inc
y using definition of 4, Eq. (5.10),

the second equation above. Equation (5.44) is rewritten b

with s in stead of 4,

1 1 1
A)=Ms| —+—|\———— G
() SL/ s[ 1+(s/ v,)e’™ ﬂ
= M5l l+l(l— 1 )
y s 1+s/R

11
—Ms(y RH) (5.45)

where R = voe'ﬁe". This result is consistent with the results of Chapter 3.

(ii) Gaussian trap-state

Deriving Gaussian trap-
of (i). Gaussian distribution is denoted as

exp[— (6=¢o) } (5.46)

state from A(s) is difficult, but we can systematically try along

the same procedure

4
pe)= pyy

20
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And the cumulative function,

o) = «/EA’7 [‘ de exp[— %{;’)——]
o

Auledz)

A is defined as normalization constant, i.e.,

A &y -
O(e0) = —2-(1 + Erf( ﬁa)) =1. (5:48)

Then

A= 2
[+ Eefiz, /4200

By inserting Eq. (5 A7) into (5.22) and taking series

- A z2 oA, o A—¢€ £
1-F=1-= 1-7 51+ 254 - Erf( °)+Er(( °) 5.50
v 2( 37 7S )[ N o) ¢

Thus we can derive A(s) on the basis of Eq. (5.50):

(5.49)

2
A(s)V=%(s+7(1-u7)) (5.51)

We also used this formula in Chapter 3.

5.4.2 A(s)V-fitting

Based on Eq. (5.50) and taking the 4th order, A(s)V curves in Fig. 7 were fitted. This
fitting is shown in Fig. 5.9. Deri\./ed parameters are shown in TABLE 5.1. Then we can
reproduce the photocurrent for each field from the same A(s)V . The results are shown in
Fig. 5.10. Herewith, it is confirmed that the new method of fitting is to be useful. We think
the Gaussian trap distribution having the parameters shown in TABLE 5.1 is most reliable

to explain the features of transient photocurrent. Of course we can obtain the parameters of
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1(sh)

0 100 200 300 400 500
t (us)

Fig. 5.9 Photocurrents compared with reproduced currents
based on the parameters derived by A(s)V-fitting of Gaussian
trap in SmB of 8-PNP-O12.

Gaussian trap distribution by other methods: Direct-photocurrent fitting explained in
Chapter 3, and the fitting for evaluated-trap distribution explained in section 5.3. But these
can be applied only for a specific field region, while the trap distribution, we believe, does
not change with varying the field. The present method for fitting is applicable for all field

region without loosing the universality.

TABLE 5.1 Extracted parameters from AW(s)-fitting
p (em®/ Vs) y(us™) & (meV) o (meV) v (us™)
6.3x10™ 0.54 3.2x10* 51 2.8x10°
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Fig. 5.9: AS)V fitting of Gaussian trap in SmB of 8-PNP-
012:data shows AV vs. s for various voltage 0.4V~10V

5.5 Conclusion

We derived a new method for extracting trap distribution from TOF-transient
photocurrent. For deriving the method, principally useful to extract the distribution, we
clarified three problems. First, our material, SLC, provides a field-independent diffusion
process in consistent with Einstein relation at low fields. Thus, by introducing Einstein
relation we can distinguish the diffusion effect from trapping effect in photocurrent. Second,
we solved the integration of 1-y/ corresponding to average-dwell time for arbitrary-trap
distribution by using Blankenbecler’ way to take Sommerfeld corrections. Finally, a
problem may be addressed that another different trap distribution may also well explain the
current signal. This problem may correspond to that v, is not to be determined from a single
current signal. We only derive the shape of trap distribution without knowing how the trap
distribution is apart from the transport state. This problem may be solved by applying to
current signals at varying temperatures. Unfortunately our material, SLC, is stable for a

very narrow temperature range and, thus, we cannot study temperature dependence.
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As a practical matter, however, the range of time measurement may be the limitation for
the energy range of extracted trap distribution. Furthermore, in deriving trap distribution
using high-order derivative functions, noises can often be enhanced, and so we are forced to
use only a set of data to obtain a Gaussian trap distribution.

On the other hand we found a universal curve of A(s)V which retains all the information
on trap. Thus we suggest a new method for fitting to apply the universal curve, A(s)V. This
method can be applied to photocurrents for various field ranges. The Gaussian trap
distribution thus derived is most reliable among other methods. Finally we conclude that

our material has a Gaussian trap distribution with the parameters denoted in TABLE 5.1.
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Chapter 6

Microscopic Analysis

Using Gaussian Disorder Model

6.1 Introduction

In the previous chapters we have analyzed the TOF photocurrent by using multiple-
trapping model (MTM) .. We are now in the stage of good understanding of carrier
transport features in smectic liquid crystals (SLC), i.e. field and temperature dependence of
the mobility, which has not been clarified before. We now know how to analyze the TOF
photocurrent result for the new materials with rather new electronic transport features. We
found out that SLC is among the materials having electronic transport behavior for which
the Einstein relation holds at low electric fields. No organic materials except for crystalline
phases have been studied in a regime in which the mobility is consistent with the Einstein
relation. The multiple trapping model is based on the idea that charges hop between nearly
isoenergetic molecules, and occasionally they become trapped in defect molecules which
are at a lower energy than their neighbors. For many years, the conventional model of
photo injected charge transport in disordered organic conductors, in particular the
molecularly doped polymers, has been one in which charges hop among molecules with
different energies coming from a Gaussian distribution. In the GDM it is difficult to
separate the low energy sites from the high energy sites, and to label some of them as traps
and others of them as free. Nevertheless, it is quite possible that the predictions of the
GDM are not incompatible with the predictions of the MTM, and that the MTM may serve
as a handy approximation for the GDM To investigate this, in this chapter we will assume

that the Gaussian Disorder Model (GDM) [1] describes electronic transport in the Smectic
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Liquid Crystals (SLC), and develop a two-dimensional GDM to investigate carrier
transport features in SLC. We will use Monte Carlo simulations to compare the predictions
of the GDM with the experimental results.

As has been discussed in Chapter 2, the GDM explains some of the electronic transport
properties of amorphous organic solids very well. These materials often show the mobility
with strong-field and strong-temperature dependence. Off-diagonal disorder, due to
Gaussian type deviation with respect to position and orientation from the simulated 3-D
periodic lattice points, comes from the disorder of the position and orientation of each
molecules in amorphous organic material. Diagonal disorder, due to Gaussian type
deviation with respect to energetic level, comes from energetic disorder of the HOMO (for
holes) or LUMO (for electrons) levels.

Unfortunately, however, there is no direct and easy way to find the origin of the off-
diagonal disorder because we can not measure the inter- and intra-molecular contributions
to the transfer activation energy. The optical spectra of molecular solids reflect excitonic
transitions in contrast to valence-conduction band transitions in inorganic semiconductors.
So, the direct probing by absorption spectroscopy can hardly give information about the
density of states (DOS) function for charge transport state. The origin of the disorder may
be ascribed to the superposition of ubiquitous contribution arising from Van der Waals
interactions between a charge carrier and the electrically polarizable random medium
[2,3,4] and the contribution of the summation of electrostatic potential caused by randomly
distributed permanent dipoles [5,6]. The van der Waals interaction contribution to the
energetic disorder is practically negligible compared to the charge-dipole interactions. This
permanent dipole contribution may be related to the Poole-Frenkel like field dependence,
ie.,

o exp(;/\/f) 6.1)
where E is an applied electric field and 7 a coefficient depending on temperature. This
relation (6.1) cannot be derived from a simple GDM. GDM alone would lead to the field-
dependent mobility in high-field region (>105 cm?/Vs). On introducing the correlation of the
electrostatic potentials of the permanent dipoles, the relation expressed by eq. (6.1) appears.

This was first examined by Garstein et al for a simplified case 7] and, for one-dimensional
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case, was analytically solved by Dunlap et al [8]. We call this model the Correlated
Disorder Model (CDM). In experiments, the Poole-Frenkel field dependence of the
mobility usually appears in amorphous organic materials in a wide range of field [9]. This
behavior was confirmed with the CDM, analytically for one-dimensional case, and
numerically for three-dimensional case [10].

In this Chapter, as mentioned above, we apply the two-dimensional disorder model to
investigate the carrier transport properties in SLC with the aid of Monte Carlo simulations.
We think that this model can be described by the GDM, for the condensed state has still the
disorder relevant to SLC. The molecular alignment is thought to have no long distance
order. The alignment often shifts and, furthermore, the molecules rotate in SmA and SmB
and flap in SmE phases [11]. Although it has been suggested by others [13] that a band-
transport picture is appropriate due to the structure in SLC, we suggest that this is not the
case. SLC is quite different from the molecular crystals often encountered and, moreover,
the mobility depends neither on electric field nor on temperature. So it is likely that
disorder formalism pertinent to SLC may be quite different from the formalism for the
amorphous organic solids. As will be shown, however, a two-dimensional disorder model
with a small Gaussian width of 50~60 meV can explain many of the carrier transport
properties in the smectic mesophase, such as field- and temperature-independent mobility.
Also a field- and temperature-dependent mobility is predicted in the smectic mesophase by
the same model with a large Gaussian width of 100~120meV which is comparable to

amorphous material.

6.2 Two-dimensional Disorder Model

We are concerned here with a system where the carriers hop among the molecules in the
smectic mesophase. All the molecules sit in the layers with thermal fluctuation and the
molecular alignment in the layers determines each mesophase. The inter-layer molecular

distance of about 30~40 A is much greater than the intra-layer distance of 3~4A in 8-PNP-
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012 and 8-PNP-O4 [12]. Therefore undoubtedly, the charge carrier transport exclusively
takes place within the smectic layer. This has been confirmed from experiments using
diluted smectic liquid crystals [13]. Therefore, our model for carrier transport in the smectic
mesophases will be a GDM where the motion of the carriers is restricted to hopping in a
two-dimensional (2D) disordered system.

A different molecular alignment makes different hopping paths available according to
the configuration in the smectic mesophases such as SmaA, SmB, and SmE. We make the
site configuration in each smectic layer as follows: i) In SmA, the molecular alignment is
random in the layer, ii) In SmB, each site is aligned in hexagonal lattice points, and iii) In
SmE, each site is aligned in rectangular lattice points.

We incorporated the off-diagonal disorder for the SmA phasein a manner similar to that
introduced by Pautmeier ef al [14,15]. We assumed that the inter-site distance is subject to
local variation while that the coupling among the transport molecules having mutually
different orientation is not important in liquid crystalline phases. In the model, each site is
assigned to a unique point on a square lattice . The spatial disorder is then represented
heuristically by varying the distances which enter the hopping matrix elements according to

a Gaussian distribution with deviation o;. The amount of disorder is quantified by the off-

diagonal disorder parameter 2 =42 a/a, where «a is the decay length of the the wave
function in the localized states. This parameter measures the deviation from the distance
distribution between nearest-neighbor sites per lattice distance.

The important consideration in SmB and SmE phases is the number of available
(nearest) hopping paths and the distance between the neighboring sites. Differences in the
magnitude of the mobility between these two mesophases comes from the difference in the
intermolecular distance and the number of available hopping paths within the layers.

We assume that the energy-localized state at & is characterized by a Gaussian-

distributed density of states (DOS)’
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Hopping down

Hopping

Gaussian distribution

Fig. 6.1 : Scheme of hopping process concerning the energy levels without
applied field. Hopping needs activation for jumping up from i to j site, while
hopping down needs no energy. Gaussian distribution is supposed for the
energy levels.

2
£() =—2J’1;‘76Xp(_ —2%7) (6.2)

as is used in the case of the disordered organic solids, where o is the energetic width. In
an amorphous 0rganic material, the energetic disorder characterized by o reflects the
fluctuation in the polarization energy and charge-dipolar interactions. The long-range
nature of the charge-dipole interaction has been shown to play a crucial role, for it creates a
spatial correlation in the DOS, so that the potential change an neighboring sites is smooth.
Inour materials, however,the molecu‘lar dipole moment is small, and the energetic disorder
is caused by the carrier-dipole interactions is negligable. We attribute o to the SLC
structure or to relative position between cores of molecules as producing polarization

energy.
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A reasonable transition rate for hopping processes was suggested by Miller and
Abrahams [18]. It is the product of pre-factor v, a carrier wave-function overlap factor, and
a Boltzmann factor for jumps upward in energy [16], i.e. the jump rate between sites i and j,

the distance between the sites being 7;; , is

g,—&—eE-r,
v, =V, exp(— 2’7'/‘] T kT (fore, —¢,—eE-r,>0.)
ij
a

1 (forg, —¢,—eE-r, <0.)
6.3)

Here, o is a specific decay length of the wave function in the localized states , r; is the
vector from the site i to j, and E is the applied electric field. The quantity eE- ry is the
difference of electro-static potential between the ith and jth hopping sites. The only source
of activation energy comes from the difference in site energies, and the rate is only
thermally activated for an “uphill” hop (Fig.6.1). In the smectic mesophases, except for
smectic A phase, the dependence the off-diagonal disorder is less important than the
energetic disorder. In the Smectic A phase, we introduce spatial disorder by modifying the
value of ; which enters into the jump rate according to fluctuations which are determined

from a number drawn from a Gaussian distribution
(I, - R, /a)?

2= Jlgexp{——z—z——], (64)
/(2

In (6.4) I is the dimensionless positional parameter for each site, R; is the distance

between the lattice points i and j, and ry is the deviation of the site from the lattice point.
Ignoring non-nearest neighbor hopping, we have R;= a and in such a case the distance 7;; is
given by

r,=a(l,+I}). (6.5)

The probability Py for jumping from a site i to a site j within a two-dimensional lattice

is
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P == (6.6)

and the dwell time of a carrier at a site i is described by the following equation:

. C) (6.7)

y :
PR

k

Here, x is a random number taken from a uniform distribution between 0 and 1. The sum is

taken over all connected sites k except for the site i from which the hop commences.

6.3 Scheme of Monte Carlo Simulation

We carried out two-dimensional simulations on a model layer consisting of 100x1000 or
100x5000 sites aligned as a hexagonal lattice and a rectangular lattice, to compare with the
experimental results in SmB and SmE phase, respectively. The lattice configuration for the
SmA phase was also taken to be rectangular, but the sites were shifted from their lattice
points according to the recipe described above. To extend the lattice size in the direction

perpendicular to the applied field we applied a periodic boundary condition. For the site

e BRIk T
e oSk L
TET KRR L
9 3 ‘/_‘\ > ‘ /'r< 1 ] ] [ l._

(a) SmA (b) SmB (c) SmE

Fig. 4.2 :Schematic illustration of alignment of the site in the
layer for each pahase.
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distance a=3~5A, 5000 sites corresponds to a sample length of 2um, which is typical of the
thickness of the actual samples examined in time-of-flight experiments (Fig. 6.3). The
parameters were chosen as: Vo= 6x10'> Hz, and a=2.3 A. The distance between
neighboring sites, a, is to be 4.6 A in SmB and 3.5 A in SmE phase based on the
measurements of nearest neighbor distance between molecules by X-ray diffraction [17].
Prior to the simulation, each of the hopping sites is assigned an energetic shift ¢ and a
positional parameter I';. In the simulation we allow a charge to start at arbitrary selected
sites located near the top electrode. The charge then hops randomly around the sites
according to the probability P;;to transfer from i to j (€q.6.6) during the time #;(eq.6.7), and
disappears on arriving at one of the sites adjacent to the counter electrode. This process is
repeated N=1000 times. For each random walk a transit time #, is calculated. Average

velocity <v>is thu Fig. 4.3: Scheme of GDM simulation: The simulation measures
1 the transition time from the top electrode to the counter
<y >= __Z electrode on the two-dimensional layer.

n=l p
where L is the sample length. The mobility s is calculated as

<v> 1 &L
AL, o 6.9
Ha="Fp "NE&, 69)

6.4 Simulation of Field Dependence

6.4.1 Simulation results for SmB compared with experimental results of
8-PNP-O12

We made computational simulations for each of the phases. First, we examined the

simulation for the SmB phase and compared this with the measurements on 8-PNP-O-12.
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The behavior of the calculated charge carrier mobility as a function of the electric field is
shown in Fig. 6.4, for varying values of . We can recognize

@102

[y
&
&

8-PNP-O12 SmB ¢

Carrier mobility x (cm?/Vs

10_5 1 gl 3 gl s 3 anul
104 105 10¢
Electric field E (V/cm)

Fig. 6.4: Field dependence of carrier mobility in SmB. The lines show
the simulation results. Open diamonds are experimental data.

(i).o <<eEa (i).o~eEa . . -7
Field-dependent

pcl/E  mobility

(iii).o>>eEa

Field-independent
mobility

Fig. 6.5 :Schematic illustration of hopping process for various field

Fig. 6.5: Schematic illustration for hopping process under various field. (I) High-field
region experimentally not realized. (ii) Field dependence with Pool-Frenkel like

behavior. (iii) Field-independent region.
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the existence of a region having a
Poole-Frenkel behavior as well as a
region of field-independent mobility. In
fact, there are three separate regions:.
(i)a high-field region o << eEa, where
the mobility decreases with increasing
electric field, (ii) a region with a field-
dependent mobility (the Poole-Frenkel
region) in the range o ~eEa, and (iii) a
region with a field-independent mobility
(o>>eEa).

One may also notice a transition at
low field. Below a certain field the
mobility is no longer constant, but begins
to decrease with increasing field.. If we
look at the low-field region for various
sample lengths, from 0.04 to 2um (from
100 to 5000 sites), we find that the

transition point shifts to lower fields (Fig.

6.6) for longer sample lengths. The
reason for the transition is as follows. If
the sample length is very thin, the
carriers can arrive at the counter
electrode through diffusion motion, even
in the absence of an applied field. The
diffusive motion is field independent, to
first order. Thus, the calculated transit

time in simulation becomes field

g8855 sy

10—2 L

Carrier mobility (cm?/Vs)

pa 99

10° ' '
10° 10° 10¢

Electric field E (V/em)
Fig. 6.6: Sample-thickness (site number) dependence of

the mobility at low field: “u-1/E dependent region at
low fields” shifts to the left with increasing number of

sites existing along the direction of applied field.

102

Q)
g
g
<
X 1073
[~
=
£
& .
=
5 7 o
¢ T ,
me ; me 0 5 10 15 20
Ry Tojirlt
g l 'l I 'l I 'l l
0 0.2 0.4 0.6 0.8

(eaEl0)'?

Fig. 6.7: Simulation results showing field
dependence of the carrier mobility in SmB

phase. The inset shows the slope of log(y) vs.
=
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independent, leading to an inferred time-of-flight mobility x~ 1/E which decreases with
increasing electric field.

In region (i) where the field is very high, over 10° V/cm, and the potential difference
between two neighboring molecules due to the field is larger than the mean energetic
fluctuation &, most of the hops take place in the direction of the field. For the Miller and
Abrahams rates, the hopping down process does not depend on the field, the drift velocity
becomes field-independent, and therefore s, oc 1/E. This region cannot be realized in the
present experiment because in most cases our samples break down.

In region (ii) where the electric field strength is in the range of about 10°~10°V/cm, the
drift and diffusion of the carriers depends on E. To parameterize the Poole-Frenkel
behavior, we apply a trial function of the following form:

1= pyexpl(c6)” +y'VeaE o |, (6.10)

y'=C'(e™-T), (6.11)
where & =o/kT . This form was first introduced by Novikov et al [18] to describe the
results in the case of correlated disorder. Fig. 6.7 shows the mobility vs. JeaE/c for
calculations pertaining to the SmB phase. This behavior is also typical for three-
dimensional (Bissler et al [1]) and one-dimensional systems (Bleyl et al [19], Novikov et

al [20] and Kohary et al [11]). We have obtained u, = 4, exp[—-(c&)* ] via extrapolation to
zero field. We plot the logsy vs. 62 to obtain p, =1.44x107cm?/Vs, ¢ = 0.8 and n = 2.

However, the value of ¢ varies only slightly with the decay length @ or the distance
between neighboring sitesr, as is indicated in Table 4.1. To get C’, m, and I, we calculated
7, the slope of log(x) vs. (eaE/c’)'”? and plotted y against 6™° as shown in the inset of Fig.
6.7. We obtained: C'=0.54, m=2.5 and I"'=0.87.

TABLE 4.1 Coeffcients c in Eq. (6.10) versus decay length o

a(A) 1.6 1.8 2.0 22 2.3 2.6 2.8

C 0.83 0.84 0.82 0.80 0.80 0.80 0.80
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We also performed simulations for a two-dimensional hexagonal lattice applied to SmB

phase, and fit the mobility to the expression

Hsmp = Ho exP['" (0-80']‘(%] }eXP{C’li[I;LT) | _r:l %{:‘} (6.12)

This equation describes asymptotes to the simulated data in Fig. 6.7. The range in which eq.
(6.12) holds is very narrow. When we applied Correlation Disorder Model (CDM), on the
other hand, eq. (6.12) holds in a wide-field range as pointed out in ref 20. But CDM
supposes the charge-dipole interactions [9]. We cannot find such kind of strong interactions
in our SLC, 8-PNP-O12 or 8-PNP-O4. So we did not think of adopting CDM instead of
GDM in this chapter. Thus, in GDM, we can say that region (ii) is the region in which
field-dependent mobility is shown and eq. (6.12) is shown around the inflection point of
this region.

Fig. 6.4 shows that region (ii) with field-dependent mobility becomes pronounced with
increasing o These results suggest that for smectic liquid crystal, where only small value of
o is expected due to orientation effect, the Poole-Frenkel-like behavior will disappear in the
field range of 10~ 10° V/cm often employed in TOF experiments.

In region (iii) where the electric field is in the range < 10°V/cm and the mobility is
independent of electric field, we found that the model with o = 60 meV showed a good
agreement with experiment [20], as shown with diamonds in Fig. 6.4. The width of the
disorder o =60 meV is considerably smaller than a typical value o =100~120meV in the
organic disordered solids [1]. This is probably due to the fact that the hopping sites in the
smectic mesophase have more structure. As shown in Fig. 6.4, different behaviors of the
mobility appear in regions (ii) and (iii), where the diffusion process plays a significant role
in the hopping process, depending on the o and E. These results are shown in Fig. 6.8,
where log(uT) is plotted vs. (1000/T)* at constant field £ = 8x 10* V/em belonging to region

(iii). We find that the simulated results are consistent with the relation:

€ AN2
u= ;T—Aexp[~ (B6)'] (6.13)
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This implies that the diffusion coefficient depends on 6%, D = Aexp[—(B&)*], assuming
that the Einstein relation holds. This is confirmed from the inset of Fig. 6.8. Here, all the
points were calculated by using eq. (6.13) with the same parameters: 4 = 2.9x10™cm?*/s and
B = 0.67. The eq. (6.13) shows that the diffusion process does not depend on field E in

region (iii)..
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Fig. 6.8 Temperature dependence of the carrier mobility: (a) uT vs (1000/T)*
The inset shows log(1kT/e) vs. 62 (b) m vs T plots based on eq.(6.13)

Our simulated results are consistent with the experimental ones on 8-PNP-O12 [22].
The simulation, however, predicts the appearance of field-dependent mobility at the high
fields E for 8-PNP-O12. To test this prediction, we have attempted a mobility measurement
using 8-PNP-O12 over an extremely wide range of electric field including strengths over
10°V/cm. The temperature of the sample was maintained at 80°C so as to maintain the SmB
phase. The experimental details are described in Chapter 2. The diamonds in Fig. 6.4 show
the experimentally measured mobility as a function of electric field in SmB. The transition
from a field-independent mobility to a field-dependent mobility in the experiment is
consistent with the simulated predictions using o= 60meV. The separation of region (iii)
from region (ii) is dependent on o; as is clearly seen in Fig.6.4. The region (ii) will extend

with an increase in the o value. The conventional disordered organic solids with a small o
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6. Microscopic Analysis Using Gaussian Disorder Model

value over 100 meV have a narrow region (ii) at lower electric fields, e.g., 10° V/em. This
is the reason why the field-independent mobility has been overlooked hitherto in the

amorphous organic solids.

6.4.2 Simulation results for SmE and SmA phases

We also performed simulations to describe the behavior in the SmE and SmA phases.
We did not directly compare with the experimental results in these cases because we could
not find suitable parameters to fit the experimental data. (We do not know the distance
between neighboring sites in the SmA phase. The distance between neighboring sites in
SmE have been obtained from x-ray diffraction studies [14]. Instead of fitting egs. (6.12)

and (6.13) to the results of the simulation, We also fit the results to Bésslers equation,
U= H, expl(cé')" + ,B\/_E—'j, (6.14)
B=C(["-Z%,), (6.15)

To model transport in the SmE phase, the distance between neighboring sites a was set
to 3.5 A. The other parameters were taken to be the same as those for the SmB phase. In the
simulation, we let 2000 carriers walk randomly, one at a time, through 100x1000 sites
aligned in rectangular lattice. The typical behavior of the calculated charge-carrier mobility
is shown in Fig. 6.9, as a function of the electric field, and parametric in the value of 6 .

As in the simulations for the SmB phase, we find a region showing a field-dependent
mobility and a region showing a field-independent mobility. We also see two other regions
showing u ~ 1/E, in lower- and higher-fields, which have been discussed previously in the
context of the SmB phase. When Fig. 6.9 for the SmE phase is compared with Fig. 6.4 for
the SmB phase, one may notice that the regions in Fig. 6.9 shift to right side (to higher
fields) by about a factor of three and that the mobility values increase dramatically, by an
order of magnitude. These changes come about because of changes in the distance between

the nearest neighbor sites. We verified this by simulating SmE with the same parameters
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Fig. 6.9: Simulation results showing .Fig. 6.10: Simulation results showing field dependence of
field dependence of carrier mobility mobility: (i) SmE, (ii) SmB and SmE with the nearest-
in SmE neighbor site distance being taken as the same as in SmB.

used for SmB, except for a = 4.6A, In such a case, the mobility for SmE is the same as the
mobility for SmB. (see Fig. 6.10).

Figure 6.11-(a) shows the mobility vs. JVE relation for SmE phase. We obtain
Ky = My exp[-(c&)*] by extrapolation to zero field. Plotting the logs,, vs. 6* gives
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2
5
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Fig. 6.11 (a) Simulated result on field- dependences of the carrier
mobility of SmE phases. (b)The inset shows the slope of log(f) vs.
(o/xT)
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1, =1.66x10" cm?/Vs and ¢ = 0.74. However, the value of ¢ varies only slightly with the
decay length « or the distance between neighboring sites a, as indicated in TABLE 6.2. Fig.
6.11-(b) shows the Poole-Frenkel slope S =dlog(u)/ OVE vs. 6°. We obtained the

parameters of eq. (6.15): C= 4.6x10™*, m= 1.5 and Xy = 1.4 by fitting the line as shown in

Fig. 6.11-(b). Finally we derived the corresponding parameters for a two-dimensional

rectangular

TABLE 6.2 Coefficient c in Eq. (6.14) vs. decay length a

a(A) 1.6 1.8 2.0 2.2 23 2.6 2.8
c 0.75 0.75 0.74 0.74 0.74 0.74 0.73

lattice to compare with the experimental results in the SmE phase.

In the region of field-independent mobility, where E < 3x10° V/em, log(uT) is plotted vs.
(1000/T)* for E = 1x10° V/cm as shown in Fig. 6.12. Eq. (6.13) is also consistent with the
simulated results, with 4 = 3x 103cm?*/s and B = 0.53.

In in order to compare with the SmA phase, the

simulations were carried out as follows. The distance

-t
L]

between neighboring sites a was set to be 5A. The

-t
T

number of random walks carried out was 2000 These

HT(cm*K /Vs)
[y
<

took place on a rectangular lattice of 100x1000. The

3

value of X was talento be 1, 1.2,1.4, 1.5, and 2. in the 104

other parameters were taken to be the same as were o s %fm/l.f), 20 25

taken to desribe the SmB phase. The calculated Fig. 6.12 :Temperature dependence
of the carrier mobility in SmE, The

behavior of the charge carrier mobility for SmA is inset shows log(kT/e) vs. o

shown as a function of the electric field, and as a

function of o, as shown in Fig. 6.13.
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As in the previous simulations, we find regions showing field-dependent and field-
independent mobilities. In addition, there is a new region in which the mobility decreases

with increasing field. This region is not the region showing u~ 1/E, which we already

diagonal disorder 2 when 2'>1.5. Because this dependence has not been found in the
experiment, we conclude that X' <1.5. Each region shifts by a factor of three to the left side

(to lower fields) as compared with SmB. This behavior is shown in Fig. 6.4. Mobility

10
0 @ & 0eoe O 00000009000%
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102 } I N P &

Carrier mobility # (¢cm?/Vs)
- %4 B
Carrier mobility# (cm?*/Vs)

103 L
104 10° 10¢ 0 lig 2x10°

Electric Field E (V/em) EZ (Viem)'?

Fig.6.15: Field dependence of the mobility in SmA:
(a) on double-logarithmic plot, (b) E 1lz-dependence.

decreases with increasing lattice constant by half an order of magnitude more than it does
in SmB.

Fig.6.13-(b) shows the mobility vs. JE curve in the SmE phase. Again we have fit the

function u, = 4, exp[—(c&)*] by extrapolation to zero field, and plotted the logssvs. &7
to obtain g, =5.2x107 cm*/Vs and ¢ = 0.75. The inset of Fig. 6.13-(b) shows the slope

B =08log(u)/VE vs. 6'°. We obtained the following fit parameters C =2.2x10™, m =
1.5and 2p=1.5.

Finally we performed simulations on a two-dimensional rectangular lattice in order to
compare with experimental results for the SmE phase.
In the region of field-independent mobility, E < 3x10° V/em, we have compared the

log(uT) vs. (1000/T)* at a constant field E = 1x10° V/em. This comparison is made in
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6. Microscopic Analysis Using Gaussian Disorder Model

Fig.6.14. The relation described by eq. (6.13) is consistent with the simulated resultswith
A=3x10" cm%s and B=0.53.
In summary, we have applied the disorder formalism for charge transport in SmA, SmB

and SmE phases, obtaining field dependencies which are as follow:

B 27] [ 1.5
Hgma = Mo €XP —(0.75£—J exps C [ij ~225WE}, (6.17)
| kT kT

B 27 B 2
o (o)
= -1 0.80— Cl| —| -Z, WE}, 6.12y
Hsmp = Ho exlf’L ( kT] _eXp{ ( kT) oj| } (6.12)

[~ 27 r 15
Ligp = Hy €XP -(0.74%) exp{C [%) —zo]\/f}. (6.16)

Here we denote disorder formalism of SmB by the same form of eqs. (6.14) and (6.15) of
disorder formalism for various SLC phases as shown in TABLE 6.3. The parameters of
one-dimensional [1] and three-dimensional [21] disorder formalism are shown too. These

two parameters seem to reflect dimensions.

TABLE 6.3 Disorder parameters concerning dimension number.

1D[21] SmE SmA SmB 3D[1]
c 0.9 0.74 0.75 0.80 0.67
m 1 1.5 1.5 2 2

With higher dimensions, a lower value of the parameter c is obtained. The reason for this
behavior is because, when more nearest neighbor sites are available, carriers can find a site
to hop more easily, and they are able to avoid the higher energetic barriers. This lowers the
activation energy. On the other hénd, m increases with increasing dimension, m being
concerned to the number of path from the carrier-dwelling site to the nearest-neighbor sites.
The path number is two for 1D, four for SmE (2D) and SmA (2D) and six for SmB (2D)

and 3D, each categories having the same number of m, respectively.

114



6. Microscopic Analysis Using Gaussian Disorder Model

6.4.3 Comparison to the experiments

The various smectic mesophases in
the smectic liquid crystals exhibit
carrier transport properties which are
those found in

different from

conventional  organic  disordered
materials. For example, most of the
smectic mesophases so far investigated
including 2-phenybenzothiazole [21],
[ 22 ]

terthiophene [ 23 ], and terphenyl

2-phenylnaphthalene

derivatives [24], exhibit a temperature-
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Fig. 6.15: Charge carrier mobility of SmB and SmE
phases in a biphenyl derivative of 60-BP-6 as a
function of electric filed and temperature.[27]

and field-independent mobility. One exception, discussed in section 6.4.1, concems the

SmB of 8-PNP-O12, which shows a region exhibiting a Poole-Frenkel behavior at high

fields.. Because of electrostriction occurring at high fields, we could not confirm a similar

behavior in the SmA phase of the same material.. The activation energy for 8-PNP-O12

cannot be determined accurately because the temperature range is narrow in each of the

phases.

Haruyama et al [25] have found
recently that some of the biphenyl
derivatives, 60-BP-6, show a field- and
This

behavior should be attributed to the

temperature-dependent  mobility.

intrinsic charge-carrier transport
properties, judging from the fact that this
in 60-BP-6

synthetic

property was observed

irrespective of the routes.

the SmE  phase-disorder

Applying

10*
g
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Fig. 6.16: Charge carrier mobility in SmB and SmX

phases of a terthiophene mixture as a function of

temperature.[28]
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formalism, eq. (6.16), to the experiments in the SmE phase, we found parameters.c =
114meV, 1= 14(cm?/Vs), C = 2.1x10-3 (cm/V)!72, and o= 7.2. These values are rather

large compared with those extracted from the simulation. As noted before, the carrier
transport in our material ought to be explained by the GDM rather than CDM. So, the
range where the eq. (6.16) holds is very narrow. The range found in simulation seems to
be at higher fields than that found in the experiment. Moreover, the disorder parameter
o is larger than expected, and close to that found in amorphous organic materials.

Funahashi er al [26] investigated the temperature-dependent mobility in SmB and SmX
phases of terthiophene derivatives (3:1 mixture of 3-TTP-C2CH-5 and 5"TTP-12) in which
the temperature range of SLC phase is wide, from —15°C to 100°C for the SmX phase and
from —15°C to 101°C for the SmB phase. The plots demonstrate a strong-temperature
dependence at low temperatures (Fig. 6.16). They analyzed the results in the two phases by
using the three-dimensional disorder formalism. The calculated paramters are shown in
TABLE 6.4. Instead of using the 3D-disorder formalism, we compared our SmB- and SmE-
disorder formalism to SmB and SmX phases, respectively. The modified parameters are
included in TABEL 6.4. The value of oin SmB of terthiophene is smaller than before, and
2/3 smaller than that in the SmB phase of of 8-PNP-O12. When liquid-crystalline phases
of the materials are maintained at low temperatures aroundT=250 K, , we observe a
temperature dependence of the mobility. This shows that the lack of temperature
dependence at high temperatures does not imply an absence of disorder, but only that the

disorder is small.

TABLE 6.4 Disorder parameters of terthiophene derivative mixtures

Phase (applied model) 1o (cm*/Vs) o (meV) C(em/V)* P
SmB (3D) 2.4x107 50.7 1.02x10” 1.77
SmB (SmB, eq. (6.12)") 2.4x1072 42.5 1.45x107 1.48
SmX (3D) 4.3x107 50.1 9.07x10* 1.67
SmX (SmE, eq. (6.16)) 4.3x107 45.4 1.11x10° 1.34
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6.5 Summary

We have investigated the charge carrier transport in the smectic mesophases of liquid
crystals of 2-phenylnaphthalene derivatives of 8-PNP-O12, by computational Monte Carlo
simulation as well as by TOF experiments. The unique feature of a field-independent
mobility observed is well explained by a two-dimensional disorder model with a Gaussian
DOS The standard deviation of the Gaussian distribution o is determined to be 60meV for
the SmB phase by simulation, and by analyzing the experimental observations. This small
o value, about half the typical value of 100~120meV observed in disorder organic materials,
is characteristic to carrier-transport properties in smectic liquid crystalline phases. The
disorder model predicts the existence of a field-dependent region at very high fields which
has not been reported experimentally. To confirm this prediction, we carried out time-of-
flight measurements of 8-PNP-O12 in an extended field region . We found that the mobility
depended on the electric field, confirming the validity of the model.

For the SmB, SmE and SmA phases, we applied the disorder formalism for the field-
dependent region .. For the field-independent mobility region we derived another formalism
described by eq. (6.13. Some parameters of the formulae reflect dimension and site
configuration.

It has been shown in this Chapter that the charge-carrier transport behavior, field- and
temperature-dependence as demonstrated by TOF experiments in smectic mesophases of
biphenyl derivatives, may be well described by a two-dimensional hopping transport model
with a Gaussian-distributed density of states. By contrast, the charge carrier transport in
organic disordered materials is described by a three-dimensional disorder model.

The terthiophene mixture exhibited a temperature-dependent mobility below ambient
temperatures for a wide temperature range. The Gaussian width o was estimated to be
about 40meV by using the present two-dimensional disorder formalism. This value is by

10meV smaller than that obtained by 3D formalism.
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Chapter 7

Consistency between the Multiple Trapping Model
and the Gaussian Disorder Model

7.1 Introduction

The implications of the disorder model described in Chapter 6 is understood via a Monte
Carlo simulation in which it is assumed that the density of states (DOS) is a Gaussian [11.1t
is difficult to compare the GDM simulation with experimental results, because the results
are statistical, and cannot easily be fit to the experimental data using, say, the method of
least squares. For this reason, it is difficult to confirm the accuracy of the GDM-
photocurrent predictions. On the other hand, as shown in Chaps. 3 and 5, in the MTM
things are simpler, for we consider a dichotomy consisting of the “transport state” [2] and
the “trap states”. Nevertheless, even at the level of the MTM, the two parameters, the
attempt frequency w for the thermally activated trap release rate and the energy & which
decides the center position of the Gaussian trap distribution can not be determined
simulataneously. The best we can do is to arbitrarily fix one one of these parameters and fit
the other. In this chapter we will form a bridge between the GDM and the MTM by fitting
the the photocurrent produced by the GDM with the MTM. We find that the GDM and the

MTM are complementary to one another.
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7.2 TOF Photocurrent of GDM

We begin by showing how to obtain the photocurrent transient from Monte Carlo (MC)
simulations of the GDM (another method, which does not use MC simulation, is explained

in Ref [3]). The normalized current I, () is the current divided by total charge Q initially

existing between both electrodes, i.e.

en<v(t)> _ <v(t)>

) 7.1
eN L .h

I
I,()=—==
® 0

where N is total number of carriers and n is average carrier density in the system. The
sample length L is equal to the product of the length a between the nearest-neighboring

sites and the number of sites jo between the electrodes.
L=axj,. (7.2)

The instantaneous drift velocity

1 Lox()—x,(t—8r)
<v(t)>=—) — : . . 7.3
Q) N;} 5 (7.3)
is given by an average over an ensemble of N random walks (N=2000 — 5000) of the
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Fig. 7.1 :TOF transient photocurrent of G DM
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difference in location x(¢) of a carrier at time ¢ and the location x{(t-J f) of a carrier after a
time interval & ¢, where the time interval is taken to be much smaller than the transit time,

but much larger than the time for a typical hop.

The diffusion constant is defined through the second moment;

< x(t)* >-<x(1) >?
2t '

D

(10)

By substitution of Eq. (7.3) in Eq.(7.1) we obtain the TOF photocurrents as produced by the

simulation.

We produced transients for the following specifications: Sample length L = 3Ax1000 =
0.3um, temperature T = 340 K, tunneling decay rate a = 2.3A and attempt frequency
v=10'% Hz. The results are shown in Fig. 7.1. The evaluated currents seem to be similar to

the shape of the experimental transients.

7 3 TOF Photocurrent of GDM fiited by Gaussian type of MTM with

Diffusion

Now we apply the MTM model with diffusion to fit the TOF signal produced by the
GDM [4]. As we mentioned, one problem with the MTM is that we can not determine the
energetic position of the distribution of traps relative to the “free” state manifold without
knowledge of the detrapping attempt frequency. However, we can estimate the effective
mean of the trap density by applying the MTM to the simulated data and taking the
detrapping attempt frequency to be the same as the attempt frequency for the Miller-
Abrahams jump rate. Let us take the trap distribution to have the same Gaussian shape as
the density of states for the GDM, having a standard deviation o= 60meV. We made a
comparison for the case of E=2x10*V/cm . For this choice of electric field, the fitting works
well, as shown in Fig. 7.2.We fit the GDM transients for other values of E, maintaining the

same Gaussian trap density in the MTM, but we allowed the centroid £¢ to shift in order to
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Fig. 7.2 :TOF transient photocurrent of GDM fitted by
Gaussian MTM with diffusion

obtain the best fit. TABLE 7.1 shows the values of &g for various fields. The behavior is
rather significant, for if the MTM of the first part of this thesis is to be consistent with the
GDM studied in the second part of the thesis, then &9 should be constant, independent of
field. We see in Table 7.1 that, while there is a variation with field, the fluctuations are such
that it is not possible to draw conclusions at this point as to whether &¢ should increase or

decrease with field, or generally remain constant, at least for these values of E.

TABLE 7.1 value of & versus field

E(V/icm) 7x10° 5x10° 1x10° 7%x10* 5x10* 2x10* 10*

&(meV) 4.7 52 33 4.6 4.7 4.1 72

7.4 Discussion

In summary, if we demand that the two Gaussan distributions remain the same, that is

that the Gaussian DOS used to generate transients with the GDM is the same as the
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Gaussian trap density used in the MTM, we find that the fits of the generated transients
with the MTM are excellent, over a wide range of fields, provided that we let the centroid
of the Gaussian trap density be a fit paramter. At this point, however, our studies are
insufficient to determine if the centroid will increase with field, decrease with field, or

remain constant.

125



7. Consistency between the MTM and GDM

References

[1] D. H. Béssler, Phys. Status. Solidi. B 175, 15 (1993).
[2] F. W. Schmidlin, Phys. Rev. B 16, 2362 (1977).
[3] Jose A. Freir, J . Chem. Phys. 119, 2348 (2003).

(4] B Hartenstein, H. Bassler, A. Jakobs, and K. W. Kehr, Phys. Rev. B 54, 8574 (1996).

126



Chapter 8

Summary

We finally arrive at summarizing this dissertation. We began by describing the
motivations and the background for this work. This was followed in Chapter 1bya
statement of aims and a brief introduction of the contents.

In Chapter 2, we first introduced the molecular structure properties of typical
liquid crystals, which lead to the self-organized smectic mesophases, SmA, SmB, and
SmE, and their molecular alignments, exhibiting orientational and positional (structural)
order in two dimensions. We discussed how LCs represent an intermediate class of
organic materials between single crystals and amorphous disordered materials, and how
positional and energetic disorders can be involved, i.e., they form self-assembling,
two-dimensional conducting pathways with dynamically induced disorders. Smectic
liquid crystals (SmLC) are a unique model system for studying the relationship between
molecular organization and charge transport properties. We explained why we selected
the TOF-measurement among existing techniques for obtaining charge transport
properties. This was followed by a detailed description of the experimental method we
used, with merits and demerits included. We also presented some important theoretical
approaches to clarify carrier transport mechanisms for organic disordered materials,
such as modelings and simulation techniques.

In Chapter 3, we investigated carrier transport in smectic-liquid crystals by using
the multiple-trapping model (MTM) to describe the experimental photocurrent. We
showed that neither the simple MTM without diffusion, nor the convection-diffusion
equation without trapping, can explain the time of flight current-time curves for SLC.
Instead, we found that the two sources of dispersion, trapping and diffusion, must be
combined.. We attempted to fit the data using the MTM with diffusion for several
assumptions regarding the underlying trap distribution. We found that a Gaussian trap
distribution with a width of 60meV can explain the carrier transport in SLC for a wide
range of electric field. We found this fitting to be compatible with the Einstein relation
in the low field region. We thus verified that the mobility is field-independent at low

fields. In Chapter 4, we concentrated on negative charge carrier transport. lonic
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conduction has been observed for nematic liquid crystals (NLC) , but has not been
observed for SmLC. We analyzed the negative carrier transport in SmLC and
investigated the relation between electronic and ionic transport by applying the
multiple-trapping model (MTM) for electrons and the convection-diffusion equation for
ions. In doing so, we demonstrated that the dynamics of ionic conduction in SmLC
appears to be different from that in NLC.

In Chapter 5 we tried to extract directly the information on the trap distribution
from the experimentally observed TOF-photocurrent curves. Once this goal was met,
three problems were discussed. First, as SmLCs provide a field-independent diffusion
process consistent with the Einstein relation at low fields, diffusion effects may be
separated from trapping effects in the broadening of the photocurrent. Second, the
average-dwell time for an arbitrary-trap distribution may be determined by using
Blankenbecler’ technique to generate the Sommerfeld corrections. Finally, only the
shape of trap distribution can be obtained without knowing how far apart the trap
distribution is from the transport state. We point out that this problem may be solved by
fitting current-time curves at various temperatures. Unfortunately, the SLC is stable for
a very narrow temperature range. Additional problems, such as the range of time in the
measurement and high-order derivative functions, producing enhanced noise, were
discussed. We came up with a new method which can be applied to photocurrents for
various field ranges and concluded that an SmLC has a Gaussian trap distribution. We
also found a universal curve which retains all the information on trap. The parameters
for describing this curve are given in TABLE 5.1

In Chapter 6, among the present results on the charge carrier transport in the
smectic mesophases of liquid crystal, 2-phenylnaphthalene derivative of 8-PNP-012, it
was shown that a field-independent mobility may be explained by a two-dimensional
disorder model with a Gaussian density of states (DOS). The width of the Gaussian was
found to be 60meV for the SmB phase through simulation and by experimental
observation. This smal] value is about half the typical value of 100~120meV observed
in disorder organic materials, i characteristic of the SmLC.phases. The disorder model
predicted the existence of a new field-dependent region at very high fields which had
not been reported. So, we attempted to carry out the time-of-flight measurement of
8-PNP-O12 in an extended field region and found experimentally a mobility which
depends on the electric field. We think that the validity of the present model has thus
been confirmed experimentally. For SmB, SmE and SmA phases, we derived a disorder
formalism to describe transport in a field-dependent region showing Poole-Frenkel-like
mobility and, for the field-independent mobility region, we derived another formula
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described by Eq. (6.13), which explains why we could not find temperature-dependent
region in SLC. Some of these parameters reflect dimension and site configuration.

It was shown in Chapter 7 that the charge-carrier transport behavior, field- and
temperature-dependence as demonstrated by TOF experiments, in smectic mesophases
of bipheny! derivatives, may be well be described by a two-dimensional hopping
transport model with a Gaussian-distributed density of states. By contrast, the charge
carrier transport in the organic disordered materials is described by a three-dimensional
disorder model.

The last Chapter was intended for a discussion of the consistency of energetic
disorder as represented by the MTM and the GDM. Only a brief description was
presented, however. We expect the present study will be extended to give a
comprehensive understanding of charge transport properties of condensed organic
materials covering a broad class of substances, from single crystals and liquid crystals,
to amorphous materials including polymers and molecularly-doped polymers, thus
contributing of our understanding of the relationship between molecular organization
and photoelectric properties such as charge carrier transport under applied electric
fields.

Understanding the microscopic behavior of carrier transport in smectic liquid
crystals can provide a reliable guiding principle for designing molecules with improved
transport properties.
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