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Chapter 1

Introduction

1.1 Backgrounds

The graph embedding problem is to embed a guest graph into a host graph with certain

constraints and/or optimization criteria, such as dilation, congestion (edge-congestion),

load, and expansion. A wide variety of problems in the field of parallel computation and

VLSI layout have been studied as the graph embedding problem.

In an actual parallel machine with a large number of processing elements, each pro-

cessing element is connected with the limited number of processing elements by connec-

tion links. In fact, the computational performance of a parallel machine depends on the

“structure” of interconnections of processing elements, and there are various structures

for parallel machines such as grids, hypercubes, and so on [17]. Therefore, it is very im-

portant for effective utilization of parallel machines to implement parallel algorithms on

the parallel machines efficiently.

The structure of a parallel machine can be represented by the graph called the pro-

cessor interconnection graph, whose vertices and edges represent processing elements and

connection links, respectively. The structure of a parallel algorithm also can be repre-

sented by the graph called the communication graph, whose vertices and edges represent

processes and communications between processes, respectively. Therefore, the problem

of efficiently implementing parallel algorithms on parallel machines can be modeled as

the graph embedding problem, in which guest graphs and host graphs represent com-

munication graphs and processor interconnection graphs, respectively. Moreover, we can

also consider the graph embedding problem in which guest graphs represent one class of

1



CHAPTER 1. INTRODUCTION 2

processor interconnection graphs and host graphs represent the other class of processor

interconnection graphs. This is a model of the problem of efficiently implementing parallel

algorithms designed for one parallel machine into another parallel machine.

It is well-known that the dilation and/or congestion of the embedding are lower bounds

on the communication overhead. The load of the embedding is a lower bound on the com-

putation delay of processing elements, and it is significant when the number of processes

is more than that of processing elements, i.e. the expansion is less than one. Therefore,

the purpose of implementing parallel algorithms on parallel machines is to minimize the

dilation, congestion, load, and expansion. The results on graph embedding problems

associated with parallel computing have been studied in a great deal of literature e.g.

[4][1][2][18][5].

The problem of efficiently laying out VLSI systems onto VLSI chips have also been

extensively studied as the graph embedding problem [21][29][3][8][9][6]. In the graph

embedding problem associated with VLSI layout, a guest graph represents a planar (hy-

per)graph modeling connection requirements of a system, and a host graph usually repre-

sents a rectangular grid [29][8][9][6], a hexagonal array [9], or a path [11][31][14][15], which

model slots for modules and routing areas for wires on wafer. The dilation, congestion,

and expansion of the layout corresponds to wire length, wire congestion, and the layout

area, respectively. The layout into paths are often called the linear layout. In linear

layout, the dilation and the congestion are called bandwidth and cutwidth, respectively.

Frequently, the load and congestion are fixed at one as constraints of the layout since, in

certain design rules, at most one module and at most one wire can be placed on a slot

and a routing area, respectively. In addition, crossing number is often considered as one

of the optimization criteria or constraints of the layout [29][7].

In this thesis, we consider the minimal congestion embeddings of graphs with unit

load. It is suggested in [12] and [16] that the communication overhead is essentially

independent of dilation in architectures that utilizes circuit switching and “worm-hole”

routing, such as Intel iPSC/2, iPSC/860, Paragon, iWarp, and the CM-2, CM-5. In

particular, parallel algorithms implemented on such machines with congestion one can

achieve same performance as implemented with unit dilation. In VLSI layout, the minimal

congestion embeddings are crucial in the sense that the congestion is a lower bound for
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the number of layers. In addition, the minimal cutwidth linear layout is extensively

investigated [15][14][31].

1.2 Graph Embedding

Let G be a graph and let V (G) and E(G) denote the vertex set and edge set of G,

respectively. We denote by ∆(G) the maximum degree of a vertex in G. A tree T is said

to be binary if ∆(T ) ≤ 3. An embedding 〈φ, ρ〉 of a graph G into a graph H is defined by

a one-to-one mapping φ : V (G) → V (H), together with a mapping ρ that maps each edge

(u, v) ∈ E(G) onto a path ρ(u, v) in H that connects φ(u) and φ(v). The congestion of

an edge e′ ∈ E(H) under 〈φ, ρ〉 is the number of edges e in G such that ρ(e) contains e′.

The congestion of an embedding 〈φ, ρ〉 is the maximum congestion of an edge in H. The

one dimensional n-grid denoted by M(n) is the graph with vertex set {0, 1, . . . , n − 1}

and edge set {(i, i + 1) | 0 ≤ i ≤ n − 2}. A Cartesian product M(n1) × M(n2) is called

a two dimensional n1 × n2-grid and denoted by M(n1, n2). We define that n1n2 is the

area of M(n1, n2). M(2, n) is called an n-ladder and denoted by L(n). The embedding

of a graph G into a two dimensional grid H is called a layout of G into H if it has unit

congestion. A layout 〈φ, ρ〉 of G into H is said to be planar if ρ(e1) and ρ(e2) are internally

vertex-disjoint for any distinct e1, e2 ∈ E(G). The n-cube (n-dimensional cube) Q(n) is

the graph with 2n vertices labeled 0 through 2n − 1 such that two vertices are joined by

an edge if and only if their labels in the binary representation differ by exactly one bit.

We can show by combining the results of Formann and Wagner [8] and Kramer and

Leeuwen [13] that the problem of determining, for a planar graph G with maximum vertex

degree at most 4 and integers m and n, whether G is embeddable in an m × n grid with

unit congestion is NP-hard. We consider the following problem, which is a variant of the

problem above.

Graph k-Layout

Instance A planar graph G with ∆(G) ≤ 4 and an integer n.

Question Does there exist a layout of G into M(k, n)?
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We prove that the Graph k-Layout is NP-complete for any fixed k ≥ 3. Graph

1-Layout can be trivially solved in polynomial time. Although we do not know the

complexity of Graph 2-Layout, we consider a closely related problem of laying out a

graph into a ladder. We show a necessary and sufficient condition for a graph to be laid

out into L(∞) as follows:

A graph G can be laid out into L(∞) if and only if ∆(G) ≤ 3 and G[S] has

proper-path-width at most 2, where S = {v ∈ V (G) | degG(v) ≥ 2}.

In connection with the characterization, we describe a linear time algorithm for computing

the proper-path-decomposition of width at most 2. Based on the characterization and

the algorithm, we can obtain a linear time algorithm for deciding if a given graph can be

laid out into L(∞). In fact, we show a linear time algorithm for laying out a graph G

satisfying the condition into L(|V (G)|). We review the proper-path-width and summarize

our results on the proper-path-width in Subsection 1.3.

Kim and Lai [12] showed that for a given N -vertex graph G and a hypercube it is NP-

complete to determine whether G is embeddable in the hypercube with unit congestion,

but G can be embedded with unit congestion in Q(6dlog Ne) if ∆(G) ≤ 6dlog Ne. They

posed the question of whether G can be embedded with unit congestion in a hypercube

of dimension less than 6dlog Ne. We answer the question by proving the following:

Every N -vertex graph G can be embedded with unit congestion in Q(2dlog Ne)

if ∆(G) ≤ 2dlog Ne.

The basic idea of the embedding is quite simple. We adopt a plain labeling of vertices

and a simple routing for edges, and the embedding can be constructed in polynomial time.

Bhatt, Chung, Leighton, and Rosenberg [2] showed that every N -vertex binary tree

can be embedded in Q(dlog Ne) with dilation and congestion both O(1). Although their

embedding is optimal to within a constant factor, there is much room for reducing the

dilation and/or congestion. They posed the question of finding a simple embedding of

binary trees into hypercubes with smaller dilation and/or congestion. Monien and Sud-

borough [18] partially answer the question by proving that every N -vertex binary tree

can be embedded in Q(dlog Ne) with dilation at most 5. We also partially answer the

question by proving the following:
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Every N -vertex binary tree can be embedded in Q(dlog Ne) with congestion

at most 5.

This is the first result that shows a simple embedding of a binary tree into an optimal

sized hypercube with explicit small congestion of 5. The embedding is quite simple. We

use the postorder labeling of vertices and a greedy (shortest path) routing for edges, and

the embedding can be constructed in polynomial time. It is interesting that such a simple

embedding guarantees a small congestion of 5.

1.3 Proper-Path-Decomposition

For a graph G, a sequence X = (X1, . . . , Xr) of subsets of V (G) is called a proper-path-

decomposition of G if X satisfies the following conditions.

(a) Xi 6⊆ Xj (i 6= j);

(b)
⋃

1≤i≤r Xi = V (G);

(c) ∀(u, v) ∈ E(G) ∃i s.t. u, v ∈ Xi;

(d) Xa ∩ Xc ⊆ Xb (1 ≤ a ≤ b ≤ c ≤ r);

(e) |Xa ∩ Xc| ≤ |Xb| − 2 if |Xb| ≥ 2 (1 ≤ a < b < c ≤ r).

The width of X is max1≤i≤r |Xi| − 1. The proper-path-width of G is the minimum width

over all proper-path-decompositions of G, and denoted by ppw(G). A proper-path-

decomposition of G is said to be optimal if it has width of ppw(G). A proper-path-

decomposition of width k is called a k-proper-path-decomposition. Proper-path-width

was introduced by Takahashi, Ueno, and Kajitani [23] as a variant of path-width intro-

duced by Robertson and Seymour. The proper-path-width not only plays an important

role for the graph layout into ladders as mentioned in Subsection 1.2, but also has various

applications such as VLSI layout, search games [25], and other graph embedding problems

[27][28].

It is shown in [25] that the problem of determining, given a graph G and an integer

k, whether ppw(G) ≤ k is NP-complete, while the problem can be solved in polynomial

time for trees. In fact, the optimal proper-path-decomposition of an N -vertex tree can
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be computed in O(N log N) time. Although it is known that the problem is in P if k is

a fixed integer [24], we do not have an explicit polynomial time algorithm to solve the

problem for a fixed integer k ≥ 3. If k = 1 then the problem can be solved trivially in

polynomial time. This is because G has proper-path-width 1 if and only if G is a collection

of paths. We have an O(N log2 N) time algorithm to solve the problem for k = 2 based on

the minor theory, which is mentioned in [24]. However, the algorithm is neither practical

nor constructive since the time complexity involves an enormous constant factor and the

algorithm provides no proper-path-decomposition. As mentioned in Subsection 1.2, it is a

key procedure in the application to the graph layout into ladders to compute the proper-

path-decomposition of width at most 2 of a given graph with maximum vertex degree at

most 3.

We show a necessary and sufficient condition for a graph with maximum vertex degree

at most 3 to have proper-path-width at most 2, and based on the condition, we give a

practical linear time algorithm for computing a proper-path-decomposition of width at

most 2.

1.4 Thesis Outline

This thesis is organized as follows.

In Chapter 2, we discuss the results on the proper-path-width which will be used in

Chapter 3. We characterize graphs with maximum vertex degree at most 3 and proper-

path-width at most 2. Based on the characterization, we construct a practical linear time

algorithm for computing a proper-path-decomposition with width at most 2 of a graph

with maximum vertex degree at most 3.

In Chapter 3, we show the complexity results on graph embeddings into grids. We

first state Graph k-Layout problem. To prove that Graph k-Layout (k ≥ 3) is

NP-complete, we construct a pseudo-polynomial reduction from 3-Partition which is well

known to be NP-complete in the strong sense to Graph k-Layout for k ≥ 3. Moreover,

based on the results on channel routing problem, we show that Graph k-Layout is in

NP.

We next consider the problem of laying out a graph into a ladder, which is closely
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related with Graph 2-Layout, and show a necessary and sufficient condition for a graph

to be laid out into L(∞). Based on the characterization and the algorithm described in

Chapter 2, we construct a linear time algorithm which decides if a given graph G can be

laid out into L(∞) and lays out G into L(|V (G)|) whenever G satisfies the condition. In

addition, we estimate the tight upper and lower bounds for the minimum area of a ladder

into which an N -vertex graph G can be laid out.

In Chapter 4, we show some results on graph embeddings into hypercubes. First, we

prove that every N -vertex graph G can be embedded with unit congestion in Q(2dlog Ne)

if ∆(G) ≤ 2dlog Ne. This is done by constructing an embedding 〈φ1, ρ1〉 of G into

Q(2dlog Ne) with unit congestion. Next, we prove that every N -vertex binary tree can

be embedded in Q(dlog Ne) with congestion at most 5. This is done by constructing

an embedding 〈φ2, ρ2〉 of a binary tree into Q(dlog Ne) and analyzing the congestion of

〈φ2, ρ2〉. In addition, this analysis is shown to be tight possible by constructing an example

of binary trees for which the congestion of 〈φ2, ρ2〉 is 5.

A summary of the results is given in Chapter 5.



Chapter 2

Proper-Path-Decomposition of
Width 2

2.1 Introduction

Let G be a graph and let V (G) and E(G) denote the vertex set and edge set of G,

respectively. For a graph G, a sequence X = (X1, . . . , Xr) of subsets of V (G) is called a

proper-path-decomposition of G if X satisfies the following conditions.

Condition 2.1

(a) Xi 6⊆ Xj (i 6= j);

(b)
⋃

1≤i≤r Xi = V (G);

(c) for any (u, v) ∈ E(G), there exists an i such that u, v ∈ Xi;

(d) for all a, b, and c with 1 ≤ a ≤ b ≤ c ≤ r, Xa ∩ Xc ⊆ Xb;

(e) for all a, b, and c with 1 ≤ a < b < c ≤ r, |Xa ∩ Xc| ≤ |Xb| − 2 if |Xb| ≥ 2.

The width of X is max1≤i≤r |Xi| − 1. The proper-path-width of G is the minimum

width over all proper-path-decompositions of G, and denoted by ppw(G). A proper-

path-decomposition is said to be optimal if it has width of ppw(G). A proper-path-

decomposition of width k is called a k-proper-path-decomposition. Proper-path-width

was introduced by Takahashi, Ueno, and Kajitani [23] as a variant of path-width in-

troduced by Robertson and Seymour [20]. The proper-path-width not only plays an

8



CHAPTER 2. PROPER-PATH-DECOMPOSITION OF WIDTH 2 9

important role for the graph layout into ladders as mentioned in Subsection 1.2, but also

has various applications such as VLSI layout, search games [25], and graph embeddings

[27][28].

It is shown in [25] that the problem of determining, given a graph G and an integer

k, whether ppw(G) ≤ k is NP-complete, while the problem can be solved in polynomial

time for trees. In fact, the optimal proper-path-decomposition of an N -vertex tree can

be computed in O(N log N) time [26]. Although it is known that the problem is in P if k

is a fixed integer [24], we do not have an explicit polynomial time algorithm to solve the

problem for a fixed integer k ≥ 3. If k = 1 then the problem can be solved trivially in

polynomial time. This is because G has proper-path-width 1 if and only if G is a collection

of paths. We have an O(N log2 N) time algorithm to solve the problem for k = 2 based on

the minor theory, which is mentioned in [24]. However, the algorithm is neither practical

nor constructive since the time complexity involves an enormous constant factor and the

algorithm provides no optimal proper-path-decomposition. As mentioned in Subsection

1.2, it is a key procedure for constructing the efficient graph layout into ladders to compute

the proper-path-decomposition of width at most 2 of a given graph with maximum vertex

degree at most 3.

We show a necessary and sufficient condition for a graph with proper-path-width at

most 2, and based on the condition, we give a practical linear time algorithm for computing

a proper-path-decomposition of width at most 2.

2.2 Preliminaries

For a sequence X = (X1, X2, . . . , Xr) of elements, X1 and Xr are called the head of

X and its tail, respectively. We denote the sequence without elements by nul . For

sequences X = (X1, X2, . . . , Xr) and Y = (Y1, Y2, . . . , Yq), we define that X + Y =

(X1, X2, . . . , Xr, Y1, Y2, . . . , Yq). For a sequence X = (X1, X2, . . . , Xr) of subsets of a

set Ω and W ⊆ Ω, we define that X ∪ W = (X1 ∪ W, X2 ∪ W, . . . , Xr ∪ W ) and

X ∩ W = (X1 ∩ W, X2 ∩ W, . . . , Xr ∩ W ).

NG(v) is the set of vertices adjacent to a vertex v in a graph G. ΓG(v) is the set of

edges incident to a vertex v in G. |ΓG(v)| is called the degree of v and denoted by degG(v).
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Let ∆(G) = max{degG(v) | v ∈ V (G)}. For U ⊆ V (G), let G[U ] be the subgraph of G

induced by U , and let G − U denote G[V (G) − U ]. Similarly, for S ⊆ E(G), let G[S] be

the subgraph of G induced by S, and let G − S denote the graph obtained from G by

deleting S. For graphs G and H, G ∪ H is the graph with vertex set V (G) ∪ V (H) and

edge set E(G) ∪ E(H), and G ∩ H is G[V (G) ∩ V (H)], or H[V (G) ∩ V (H)]. Although

a path is a graph, we often denote a path by a sequence of vertices in which consecutive

two vertices are adjacent in the path.

A vertex v of G is a cut vertex if E(G) can be partitioned into two nonempty subsets

E1 and E2 such that G[E1] and G[E2] have just the vertex v in common. A connected

graph that has no cut vertices is called a block. Every block with at least three vertices is

2-connected. A block of a graph is a subgraph that is a block and is maximal with respect

to this property.

A planar graph is outer planar if it has a planar drawing in which the outer region

includes all of its vertices. An edge is outer if it is included in the outer region, and is

inner otherwise. For a subset U = {u1, . . . , ul} of vertices of an outer planar graph G,

G[U ] is an end-region of G if (ui, ui+1) (1 ≤ i ≤ l − 1) is an outer edge, u1 and ul are

adjacent, and ui (1 < i < l) is incident to no inner edge. Any 2-connected outer planar

graph has at least one end-region, and it has at least two end-regions if it has an inner

edge.

A graph H is a minor of a graph G if H is isomorphic to a graph obtained from a

subgraph of G by contracting edges. A family F of graphs is said to be minor-closed if

the following condition holds: If G ∈ F and H is a minor of G then H ∈ F . A graph

G is a minimal forbidden minor for a minor-closed family F of graphs if G 6∈ F and any

proper minor of G is in F . F is characterized by the minimal forbidden minors for F .

That is, a graph G is in F if and only if no minimal forbidden minor for F is a minor of

G. For a positive integer k, the family Pk of graphs with proper-path-width at most k is

minor-closed. All the minimal forbidden minors for P1 are K3 and K1,3 [23], and all for

P2 are 36 graphs shown in Figure 2.1 [24].
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T(333) T(33b) T(3bb) T(bbb) T(33c)

T(3bc) T(3cc)T(bbc) T(bcc) T(ccc)

P(333) P(33b) P(3bb) P(bbb) P(33c)

P(3bc) P(bbc) P(3cc) P(bcc) P(ccc)

P(3202) P(b202) P(c202) P(2221) P(222x)

P(22010) P(220x0) P(11111) P(x1111) P(x1x11)

P(101010) P(x01010) P(x0x010) P(x0x0x0) K K4 2,3

Figure 2.1: Minimal forbidden minors for P2.



CHAPTER 2. PROPER-PATH-DECOMPOSITION OF WIDTH 2 12

2.3 Algorithm for Proper-Path-Decomposition of

Width 2

In this section, we show a necessary and sufficient condition for a graph with maximum

vertex degree 3 to have proper-path-width 2, and based on the condition, we give a

practical linear time algorithm for computing a proper-path-decomposition of width at

most 2.

Suppose that G′ is a graph obtained from a graph G by deleting self-loops and replacing

multiple edges with a single edge. A proper-path-decomposition of G′ is also that of G,

and vice versa, by definition. Therefore, an optimal proper-path-decomposition of G′ is

also that of G. The optimal proper-path-decomposition of a graph can be obtained by

concatenating optimal proper-path-decompositions of connected components. From these

facts, we assume that the graphs considered in this section are simple and connected.

2.3.1 Binary Tree

An algorithm for computing the optimal proper-path-decomposition of an N -vertex tree

T is shown in [25]. Since this algorithm computes ppw(T ) in O(N) time and provides

the optimal proper-path-decomposition of T in O(Nppw(T )) time, we can compute the

2-proper-path-decomposition of T with ppw(T ) = 2 in linear time.

In this subsection, we show algorithms for computing the proper-path-decomposition

of a binary tree with width at most 2 satisfying some conditions. These algorithms will

be used to construct the algorithm for general graphs.

Lemma 2.1 For a path P = (p0, . . . , pl), there exists a 1-proper-path-decomposition X =

(X1, . . . , Xr) of P such that p0 ∈ X1 and pl ∈ Xr.

Proof Let X = (X1, . . . , Xl) with Xi = {pi−1, pi} (1 ≤ i ≤ l) if l ≥ 1, X = ({p0})

otherwise. X is clearly a desired proper-path-decomposition. 2

Algorithm PPD PATH shown in Figure 2.2 is the formal description of the procedure written

in the proof of Lemma 2.1. Trivially, PPD PATH can be executed in linear time.

The following lemma is a characterization of a tree with proper-path-width at most

k, and is a basis for our algorithm for binary trees.
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Procedure PPD PATH ( P )






Input: a path P = (p0, p1, . . . , pl);
Output: the 1-proper-path-decomposition (X1, X2, . . . , Xr) of P such that

p0 ∈ X1 and pl ∈ Xr;







1. if l = 0 then return ( ({p0}) );

2. for each 1 ≤ i ≤ l do

Xi := {pi−1, pi};

endfor ;

3. return ( (X1, X2, . . . , Xl) );

End

Figure 2.2: Algorithm for computing the 1-proper-path-decomposition of a path

Lemma A (Tayu and Ueno [28]) For a tree T and an integer k ≥ 2, ppw(T ) ≤ k if

and only if there exists a path P in T such that ppw(T − V (P )) ≤ k − 1. 2

k-spine of T is a path satisfying the condition of Lemma A.

Lemma 2.2 For a binary tree T with ppw(T ) = 2 and its 2-spine P = (p0, . . . , pl)

such that degT (p0) = degT (pl) = 1, there exists a 2-proper-path-decomposition X =

(X1, . . . , Xr) of T such that p0 ∈ X1 −
⋃

1<i≤r Xi and pl ∈ Xr −
⋃

1≤i<r Xi.

Proof Since P is a 2-spine of T , it follows from Lemma A that ppw(T − V (P )) ≤ 1.

Thus, each connected component of T − V (P ) is a path. For 0 < i < l, at most one

connected component Hi of T − V (P ) has a vertex adjacent to pi since ∆(T ) ≤ 3. Let

I = {i | 0 < i < l, degT (pi) = 3}. We define the sequence X of subsets of V (T ) as follows:

X = (S1) + Y1 + (S2) + · · · + (Sl−1) + Yl−1 + (Sl), where

for 1 ≤ i ≤ l, Si =

{

{pi−1, pi} ∪ V (Hi) if i ∈ I and |V (Hi)| = 1
{pi−1, pi} otherwise

for 1 ≤ i < l, Yi =

{

PPD PATH(Hi) ∪ {pi} if i ∈ I and |V (Hi)| ≥ 2
nul otherwise

We show that X is a desired 2-proper-path-decomposition. The following claim can be

easily observed from the definition of X .

Claim 2.3
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1. p0 appears in S1.

2. For 0 < i < l, pi appears in Si−1 ∩ Si and every element of Yi.

3. pl appears in Sl.

4. For i ∈ I and |V (Hi)| ≥ 2, v ∈ V (Hi) appears in at most two consecutive elements

of Yi.

5. For i ∈ I and |V (Hi)| = 1, v ∈ V (Hi) appears in Si.

It is clear by Claim 2.3 that X satisfies (a), (b), and (c) in Condition 2.1. Moreover,

X satisfies (d) in Condition 2.1 since we can observe that any vertex in T appears in

consecutive elements of X . In what follows, we show that X satisfies (e) in Condition 2.1.

If Xa ∩ Xc = ∅ for all a, b, and c with 1 ≤ a < b < c ≤ r then the condition is clearly

satisfied. Thus, we assume that there exist a and c with 1 < a + 1 ≤ c − 1 < r such that

Xa ∩ Xc 6= ∅. Since any vertex in V (T ) − {pi | i ∈ I, |V (Hi)| ≥ 2} appears in at most

two consecutive elements of X , there exists pi such that i ∈ I and pi ∈ Xa ∩ Xc. Since

(Xa, . . . , Xc) is a subsequence of (Si−1)+Yi+(Si), no vertices in V (P )−{pi} are contained

in Xa ∩ Xc. Moreover, each element of Yi has just three elements since |V (Hi)| ≥ 2. For

any b with a < b < c, we have that |Xb| = 3 since Xb is an element of Yi. Thus, we have

that |Xa ∩ Xc| = |{pi}| = 1 ≤ |Xb| − 2 for any b with a < b < c. Therefore, X satisfies

(e) in Condition 2.1. It is clear that X has width at most 2 and that p0 ∈ X1 −
⋃

1<i≤r Xi

and pl ∈ Xr −
⋃

1≤i<r Xi. Therefore, X is a desired proper-path-decomposition. 2

We describe Algorithm PPD SPINE based on Lemma 2.2 in Figure 2.3. The following

corollary is immediate.

Corollary 2.4 Given a binary tree T and a 2-spine P = (p0, . . . , pl) of T , PPD SPINE

outputs in linear time the proper-path-decomposition (X1, . . . , Xr) of T with width at most

2 such that p0 ∈ X1 −
⋃

1<i≤r Xi and pl ∈ Xr −
⋃

1≤i<r Xi. 2

2.3.2 2-Connected Graph

In this subsection, we show a necessary and sufficient condition for a 2-connected graph

G with ∆(G) ≤ 3 to have ppw(G) = 2, and based on this condition, we give an algorithm

for computing a 2-proper-path-decomposition of G.
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Procedure PPD SPINE ( T, P )










Input: a binary tree T ;
a 2-spine P = (p0, . . . , pl) of T ;

Output: the proper-path-decomposition (X1, . . . , Xr) of T with width at most 2
such that p0 ∈ X1 −

⋃

1<i≤r Xi and pl ∈ Xr −
⋃

1≤i<r Xi;











1. for i := 1 to l do

Si := {pi−1, pi};

endfor ;

2. for i := 1 to l − 1 do

if degT (pi) = 3 then

(a) let Hi be the connected component in T − V (P ) which has a vertex
adjacent to pi in T ;

(b) if |V (Hi)| = 1 then

• Si := {pi−1, pi} ∪ V (Hi);

• Yi := nul ;

else

• Yi := PPD PATH(Hi) ∪ {pi};

else

(a) Yi := nul ;

endfor ;

3. X := (S1) + Y1 + (S2) + · · · + (Sl−1) + Yl−1 + (Sl);

4. return ( X );

End

Figure 2.3: Algorithm for computing the 2-proper-path-decomposition of a binary tree
with its 2-spine.
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Lemma 2.5 For a 2-connected graph G with ∆(G) ≤ 3, ppw(G) = 2 if and only if G is

outer planar and has at most two end-regions.

Proof First, we assume that ppw(G) = 2. Then none of P (x0x0x0), K4, and K2,3 is a

minor of G. It is well-known that the family of outer planar graphs is minor-closed and

that K4 and K2,3 are the minimal forbidden minors for the family of outer planar graphs.

Thus, G is outer planar. Moreover, G has at most two end-regions since P (x0x0x0) is

not a minor of G.

Next, we assume that G is outer planar and has at most two end-regions. Let es and

et be any edges in G satisfying the following condition:

Condition 2.2

(a) es and et are outer edges contained in distinct end-regions if G has two end-regions.

(b) es and et are a matching of G if |V (G)| ≥ 4.

It suffices to show the following claim.

Claim 2.6 There exists a 2-proper-path-decomposition X = (X1, . . . , Xr) of G such that

es ∈ E(G[X1]) − E(G[
⋃

1<i≤r

Xi]) and (2.1)

et ∈ E(G[Xr]) − E(G[
⋃

1≤i<r

Xi]). (2.2)

We prove this claim by induction on |V (G)|.

If |V (G)| = 3 then X = (V (G)) is clearly a desired proper-path-decomposition.

Assume that |V (G)| = 4. Since G is outer planar, at least one vertex s incident to

es has degree 2. Let t be the vertex not adjacent to s. Since G is simple, it follows that

degG(t) = 2. Moreover, t is incident to et. Then X = (V (G)− {t}, V (G)−{s}) is clearly

a desired proper-path-decomposition.

We assume that the claim holds for any G′ with |V (G)|−1 ≥ 4 vertices and for any pair

of edges in G′ satisfying Condition 2.2. Since |V (G)| ≥ 5, there exists e ∈ {es, et} which is

incident to a vertex s such that degG(s) = 2 and that s is not adjacent to an end-vertex of

e′ ∈ {es, et} − {e}. Suppose that e = (s, y) and NG(s) − {y} = {x}. Let G′ be the graph
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obtained from G by contracting the edge (s, x). We denote by x the resulting vertex. G′

is clearly an outer planar graph with at most two end-regions. By the definitions of e and

e′, (x, y) and e′ are distinct edges in G′ satisfying Condition 2.2. Therefore, by induction

hypothesis, there exists a 2-proper-path-decomposition Y = (Y1, . . . , Yl) of G′ such that

(x, y) ∈ E(G′[Y1]) − E(G′[
⋃

1<i≤l

Yi]) and (2.3)

e′ ∈ E(G′[Yl]) − E(G′[
⋃

1≤i<l

Yi]). (2.4)

We show that X = ({s, x, y}) + Y is a desired 2-proper-path-decomposition of G.

We first show that X satisfies (2.1) and (2.2). Since

s 6∈ Yi (1 ≤ i ≤ l), (2.5)

we have that

e ∈ E(G[{s, x, y}]) − E(G[
⋃

1≤i≤l

Yi]). (2.6)

It follows from (2.4) and (2.6) that X satisfies (2.1) and (2.2).

We next show that X is a 2-proper-path-decomposition of G. X clearly satisfies (a),

(b), and (c) in Condition 2.1. Since Y is a proper-path-decomposition of G′, it follows

that

Ya ∩ Yc ⊆ Yb (1 ≤ a ≤ b ≤ c ≤ l), (2.7)

|Ya ∩ Yc| ≤ |Yb| − 2 (1 ≤ a < b < c ≤ l).

Thus, to show that X satisfies (d) and (e) in Condition 2.1, it suffices to prove that

{s, x, y} ∩ Yc ⊆ Yb and |{s, x, y} ∩ Yc| ≤ |Yb| − 2 for 1 ≤ b < c ≤ l. It follows from (2.3)

that

{x, y} ⊆ Y1, (2.8)

{x, y} 6⊆
⋃

1<i≤l

Yi. (2.9)

It follows from (2.5), (2.7), and (2.8) that {s, x, y} ∩ Yc = {x, y} ∩ Yc ⊆ Y1 ∩ Yc ⊆ Yb for

1 ≤ b < c ≤ l. It follows from (2.5) and (2.9) that |{s, x, y} ∩ Yc| ≤ 1 for 1 < c ≤ l.
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Moreover, we have that |Yi| = 3 for 1 ≤ i ≤ l by the definition of Y. Thus, we have

|{s, x, y} ∩ Yc| ≤ |Yb| − 2 for 1 ≤ b < c ≤ l

Therefore, X is a desired 2-proper-path-decomposition of G, and we conclude that the

lemma holds. 2

We describe in Figure 2.4 Algorithm PPD 2CG based on Lemma 2.5.

Corollary 2.7 Given an outer planar graph G with at most two end-regions and any

edges es and et in G satisfying Condition 2.2, PPD OPG outputs in linear time the 2-

proper-path-decomposition (X1, . . . , Xr) of G satisfying (2.1) and (2.2).

Proof The correctness of PPD OPG is immediate from the proof of Lemma 2.5. PPD OPG

involves |V (G)| recursive calls each of which consists of constant time operations. There-

fore, PPD OPG can be executed in linear time.

2

It is well-known that we can determine if a given graph is outer planar in linear time.

Therefore, PPD 2CG can be executed in linear time by Corollary 2.7.

2.3.3 General Graph

In this subsection, we show a necessary and sufficient condition for a general graph G

with ∆(G) ≤ 3 to have ppw(G) ≤ 2 based on the results described in Subsection 2.3.1

and 2.3.2, and we give an algorithm for computing a 2-proper-path-decomposition of G.

The following lemma will be used extensively throughout this subsection.

Lemma 2.8 Let X = (X1, . . . , Xr) be a 2-proper-path-decomposition of a graph G with

ppw(G) = 2. For a path P connecting s ∈ X1 and t ∈ Xr, every connected component of

G − V (P ) is a path.

Proof Suppose that Y = (Y1, . . . , Yr) is X ∩ (V (G) − V (P )). It suffices to show that

the sequence Y ′ obtained from Y by deleting redundant elements is a 1-proper-path-

decomposition of G − V (P ). Y clearly satisfies (b), (c), and (d) in Condition 2.1 for

G − V (P ). Thus, Y ′ satisfies (a), (b), (c), and (d) in Condition 2.1 for G − V (P ). To

show that Y ′ satisfies (e) in Condition 2.1, it suffices to prove that both of the following

statements holds: (i) |Yi| ≤ 2 for any 1 ≤ i ≤ r; (ii) Ya = Yc or |Ya ∩ Yc| = 0 for all a
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Procedure PPD 2CG ( G )
[

Input: a 2-connected graph G;
Output: the 2-proper-path-decomposition (X1, . . . , Xr) of G;

]

1. if G is not outer planar then reject ;

2. if G has more than two end-regions then reject ;

3. let es and et be any edges satisfying Condition 2.2;

4. return ( PPD OPG(G, es, et) );

End

Procedure PPD OPG ( G, es, et )






Input: an outer planar graph G with at most two end-regions;
edges es and et satisfying Condition 2.2;

Output: the 2-proper-path-decomposition (X1, . . . , Xr) of G satisfying (2.1) and (2.2);







1. if |V (G)| = 3 then return ( (V (G)) );

2. if |V (G)| = 4 then

• let s be a vertex incident to es such that degG(s) = 2;

• let t be the vertex not adjacent to s;

• X := (V (G) − {t}, V (G) − {s});

• return ( X );

3. let e ∈ {es, et} which is incident to a vertex that s such that degG(s) = 2 and s is not
adjacent to an end-vertex of e′ ∈ {es, et} − {e};

4. let y be the vertex joined to s by e and x ∈ NG(s) − {y};

5. let G′ be the graph obtained from G by contracting (s, x);

6. return ( ({s, x, y}) + PPD OPG(G′, (x, y), et) );

End

Figure 2.4: Algorithm for computing the 2-proper-path-decomposition of a 2-connected
graph.
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and c with 1 < a + 1 ≤ c − 1 < r. Every Xi (1 ≤ i ≤ r) contains a vertex of P since

end-vertices s and t of P are contained in X1 and Xt, respectively, and X satisfies (c) and

(d) in Condition 2.1. Since X has width 2, we have that |Yi| ≤ 2, i.e. (i) holds.

Since X satisfies (e) in Condition 2.1, we have that

|Xa ∩ Xc| ≤ |Xb| − 2 ≤ 3 − 2 = 1 (2.10)

for any a, b, and c with 1 ≤ a < b < c ≤ r. For a, b, and c with 1 ≤ a < b < c ≤ r, let

pa ∈ Xa ∩ V (P ), pb ∈ Xb ∩ V (P ), and pc ∈ Xc ∩ V (P ).

Case 1 pa = pc. It follows from (2.10) that |Xa ∩ Xc| = 1. Thus, we have |Ya ∩ Yc| = 0.

Case 2 pa 6= pc. We assume that |Ya∩Yc| = 1, and show that Ya = Yc. Let v ∈ Ya∩Yc. It

follows from (d) in Condition 2.1 that v ∈ Yb ⊂ Xb. Now we show that Xb− (V (P )∪

{v}) = ∅. We prove this by contradiction. Assume that Xb−(V (P )∪{v}) 6= ∅. Since

|Xb| ≤ 3, it follows from the assumption that Xb ∩ V (P ) = {pb}. Since P connects

s ∈ X1 and t ∈ Xr, it follows from 1 < b < r that pb ∈ Xb−1 ∩ Xb+1. Moreover,

since v ∈ Ya ∩Yc and X satisfies (d) in Condition 2.1, we have that v ∈ Xb−1 ∩Xb+1.

Thus, we have that |Xb−1 ∩Xb+1| ≥ |{pb, v}| = 2, contradicting (2.10). Therefore, it

follows that Xb − (V (P ) ∪ {v}) = ∅. Since this holds for any b with a < b < c, we

have Ya = Ya+1 = · · · = Yc = {v}.

Therefore, (ii) holds. 2

Throughout this subsection, we assume that ∆(G) = 3. Let U be the set of cut

vertices of G. We define that A = U − U ′, where U ′ is the set of cut vertices contained

only in blocks each of which consists of a single edge. A vertex contained in A is called

a connection point of G. Since a connection point of G is a cut vertex of G, E(G) can

be partitioned into disjoint sets E1, . . . , Em such that G[Ei] and G[Ej] share at most one

connection point of G for any distinct i and j with 1 ≤ i ≤ m and 1 ≤ j ≤ m. Let

D = {G[Ei] | 1 ≤ i ≤ m}. We define that H is the set of 2-connected components in

D. A component of D is called a tree component of G if the component is a tree with

maximum vertex degree 3. T denotes the set of tree components of G. A component of

D is called a path component of G if the component is a path. P denotes the set of path

components of G.



CHAPTER 2. PROPER-PATH-DECOMPOSITION OF WIDTH 2 21

Now we show a necessary and sufficient condition for G to have ppw(G) ≤ 2.

Theorem 2.9 For a graph G with ∆(G) ≤ 3, ppw(G) ≤ 2 if and only if G has a sequence

C = (C1, C2, . . . , Cm) of distinct components in D and a sequence A = (a0, a1, . . . , am) of

distinct vertices in V (G) such that the following condition is satisfied. Let D ′ = D−{Ci |

1 ≤ i ≤ m}.

Condition 2.3

(a) V (Ci) ∩ V (Ci+1) = {ai} for 1 ≤ i < m, a0 ∈ V (C1), and am ∈ V (Cm).

(b) degG(a0) ≤ 2 and degG(am) ≤ 2.

(c) For 1 ≤ i ≤ m, if Ci ∈ H, then Ci is an outer planar graph with at most two

end-regions. Moreover, each end-region contains ai−1 or ai.

(d) For 1 ≤ i ≤ m, if Ci ∈ T , then the path in Ci connecting ai−1 and ai is a 2-spine

of Ci.

(e) D′ ⊆ P

(f) There exists a one-to-one mapping f : D′ → {i | 1 ≤ i ≤ m} × {0, 1} satisfying

the following statement.

For P ∈ D′, f(P ) = (i, j) if and only if Ci ∈ H and there exists x such

that x is an end vertex of P and that (x, ai−j) ∈ E(Ci). (∗)

Proof of Necessity for Theorem 2.9

We first show the necessity. Condition 2.3 is trivially satisfied if ppw(G) = 1 or |V (G)| ≤

3. Moreover, if |D| = 1 then there exist a0 and a1 satisfying Condition 2.3 for C = (D)

(D ∈ D) by Lemmas A and 2.5. Therefore, we assume that ppw(G) = 2, |V (G)| ≥ 4, and

|D| ≥ 2. There exists a 2-proper-path-decomposition X = (X1, . . . , Xr) of G. Since X

satisfies (a) in Condition 2.1 and |V (G)| ≥ 4, there exist s ∈ X1 −X2 and t ∈ Xr −Xr−1.

It should be noted that H 6= ∅ from the assumption that |D| ≥ 2.

Claim 2.10 degG(s) ≤ 2 and degG(t) ≤ 2.
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Proof |X1| ≤ 3 and |Xr| ≤ 3 since X has width 2. Thus, we have degG(s) ≤ 2 and

degG(t) ≤ 2 since X satisfies (c) in Condition 2.1. 2

We define that S is a path connecting s and t.

Claim 2.11 For H ∈ H, H ∩ S is a path with at least two vertices.

Proof It suffices to show that |V (H) ∩ V (S)| ≥ 2 and that H ∩ S is connected.

We first show that |V (H) ∩ V (S)| ≥ 2. We prove this by contradiction. If V (H) ∩

V (S) = ∅, then G − V (S) has a cycle since H has a cycle. However, this contradicts

Lemma 2.8. We next assume that V (H) ∩ V (S) = {x}. If x ∈ V (S) − {s, t} then we

have degG(x) = degH(x) + degS(x) ≥ 2 + 2 = 4. However, this is a contradiction since

∆(G) = 3. If x ∈ {s, t} then we have degG(x) = degH(x)+degS(x) ≥ 2+1 = 3. However,

this also contradicts Claim 2.10. Thus, we have that |V (H) ∩ V (S)| ≥ 2.

We next show that H∩S is connected. We again prove this by contradiction. Suppose

that H ∩ S has disjoint connected components P1 and P2. Since P1 and P2 are vertex-

disjoint subgraphs of S and S is connected, there exists a path P3 connecting the end-

vertex of P1 and that of P2 in S − (E(P1) ∪ E(P2)). H ∪ P3 is clearly a 2-connected

component of G. Since P1 and P2 are disjoint connected components of H ∩ S, P3 has

an edge e 6∈ E(H). This means that H is a proper subgraph of H ∪ P3. However, this

contradicts the fact that H is a block of G. Therefore, H ∩ S is connected. 2

Suppose that H = {H1, . . . , Hl} and that si and ti are end-vertices of the path Hi ∩ S

for 1 ≤ i ≤ l. Since ∆(G) = 3, Hi and Hj are vertex-disjoint for any distinct Hi, Hj ∈ H

(1 ≤ i < j ≤ l). Thus, Hi∩S and Hj∩S are also vertex-disjoint. We may assume without

loss of generality that d(s1) < d(t1) < d(s2) < d(t2) < · · · < d(sl) < d(tl), where d(v) is

the number of edges of the subpath of S connecting s and v ∈ V (S). We define that Ri

is the subpath of S connecting ti and si+1 (1 ≤ i < l). Since E(Hi)∩E(Rj) = ∅ for any i

and j with 1 ≤ i ≤ l and 1 ≤ j < l, there exists a component Ki ∈ T ∪ P containing Ri

as a subgraph for 1 ≤ i < l. Similarly, there exists a component K0 ∈ T ∪ P containing

the subpath R0 of S connecting s and s1 if s 6= s1. Moreover, there exists a component

Kl ∈ T ∪ P containing the subpath Rl of S connecting tl and t if tl 6= t.
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We define the sequence C of components in D and the sequence A of vertices of G as

follows:

C =



















C ′ if s1 = s and tl = t
(K0) + C ′ if s1 6= s and tl = t
C ′ + (Kl) if s1 = s and tl 6= t
(K0) + C ′ + (Kl) if s1 6= s and tl 6= t

, where

C ′ = (H1, K1, H2, K2, . . . , Kl−1, Hl).

A =



















A′ if s1 = s and tl = t
(s) + A′ if s1 6= s and tl = t
A′ + (t) if s1 = s and tl 6= t
(s) + A′ + (t) if s1 6= s and tl 6= t

, where

A′ = (s1, t1, s2, t2, . . . , sl, tl).

Suppose that C = (C1, . . . , Cm) and A = (a0, . . . , am). We show that C and A satisfies

Condition 2.3.

C and A clearly satisfies (a) in Condition 2.3 by definition. Moreover, (b) in Condi-

tion 2.3 is satisfied from Claim 2.10. The following claim is used to show that C and A

satisfies (c) in Condition 2.3.

Claim 2.12 For a 2-connected component H ∈ H with two end-regions, each end-region

contains an end-vertex of H ∩ S.

Proof It follows from Claim 2.11 that there exist distinct end-vertices u and v of H ∩ S.

We assume without loss of generality that d(u) < d(v). Let Ps be the subpath of S

connecting s and u, and let Pt be the subpath of S connecting v and t. If H has an end-

region Z which contains neither u nor v, then there exists a path P in H which connects

u and v and contains no vertices in Z. Since Ps, Pt, and P are internally vertex-disjoint,

S ′ = Ps∪P ∪Pt is a path connecting s and t. Since S ′ and Z are vertex-disjoint, G−V (S ′)

contains a cycle as a subgraph. However, this contradicts Lemma 2.8 and the assumption

that ppw(G) = 2. Thus, each end-region contains an end-vertex of H ∩ S. 2

We see in the following claim that C and A satisfies (c) in Condition 2.3.

Claim 2.13 If Ci ∈ H (1 ≤ i ≤ m), then Ci is an outer planar graph with at most two

end-regions. Moreover, each end-region contains ai−1 or ai.
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Proof Suppose that Ci ∈ H (1 ≤ i ≤ m). Since ppw(G) = 2, we have that ppw(Ci) = 2.

Thus, it follows from Lemma 2.5 that Ci is an outer planar graph with at most two end-

regions. Moreover, it follows from Claim 2.12 that each end-region contains ai−1 or ai.

2

We see in the following claim that C and A satisfies (d) in Condition 2.3.

Claim 2.14 If Ci ∈ T (1 ≤ i ≤ m), then the path in Ci connecting ai−1 and ai is a

2-spine of Ci.

Proof Let Si be the path in Ci connecting ai−1 and ai. Every connected component of

G−V (S) is a path by Lemma 2.8. Since Si is a subpath of S, every connected component

of Ci − V (Si) is a path. This means that Si is a 2-spine of Ci. 2

We see in the following claim that C and A satisfies (e) in Condition 2.3.

Claim 2.15 D′ ⊆ P.

Proof Every 2-connected component of G is an element of C by Claim 2.11 and the

definition of C. Thus, it suffices to show that every tree component of G is an element of

C. We prove this by contradiction. Assume that T ∈ T − {Ci | 1 ≤ i ≤ m}. It follows

from the assumption that |D| ≥ 2 that, for c ∈ V (T ) ∩ A, there exists H ∈ H such that

V (H) ∩ V (T ) = {c}. It follows from Claim 2.11 that H ∈ {Ci | 1 ≤ i ≤ m}. Suppose

that H = Ci (1 ≤ i ≤ m). Since T 6∈ {Ci | 1 ≤ i ≤ m}, it follows from Claim 2.10 and

the assumption that ∆(G) = 3 that c is not an element of A. Since Ci is 2-connected,

there exists a path P in Ci which connects ai−1 and ai and does not contain c. Let Ps be

the subpath of S connecting s and ai−1, and let Pt be the subpath of S connecting ai and

t. Since Ps, Pt, and P are internally vertex-disjoint, S ′ = Ps ∪P ∪Pt is a path connecting

s and t. Since S ′ and T are vertex-disjoint and T has a vertex with degree 3, G − V (S ′)

has a vertex with degree 3. However, this contradicts Lemma 2.8. 2

We prove by a sequence of claims that C and A satisfies (f) in Condition 2.3. Let c(P )

be a unique element of V (P ) ∩ A for P ∈ D′.

Claim 2.16 For P ∈ D′, there exists a unique Ci ∈ H (1 ≤ i ≤ m) such that V (Ci) ∩

V (P ) = {c(P )}. Moreover, (c(P ), ai−1) ∈ E(Ci) or (c(P ), ai) ∈ E(Ci).
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Proof It is clear by ∆(G) ≤ 3 and by the definition of path components that, for P ∈ D′,

there exists a unique Ci ∈ H (1 ≤ i ≤ m) such that V (Ci) ∩ V (P ) = {c(P )}. We show

that (c(P ), ai−1) ∈ E(Ci) or (c(P ), ai) ∈ E(Ci). We prove this by contradiction. Assume

that (c(P ), ai−1) 6∈ E(Ci) and (c(P ), ai) 6∈ E(Ci). If ai−1 6= s then degCi∪Ci−1
(ai−1) = 3.

Thus, we have c(P ) 6= ai−1 since ∆(G) = 3. If ai−1 = s then degCi
(ai−1) = 2. Thus,

we have c(P ) 6= ai−1 by Claim 2.10. Therefore, it follows that c(P ) 6= ai−1. We can

show by a similar argument that c(P ) 6= ai. Thus, neither ai−1 nor ai is contained in

NG(c(P )) ∪ {c(P )}. Since Ci is outer planar and ∆(G) ≤ 3, c(P ) incident to just two

outer edges of Ci and to exactly one edge of P . Therefore, there exists a path P in Ci

which connects ai−1 and ai and does not contain a vertex in NG(c(P )) ∪ {c(P )}. Let Ps

be the subpath of S connecting s and ai−1, and let Pt be the subpath of S connecting

ai and t. Since Ps, Pt, and P are internally vertex-disjoint, S ′ = Ps ∪ P ∪ Pt is a path

connecting s and t. Since V (S ′) and NG(c(P ))∪ {c(P )} are disjoint, G− V (S ′) has c(P )

with degree 3. However, this contradicts Lemma 2.8. 2

Claim 2.17 For distinct P1, P2 ∈ D′, c(P1) 6= c(P2).

Proof Each c(Pi) (i = 1, 2) is contained in a 2-connected component of G by Claim

2.16. If c(P1) = c(P2) then degG(c(Pi)) ≥ 4 (i = 1, 2), contradicting the assumption that

∆(G) = 3. 2

Claim 2.18 If C1 is 2-connected, then |{P ∈ D′ | c(P ) ∈ NG(a0)}| ≤ 1.

Proof Since s = a0, it follows from Claim 2.10 that |NG(a0)| = 2. Suppose that NG(a0) =

{u, v}. We prove the claim by contradiction. Assume that there exist distinct P1, P2 ∈ D′

such that {c(P1), c(P2)} ⊆ NG(a0). By Claim 2.17, we may assume without loss of

generality that c(P1) = u, c(P2) = v. It follows from Claim 2.16 that a1 6∈ {u, v}. If (u, v)

is an outer edge of C1, then V (C1) = {a0, u, v} and a1 is either u or v, a contradiction.

If (u, v) is an inner edge of C1, then degC1
(u) ≥ 3 since each vertex in a 2-connected

component is incident to two outer edges. Thus, degG(u) = degC1
(u) + degP1

(u) ≥

3 + 1 = 4, contradicting the assumption that ∆(G) = 3. Therefore, u and v are not

adjacent.
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Since s ∈ X1 − X2 and X satisfies (c) in Condition 2.1, we have that X1 = {s, u, v}.

Suppose that ΓG(u) = {(s, u), e1, e2} and ΓG(v) = {(s, v), e3, e4}. It should be noted that

since u and v are not adjacent, e1, e2, e3, and e4 are distinct edges. Let j(i) = max{j |

Xj contains both end-vertices of ei} for 1 ≤ i ≤ 4. Moreover, let γ be i which maximize

j(i). We assume without loss of generality that γ ∈ {3, 4}. If j(γ) = j(1) = j(2),

then G[Xj(γ)] is isomorphic to K3 since |Xj(γ)| ≤ 3 and G is simple. However, this is

a contradiction because u and v are not adjacent. Thus, it follows that j(γ) > j(1) or

j(γ) > j(2). We assume without loss of generality that j(1) ≤ j(2) ≤ j(γ). Since both

end-vertices of e1 are not contained in X1, we have that j(1) ≥ 2. Since {u, v} ∈ X1,

u ∈ Xj(2), v ∈ Xj(γ), and X satisfies (d) in Condition 2.1, it follows that {u, v} ⊆

X1 ∩ Xj(1) ∩ Xj(2).

Case 1 j(1) < j(2). Since |Xj(1)| ≤ 3, we have |Xj(1)| − |X1 ∩ Xj(2)| ≤ 3 − 2 = 1,

contradicting that X satisfies (e) in Condition 2.1.

Case 2 j(1) = j(2). Suppose that e1 = (u, x1) and e2 = (u, x2). In this case, it follows

that {u, v, x1, x2} ⊆ Xj(1). u, v, x1, and x2 are distinct since u and v are not adjacent

and G is simple. Thus, we have that |Xj(1)| ≥ 4, contradicting that X has width 2.

Therefore, we conclude that |{P ∈ D′ | c(P ) ∈ NG(a0)}| ≤ 1. 2

Claim 2.19 Suppose that C1 ∈ H. If there exist distinct P1, P2 ∈ D′ such that both c(P1)

and c(P2) are adjacent to a1, then c(P1) or c(P2) is adjacent to a0.

Proof We show the claim by contradiction. Assume that there exist distinct P1, P2 ∈ D′

such that both c(P1) and c(P2) are adjacent to a1 and that neither c(P1) nor c(P2) is

adjacent to a0. Let L be the subgraph of G induced by all the outer edges of C1. Since

s = a0 and C1 ∈ H, it follows from Claim 2.10 that |NG(a0)| = 2. Suppose that NG(a0) =

{u, v}. It follows from the assumption and Claims 2.16 and 2.17 that a0, a1, u, v, c(P1),

and c(P2) are distinct vertices.

If (u, v) ∈ E(G), then P (x01010) shown in Figure 2.1 is a minor of the subgraph

L ∪ P1 ∪ P2 ∪ G[{u, v}] of G. This means that (u, v) 6∈ E(G) and that the graph G′

obtained from G by joining u and v by an additional edge has proper-path-width more

than 2.
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On the other hand, since a0 = s ∈ X1 − X2 and X satisfies (c) in Condition 2.1,

we have that X1 = {a0, u, v}. Therefore, X is a 2-proper-path-decomposition of G′, i.e.

ppw(G′) = 2, a contradiction. 2

The proofs of the following Claims 2.20 and 2.21 can be accomplished by similar arguments

for Claims 2.18 and 2.19, and is omitted.

Claim 2.20 If Cm is 2-connected, then |{P ∈ D′ | c(P ) ∈ NG(am)}| ≤ 1. 2

Claim 2.21 Suppose that Cm ∈ H. If there exist distinct P1, P2 ∈ D′ such that both c(P1)

and c(P2) are adjacent to am−1, then c(P1) or c(P2) is adjacent to am. 2

Claim 2.22 Suppose that Ci ∈ H (1 < i < m). If there exists distinct P1, P2 ∈ D′

such that both c(P1) and c(P2) are adjacent to a ∈ {ai−1, ai}, c(P1) or c(P2) adjacent to

a′ ∈ {ai−1, ai} − {a}.

Proof We show the claim by contradiction. Assume that there exist distinct P1, P2 ∈ D′

such that both c(P1) and c(P2) are adjacent to a ∈ {ai−1, ai} and that neither c(P1)

nor c(P2) is adjacent to a′ ∈ {ai−1, ai} − {a}. Let L be the subgraph of G induced by

all the outer edges of Ci. Since 1 < i < m and Ci ∈ H, it follows from Claim 2.10

that |NG(a′)| = 2. Suppose that NG(a′) = {u, v}. It follows from the assumption and

Claims 2.16 and 2.17 that a, a′, u, v, c(P1), and c(P2) are distinct vertices. Moreover,

there exists b ∈ V (G) − V (Ci) adjacent to a′ since 1 < i < m. Therefore, P (101010)

shown in Figure 2.1 is a minor of the subgraph L∪P1 ∪P2∪G[{a′, b}] of G, contradicting

the assumption that ppw(G) ≤ 2. 2

Claim 2.23 C and A satisfies (f) in Condition 2.3.

Proof It follows from Claim 2.16 that there exists a mapping f satisfying (∗). Moreover,

it follows from Claims 2.17 through 2.22 that there exists one-to-one mapping f satisfying

(∗). 2

Thus, C and A satisfies Condition 2.3. Therefore, the proof of necessity for Theorem 2.9

is completed.
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Proof of Sufficiency for Theorem 2.9

We next show the sufficiency. Assume that G has a sequence C = (C1, C2, . . . , Cm) of

components in D and a sequence A = (a0, a1, . . . , am) of vertices in V (G) such that

Condition 2.3 is satisfied. If C1 ∈ T and degG(a0) = 2 then we can easily find a vertex

a′
0 ∈ V (C1) such that degG(a′

0) = 1 and that the path connecting a′
0 and a1 is a 2-spine

of C1. Moreover, C and the sequence (a′
0, a1, . . . , am) satisfies Condition 2.3. Thus, we

assume without loss of generality that, if C1 ∈ T , then degG(a0) = 1. Similarly, we

assume without loss of generality that, if Cm ∈ T , then degG(am) = 1.

For Ci ∈ H (1 ≤ i ≤ m), we define that li and ri are distinct outer edges in Ci incident

to ai−1 and ai, respectively, such that:

(i) li = (ai−1, c(P )) if there exists P ∈ D′ such that f(P ) = (i, 1);

(ii) ri = (ai, c(P )) if there exists P ∈ D′ such that f(P ) = (i, 0);

(iii) li and ri are contained in distinct end-regions if Ci has two end-regions;

(iv) li and ri are a matching of Ci if |V (Ci)| ≥ 4.

Since C and A satisfies (f) in Condition 2.3, for every Ci ∈ H, li and ri satisfies Condi-

tion 2.2.

We show that the sequence X = (X1, . . . , Xr) of subsets of V (G) defined as follows is

a 2-proper-path-decomposition of G.

X =
∑

1≤i≤m

Li + Y i + Ri, where

for 1 ≤ i ≤ m,

Y i =

{

PPD SPINE(Ci, path connecting ai−1 and ai) if Ci ∈ T ∪ P
PPD OPG(Ci, li, ri) if Ci ∈ H

Li =

{

PPD PATH(P = (p0, . . . , c(P ))) ∪ {ai−1} if ∃P ∈ D′ such that f(P ) = (i, 1)
nul otherwise

Ri =

{

PPD PATH(P = (c(P ), . . . , pl))) ∪ {ai} if ∃P ∈ D′ such that f(P ) = (i, 0)
nul otherwise

Since G satisfies Condition 2.3, X satisfies (a), (b), and (c) in Condition 2.1 by definition.

Moreover, every element of X contains at most three vertices of G. Thus, it suffices to



CHAPTER 2. PROPER-PATH-DECOMPOSITION OF WIDTH 2 29

show that X satisfies (d) and (e) in Condition 2.1. By the definition of PPD PATH and

Corollary 2.4 and 2.7, we can observe the following claim.

Claim 2.24

(i) For 1 ≤ i ≤ m, v ∈ V (Ci)− ({ai−1, ai}∪ {c(P ) | P ∈ D′}) appears in consecutive

elements of Y i.

(ii) For P ∈ D′, v ∈ V (P ) − {c(P )} appears in at most two consecutive elements of

X .

(iii) For 0 ≤ i ≤ m, ai is contained in every element of (the tail of Y i)+Ri +Li+1 +

(the head of Y i+1), where Y0 = R0 = Ym+1 = Lm+1 = nul .

(iv) For P ∈ D′ with f(P ) = (i, 1), c(P ) appears in the tail of Li and in consecutive

elements of Y i including its head.

(v) For P ∈ D′ with f(P ) = (i, 0), c(P ) appears in the head of Ri and in consecutive

elements of Y i including its tail.

2

It follows from Claim 2.24 that every vertex in G appears in consecutive elements of X .

Thus, X satisfies (d) in Condition 2.1.

It remains to show that X satisfies (e) in Condition 2.1. If Xa ∩Xc = ∅ for all a and c

with 1 < a+1 ≤ c−1 < r, then this is immediate. Thus, we assume that there exist a and

c with 1 < a + 1 ≤ c− 1 < r such that Xa ∩Xc 6= ∅. For 1 ≤ i ≤ m, Y i is a proper-path-

decomposition of Ci. Thus, we have that |Xa ∩ Xc| ≤ |Xb| − 2 for any b with a < b < c

if there exists i with 1 ≤ i ≤ m such that both Xa and Xc are elements of Y i. Therefore,

we assume that there exists no i with 1 ≤ i ≤ m such that both Xa and Xc are elements

of Y i. It follows by Claim 2.24 that Xa ∩ Xc ⊆ {ai | 0 ≤ i ≤ m} ∪ {c(P ) | P ∈ D′}. We

see the following two claims.

Claim 2.25 |Xa ∩ Xc| = 1.
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Proof By Claim 2.24, Xa ∩ Xc contains at most one vertex in A and at most one vertex

in {c(P ) | P ∈ D′}. Thus, it suffices to show that both ai(0 ≤ i ≤ m) and c(P ) are

not contained in Xa ∩ Xc. We prove this by contradiction. Assume that there exist i

(0 ≤ i ≤ m) and P ∈ D′ such that {ai, c(P )} ⊆ Xa ∩ Xc. By Claim 2.24, f(P ) = (i, 0)

or f(P ) = (i + 1, 1). We may assume without loss of generality that f(P ) = (i, 0). Then,

both Xa and Xc are elements of Y i + (the head of Ri). Suppose that Y i = (Y i
1 , . . . , Y i

r ).

Since both Xa and Xc are not elements of Y i, Xc is the head of Ri. Moreover, Xa is

not the tail of Y i since c − a ≥ 2. This means that both ai and c(P ) are contained in

an element of Y i except the tail. However, this is impossible since (ai, c(P )) = ri and

ri ∈ E(G[Y i
r ]) − E(G[

⋃

1≤j<r Y i
j ]) by Corollary 2.7. 2

Claim 2.26 |Xb| = 3 for any b with a < b < c.

Proof Let b be any integer such that a < b < c. If there exists i (1 ≤ i ≤ m) such that Xb

is an element of Y i and that Ci ∈ H, then |Xb| = 3 by the definition of PPD OPG. If there

exists i (1 ≤ i ≤ m) such that Xb is an element of Li or Ri, then |Xb| = 3 by the definition

of PPD PATH and by the fact that |V (P )| ≥ 2 for any P ∈ D′. Thus, it suffices to show

that Xb is not an element of Y i such that Ci ∈ T ∪ P. We prove this by contradiction.

Assume that Xb is an element of Y i (1 ≤ i ≤ m) such that Ci ∈ T ∪ P. It follows from

the assumption and Claim 2.25 that either Xa ∩ Xc = {ai−1} or Xa ∩ Xc = {ai}. We

assume without loss of generality that Xa ∩ Xc = {ai}. Since Xb is an element of Y i, it

follows that Xa is an element of Y i except the tail. This means that ai is contained in

an element of Y i except the tail. However, this is impossible since ai is an end-vertex of

2-spine of Ci and ai appears only in the tail of Y i by Corollary 2.4. 2

It follows from Claims 2.25 and 2.26 that |Xa ∩ Xc| − |Xb| = 3 − 2 = 1 for a < b < c.

Thus, X satisfies (e) in Condition 2.1.

Therefore, X is a 2-proper-path-decomposition of G and the proof of sufficiency for

Theorem 2.9 is completed.

We describe in Figure 2.5 Algorithm PPD GENERAL based on Theorem 2.9. It is well-

known that we can find all blocks of a graph in linear time. Thus, step 2 can be executed

in linear time. To find a0 and am in step 3, we need the algorithm to find a 2-spine of a

binary tree, which has not been described yet. Although the details are not mentioned
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here, it should be noted that this can be done in linear time by using a simple postorder

searching and the algorithm in [25], which outputs, for a rooted binary tree, the proper-

path-width of every subtree rooted at a vertex. The other operations in PPD GENERAL

clearly executed in linear time.
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Procedure PPD GENERAL ( G )
[

Input: a connected graph G with ∆(G) ≤ 3;
Output: the 2-proper-path-decomposition of G;

]

1. if ∆(G) ≤ 2 then return ( PPD PATH(G) );

2. let H be the set of 2-connected components of G;
let T be the set of tree components of G;
let P be the set of path components of G;
let D = H ∪ T ∪ P;

3. find a sequence C = (C1, C2, . . . , Cm) of components in D and a sequence A =
(a0, a1, . . . , am) of vertices in V (G) such that Condition 2.3 and the conditions in the
following are satisfied;

• degG(a0) = 1 if C1 ∈ T ;

• degG(am) = 1 if Cm ∈ T ;

4. if C and A do not exist then reject ;

5. D′ := D −
⋃

1≤i≤m Ci;

6. for each Ci ∈ H do

(a) find distinct outer edges li and ri in Ci incident to ai−1 and ai, respectively, such
that:

i. li = (ai−1, c(P )) if ∃P ∈ D′ such that f(P ) = (i, 1);

ii. ri = (ai, c(P )) if ∃P ∈ D′ such that f(P ) = (i, 0);

iii. li and ri are contained in distinct end-regions if Ci has two end-regions;

iv. li and ri are a matching of Ci if |Ci| ≥ 4.

endfor

7. for i = 1 to m do

(a) if Ci ∈ T ∪ P then Y i := PPD SPINE(Ci,path connecting ai−1 and ai);
else Y i := PPD OPG(Ci, li, ri);

(b) if ∃P ∈ D′ such that f(P ) = (i, 1) then Li := PPD PATH(P = (p0, . . . , c(P ))) ∪
{ai−1};
else Li := nul ;

(c) if ∃P ∈ D′ such that f(P ) = (i, 0) then Ri := PPD PATH(P = (c(P ), . . . , pl))∪{ai};
else Ri := nul ;

endfor

8. return (
∑

1≤i≤m Li + Yi + Ri );

End

Figure 2.5: Algorithm for computing the 2-proper-path-decomposition of a general graph
graph.



Chapter 3

Embedding into Grids

3.1 Introduction

The problem of efficiently implementing parallel algorithms on parallel machines and the

problem of efficiently laying out VLSI systems onto VLSI chips have been studied as the

graph embedding problem, which is to embed a guest graph within a host graph with

certain constraints and/or optimization criteria. For the former problem, guest graphs

and host graphs represent parallel algorithms and parallel machines, respectively, and the

purpose is to minimize communication overhead, such as dilation and/or congestion of the

embedding. For the latter problem, a guest graph represents connection requirements of

a system and a host graph usually represents a rectangular grid modeling wafer. In VLSI

layout, there are various criteria such as wire length, wire congestion, crossing number,

and the layout area.

We consider minimal congestion embeddings of graphs into grids. The grids are well-

known not only as a model of VLSI chips but also as one of the most popular processor

interconnection graphs for parallel machines. It is well-known that the minimal conges-

tion embedding is very important for a grid-connected parallel machine that uses circuit

switching for node-to-node communication. In VLSI layout, the minimal congestion em-

beddings are crucial in the sense that the congestion is a lower bound for the number of

layers.

Let G be a graph and let V (G) and E(G) denote the vertex set and edge set of G,

respectively. We denote by ∆(G) the maximum degree of a vertex in G. An embedding

〈φ, ρ〉 of a graph G into a graph H is defined by a one-to-one mapping φ : V (G) → V (H),

33
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together with a mapping ρ that maps each edge (u, v) ∈ E(G) onto a path ρ(u, v) in H

that connects φ(u) and φ(v). The congestion of an edge e′ ∈ E(H) under 〈φ, ρ〉 is the

number of edges e in G such that ρ(e) contains e′. The congestion of an embedding 〈φ, ρ〉

is the maximum congestion of an edge in H. The one dimensional n-grid denoted by M(n)

is the graph with vertex set {0, 1, . . . , n − 1} and edge set {(i, i + 1) | 0 ≤ i ≤ n − 2}. A

Cartesian product M(n1) × M(n2) is called a two dimensional n1 × n2-grid and denoted

by M(n1, n2). We define that n1n2 is the area of M(n1, n2). M(2, n) is called an n-ladder

and denoted by L(n). The embedding of a graph G into a two dimensional grid H is

called a layout of G into H if it has unit congestion. A layout 〈φ, ρ〉 of G into H is said to

be planar if ρ(e1) and ρ(e2) are internally vertex-disjoint for any distinct e1, e2 ∈ E(G).

Formann and Wagner [8] showed that the following problem is NP-complete.

Graph Layout I

Instance A planar graph G with ∆(G) ≤ 4 and an integer A.

Question Does there exist a layout of G into the grid of area at most A?

Kramer and Leeuwen [13] showed that Graph Layout I can be reduced to the following

problem:

Graph Layout II

Instance A planar graph G with ∆(G) ≤ 4 and integers m, n.

Question Does there exist a layout of G into M(m, n)?

and thus Graph Layout II is NP-hard1 .

We consider the following problem which is a variant of Graph Layout II:

Graph k-Layout

Instance A planar graph G with ∆(G) ≤ 4 and an integer n.

Question Does there exist a layout of G into M(k, n)?

1 [13] claimed that Graph Layout II is in NP without proof. However, this is not trivial as mentioned
in Subsection 3.3.2.
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We prove that the Graph k-Layout is NP-complete for any fixed k ≥ 3. Graph

1-Layout can be trivially solved in polynomial time. Although we do not know the

complexity of Graph 2-Layout, we consider a closely related problem of laying out

a graph into a ladder. We show a necessary and sufficient condition for a graph to be

laid out into L(∞) and show that the graph satisfying the condition can be laid out into

L(|V (G)|). Based on the characterization, we suggest a linear time algorithm for deciding

if a given graph can be laid out into L(∞).

This chapter is organized as follows. Some definitions are given in Section 3.2. In

Section 3.3, we prove the NP-completeness of Graph k-Layout for any fixed integer

k ≥ 3. In Section 3.4, we review the proper-path-width of graphs and show some lemmas

used in the following section. In Section 3.5, we give a necessary and sufficient condition

for a graph to be laid out into L(∞). We conclude this chapter with some remarks in

Section 3.6.

3.2 Preliminaries

ΓG(v) is the set of edges incident to a vertex v in a graph G. |ΓG(v)| is called the degree

of v and denoted by degG(v). For S ⊆ V (G), let ΓG(S) =
⋃

{ΓG(v) | v ∈ S}. G[S] is the

subgraph of G induced by S ⊆ V (G).

For graphs G and H, G ∪ H is the graph with vertex set V (G) ∪ V (H) and edge set

E(G) ∪ E(H). We write G ⊆ H if G is a subgraph of H. For an embedding ε = 〈φ, ρ〉 of

G into H and G′ ⊆ G, let ε(G′) =
⋃

e∈E(G′) ρ(e).

Let M = M(n1, n2). For a vertex (i, j) ∈ V (M), let l1(i, j) = i and l2(i, j) = j.

Let RM
i = {(i, j) ∈ V (M) | 0 ≤ j ≤ n2 − 1} and CM

j = {(i, j) ∈ V (M) | 0 ≤ i ≤

n1 − 1}. Subgraphs M [RM
i ] and M [CM

j ] are called the ith row and the jth column of

M , respectively. For an embedding 〈φ, ρ〉 of M and a vertex (i, j) ∈ V (M), we denote

φ((i, j)) simply by φ(i, j).

3.3 NP-Completeness of Graph k-Layout

We prove the following theorem in this section.

Theorem 3.1 Graph k-Layout is NP-complete for any fixed integer k ≥ 3.
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We prove in Subsection 3.3.1 that Graph k-Layout (k ≥ 3) is NP-hard by constructing

a pseudo-polynomial reduction from 3-Partition which is well-known to be NP-complete

in the strong sense to Graph k-Layout. We show that Graph k-Layout is in NP in

Subsection 3.3.2.

3.3.1 NP-Hardness of Graph k-Layout

3-Partition is defined as follows.

3-Partition

Instance A positive integer B, and a set of 3m integers A =

{a0, a1, . . . , a3m−1}, such that B/4 < ax < B/2 and
∑3m−1

x=0 ax = mB.

Question Can A be partitioned into m disjoint sets A0, . . . , Am−1 such that
∑

a∈Ay
a = B for 0 ≤ y ≤ m − 1?

For given integers B, a0, . . . , a3m−1 as an instance of 3-Partition, we construct the

instance of Graph k-Layout as follows:

G(A, B) = F (B, m, k) ∪
⋃

0≤x≤3m−1

M(ax),

n(A, B) = m(B + k + 1) + k + 1,

where F (B, m, k) is the graph obtained from M(k, n(A, B)) by removing the vertex (1, j)

and joining (0, j) and (2, j) by an edge for each j = (B + k + 1)y + z + k + 1 (0 ≤

y ≤ m − 1, 0 ≤ z ≤ B − 1). Figure 3.1 shows F (B, m, k). It should be noted that G is

well-defined if k ≥ 3.

Throughout this subsection, k ≥ 3 is a fixed integer. For 0 ≤ y ≤ m, we define that

JM
y = {(B + k + 1)y + z | 0 ≤ z ≤ k}, JM

y = {(B + k + 1)y + z | 1 ≤ z ≤ k − 1},

My = F (B, m, k)[{(i, j) | 0 ≤ i ≤ k − 1, j ∈ JM
y }], and M y = F (B, m, k)[{(i, j) | 0 ≤

i ≤ k − 1, j ∈ JM
y }]. It should be noted that My is isomorphic to M(k, k + 1) for each

0 ≤ y ≤ m. Moreover, for 0 ≤ y ≤ m − 1, we define that JD
y = {(B + k + 1)y + z + k |

0 ≤ z ≤ B + 1}, and Dy = F (B, m, k)[{(i, j) | 0 ≤ i ≤ k − 1, j ∈ JD
y }].

Now we show that A can be partitioned into disjoint sets A0, . . . , Am−1 such that
∑

a∈Ay
a = B for 0 ≤ y ≤ m − 1 if and only if there exists an layout of G(A, B) into

H = M(k, n(A, B)) by a series of lemmas.
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k

B k+1Bk+1 k+1

M1D0M0 MmDm 1

Figure 3.1: F (B, m, k). The gray area is grid-connected.

Lemma 3.2 For any layout ε = 〈φ, ρ〉 of M = M(k, k + 1) into H = M(k, n(A, B)),

0 ≤ ∀i ≤ k − 1 ∃i′ : ε(M [RM
i − {(i, 0), (i, k)}]) ⊆ H[RH

i′ ], (3.1)

1 ≤ ∀j ≤ k − 1 ∃j ′ : ε(M [CM
j ]) = H[CH

j′ ]. (3.2)

Proof For 0 ≤ i ≤ k − 1 and 0 ≤ j ≤ k, let P R
i = ε(M [RM

i ]) and P C
j = ε(M [CM

j ]). Let

q1 = min
0≤j≤k

max
0≤i≤k−1

l2(φ(i, j)),

q2 = max
0≤j≤k

min
0≤i≤k−1

l2(φ(i, j)),

and

j1 ∈ {0 ≤ j ≤ k | max
0≤i≤k−1

l2(φ(i, j)) = q1},

j2 ∈ {0 ≤ j ≤ k | min
0≤i≤k−1

l2(φ(i, j)) = q2}.

It follows from the definitions of q1 and q2 that

0 ≤ ∀j ≤ k ∃v1 ∈ CM
j : q1 ≤ l2(φ(v1)), and ∃v2 ∈ CM

j : q2 ≥ l2(φ(v2)). (3.3)

Claim 3.3 q1 < q2.

Proof If q1 > q2 then it follows from (3.3) that P C
0 , . . . , P C

k are k + 1 edge-disjoint trails

across the columns between the q1st column and the q2nd column of H. However, this is

impossible since H has just k rows. Thus, we have q1 ≤ q2.

It remains to show that q1 6= q2. We prove this by contradiction. If q1 = q2 = q

then it follows from (3.3) that P C
0 , . . . , P C

k are k + 1 edge-disjoint trails across the qth
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column of H. Thus 0 < q < n(A, B)− 1, for otherwise, q = 0 or q = n(A, B)− 1, and we

have that φ(CM
j ) ∩ CH

q 6= ∅ for every 0 ≤ j ≤ k, contradicting that φ is one-to-one since

|{CM
j }| > |CH

q |. We define that

E− = {((i, q − 1), (i, q)) ∈ E(H) | 0 ≤ i ≤ k − 1},

E+ = {((i, q), (i, q + 1)) ∈ E(H) | 0 ≤ i ≤ k − 1}.

For each 0 ≤ j ≤ k, if φ(CM
j )∩CH

q = ∅ then there exist v1, v2 ∈ CM
j such that l2(φ(v2)) <

q < l2(φ(v1)) from (3.3). Thus, it follows that for any 0 ≤ j ≤ k,

φ(CM
j ) ∩ CH

q 6= ∅ or (3.4)

E(P C
j ) ∩ E− 6= ∅ and E(P C

j ) ∩ E+ 6= ∅. (3.5)

Claim 3.4 For any 0 ≤ j ≤ k,

E(P C
j ) ∩ (E− ∪ E+) 6= ∅. (3.6)

Proof If there exists 0 ≤ j ′ ≤ k such that E(P C
j′ ) ∩ (E− ∪ E+) = ∅, then P C

j′ is identical

with H[CH
q ]. This means that a vertex with degree at least 3 in CM

j′ is mapped into

{(i, q) ∈ V (H) | 1 ≤ i ≤ k−2}, and that a vertex with degree at least 2 in CM
j′ is mapped

into {(i, q) ∈ V (H) | i = 0 or k − 1}. Thus, both (3.4) and (3.5) do not hold for any

j 6= j ′ (0 ≤ j ≤ k), a contradiction. Therefore, (3.6) holds for any 0 ≤ j ≤ k.

End of proof of Claim 3.4

Claim 3.5 j1 6= j2.

Proof If j1 = j2, then φ(CM
j1

) = CH
q by definition. Thus, for every j 6= j1 (0 ≤ j ≤ k),

(3.5) holds since (3.4) does not hold. However, since (0, q) ∈ φ(CM
j1

) and degH(0, q) = 3,

P C
j does not pass through (0, q) for every j 6= j1 (0 ≤ j ≤ k). Thus P C

j does not pass

through ΓH(0, q) for every j 6= j1 (0 ≤ j ≤ k). Since P C
0 , . . . , P C

k are edge-disjoint, it

follows from (3.5) that

∑

0≤j≤k−1

|E(P C
j )∩E−|+

∑

0≤j≤k−1

|E(P C
j )∩E+|+ |ΓH(0, q)∩(E−∪E+)| ≥ k+k+2 = 2k+2.

However, this is a contradiction since the left hand side of the inequality is no more than

|E− ∪ E+| = 2k. Therefore, we have j1 6= j2. End of proof of Claim 3.5
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Let

C1 = {v ∈ CM
j1

| l2(φ(v)) = q}, and

C2 = {v ∈ CM
j2

| l2(φ(v)) = q}.

Since

∀v ∈ CM
j1

− C1 : l2(φ(v)) < q, and

∀v ∈ CM
j2

− C2 : l2(φ(v)) > q

by definition, it follows that

∀i ∈ X1 : E(P R
i ) ∩ E− 6= ∅, (3.7)

∀i ∈ X2 : E(P R
i ) ∩ E+ 6= ∅, (3.8)

where

X1 = {0 ≤ i ≤ k − 1 | (i, j1) ∈ CM
j1

− C1},

X2 = {0 ≤ i ≤ k − 1 | (i, j2) ∈ CM
j2

− C2}.

Since P C
0 , . . . , P C

k and P R
0 , . . . , P R

k−1 are edge-disjoint, we have

∑

0≤j≤k

|E(P C
j )∩(E−∪E+)|+

∑

i∈X1

|E(P R
i )∩E−|+

∑

i∈X2

|E(P R
i )∩E+| ≤ |E−∪E+| = 2k. (3.9)

Since j1 6= j2, it follows that |C1| + |C2| = |C1 ∪ C2| ≤ |CH
q | = k. Thus, it follows from

(3.6), (3.7), and (3.8) that

(the left hand side of (3.9)) ≥ (k + 1) + |X1| + |X2|

= (k + 1) + (k − |C1|) + (k − |C2|)

≥ (k + 1) + 2k − k

≥ 2k + 1,

a contradiction. This proves that q1 6= q2.

Therefore, we have q1 < q2. End of proof of Claim 3.3
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Thus P R
0 , . . . , P R

k−1 are k edge-disjoint trails across the columns between the q1st col-

umn and the q2nd column of H. Each P R
i (0 ≤ i ≤ k − 1) passes through only edges in

one row of H ′ = H[
⋃

q1≤j≤q2
CH

j ] since H has just k rows. Thus, it follows from (3.3) that

for any 0 ≤ j ≤ k (j 6∈ {j1, j2}) P C
j passes through only column edges of H ′. Therefore,

we have {j1, j2} = {0, k}, and (3.1) and (3.2) hold. 2

Throughout this subsection, we assume that ε = 〈φ, ρ〉 is a layout of F (B, m, k) into

H = M(k, n(A, B)). We may assume without loss of generality that

l1(φ(0, 1)) ≤ l1(φ(k − 1, k − 1)), and l2(φ(0, 1)) ≤ l2(φ(k − 1, k − 1)). (3.10)

Lemma 3.6 For any 0 ≤ y ≤ m,

0 ≤ ∀i ≤ k − 1 ∃i′ : ε(F (B, m, k)[{(i, j) | j ∈ JM
y }]) ⊆ H[RH

i′ ], (3.11)

∀j ∈ JM
y ∃j ′ : ε(F (B, m, k)[{(i, j) | 0 ≤ i ≤ k − 1}]) = H[CH

j′ ]. (3.12)

Proof Immediate from Lemma 3.2. 2

Corollary 3.7 For any 0 ≤ y ≤ m and e ∈ E(F (B, m, k)) − E(M y), ρ(e) does not pass

through an edge of ε(M y). 2

Lemma 3.8 For any j ∈ JM
y and j ′ ∈ JM

y′ (j < j ′, 0 ≤ y ≤ y′ ≤ m),

l2(φ(0, j)) < l2(φ(0, j ′)). (3.13)

Proof We first consider the case when y = 0. It follows from Lemma 3.6 and assumption

(3.10) that

l2(φ(0, 1)) < l2(φ(0, 2)) < · · · < l2(φ(0, k − 1)).

Thus, (3.13) holds for any j, j ′ ∈ JM
0 (j < j ′). Furthermore, for any j ∈ JM

0 and j ′ ∈ JM
y′

(j < j ′, 0 < y′ ≤ m), (3.13) follows from Corollary 3.7.

We next consider the case when y > 0. Suppose j ∈ JM
y and j ′ ∈ JM

y′ (j < j ′, y ≤ y′ ≤

m). Let P = ε(F (B, m, k)[{(0, l) | k − 1 ≤ l ≤ j}]). Since l2(φ(0, k − 1)) < l2(φ(0, j ′)),

if l2(φ(0, j)) > l2(φ(0, j ′)) then P passes through a vertex in CH
l2(φ(0,j′)). This means that

ε(F (B, m, k)[{(i, j ′) | 0 ≤ i ≤ k − 1}]) 6= CH
l2(φ(0,j′)), contradicting to (3.12).

Therefore, we have l2(φ(0, j)) < l2(φ(0, j ′)) for any j ∈ JM
y and j ′ ∈ JM

y′ (j < j ′,

0 ≤ y ≤ y′ ≤ m). 2
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Lemma 3.9 For any j ∈ JM
y (0 ≤ y ≤ m) and j ′, j ′′ such that 0 ≤ j ′ < j < j ′′ ≤

n(A, B) − 1,

max
0≤i≤k−1

l2(φ(i, j ′)) < l2(φ(0, j)) < min
0≤i≤k−1

l2(φ(i, j ′′)). (3.14)

Proof Immediate from (3.12), Corollary 3.7, and Lemma 3.8. 2

Lemma 3.10 For any 0 ≤ y ≤ m−1 and any j, j ′ ∈ JD
y (j < j ′), l2(φ(0, j)) < l2(φ(0, j ′)).

Proof It follows from Lemma 3.9 that

l2(φ(0, (B + k + 1)y + k − 1)) < l2(φ(0, j)) < l2(φ(0, (B + k + 1)(y + 1) + 1)) (3.15)

for any j ∈ JD
y . Fix j, j ′ ∈ JD

y (j < j ′) and let q = l2(φ(0, j)). We define that

E− = {((i, q − 1), (i, q)) ∈ E(H) | 0 ≤ i ≤ k − 1},

E+ = {((i, q), (i, q + 1)) ∈ E(H) | 0 ≤ i ≤ k − 1}.

For i ∈ {0, 2, . . . k−1}, let P R
i = ε(F (B, m, k)[{(i, (B+k+1)y+z+k) | −1 ≤ z ≤ B+2}]).

Since P R
3 , . . . , P R

k−1 are edge-disjoint and each P R
i (3 ≤ i ≤ k − 1) contains at least one

edge in E− and at least one edge in E+ from (3.15), it follows that

∑

3≤i≤k−1

|E(P R
i ) ∩ E−| ≥ k − 3, (3.16)

∑

3≤i≤k−1

|E(P R
i ) ∩ E+| ≥ k − 3. (3.17)

First assume that l2(φ(0, j)) > l2(φ(0, j ′)). It follows from (3.15) that P R
0 contains at

least 3 edges in E−, and P R
2 contains at least one edge in E−. Since P R

0 , P R
2 , . . . , P R

k−1 are

edge-disjoint, it follows from (3.16) that

∑

i∈{0,2,...,k−1}

|E(P R
i ) ∩ E−| ≥ 3 + k − 2 = k + 1,

which is a contradiction since the left hand side of the inequality is no more than |E−| = k.

Next assume that l2(φ(0, j)) = l2(φ(0, j ′)).

Assume that l2(φ(2, j)) = l2(φ(2, j ′)) = q. Since all the vertices in U =

{(0, j), (0, j ′), (2, j), (2, j ′)} ⊂ V (F (B, m, k)) have degree at least 3, none of P R
3 , . . . , P R

k−1
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passes through a vertex in φ(U). Thus none of P R
3 , . . . , P R

k−1 passes through an edge in

ΓH(φ(U)). Since |ΓH(φ(U)) ∩ E−| ≥ 4 by the assumption that φ(U) ⊆ CH
q , it follows

from (3.16) that

∑

3≤i≤k−1

|E(P R
i ) ∩ E−| + |ΓH(φ(U)) ∩ E−| ≥ k − 3 + 4 = k + 1.

This is a contradiction since the left hand side of the inequality is no more than |E−| = k.

Thus, we conclude that l2(φ(2, j)) 6= q or l2(φ(2, j ′)) 6= q. We assume without loss

of generality that l2(φ(2, j)) 6= q and show a contradiction. For i ∈ {0, 2}, let P R−
i =

ε(F (B, m, k)[{(i, l) | (B +k +1)y +k− 1 ≤ l ≤ j}]), and P R+
i = ε(F (B, m, k)[{(i, l) | j ≤

l ≤ (B + k + 1)(y + 1) + 1}]). Moreover, let P C
j = ε(F (B, m, k)[{(i, j) | 0 ≤ i ≤ k − 1}]).

Case 1 l2(φ(2, j)) < q: Each of P R−
0 , P R+

2 , and P C
j contains at least one edge in E−, and

they together with P R
3 , . . . , P R

k−1 are edge-disjoint. Moreover, none of P R−
0 , P R+

2 ,

P C
j , and P R

3 , . . . , P R
k−1 passes through φ(0, j ′). Thus none of P R−

0 , P R+
2 , P C

j , and

P R
3 , . . . , P R

k−1 passes through an edge in ΓH(φ(0, j ′)). Thus, it follows from (3.16)

that

∑

3≤i≤k−1

|E(P R
i ) ∩ E−| + |ΓH(φ(0, j ′)) ∩ E−|+

|E(P R−
0 ) ∩ E−| + |E(P R+

2 ) ∩ E−| + |E(P C
j ) ∩ E−|

≥ k − 3 + 4 = k + 1.

This is a contradiction since the left hand side of the inequality is no more than

|E−| = k.

Case 2 l2(φ(2, j)) > q: Let P ′ = ε(F (B, m, k)[{(2, j), (2, j ′), (0, j ′)}]). Each of P R+
0 ,

P R−
2 , P C

j , and P ′ contains at least one edge in E+, and they together with

P R
3 , . . . , P R

k−1 are edge-disjoint. Thus, it follows from (3.16) that

∑

3≤i≤k−1

|E(P R
i ) ∩ E+| + |E(P R+

0 ) ∩ E+|+

|E(P R−
2 ) ∩ E+| + |E(P C

j ) ∩ E+| + |E(P ′) ∩ E+|

≥ k − 3 + 4 = k + 1.

This is again a contradiction since the left hand side of the inequality is no more

than |E+| = k.
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Therefore, we conclude that l2(φ(0, j)) < l2(φ(0, j ′)). 2

Lemma 3.11 For any 0 ≤ y ≤ m,

∀j ∈ JM
y : φ({(i, j) | 0 ≤ i ≤ k − 1}) = CH

j , (3.18)

∀j ∈ JD
y : φ({(i, j) | 0 ≤ i ≤ k − 1}) ⊂ {(i, l) ∈ V (H) | 0 ≤ i ≤ k − 1, l ∈ JD

y }.(3.19)

Proof It follows from Lemmas 3.9 and 3.10 that l2(φ(0, j)) < l2(φ(0, j ′)) for any 0 ≤ j <

j ′ ≤ n(A, B) − 1. Since H has just n(A, B) columns, we have l2(φ(0, j)) = j for any

0 ≤ j ≤ n(A, B) − 1. Thus, (3.18) holds by Lemma 3.6, and (3.19) holds by (3.18) and

Lemma 3.9. 2

Now we are ready to prove the following.

Lemma 3.12 Graph k-Layout is NP-hard for any fixed integer k ≥ 3.

Proof We first assume that A can be partitioned into disjoint sets A0, . . . , Am−1 such that
∑

a∈Ay
a = B for 0 ≤ y ≤ m − 1. We construct a layout 〈φ′, ρ′〉 of G(A, B) into H as

follows: By the definition of F (B, m, k), F (B, m, k) has a planar layout into H such that

φ′(i, j) = (i, j). For each 0 ≤ y ≤ m− 1, we layout M(ax) into H[{(1, (B + k + 1)y + z +

k + 1) | 0 ≤ z ≤ B − 1}] if ax ∈ Ay. We can construct such layout by the assumption

that A can be partitioned into disjoint sets A0, . . . , Am−1 such that
∑

a∈Ay
a = B for

0 ≤ y ≤ m − 1. Thus, we have obtained the desired layout.

Conversely, we assume that there exists a layout ε′ = 〈φ′, ρ′〉 of G(A, B) into H. For

0 ≤ y ≤ m − 1, let Uy = U ′
y − φ′(V (F (B, m, k))), where U ′

y = {(i, j) ∈ V (H) | 0 ≤ i ≤

k − 1, j ∈ JD
y }. It follows from Lemma 3.11 that |Uy| = B for 0 ≤ y ≤ m − 1. Let

U =
⋃

0≤y≤m−1 Uy. Every M(ax) (0 ≤ x ≤ 3m− 1) is mapped into either Uy or U −Uy by

Lemma 3.11 and the structure of F (B, m, k). This means that A can be partitioned into

disjoint sets A0, . . . , Am−1 such that
∑

a∈Ay
a = B for 0 ≤ y ≤ m − 1.

The reduction is pseudo-polynomial since G(A, B) has kn(A, B) = O(Bm) vertices.

Thus, Graph k-Layout is NP-hard for any fixed integer k ≥ 3 since 3-Partition is

NP-complete in the strong sense. 2
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3.3.2 Graph k-Layout is in NP

In this subsection, we prove that Graph k-Layout is in NP. This is not trivial in the

sense that every layout of G into H itself may not be a witness of polynomial size if n is

much greater than |V (G)|. However, the following lemma guarantees that there exists a

witness of polynomial size for any instance.

Lemma 3.13 A graph G which can be laid out into M(k, n) can be laid out into

M(k, 2k|V (G)|).

Proof Let ε = 〈φ, ρ〉 be a layout of G into H = M(k, n). Let J = {j | φ(V (G))∩CH
j 6= ∅},

and we suppose J = {j1, . . . , j|J|} where j1 < · · · < j|J|. Obviously, |J | ≤ |V (G)|. For 1 ≤

l ≤ |J |−1, let El = {((i, jl), (i, jl +1)) ∈ E(H) | 0 ≤ i ≤ k−1}
⋃

{((i, jl+1−1), (i, jl+1)) ∈

E(H) | 0 ≤ i ≤ k − 1}, and Ml = H[
⋃

jl≤j≤jl+1
CH

j ]. Moreover, let M0 = H[
⋃

0≤j≤j1 CH
j ],

and M|J| = H[
⋃

j|J|≤j≤n−1 CH
j ].

Suppose that Ml (1 ≤ l ≤ |J | − 1) has more than 2k + 1 columns. If an image of ρ

contains an edge in El then the image forms one or more subtrail(s) contained in Ml called

“net(s)” each of which contains exactly two edges in El. Notice that the image contains the

even number of edges in El since no vertex of G is mapped by φ into V (Ml)−(CH
jl
∪CH

jl+1
).

Thus, for 1 ≤ l ≤ |J | − 1, the layout forms a solution of a “channel routing problem”

on Ml by considering a vertex in CH
jl
∪ CH

jl+1
to be a “terminal” which is connected by a

net in Ml. It is known that for a fixed channel length k, if there exists a routing for an

instance then there exists a routing with channel width at most 2k− 1 [10]. Thus, we can

compact Ml by applying the result so that it has at most 2k + 1 columns.

For Ml (l ∈ {0, |J |}), terminals are on only single side of the channel, i.e. CH
l , and it

is easy to see that channel width bk/2c are sufficient for such case. It follows that we can

compact Ml so that it has at most bk/2c + 1 columns.

Thus, we can obtain a layout of G into M(k, x), where

x ≤ (2k − 1)(|J | − 1) + 2bk/2c + |J |

≤ 2k|J | − (2k − 1) + k

≤ 2k|V (G)|.
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2

Lemma 3.14 Graph k-Layout is in NP.

Proof Suppose that there exists a layout ε of G into M(k, n). Then ∆(G) ≤ 4 obviously.

From Lemma 3.13, we can assume that n is at most 2k|V (G)|. Thus, we can check that ε is

a layout in O(|E(M(k, n))||E(G)|+ |V (G)|) = O(2kn ·2|V (G)|+ |V (G)|) = O(k2|V (G)|2)

time. 2

3.4 Proper-Path-Decomposition

In this section, we show some lemmas related on proper-path-decomposition used in the

following section.

A k-proper-path-decomposition (X1, X2, . . . , Xr) is said to be full if |Xi| = k + 1

(1 ≤ i ≤ r) and |Xj ∩ Xj+1| = k (1 ≤ i ≤ r − 1) [25]. The following lemma is shown in

[25].

Lemma A For any graph G with ppw(G) = k, there exists a full k-proper-path-

decomposition of G.

The following lemma will be used in the next section.

Lemma 3.15 Let X = (X1, X2, . . . , Xr) be a full proper-path-decomposition. For 2 ≤

i ≤ r − 1, there exist a unique si ∈ Xi − Xi−1 and a unique ti ∈ Xi − Xi+1 (si 6= ti).

Moreover, Xi − {si, ti} = Xi−1 ∩ Xi+1.

Proof It is obvious from the definition (a) that there exist si ∈ Xi−Xi−1 and ti ∈ Xi−Xi+1

for 2 ≤ i ≤ r − 1. Since X is full, it follows that |Xi − Xi−1| = |Xi − Xi+1| = 1, so we

have Xi−{si} ⊂ Xi−1 and Xi−{ti} ⊂ Xi+1. Thus, Xi −{si, ti} ⊆ Xi−1∩Xi+1. It follows

from the definition (e) that |Xi|−2 ≥ |Xi−1∩Xi+1| ≥ |Xi|− |{si, ti}|. Therefore, we have

si 6= ti and Xi − {si, ti} = Xi−1 ∩ Xi+1 for 2 ≤ i ≤ r − 1. 2

Corollary 3.16 Let X = (X1, X2, . . . , Xr) be a full 2-proper-path-decomposition. For

2 ≤ i ≤ r − 1, there exist a unique si ∈ Xi −Xi−1, a unique ti ∈ Xi −Xi+1 (si 6= ti), and

a unique vi ∈ Xi−1 ∩ Xi+1. 2
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3.5 Graph Layout into Ladders

In this section, we show a necessary and sufficient condition for a graph G to be laid out

into L(∞) based on the proper-path-width of G, and show that G satisfying the condition

is embeddable into L(|V (G)|). Based on the characterization, we suggest a linear time

algorithm for deciding if a given graph can be laid out into L(∞).

Lemma 3.17 If a graph G can be laid out into L(∞), then ∆(G) ≤ 3 and ppw(G[S]) ≤ 2,

where S = {v ∈ V (G) | degG(v) ≥ 2}.

Proof Suppose that there exists a layout 〈φ, ρ〉 of G into L(∞). Then, we have ∆(G) ≤ 3

since ∆(L(∞)) ≤ 3. Moreover, for (u, v) ∈ E(G) and w ∈ V (G) − {u, v}, degG(w) ≤ 1 if

ρ(u, v) contains φ(w). Thus, ρ(e1) and ρ(e2) are internally vertex-disjoint for any distinct

edges e1, e2 ∈ E(G[S]). This means that G[S] is homeomorphic to a subgraph of L(∞).

It is not difficult to see that ppw(L(n)) ≤ 2 for any positive integer n. Therefore, we have

ppw(G[S]) ≤ 2. 2

Lemma 3.18 For a graph G such that ∆(G) ≤ 3, |V (G)| ≥ 2, and ppw(G) ≤ 2, there

exists a planar layout of G into L(|V (G)| − 1).

Proof We denote L(|V (G)|−1) simply by L. It is easy to see that there exists an desired

layout of G into L if ppw(G) = 1 or |V (G)| ≤ 3. Thus we assume that ppw(G) = 2 and

|V (G)| ≥ 4, and we will construct a desired layout ε = 〈φ, ρ〉.

There exists a full 2-proper-path-decomposition X = (X1, X2, . . . , Xr) of G from the

assumption that ppw(G) = 2 and Lemma A. It should be noted that r = |V (G)| − 2 ≥ 2.

The following is an algorithm for laying out G into L(|V (G)| − 1).

Phase 1 Denote si ∈ Xi − Xi−1, ti ∈ Xi − Xi+1, and vi = Xi−1 ∩ Xi+1 for 2 ≤ i ≤ r − 1

according to Corollary 3.16. In addition, let t1 be a unique element in X1 − X2, sr

be a unique element in Xr − Xr−1, vr = vr−1(∈ Xr), and tr = sr−1.

Phase 2 Set φ(t1) = (0, 0), φ(v2) = (1, 1), and φ(t2) = (0, 1). If (t1, v2), (t1, t2), and

(v2, t2) are contained in E(G), then set ρ(t1, v2) = L[{(0, 0), (1, 0), (1, 1)}], ρ(t1, t2) =

L[{(0, 0), (0, 1)}], and ρ(v2, t2) = L[{(1, 1), (0, 1)}].
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Phase 3 Execute the following for i = 2 to r:

(a) Set φ(si) = (l1(φ(ti)), i). Let

P1 = L[{(l1(φ(ti)), j) | l2(φ(ti)) ≤ j ≤ i}],

P2 = L[{(l1(φ(vi)), j) | l2(φ(vi)) ≤ j ≤ i}],

P3 = L[CL
i ].

(b) If (ti, si) ∈ E(G), then set ρ(ti, si) = P1.

(c) If (si, vi) ∈ E(G) and no si′ (i′ > i) is adjacent to vi, set ρ(vi, si) = P2 ∪ P3.

(d) If (si, vi) ∈ E(G) and there exists si′ (i′ > i) adjacent to vi, reset φ(vi) = (l1(x), i)

and ρ(si, vi) = P3, where x is the vertex in L into which vi was mapped before

reseting. Moreover, if there exists y ∈ V (G)− {si, si′} adjacent to vi, then reset

ρ(y, vi) = P0 ∪ P2, where P0 is the trail in L in which (y, vi) was mapped before

reseting.

Let Yi =
⋃

1≤j≤i Xj. We show that ε is the planar layout of G into L by induction on

the number of steps in Phase 3. It should be noted that, up to step i in Phase 3, G[Yi] is

laid out into L and that φ(vi) may be reset later.

The layout of G[Y1] defined in Phase 1 is obviously desired one. We assume that ε is

the planar layout of G[Yi−1] into L(|Yi−1| − 1) for step i − 1, and show that this is also

true for step i. Notice that |Yi| = i + 2.

We first show that ε(G) ⊆ L(|Yi| − 1). It is easy to see that φ is an injection of Yi

since l1(φ(ti)) 6= l1(φ(vi)). φ(Yi−1) ⊆
⋃

0≤j≤i−1 CL
j by induction hypothesis. After step i,

φ(si) ∈ CL
i and φ(vi) ∈

⋃

0≤j≤i C
L
j since ti ∈ Yi−1. This means that φ(Yi) ⊂ V (L(|Yi|−1)).

Moreover, the images of ρ defined in step i are contained in P1∪P2∪P3, and P1∪P2∪P3 ⊆

L(|Yi| − 1). Thus, we conclude that ε(G) ⊆ L(|Yi| − 1).

We next show that ε is the planar layout. Notice that P1, P2, and P3 are internally

vertex-disjoint. P1 and ρ(e) are internally vertex-disjoint for any e ∈ E(G[Yi−1]) since

neither vertices nor edges in ε(G[Yi−1]) are contained in L[{(l1(φ(ti)), j) | j ≥ l2(φ(ti))}]

except φ(ti). If (si, vi) 6∈ E(G) then ε is the planar layout since ε(G[Yi]) ⊆ ε(G[Yi−1])∪P1.

If (si, vi) ∈ E(G) then P2, P3, and ρ(e) are internally vertex-disjoint for any e ∈ E(G[Yi−1])
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since neither vertices nor edges in ε(G[Yi−1]) are contained in L[{(l1(φ(vi)), j) | j ≥

l2(φ(vi))}] except φ(vi). Thus, we conclude that ε is the planar layout. 2

Lemma 3.19 For a graph G such that ∆(G) ≤ 3, |S| ≥ 2, and ppw(G[S]) ≤ 2, there

exists a layout of G into L(|V (G)| − 1), where S = {v ∈ V (G) | degG(v) ≥ 2}.

Proof It follows from Lemma 3.18 and the assumption that ∆(G[S]) ≤ 3, |S| ≥ 2, and

ppw(G[S]) ≤ 2 that there exists a planar layout of G[S] into L(|S|−1). Let v ∈ V (G)−S,

and let u ∈ V (G) be a vertex adjacent to v if such u exists. Since degG[S](u) ≤ 2, We can

map v and (u, v) by adding a new column next to the column containing φ(u) so that the

congestion of the resulting embedding is one. Thus, we can obtain the layout of G into

L(|V (G)| − 1) since the number of additional columns is at most |V (G) − S|. 2

We have the following theorem from Lemmas 3.17 and 3.19.

Theorem 3.20 A graph G can be laid out into L(∞) if and only if ∆(G) ≤ 3 and

ppw(G[S]) ≤ 2, where S = {v ∈ V (G) | degG(v) ≥ 2}. 2

Based on this theorem, we can obtain a linear time algorithm for deciding if a given

graph G can be laid out into L(∞) by using the algorithm PPD GENERAL described in Chap-

ter 2. If a full 2-proper-path-decomposition of G[S] is given, the algorithm obtained from

the proofs of Lemmas 3.18 and 3.19 provides a layout of G into L(|V (G)|) in O(|V (G)|)

time. For a graph G with ∆(G) ≤ 3 and ppw(G) ≤ 2, we can construct in linear time

a full 2-proper-path-decomposition of G from the output of the algorithm PPD GENERAL,

although the details are omitted here. Therefore, our algorithm can be modified so that

it lays out G satisfying the condition of Theorem 3.20 into L(|V (G)|) in O(|V (G)|) time.

3.6 Concluding Remarks

Let A(G) be the minimum area of a ladder into which an N -vertex graph G can be laid

out. We can easily modify the algorithm obtained from the proofs of Lemmas 3.18 and

3.19 so that it lays out G into L(N − 2) if G has at least 5 vertices with degree at least

2. Thus we have A(G) ≤ 2(N − 2). This is the tight bound for A(G) as described in the

following corollary.



CHAPTER 3. EMBEDDING INTO GRIDS 49

Corollary 3.21 If an N-vertex graph G has at least 5 vertices with degree at least 2 then

N ≤ A(G) ≤ 2(N − 2). Moreover, these are tight bounds, i.e. there exist graphs with

A(G) = N and graphs with A(G) = 2(N − 2).

Proof The lower bound is trivial. It is not difficult to see that the graph G shown in

Figure 3.2 has A(G) = 2(N − 2). 2

Figure 3.2: A graph G with A(G) = 2(N − 2).



Chapter 4

Embedding into Hypercubes

4.1 Introduction

The problem of efficiently implementing parallel algorithms on parallel machines has been

studied as the graph embedding problem, which is to embed the communication graph

underlying a parallel algorithm within the processor interconnection graph for a parallel

machine with minimal communication overhead. It is well-known that the dilation and/or

congestion of the embedding are lower bounds on the communication delay, and the

problem of embedding a guest graph within a host graph with minimal dilation and/or

congestion has been extensively studied.

We consider minimal congestion embeddings of graphs in hypercubes, which are well-

known as one of the most popular processor interconnection graphs for parallel machines.

It was pointed out by Kim and Lai [12] that minimal congestion embeddings are very

important for a hypercube that uses circuit switching for node-to-node communication

such as Intel iPSC/2 [19].

Let G be a graph and let V (G) and E(G) denote the vertex set and edge set of G,

respectively. We denote by ∆(G) the maximum degree of a vertex in G. A tree T is said

to be binary if ∆(T ) ≤ 3. An embedding 〈φ, ρ〉 of a graph G into a graph H is defined

by a one-to-one mapping φ : V (G) → V (H), together with a mapping ρ that maps each

edge (u, v) ∈ E(G) onto a path ρ(u, v) in H that connects φ(u) and φ(v). φ and ρ are

called the labeling and routing of an embedding 〈φ, ρ〉, respectively. The dilation of an

edge e ∈ E(G) under 〈φ, ρ〉 is the length of the path ρ(e). The dilation of an embedding

〈φ, ρ〉 is the maximum dilation of an edge in G. The congestion of an edge e′ ∈ E(H)

50
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under 〈φ, ρ〉 is the number of edges e in G such that ρ(e) contains e′. The congestion of an

embedding 〈φ, ρ〉 is the maximum congestion of an edge in H. The n-cube (n-dimensional

cube) Q(n) is the graph with 2n vertices labeled 0 through 2n−1 such that two vertices are

joined by an edge if and only if their labels in the binary representation differ by exactly

one bit. We assume that the bits are numbered 0 through n−1. An edge (u, v) in Q(n) is

called an i-edge (i-dimensional edge) if the labels of u and v in the binary representation

differ in the ith bit (0 ≤ i ≤ n − 1). It is well-known that Q(n) is n-connected.

Kim and Lai [12] showed that for a given N -vertex graph G and a hypercube it is NP-

complete to determine whether G is embeddable in the hypercube with unit congestion,

but G can be embedded with unit congestion in Q(6dlog Ne) if ∆(G) ≤ 6dlog Ne. They

posed the question of whether G can be embedded with unit congestion in a hypercube of

dimension less than 6dlog Ne. We answer the question by proving the following theorem.

Theorem 4.1 Every N-vertex graph G can be embedded with unit congestion in

Q(2dlog Ne) if ∆(G) ≤ 2dlog Ne.

The basic idea of the embedding is quite simple. We adopt a plain labeling of vertices and

a simple routing for edges, and the embedding can be constructed in polynomial time. We

do not know whether G can be embedded with unit congestion in a hypercube of dimension

less than 2dlog Ne. However, we can show that some graphs can be embedded with unit

congestion in hypercubes of asymptotically smaller dimensions. More precisely, we can

easily show by combining the results of Saad and Shultz [22] and Valiant [29] that every

N -vertex tree T with ∆(T ) ≤ 4 can be embedded with unit congestion in a hypercube

of dimension log N + O(1), and every N -vertex planar graph G with ∆(G) ≤ 4 can be

embedded with unit congestion in a hypercube of dimension log N + 2 log log N + O(1).

Bhatt, Chung, Leighton, and Rosenberg [2] showed that every N -vertex binary tree

can be embedded in Q(dlog Ne) with dilation and congestion both O(1). Although their

embedding is optimal to within a constant factor, there is much room for reducing the

dilation and/or congestion. They posed the question of finding a simple embedding of

binary trees into hypercubes with smaller dilation and/or congestion. Monien and Sud-

borough [18] partially answer the question by proving that every N -vertex binary tree

can be embedded in Q(dlog Ne) with dilation at most 5. We also partially answer the
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question by proving the following theorem.

Theorem 4.2 Every N-vertex binary tree can be embedded in Q(dlog Ne) with congestion

at most 5.

Theorem 4.2 is the first result that shows a simple embedding of a binary tree into an

optimal sized hypercube with explicit small congestion of 5. The embedding is quite

simple. We use the postorder labeling of vertices and a greedy (shortest path) routing for

edges, and the embedding can be constructed in polynomial time. It is interesting that

such a simple embedding guarantees a small congestion of 5. We do not know an N -vertex

binary tree that cannot be embedded in Q(dlog Ne) with unit congestion except K1,3 (a

complete bipartite graph). The author verified that every N -vertex binary tree except

K1,3 can be embedded in Q(dlog Ne) with unit congestion if N ≤ 16. In this connection,

based on some conjecture, Wagner [30] mentioned a heuristic algorithm which would

embed every N -vertex binary tree into Q(dlog Ne) with dilation and congestion both at

most 2.

The chapter is organized as follows. We prove Theorems 4.1 and 4.2 in Sections 4.2 and

4.3, respectively. In Section 4.4, we conclude with remarks on dilations of our embeddings

and some other remarks.

4.2 General Graph Embedding

Let V (G) = {0, 1, . . . , N−1} and n = dlog Ne. We assume that ∆(G) ≤ 2n. We construct

an embedding 〈φ1, ρ1〉 of G into Q(2n) with unit congestion. We define the labeling φ1 in

Section 4.2.1. In Section 4.2.2, we consider an arc coloring of a digraph associated with

G. We define the routing ρ1 in Section 4.2.3 based on the results in Section 4.2.2. We

analyze the congestion of embedding 〈φ1, ρ1〉 in Section 4.2.4.

4.2.1 Labeling φ1

The labeling φ1 : V (G) → V (Q(2n)) is defined as follows. For each u ∈ V (G), φ1(u) =

u(2n + 1). That is, the binary representation of φ1(u) is the concatenation of two copies

of the binary representation of u.
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4.2.2 Arc Coloring

In this section, we consider an arc coloring of a digraph associated with G which will be

used to define routing ρ1. The associated digraph D of G is the digraph obtained from G

by replacing each edge e of G by two oppositely oriented arcs with the same ends as e.

We denote the vertex set and arc set of D by V (D) and A(D), respectively. We denote

an arc a by [u, v] if u is the tail of a, and v is its head. Let Γ+
D(u) denote the set of arcs

with tail u, and d+
D(u) = |Γ+

D(u)|. Let Γ−
D(u) denote the set of arcs with head u, and

d−
D(u) = |Γ−

D(u)|. Since ∆(G) ≤ 2n, d+
D(u) ≤ 2n and d−

D(u) ≤ 2n for any u ∈ V (D).

We construct a coloring C of the arcs of D with two colors {0, 1} such that both

of the following two conditions are satisfied. We denote by C[u, v] the color of an arc

[u, v] assigned by C. Define that X0
C(w) = {[w, x] | [w, x] ∈ Γ+

D(w), C[w, x] = 0}, and

X1
C(w) = {[w, y] | [w, y] ∈ Γ+

D(w), C[w, y] = 1}.

Condition 4.1 For each edge (u, v) ∈ E(G), C[u, v] = 0 if and only if C[v, u] = 1.

Condition 4.2 For any vertex u ∈ V (D), |X0
C(u)| ≤ n and |X1

C(u)| ≤ n

Lemma 4.3 There exists a 2-arc coloring of D satisfying Conditions 4.1 and 4.2.

Proof It is well-known that G has an orientation D′ such that |d+
D′(u) − d−

D′(u)| ≤ 1

for any u ∈ V (D′). It follows that d+
D′(u) ≤ n and d−

D′(u) ≤ n for any u ∈ V (D′)

since ∆(G) ≤ 2n. Moreover, for each (u, v) ∈ E(G), exactly one of the associated arcs

[u, v] and [v, u] of D is contained in Γ+
D′(u) ∪ Γ−

D′(u). Thus, |Γ+
D(u) ∩ Γ+

D′(u)| ≤ n and

|Γ+
D(u) − Γ+

D′(u)| = |Γ−
D(u) ∩ Γ−

D′(u)| ≤ n for any u ∈ V (D). For each vertex u ∈ V (D),

we assign color 0 to the arcs in Γ+
D(u)∩Γ+

D′(u), and color 1 to the arcs in Γ+
D(u)−Γ+

D′(u).

The resulting 2-arc coloring of D satisfies Conditions 4.1 and 4.2. 2

4.2.3 Routing ρ1

For two vertices w and w′ of G, let m(w, w′) be the vertex of Q(2n) labeled with w2n +

w′. There exists a 2-arc coloring C of D satisfying Conditions 4.1 and 4.2 by Lemma

4.3. For a vertex w ∈ V (G), suppose that X0
C(w) = {[w, x1], [w, x2], . . . , [w, xk]}, and

X1
C(w) = {[w, y1], [w, y2], . . . , [w, yl]}, where k = |X0

C(w)| and l = |X1
C(w)|. k ≤ n
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and l ≤ n since C satisfies Condition 4.2. Let Q0
w(n) and Q1

w(n) be the n-dimensional

subcubes of Q(2n) induced by the vertices {w2n + i | 0 ≤ i ≤ 2n − 1} and the vertices

{i2n + w | 0 ≤ i ≤ 2n − 1}, respectively. Notice that φ1(w) ∈ V (Q0
w(n)) ∩ V (Q1

w(n))

and that m(w, w′) ∈ V (Q0
w(n)) ∩ V (Q1

w′(n)). Since Q0
w(n) is n-connected, there exist k

vertex-disjoint paths Pi in Q0
w(n) connecting φ1(w) and m(w, xi) (1 ≤ i ≤ k). Define that

P [w, xi] = Pi (1 ≤ i ≤ k). Also, since Q1
w(n) is n-connected, there exist l vertex-disjoint

paths P ′
j in Q1

w(n) connecting φ1(w) and m(yj, w) (1 ≤ j ≤ l). Define that P [w, yj] = P ′
j

(1 ≤ j ≤ l).

Now we define the routing ρ1. Let (u, v) be an edge of G. We may assume that

C[u, v] = 0 and C[v, u] = 1 since C satisfies Condition 4.1. Define the path ρ1(u, v)

connecting φ1(u) and φ1(v) in Q(2n) as the concatenation of P [u, v] connecting φ1(u) and

m(u, v) in Q0
u(n) and P [v, u] connecting φ1(v) and m(u, v) in Q1

v(n).

Notice that the embedding 〈φ1, ρ1〉 defined above can be constructed in polynomial

time.

4.2.4 Congestion of 〈φ1, ρ1〉

Lemma 4.4 The congestion of 〈φ1, ρ1〉 is one.

Proof It suffices to show that P [u, v] and P [s, t] are edge-disjoint for any distinct arcs

[u, v], [s, t] ∈ A(D).

Case 1 C[u, v] 6= C[s, t]. We may assume without loss of generality that C[u, v] = 0

and C[s, t] = 1. Since Q0
u(n) and Q1

s(n) are edge-disjoint, and P [u, v] and P [s, t] are

contained in Q0
u(n) and Q1

s(n), respectively, P [u, v] and P [s, t] are edge-disjoint.

Case 2 C[u, v] = C[s, t]. We assume that C[u, v] = C[s, t] = 0. The proof for the

case when C[u, v] = C[s, t] = 1 can be accomplished by a similar argument, and is

omitted.

Case 2.1 u 6= s. Since Q0
u(n) and Q0

s(n) are vertex-disjoint, and P [u, v] and P [s, t] are

contained in Q0
u(n) and Q0

s(n), respectively, P [u, v] and P [s, t] are edge-disjoint.

Case 2.2 u = s. Since [u, v], [u, t] ∈ X0
C(u), P [u, v] and P [u, t] are edge-disjoint by

definition.
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2

4.3 Binary Tree Embedding

Let T be an N -vertex binary tree and n = dlog Ne. We construct an embedding 〈φ2, ρ2〉

of T into Q(n) with congestion at most 5. We define 〈φ2, ρ2〉 in Section 4.3.1. In Section

4.3.2, we show some lemmas on the postorder numbering. In Section 4.3.3, we analyze

the congestion of 〈φ2, ρ2〉 based on the results of Section 4.3.2.

4.3.1 Embedding 〈φ2, ρ2〉

The embedding we propose here is quite simple. We choose a vertex of T with degree

at most two as the root of T , and we suppose that T is a rooted tree. Without loss

of generality, we assume that for each vertex u of T , the number of left descendants of

u (i.e., the number of vertices of left subtree rooted at u) is not less than that of right

descendants of u. Give each vertex of T a number from 0 through N − 1 according to the

postorder numbering of T so that the left most leaf has the number 0.

We define the labeling φ2 : V (T ) → V (Q(n)) as follows. For each u ∈ V (T ), φ2(u) is

the vertex of Q(n) labeled with the postorder number of u.

We define the routing ρ2 as follows. Let (u, v) be an edge of T , and φ2(u) < φ2(v). The

path ρ2(u, v) connecting φ2(u) and φ2(v) in Q(n) starts at φ2(u), passes through i-edges

in the increasing order of i such that the binary representations of φ2(u) and φ2(v) differ

in the ith bit. Thus, ρ2 is a greedy (shortest path) routing for edges.

Notice that the embedding 〈φ2, ρ2〉 defined above can be constructed in polynomial

time.

In what follows, for each u ∈ V (T ), we denote the postorder number of u and φ2(u)

simply by u. In addition, if we denote an edge of T by (u, v), we assume that u < v.

4.3.2 Properties of Postorder Numbering

The following lemmas on the postorder numbering will be used in the next section to

analyze the congestion of 〈φ2, ρ2〉.
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Lemma 4.5 For any distinct edges (u, v), (s, t) ∈ E(T ) (u ≤ s), u < s < t ≤ v or

u < v ≤ s < t.

Proof Since the vertices of T are labeled according to the postorder numbering, each

y ∈ V (T ) is adjacent to at most one vertex with a label more than y. Thus, u 6= s and

we may assume that u < s. Define that I = {x ∈ V (T ) | u < x < v}. I is the set of right

descendants of v if u is the left child of v, and I is the empty set if u is the right child of

v. It follows that any x ∈ I is adjacent only to vertices of I ∪ {v}. Thus, if s ∈ I then

t ∈ I ∪ {v}. This means that u < s < t ≤ v. If s 6∈ I, we have u < v ≤ s < t by the

assumption that u < s and the definition of I. 2

Lemma 4.6 For any distinct edges (u, v), (s, t) ∈ E(T ) (u < s < t ≤ v), t−s ≤ s−u+1.

Proof Since u < s < t ≤ v, u is the left child of v and both s and t are right descendants

of v. If s is the right child of t then t − s = 1 and the lemma is immediate. Thus, we

assume that s is the left child of t. Let mL and mR be the numbers of left descendants and

right descendants of t, respectively, and let w be the vertex with the minimum postorder

number in the descendants of s. It follows that

w − u ≥ 1. (4.1)

Since mL − 1 is the number of descendants of s and mL ≥ mR,

s − w = mL − 1 ≥ mR − 1. (4.2)

Since s is the left child of t,

mR = t − s − 1. (4.3)

From (4.1), (4.2), and (4.3), we have t − s ≤ s − u + 1, as desired. 2

4.3.3 Congestion of 〈φ2, ρ2〉

In this section, we show that the congestion of 〈φ2, ρ2〉 is no more than 5. We will prove

this by a series of lemmas. Let bit(m, k) denote the number (0 or 1) in the kth bit (k ≥ 0)

in the binary representation of a non-negative integer m. For each edge (u, v) ∈ E(T )

and an integer k (0 ≤ k ≤ n− 1), define that dir((u, v), k) = bit(v, k)− bit(u, k). If some
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paths in Q(n) contain an edge d ∈ E(Q(n)) then the paths are said to share d. We can

easily see the following lemma from the definition of ρ2.

Lemma 4.7 For any distinct edges (u, v), (s, t) ∈ E(T ), ρ2(u, v) and ρ2(s, t) share a

k-edge in Q(n) if and only if the following three conditions are satisfied.

Condition 4.3 dir((u, v), k) 6= 0 and dir((s, t), k) 6= 0.

Condition 4.4 If k < n − 1, the (n − k − 1)-bit strings consisting of the (k + 1)st bit

through the (n − 1)st bit in the binary representations of u and s are identical.

Condition 4.5 If k > 0, the k-bit strings consisting of the 0th bit through the (k − 1)st

bit in the binary representations of v and t are identical. 2

Lemma 4.8 For any distinct edges (u, v), (s, t) ∈ E(T ) such that

u < s < t < v and dir((u, v), k) = dir((s, t), k), (4.4)

if ρ2(u, v) and ρ2(s, t) share a k-edge in Q(n) then

t − s ≤ 2k, and (4.5)

v − u > 2k+1. (4.6)

Proof We have bit(u, k) = bit(s, k) 6= bit(v, k) = bit(t, k) from (4.4) and Lemma 4.7

(Condition 4.3). Thus, s − u < 2k and v − t ≥ 2k+1 by Lemma 4.7 (Conditions 4.4 and

4.5). Therefore, we have (4.5) by Lemma 4.6, and (4.6) since u < t. 2

Lemma 4.9 For any distinct edges (u, v), (s, t) ∈ E(T ) such that

u < s < t = v, (4.7)

if ρ2(u, v) and ρ2(s, t) share a k-edge in Q(n) then

t − s ≤ 2k. (4.8)

Proof Since t = v, bit(u, k) = bit(s, k) 6= bit(v, k) = bit(t, k) by Lemma 4.7 (Condition

4.3). Therefore, s−u < 2k by Lemma 4.7 (Condition 4.4). By Lemma 4.6, we have (4.8).

2
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Lemma 4.10 For any distinct edges (u, v), (s, t) ∈ E(T ) such that

u < s < t < v and dir((u, v), k) 6= dir((s, t), k), (4.9)

if ρ2(u, v) and ρ2(s, t) share a k-edge in Q(n) then

t − s ≤ 2k+1. (4.10)

Proof s− u < 2k+1 by Lemma 4.7 (Condition 4.4). Thus, we have (4.10) by Lemma 4.6.

2

Lemma 4.11 For any distinct edges (u, v), (s, t) ∈ E(T ) such that

u < v ≤ s < t, (4.11)

if ρ2(u, v) and ρ2(s, t) share a k-edge in Q(n) then

v − u < 2k+1. (4.12)

Proof s − u < 2k+1 by Lemma 4.7 (Condition 4.4). Since v ≤ s, we have (4.12). 2

Lemma 4.12 Any distinct edges (u, v), (s, t) ∈ E(T ) (u < s) satisfy exactly one of (4.4),

(4.7), (4.9), and (4.11).

Proof Immediate from Lemma 4.5. 2

Lemma 4.13 For any distinct edges (u, v), (s, t) ∈ E(T ) (u < s) such that ρ2(u, v) and

ρ2(s, t) share a k-edge in Q(n), (u, v) and (s, t) satisfy either (4.4) or (4.7) if and only if

dir((u, v), k) = dir((s, t), k) 6= 0, and (u, v) and (s, t) satisfy either (4.9) or (4.11) if and

only if dir((u, v), k) = 1 and dir((s, t), k) = −1.

Proof We first show the necessities. If (u, v) and (s, t) satisfy either (4.4) or (4.7) then

dir((u, v), k) = dir((s, t), k) 6= 0 from the proofs of Lemmas 4.8 and 4.9. If (u, v) and (s, t)

satisfy (4.9) then dir((u, v), k) = 1 and dir((s, t), k) = −1 by Lemma 4.7 (Conditions 4.3

and 4.4). Assume that (u, v) and (s, t) satisfy (4.11). If k < n− 1 then the (n−k− 1)-bit

strings consisting of the (k+1)st bit through the (n−1)st bit in the binary representations

of u, v, and s are identical by Lemma 4.7 (Condition 4.4). Thus, dir((u, v), k) = 1 and

dir((s, t), k) = −1 by Lemma 4.7 (Condition 4.3).

The sufficiencies are immediate from Lemma 4.12 and the necessities. 2
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For distinct edges e1, e2, . . . , and el in T , suppose that ρ2(e1), ρ2(e2), . . . , and ρ2(el)

share a k-edge d ∈ E(Q(n)). If dir(e1, k) = dir(e2, k) = . . . = dir(el, k) 6= 0 then

ρ2(e1), ρ2(e2), . . . , and ρ2(el) are said to share d in the same direction.

Lemma 4.14 For any distinct edges (u, v), (s, t), and (w, x) in T which are a matching,

ρ2(u, v), ρ2(s, t), and ρ2(w, x) do not share an edge in the same direction.

Proof We may assume without loss of generality that u < s < w. Assume that ρ2(u, v)

and ρ2(s, t) share a k-edge e ∈ E(Q(n)) in the same direction. Since (u, v) and (s, t)

are a matching of T , we have u < s < t < v from Lemma 4.13. Thus, it follows from

Lemma 4.8 that t− s ≤ 2k. If ρ2(s, t) and ρ2(w, x) share e in the same direction, we have

s < w < x < t from Lemma 4.13, and it follows from Lemma 4.8 that t − s > 2k+1, a

contradiction. 2

Lemma 4.15 For any distinct edges (u, v), (s, t), and (w, x) in T which are incident to

a vertex, ρ2(u, v), ρ2(s, t), and ρ2(w, x) do not share an edge in the same direction.

Proof Suppose that ρ2(u, v), ρ2(s, t), and ρ2(w, x) share an edge in the same direction.

Then we have v = t = x by Lemma 4.13. Therefore u < v, s < v and w < v. This is

a contradiction, however, since each y ∈ V (T ) is adjacent to at most two vertices with

labels less than y by the definition of the postorder numbering. 2

Let d be a k-edge of Q(n). We define that

H+(d) = {e | e ∈ E(T ), dir(e, k) = 1, ρ2(e) contains d},

H−(d) = {e | e ∈ E(T ), dir(e, k) = −1, ρ2(e) contains d}.

Lemma 4.16 |H+(d)| ≤ 3 and |H−(d)| ≤ 3 for any d ∈ E(Q(n)). That is, the congestion

of 〈φ2, ρ2〉 is at most 6.

Proof Suppose that d is a k-edge (0 ≤ k ≤ n− 1). If all edges in H+(d) are incident to a

vertex then |H+(d)| ≤ 2 by Lemma 4.15. We next consider the case that there are edges

(u, v), (s, t) ∈ H+(d) (u < s) which are a matching of T . Then we have u < s < t < v by

Lemma 4.13, and it follows from Lemma 4.8 that

v − u > 2k+1. (4.13)
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Suppose that there exists an edge (w, x) ∈ H+(d) − {(u, v), (s, t)}. By Lemma 4.14,

(w, x) is adjacent to (u, v) or (s, t).

If (w, x) is adjacent to (u, v) then x = v from Lemma 4.13. Thus we have x−w ≤ 2k by

Lemma 4.9 and (4.13). Since t < v = x, it follows from Lemma 4.13 that w < s < t < x

for (w, x) and (s, t). Thus, we have x−w > 2k+1 from Lemma 4.8, which is a contradiction.

Therefore, (w, x) is adjacent to (s, t), and x = t from Lemma 4.13. In addition, (w, x) is

the only edge in H+(d) adjacent to (s, t) by Lemma 4.15. Thus we conclude |H+(d)| ≤ 3.

Similarly, we can show that |H−(d)| ≤ 3. 2

Lemma 4.17 The congestion of 〈φ2, ρ2〉 is at most 5.

Proof |H+(d)| ≤ 3 and |H−(d)| ≤ 3 for any d ∈ E(Q(n)) by Lemma 4.16. If |H+(d)| ≤ 2

and |H−(d)| ≤ 2 for any d ∈ E(Q(n)) then the lemma is immediate.

Suppose first that |H+(d)| = 3 for a k-edge d ∈ E(Q(n)). Then H+(d) contains non-

adjacent two edges from the proof of Lemma 4.16. Let (u, v) be one of such edges which

satisfies (4.13). Then, we have v − u > 2k+1. Let (s, t) be an edge in H−(d). It follows

from Lemma 4.13 that we have either u < s < t < v or u < v ≤ s < t for (u, v) and (s, t).

However, if u < v ≤ s < t then v − u < 2k+1 from Lemma 4.11, which is a contradiction.

Thus, u < s < t < v and we have

t − s ≤ 2k+1 (4.14)

by Lemma 4.10. Suppose (w, x) and (y, z) are any distinct edges in H−(d) (w < y). We

have x − w ≤ 2k+1 from (4.14). It follows that x = z, for otherwise w < y < z < x

from Lemma 4.13, and we have x − w > 2k+1 by Lemma 4.8, which is a contradiction.

Therefore, |H−(d)| ≤ 2 by Lemma 4.15.

Suppose next that |H−(d)| = 3 for a k-edge d ∈ E(Q(n)). Then there exists an edge

(s, t) ∈ H−(d) such that t − s > 2k+1. Let (u, v) be an edge in H+(d). It follows from

Lemma 4.13 that we have either u < s < t < v or u < v ≤ s < t for (u, v) and (s, t).

However, if u < s < t < v then t − s ≤ 2k+1 from Lemma 4.10, which is a contradiction.

Thus, u < v ≤ s < t and we have

v − u < 2k+1 (4.15)
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by Lemma 4.11. Suppose (w, x) and (y, z) are any distinct edges in H+(d) (w < y). We

have x − w < 2k+1 from (4.15). It follows that x = z, for otherwise w < y < z < x

from Lemma 4.13, and we have x − w > 2k+1 by Lemma 4.8, which is a contradiction.

Therefore, |H+(d)| ≤ 2 by Lemma 4.15.

Thus, we conclude that the congestion of 〈φ2, ρ2〉 is at most 5. 2

4.4 Concluding Remarks

Although 〈φ1, ρ1〉 may have a large dilation, we can also construct an embedding of G

into Q(2n) with dilation at most 2n + 2 and unit congestion using a more sophisticated

routing. It should be noted that the dilation of 〈φ2, ρ2〉 is at most the diameter of the

hypercube since ρ2 is a shortest path routing.

Our analysis of the congestion of 〈φ2, ρ2〉 is tight possible. That is, there exist binary

trees for which the congestion of 〈φ2, ρ2〉 is exactly 5. For the tree shown in Figure 4.1,

the image paths of five bold edges by ρ2 share (10000, 10100) ∈ E(Q(6)). This is also true

when we choose any vertex in the right subtree (represented as the gray triangle) as the

root. Moreover, the same situation occurs if the root is not in the right subtree. Thus

the congestion of 〈φ2, ρ2〉 for the tree is independent of the choice of the root.
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1000117

11000 24

10110 22 10111 23

10100 20

10010 18 10011 19

21

1110028 same
as the left

17
vertices

3
vertices

Figure 4.1: An example with 58 vertices of binary trees for which the congestion of 〈φ2, ρ2〉
is 5.



Chapter 5

Conclusion

In this thesis, we investigate the small congestion embeddings of graphs into grids and

hypercubes.

In Chapter 2, we discuss the results on the proper-path-width which is used in Chapter

3. We show a necessary and sufficient condition for a graph with maximum vertex degree

at most 3 and with proper-path-width at most 2. Based on the characterization, we give

a practical linear time algorithm for computing a proper-path-decomposition with width

at most 2 of a graph with maximum vertex degree at most 3.

We do not have any polynomial time algorithm to compute an optimal proper-path-

decomposition of a given graph with bounded proper-path-width.

In Chapter 3, we show the complexity results on graph embeddings into grids. First,

we prove that Graph k-Layout is NP-complete for any fixed k ≥ 3. We do not know

the time complexity of Graph 2-Layout. Next, we consider the problem of laying

out a graph into a ladder, which is closely related with Graph 2-Layout, and show

a necessary and sufficient condition for a graph to be laid out into L(∞). Based on

the characterization and the algorithm described in Chapter 2, we show a linear time

algorithm which decides if a given graph G can be laid out into L(∞) and lays out G into

L(|V (G)|) whenever G satisfies the condition. In addition, we give the tight upper and

lower bounds for the minimum area of a ladder into which an N -vertex graph G can be

laid out.

It is still open (i) whether every N -vertex binary tree can be embedded into N -vertex

grid with O(1) congestion; (ii) whether any N -vertex binary tree can be embedded into
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N + o(1)-vertex grid with unit congestion.

In Chapter 4, we show some results on graph embeddings into hypercubes. First, we

prove that every N -vertex graph G can be embedded with unit congestion in Q(2dlog Ne)

if ∆(G) ≤ 2dlog Ne. Next, we prove that every N -vertex binary tree can be embedded

in Q(dlog Ne) with congestion at most 5. The latter is the first result that shows a

simple embedding of a binary tree into an optimal sized hypercube with explicit small

congestion of 5. The embeddings proposed here are quite simple and can be constructed

in polynomial time.

We do not know an N -vertex binary tree that cannot be embedded in Q(dlog Ne) with

unit congestion except K1,3.
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