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Chapter 1

Introduction

1.1 Backgrounds

The graph embedding problem is to embed a guest graph into a host graph with certain
constraints and/or optimization criteria, such as dilation, congestion (edge-congestion),
load, and expansion. A wide variety of problems in the field of parallel computation and
VLSI layout have been studied as the graph embedding problem.

In an actual parallel machine with a large number of processing elements, each pro-
cessing element is connected with the limited number of processing elements by connec-
tion links. In fact, the computational performance of a parallel machine depends on the
“structure” of interconnections of processing elements, and there are various structures
for parallel machines such as grids, hypercubes, and so on [17]. Therefore, it is very im-
portant for effective utilization of parallel machines to implement parallel algorithms on
the parallel machines efficiently.

The structure of a parallel machine can be represented by the graph called the pro-
cessor interconnection graph, whose vertices and edges represent processing elements and
connection links, respectively. The structure of a parallel algorithm also can be repre-
sented by the graph called the communication graph, whose vertices and edges represent
processes and communications between processes, respectively. Therefore, the problem
of efficiently implementing parallel algorithms on parallel machines can be modeled as
the graph embedding problem, in which guest graphs and host graphs represent com-
munication graphs and processor interconnection graphs, respectively. Moreover, we can

also consider the graph embedding problem in which guest graphs represent one class of
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processor interconnection graphs and host graphs represent the other class of processor
interconnection graphs. This is a model of the problem of efficiently implementing parallel
algorithms designed for one parallel machine into another parallel machine.

It is well-known that the dilation and/or congestion of the embedding are lower bounds
on the communication overhead. The load of the embedding is a lower bound on the com-
putation delay of processing elements, and it is significant when the number of processes
is more than that of processing elements, i.e. the expansion is less than one. Therefore,
the purpose of implementing parallel algorithms on parallel machines is to minimize the
dilation, congestion, load, and expansion. The results on graph embedding problems
associated with parallel computing have been studied in a great deal of literature e.g.
[4][1][2][18][5].

The problem of efficiently laying out VLSI systems onto VLSI chips have also been
extensively studied as the graph embedding problem [21][29][3][8][9][6]. In the graph
embedding problem associated with VLSI layout, a guest graph represents a planar (hy-
per)graph modeling connection requirements of a system, and a host graph usually repre-
sents a rectangular grid [29][8][9][6], a hexagonal array [9], or a path [11][31][14][15], which
model slots for modules and routing areas for wires on wafer. The dilation, congestion,
and expansion of the layout corresponds to wire length, wire congestion, and the layout
area, respectively. The layout into paths are often called the linear layout. In linear
layout, the dilation and the congestion are called bandwidth and cutwidth, respectively.
Frequently, the load and congestion are fixed at one as constraints of the layout since, in
certain design rules, at most one module and at most one wire can be placed on a slot
and a routing area, respectively. In addition, crossing number is often considered as one
of the optimization criteria or constraints of the layout [29][7].

In this thesis, we consider the minimal congestion embeddings of graphs with unit
load. It is suggested in [12] and [16] that the communication overhead is essentially
independent of dilation in architectures that utilizes circuit switching and “worm-hole”
routing, such as Intel iPSC/2, iPSC/860, Paragon, iWarp, and the CM-2, CM-5. In
particular, parallel algorithms implemented on such machines with congestion one can
achieve same performance as implemented with unit dilation. In VLSI layout, the minimal

congestion embeddings are crucial in the sense that the congestion is a lower bound for
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the number of layers. In addition, the minimal cutwidth linear layout is extensively

investigated [15][14][31].

1.2 Graph Embedding

Let G be a graph and let V(G) and E(G) denote the vertex set and edge set of G,
respectively. We denote by A(G) the maximum degree of a vertex in G. A tree T is said
to be binary if A(T) < 3. An embedding (¢, p) of a graph G into a graph H is defined by
a one-to-one mapping ¢ : V(G) — V(H), together with a mapping p that maps each edge
(u,v) € E(G) onto a path p(u,v) in H that connects ¢(u) and ¢(v). The congestion of
an edge €' € E(H) under (¢, p) is the number of edges e in G such that p(e) contains e’.
The congestion of an embedding (¢, p) is the maximum congestion of an edge in H. The
one dimensional n-grid denoted by M(n) is the graph with vertex set {0,1,...,n — 1}
and edge set {(i,i+1) | 0 <i<n—2}. A Cartesian product M(n;) x M(ny) is called
a two dimensional ny X ny-grid and denoted by M(ny,ns). We define that nins is the
area of M(ny,ns). M(2,n) is called an n-ladder and denoted by L(n). The embedding
of a graph G into a two dimensional grid H is called a layout of G into H if it has unit
congestion. A layout (¢, p) of G into H is said to be planarif p(e;) and p(ez) are internally
vertex-disjoint for any distinct ey, ey € E(G). The n-cube (n-dimensional cube) Q(n) is
the graph with 2" vertices labeled 0 through 2™ — 1 such that two vertices are joined by
an edge if and only if their labels in the binary representation differ by exactly one bit.
We can show by combining the results of Formann and Wagner [8] and Kramer and
Leeuwen [13] that the problem of determining, for a planar graph G with maximum vertex
degree at most 4 and integers m and n, whether G is embeddable in an m x n grid with
unit congestion is NP-hard. We consider the following problem, which is a variant of the

problem above.
GRAPH k-LAvouT

Instance A planar graph G with A(G) < 4 and an integer n.

Question Does there exist a layout of G into M (k,n)?
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We prove that the GRAPH k-LAYOUT is NP-complete for any fixed & > 3. GRAPH
1-LAYOUT can be trivially solved in polynomial time. Although we do not know the
complexity of GRAPH 2-LLAYOUT, we consider a closely related problem of laying out a
graph into a ladder. We show a necessary and sufficient condition for a graph to be laid

out into L(oo) as follows:

A graph G can be laid out into L(oo) if and only if A(G) < 3 and G[S] has
proper-path-width at most 2, where S = {v € V(G) | deg(v) > 2}.

In connection with the characterization, we describe a linear time algorithm for computing
the proper-path-decomposition of width at most 2. Based on the characterization and
the algorithm, we can obtain a linear time algorithm for deciding if a given graph can be
laid out into L(oco). In fact, we show a linear time algorithm for laying out a graph G
satisfying the condition into L(|V(G)|). We review the proper-path-width and summarize
our results on the proper-path-width in Subsection 1.3.

Kim and Lai [12] showed that for a given N-vertex graph G and a hypercube it is NP-
complete to determine whether G is embeddable in the hypercube with unit congestion,
but G can be embedded with unit congestion in Q(6[log N) if A(G) < 6[log N|. They
posed the question of whether G can be embedded with unit congestion in a hypercube

of dimension less than 6[log N]. We answer the question by proving the following:

Every N-vertex graph G can be embedded with unit congestion in Q(2[log N)
if A(G) < 2[log N1.

The basic idea of the embedding is quite simple. We adopt a plain labeling of vertices
and a simple routing for edges, and the embedding can be constructed in polynomial time.

Bhatt, Chung, Leighton, and Rosenberg [2| showed that every N-vertex binary tree
can be embedded in Q([log N]) with dilation and congestion both O(1). Although their
embedding is optimal to within a constant factor, there is much room for reducing the
dilation and/or congestion. They posed the question of finding a simple embedding of
binary trees into hypercubes with smaller dilation and/or congestion. Monien and Sud-
borough [18] partially answer the question by proving that every N-vertex binary tree
can be embedded in Q([log N]) with dilation at most 5. We also partially answer the

question by proving the following:
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Every N-vertex binary tree can be embedded in Q([log N|) with congestion

at most 5.

This is the first result that shows a simple embedding of a binary tree into an optimal
sized hypercube with explicit small congestion of 5. The embedding is quite simple. We
use the postorder labeling of vertices and a greedy (shortest path) routing for edges, and
the embedding can be constructed in polynomial time. It is interesting that such a simple

embedding guarantees a small congestion of 5.

1.3 Proper-Path-Decomposition

For a graph G, a sequence X = (Xy,...,X,) of subsets of V(G) is called a proper-path-

decomposition of G if X satisfies the following conditions.

(a)  XiZX; (i #J);

(b)  Uizicy Xi = V(G);

(¢)  VY(u,v) € E(G) Jist. u,ve X
(d)

(e)

XoNX. CXy(1<a<b<e<r)

X, N X < X —2if | Xy >2(1<a<b<c<r)

The width of X is max<;<, |X;| — 1. The proper-path-width of G is the minimum width
over all proper-path-decompositions of G, and denoted by ppw(G). A proper-path-
decomposition of G is said to be optimal if it has width of ppw(G). A proper-path-
decomposition of width k is called a k-proper-path-decomposition. Proper-path-width
was introduced by Takahashi, Ueno, and Kajitani [23] as a variant of path-width intro-
duced by Robertson and Seymour. The proper-path-width not only plays an important
role for the graph layout into ladders as mentioned in Subsection 1.2, but also has various
applications such as VLSI layout, search games [25], and other graph embedding problems
[27][28].

It is shown in [25] that the problem of determining, given a graph G and an integer
k, whether ppw(G) < k is NP-complete, while the problem can be solved in polynomial

time for trees. In fact, the optimal proper-path-decomposition of an N-vertex tree can
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be computed in O(N log N) time. Although it is known that the problem is in P if & is
a fixed integer [24], we do not have an explicit polynomial time algorithm to solve the
problem for a fixed integer k£ > 3. If £ = 1 then the problem can be solved trivially in
polynomial time. This is because G has proper-path-width 1 if and only if G is a collection
of paths. We have an O(N log® N) time algorithm to solve the problem for k = 2 based on
the minor theory, which is mentioned in [24]. However, the algorithm is neither practical
nor constructive since the time complexity involves an enormous constant factor and the
algorithm provides no proper-path-decomposition. As mentioned in Subsection 1.2, it is a
key procedure in the application to the graph layout into ladders to compute the proper-
path-decomposition of width at most 2 of a given graph with maximum vertex degree at
most 3.

We show a necessary and sufficient condition for a graph with maximum vertex degree
at most 3 to have proper-path-width at most 2, and based on the condition, we give a
practical linear time algorithm for computing a proper-path-decomposition of width at

most 2.

1.4 Thesis Outline

This thesis is organized as follows.

In Chapter 2, we discuss the results on the proper-path-width which will be used in
Chapter 3. We characterize graphs with maximum vertex degree at most 3 and proper-
path-width at most 2. Based on the characterization, we construct a practical linear time
algorithm for computing a proper-path-decomposition with width at most 2 of a graph
with maximum vertex degree at most 3.

In Chapter 3, we show the complexity results on graph embeddings into grids. We
first state GRAPH k-LAYOUT problem. To prove that GRAPH k-LAyouT (k > 3) is
NP-complete, we construct a pseudo-polynomial reduction from 3-Partition which is well
known to be NP-complete in the strong sense to GRAPH k-LAYOUT for k > 3. Moreover,
based on the results on channel routing problem, we show that GRAPH k-LAYOUT is in
NP.

We next consider the problem of laying out a graph into a ladder, which is closely
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related with GRAPH 2-LAYOUT, and show a necessary and sufficient condition for a graph
to be laid out into L(co). Based on the characterization and the algorithm described in
Chapter 2, we construct a linear time algorithm which decides if a given graph G can be
laid out into L(oco) and lays out G into L(|V(G)|) whenever G satisfies the condition. In
addition, we estimate the tight upper and lower bounds for the minimum area of a ladder
into which an N-vertex graph G can be laid out.

In Chapter 4, we show some results on graph embeddings into hypercubes. First, we
prove that every N-vertex graph G can be embedded with unit congestion in Q(2[log N')
if A(G) < 2[log N]. This is done by constructing an embedding (¢, p;) of G into
Q(2[log N|) with unit congestion. Next, we prove that every N-vertex binary tree can
be embedded in Q([log N|) with congestion at most 5. This is done by constructing
an embedding (@9, po) of a binary tree into Q([log N|) and analyzing the congestion of
(@2, p2). In addition, this analysis is shown to be tight possible by constructing an example
of binary trees for which the congestion of (@9, ps) is 5.

A summary of the results is given in Chapter 5.



Chapter 2

Proper-Path-Decomposition of
Width 2

2.1 Introduction

Let G be a graph and let V(G) and E(G) denote the vertex set and edge set of G,
respectively. For a graph G, a sequence X = (Xy,...,X,) of subsets of V(G) is called a

proper-path-decomposition of G if X satisfies the following conditions.
Condition 2.1
(a) Xi € X (i #j);
(b) Ui<i<r Xi = V(G);
(c) for any (u,v) € E(G), there exists an i such that u,v € X;;
(d) foralla, b, and c with1 <a<b<c<r, X,NX.C Xy,
(e) foralla, b, and c with1 <a<b<ec<r, | X,NX| <|Xp| —2if | Xp| > 2.

The width of X is maxj<;<,|X;| — 1. The proper-path-width of G is the minimum
width over all proper-path-decompositions of G, and denoted by ppw(G). A proper-
path-decomposition is said to be optimal if it has width of ppw(G). A proper-path-
decomposition of width k is called a k-proper-path-decomposition. Proper-path-width
was introduced by Takahashi, Ueno, and Kajitani [23] as a variant of path-width in-
troduced by Robertson and Seymour [20]. The proper-path-width not only plays an
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important role for the graph layout into ladders as mentioned in Subsection 1.2, but also
has various applications such as VLSI layout, search games [25], and graph embeddings
[27][28].

It is shown in [25] that the problem of determining, given a graph G and an integer
k, whether ppw(G) < k is NP-complete, while the problem can be solved in polynomial
time for trees. In fact, the optimal proper-path-decomposition of an N-vertex tree can
be computed in O(N log N) time [26]. Although it is known that the problem is in P if &
is a fixed integer [24], we do not have an explicit polynomial time algorithm to solve the
problem for a fixed integer £ > 3. If £ = 1 then the problem can be solved trivially in
polynomial time. This is because G has proper-path-width 1 if and only if G is a collection
of paths. We have an O(N log® N) time algorithm to solve the problem for k = 2 based on
the minor theory, which is mentioned in [24]. However, the algorithm is neither practical
nor constructive since the time complexity involves an enormous constant factor and the
algorithm provides no optimal proper-path-decomposition. As mentioned in Subsection
1.2, it is a key procedure for constructing the efficient graph layout into ladders to compute
the proper-path-decomposition of width at most 2 of a given graph with maximum vertex
degree at most 3.

We show a necessary and sufficient condition for a graph with proper-path-width at
most 2, and based on the condition, we give a practical linear time algorithm for computing

a proper-path-decomposition of width at most 2.

2.2 Preliminaries

For a sequence X = (X, Xs,...,X,) of elements, X; and X, are called the head of
X and its tail, respectively. We denote the sequence without elements by nul. For
sequences X = (X, Xo,...,X,) and Y = (Y1,Ys,...,Y,), we define that X + )Y =
(X1, Xo, ..., X, Y1,Ys, ..., Y,). For a sequence X = (Xi,X,...,X,) of subsets of a
set Q and W C Q, we define that Y UW = (X UW, Xo UW,..., X, UW) and
XNW=(XinW, XonW,..., X, NW).

N¢(v) is the set of vertices adjacent to a vertex v in a graph G. I'¢(v) is the set of

edges incident to a vertex v in G. |I'¢(v)| is called the degree of v and denoted by deg(v).
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Let A(G) = max{deg,(v) | v € V(G)}. For U C V(G), let G[U] be the subgraph of G
induced by U, and let G — U denote G[V (G) — U]. Similarly, for S C E(G), let G[S] be
the subgraph of G induced by S, and let G — S denote the graph obtained from G by
deleting S. For graphs G and H, G U H is the graph with vertex set V(G) U V(H) and
edge set E(G)U E(H), and GN H is G[V(G) NV (H)], or H[V(G) NV (H)]. Although
a path is a graph, we often denote a path by a sequence of vertices in which consecutive
two vertices are adjacent in the path.

A vertex v of GG is a cut vertez if E(G) can be partitioned into two nonempty subsets
E; and E5 such that G[E;] and G[E;] have just the vertex v in common. A connected
graph that has no cut vertices is called a block. Every block with at least three vertices is
2-connected. A block of a graph is a subgraph that is a block and is maximal with respect
to this property.

A planar graph is outer planar if it has a planar drawing in which the outer region
includes all of its vertices. An edge is outer if it is included in the outer region, and is
inner otherwise. For a subset U = {uy,...,u;} of vertices of an outer planar graph G,
G[U] is an end-region of G if (u;,u;r1) (1 < i <1 —1) is an outer edge, u; and u; are
adjacent, and u; (1 < ¢ <) is incident to no inner edge. Any 2-connected outer planar
graph has at least one end-region, and it has at least two end-regions if it has an inner
edge.

A graph H is a minor of a graph G if H is isomorphic to a graph obtained from a
subgraph of G' by contracting edges. A family F of graphs is said to be minor-closed if
the following condition holds: If G € F and H is a minor of G then H € F. A graph
G is a minimal forbidden minor for a minor-closed family F of graphs if G ¢ F and any
proper minor of G is in F. F is characterized by the minimal forbidden minors for F.
That is, a graph G is in F if and only if no minimal forbidden minor for F is a minor of
G. For a positive integer k, the family P of graphs with proper-path-width at most k is
minor-closed. All the minimal forbidden minors for P, are K3 and K; 3 [23], and all for

P, are 36 graphs shown in Figure 2.1 [24].
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2.3 Algorithm for Proper-Path-Decomposition of
Width 2

In this section, we show a necessary and sufficient condition for a graph with maximum
vertex degree 3 to have proper-path-width 2, and based on the condition, we give a
practical linear time algorithm for computing a proper-path-decomposition of width at
most 2.

Suppose that G’ is a graph obtained from a graph G by deleting self-loops and replacing
multiple edges with a single edge. A proper-path-decomposition of G’ is also that of G,
and vice versa, by definition. Therefore, an optimal proper-path-decomposition of G’ is
also that of G. The optimal proper-path-decomposition of a graph can be obtained by
concatenating optimal proper-path-decompositions of connected components. From these

facts, we assume that the graphs considered in this section are simple and connected.

2.3.1 Binary Tree

An algorithm for computing the optimal proper-path-decomposition of an N-vertex tree
T is shown in [25]. Since this algorithm computes ppw(T') in O(N) time and provides
the optimal proper-path-decomposition of 7" in O(Nppw(T)) time, we can compute the
2-proper-path-decomposition of 7" with ppw(T") = 2 in linear time.

In this subsection, we show algorithms for computing the proper-path-decomposition
of a binary tree with width at most 2 satisfying some conditions. These algorithms will

be used to construct the algorithm for general graphs.

Lemma 2.1 For a path P = (po,...,p), there exists a 1-proper-path-decomposition X =
(X1,...,X,) of P such that py € X1 and p, € X,.

Proof Let X = (Xy,...,X;) with X; = {pi—1,ps} 1 < i < Difl >1, X = ({po})
otherwise. X is clearly a desired proper-path-decomposition. a
Algorithm PPD_PATH shown in Figure 2.2 is the formal description of the procedure written
in the proof of Lemma 2.1. Trivially, PPD_PATH can be executed in linear time.

The following lemma is a characterization of a tree with proper-path-width at most

k, and is a basis for our algorithm for binary trees.
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Procedure PPD_PATH ( P )

Input: a path P = (po,p1,--.,p1);
Output: the 1-proper-path-decomposition (X1, Xs,...,X,) of P such that

po € X7 and p; € X,;
1. if [ =0 then return ( ({po}) );
2. foreach 1 <17 </[do
Xi = {pi—1,pi};
endfor ;
3. return ( (X1, Xo,..., X)) );
End

Figure 2.2: Algorithm for computing the 1-proper-path-decomposition of a path

Lemma A (Tayu and Ueno [28]) For a tree T' and an integer k > 2, ppw(T) < k if
and only if there exists a path P in T such that ppw(T —V(P)) <k — 1. 0

k-spine of T is a path satisfying the condition of Lemma A.

Lemma 2.2 For a binary tree T with ppw(T) = 2 and its 2-spine P = (po,...,p)
such that degyp(po) = degr(p) = 1, there exists a 2-proper-path-decomposition X =
(X1,...,X;) of T such that po € X1 — Uyci<, Xi and pp € Xy — Uj<ier Xi

Proof Since P is a 2-spine of T, it follows from Lemma A that ppw(T — V(P)) < 1.
Thus, each connected component of 7" — V(P) is a path. For 0 < i < [, at most one
connected component H; of T'— V(P) has a vertex adjacent to p; since A(7) < 3. Let
I'={i|0<i<l,degp(p;) = 3}. We define the sequence X of subsets of V(T') as follows:

X = (51) + Vi + (52) + -+ (S1-1) + Vi1 + (S), where

for 1<i<l, 8 = { (pio,piy UV(H,) ifi€ I and |V(H)| =1

{pi—1,pi} otherwise
: | PPD_PATH(H,;) U{p;} ifie [l and |V(H;)| > 2
for 1 <@ <1, Vi = { nul otherwise

We show that X is a desired 2-proper-path-decomposition. The following claim can be

easily observed from the definition of X.

Claim 2.3
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1. po appears in S.
For 0 < <, p; appears in S;_1 N S; and every element of Y;.

pi appears in S;.

Forie I and |V(H;)| > 2, v € V(H;) appears in at most two consecutive elements
of Vi.
5. Foriel and |V(H;)| =1, v e V(H;) appears in S;.

It is clear by Claim 2.3 that X satisfies (a), (b), and (c¢) in Condition 2.1. Moreover,
X satisfies (d) in Condition 2.1 since we can observe that any vertex in 7" appears in
consecutive elements of X. In what follows, we show that X" satisfies (e) in Condition 2.1.
If X,NX,=0forall a, b, and ¢ with 1 < a < b < ¢ < r then the condition is clearly
satisfied. Thus, we assume that there exist a and ¢ with 1 <a+1 < ¢ —1 < r such that
X, N X, # 0. Since any vertex in V(T) — {p; | i € I,|V(H;)| > 2} appears in at most
two consecutive elements of X, there exists p; such that ¢ € I and p; € X, N X.. Since
(X,, ..., X.)is asubsequence of (S;_1)+Y;+(S;), no vertices in V(P)—{p;} are contained
in X, N X.. Moreover, each element of }; has just three elements since |V (H;)| > 2. For
any b with a < b < ¢, we have that |X,| = 3 since X} is an element of };. Thus, we have
that | X, N X.| = {pi}| =1 < |Xp| — 2 for any b with a < b < ¢. Therefore, X' satisfies
(e) in Condition 2.1. It is clear that X has width at most 2 and that py € X; — U<, X;
and p; € X, — Uj<icr Xi. Therefore, X' is a desired proper-path-decomposition. O

We describe Algorithm PPD_SPINE based on Lemma 2.2 in Figure 2.3. The following

corollary is immediate.

Corollary 2.4 Given a binary tree T and a 2-spine P = (po,...,p) of T, PPD_SPINE
outputs in linear time the proper-path-decomposition (X1, ..., X,) of T with width at most
2 such that po € X1 —Ui<i<, Xi and pp € Xy — Uy<jop Xi. O

2.3.2 2-Connected Graph

In this subsection, we show a necessary and sufficient condition for a 2-connected graph
G with A(G) < 3 to have ppw(G) = 2, and based on this condition, we give an algorithm

for computing a 2-proper-path-decomposition of G.
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Procedure PPD_SPINE (7', P )
Input: a binary tree T
a 2-spine P = (pg,...,p;) of T}
Output: the proper-path-decomposition (X7,..., X, ) of T with width at most 2
such that po € X1 — U i<, Xi and p € X; — Uj<jp X5

1. fori:=1toldo
Si == A{pi-1,pi };
endfor ;
2. fori:=1%tol—1do

if degy(p;) = 3 then
(a) let H; be the connected component in 7' — V(P) which has a vertex
adjacent to p; in T
(b) if |V(H;)| =1 then
o Si={pi—1,pi} UV(H;);
o Y, := nul;
else
e ), 1= PPD_PATH(H,) U {p; };
else
(a) Vi = nul;
endfor ;
3. X = (51) + Y1+ (S2) + -+ + (Si—1) + Vi1 + (S1);
4. return ( X );

End

Figure 2.3: Algorithm for computing the 2-proper-path-decomposition of a binary tree
with its 2-spine.
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Lemma 2.5 For a 2-connected graph G with A(G) < 3, ppw(G) = 2 if and only if G is

outer planar and has at most two end-regions.

Proof First, we assume that ppw(G) = 2. Then none of P(x02020), K4, and Ky is a
minor of G. It is well-known that the family of outer planar graphs is minor-closed and
that K, and K, 3 are the minimal forbidden minors for the family of outer planar graphs.
Thus, G is outer planar. Moreover, G has at most two end-regions since P(z0x0x0) is

not a minor of G.

Next, we assume that G is outer planar and has at most two end-regions. Let e, and

e; be any edges in G satisfying the following condition:

Condition 2.2

(a) es and e; are outer edges contained in distinct end-regions if G has two end-regions.

(b) es and e; are a matching of G if |V(G)| > 4.

It suffices to show the following claim.

Claim 2.6 There exists a 2-proper-path-decomposition X = (X1,...,X,) of G such that

e, € E(G[Xl])—E(G{lu< X)) and (2.1)
e € E(G[XT])—E(G[KU Xi]). (2.2)

We prove this claim by induction on |V(G)].
If |V(G)| = 3 then X = (V(G)) is clearly a desired proper-path-decomposition.

Assume that |V(G)| = 4. Since G is outer planar, at least one vertex s incident to
es has degree 2. Let t be the vertex not adjacent to s. Since G is simple, it follows that
degy(t) = 2. Moreover, t is incident to e;. Then X = (V(G) — {t}, V(G) — {s}) is clearly

a desired proper-path-decomposition.

We assume that the claim holds for any G’ with |V (G)|—1 > 4 vertices and for any pair
of edges in G’ satisfying Condition 2.2. Since |V(G)| > 5, there exists e € {eg, e;} which is
incident to a vertex s such that deg.(s) = 2 and that s is not adjacent to an end-vertex of

e € {es,e;} — {e}. Suppose that e = (s,y) and Ng(s) — {y} = {z}. Let G’ be the graph
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obtained from G by contracting the edge (s, z). We denote by = the resulting vertex. G’
is clearly an outer planar graph with at most two end-regions. By the definitions of e and
¢/, (z,y) and €’ are distinct edges in G’ satisfying Condition 2.2. Therefore, by induction
hypothesis, there exists a 2-proper-path-decomposition Y = (Y7,...,Y]) of G’ such that

() € B@M) - B@T U v and (2.3)
¢ e BE) - @Y v (2.4)

We show that X = ({s,x,y}) + Y is a desired 2-proper-path-decomposition of G.

We first show that X satisfies (2.1) and (2.2). Since
s2Y, (1<i<l), (2.5)

we have that

e € E(G[{s,z,y}]) - E(G[ U Yi)). (2.6)

1<i<l

It follows from (2.4) and (2.6) that X satisfies (2.1) and (2.2).

We next show that X' is a 2-proper-path-decomposition of G. X' clearly satisfies (a),
(b), and (c) in Condition 2.1. Since ) is a proper-path-decomposition of G’, it follows
that

Y.nY, C YV, (1<a<b<ce<Ll), (2.7)
YonY < |V|—2(1<a<b<e<l).

Thus, to show that X satisfies (d) and (e) in Condition 2.1, it suffices to prove that
{s,2,y} NY, C Y, and |{s,z,y} NY| < |V} =2 for 1 <b < ¢ <. Tt follows from (2.3)
that

{z,y} € Y, (2.8)
{z.yy ¢ U Y (2.9)
1<i<l

It follows from (2.5), (2.7), and (2.8) that {s,z,y} NY, ={z,y} NY. CYiNY. CY, for
1 <b<c< I It follows from (2.5) and (2.9) that [{s,z,y} NY,| < 1for 1 < ¢ < 1.
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Moreover, we have that |Y;| = 3 for 1 < ¢ < [ by the definition of ). Thus, we have
H{s,z,y} Y| < |V —2for 1 <b<ec<I

Therefore, X is a desired 2-proper-path-decomposition of GG, and we conclude that the

lemma holds. O

We describe in Figure 2.4 Algorithm PPD_2CG based on Lemma 2.5.

Corollary 2.7 Given an outer planar graph G with at most two end-regions and any
edges es and e; in G satisfying Condition 2.2, PPD_OPG outputs in linear time the 2-
proper-path-decomposition (X1, ..., X,) of G satisfying (2.1) and (2.2).

Proof The correctness of PPD_0OPG is immediate from the proof of Lemma 2.5. PPD_0PG
involves |V (G)| recursive calls each of which consists of constant time operations. There-

fore, PPD_OPG can be executed in linear time.

O

It is well-known that we can determine if a given graph is outer planar in linear time.

Therefore, PPD_2CG can be executed in linear time by Corollary 2.7.

2.3.3 General Graph

In this subsection, we show a necessary and sufficient condition for a general graph G
with A(G) < 3 to have ppw(G) < 2 based on the results described in Subsection 2.3.1
and 2.3.2, and we give an algorithm for computing a 2-proper-path-decomposition of G.

The following lemma will be used extensively throughout this subsection.

Lemma 2.8 Let X = (X4,...,X,) be a 2-proper-path-decomposition of a graph G with
ppw(G) = 2. For a path P connecting s € Xy and t € X,., every connected component of
G — V(P) is a path.

Proof Suppose that Y = (Y7,...,Y,) is X N (V(G) — V(P)). It suffices to show that
the sequence )’ obtained from ) by deleting redundant elements is a 1-proper-path-
decomposition of G — V(P). Y clearly satisfies (b), (c), and (d) in Condition 2.1 for
G — V(P). Thus, ) satisfies (a), (b), (¢), and (d) in Condition 2.1 for G — V(P). To
show that ) satisfies (e) in Condition 2.1, it suffices to prove that both of the following
statements holds: (i) |V;| < 2 forany 1 <i <r; (ii) Y, =Y. or |Y,NY.| =0 for all a



CHAPTER 2. PROPER-PATH-DECOMPOSITION OF WIDTH 2 19

Procedure PPD_2CG ( G )
Input: a 2-connected graph G}
Output: the 2-proper-path-decomposition (X1,...,X,) of G;

1. if G is not outer planar then reject ;
2. if G has more than two end-regions then reject ;
3. let e, and e; be any edges satisfying Condition 2.2;

4. return ( PPD_OPG(G, €5, €) );

End
Procedure PPD_OPG ( G, es, € )
Input: an outer planar graph GG with at most two end-regions;

edges e, and e; satisfying Condition 2.2;
Output: the 2-proper-path-decomposition (X1,...,X,) of G satisfying (2.1) and (2.2);

1. if |V(G)| = 3 then return ( (V(Q)) );
2. if |V(G)| =4 then

e let s be a vertex incident to eg such that degg(s) = 2;
e let t be the vertex not adjacent to s;
o X:=(V(G) - {t},V(G) — {s});

e return ( X );

3. let e € {eg, e} which is incident to a vertex that s such that degs(s) = 2 and s is not
adjacent to an end-vertex of ¢’ € {es, e} — {e};

4. let y be the vertex joined to s by e and = € Ng(s) — {y};
5. let G’ be the graph obtained from G by contracting (s, z);
6. return ( ({s,z,y}) +PPD_OPG(G’, (z,y),€t) );

End

Figure 2.4: Algorithm for computing the 2-proper-path-decomposition of a 2-connected
graph.
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and c with 1 <a+1<c—1<r. Every X; (1 <i <r) contains a vertex of P since
end-vertices s and ¢ of P are contained in X; and X, respectively, and X satisfies (c¢) and

(d) in Condition 2.1. Since X has width 2, we have that |Y;| <2, i.e. (i) holds.

Since X satisfies (e) in Condition 2.1, we have that
IX,NX.|<|X)|—2<3-2=1 (2.10)

for any a, b, and c with 1 <a<b<c<r. Fora, b, and cwithl1 <a<b<c<r,let
Pa € XoNV(P), pp € Xy NV (P), and p. € X. NV (P).

Case 1 p, = p.. It follows from (2.10) that | X, N X.| = 1. Thus, we have |Y,NY,| = 0.

Case 2 p, # p.. We assume that |Y,NY,| = 1, and show that Y, =Y.. Let v € Y,NY,. It
follows from (d) in Condition 2.1 that v € Y}, C X,. Now we show that X, — (V(P)U
{v}) = 0. We prove this by contradiction. Assume that X,—(V(P)U{v}) # (). Since
| Xy < 3, it follows from the assumption that X, N V(P) = {p,}. Since P connects
s € X; and t € X,, it follows from 1 < b < r that p, € X1 N Xp,1. Moreover,
since v € Y, NY, and X satisfies (d) in Condition 2.1, we have that v € X, 1 N Xp41.
Thus, we have that | X, 1 N Xp1| > [{ps, v}| = 2, contradicting (2.10). Therefore, it
follows that X, — (V(P) U {v}) = 0. Since this holds for any b with a < b < ¢, we
have Y, =Y,y =--- =Y, = {v}.

Therefore, (ii) holds. O

Throughout this subsection, we assume that A(G) = 3. Let U be the set of cut
vertices of G. We define that A = U — U’, where U’ is the set of cut vertices contained
only in blocks each of which consists of a single edge. A vertex contained in A is called
a connection point of G. Since a connection point of G is a cut vertex of G, F(G) can
be partitioned into disjoint sets E,. .., E,, such that G[E;] and G[E}] share at most one
connection point of G for any distinct 7 and j with 1 < ¢ < mand 1 < j < m. Let
D ={G[E] | 1 <i < m}. We define that H is the set of 2-connected components in
D. A component of D is called a tree component of G if the component is a tree with
maximum vertex degree 3. 7 denotes the set of tree components of G. A component of
D is called a path component of GG if the component is a path. P denotes the set of path

components of G.
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Now we show a necessary and sufficient condition for G' to have ppw(G) < 2.

Theorem 2.9 For a graph G with A(G) < 3, ppw(G) < 2 if and only if G has a sequence
C =(C1,Cs,...,Cp) of distinct components in D and a sequence A = (ag, a1, . ..,ay) of
distinct vertices in V(G) such that the following condition is satisfied. Let D' =D —{C} |
1 <i<m}.

Condition 2.3
(a) V(C) NV (Cip1) ={a;} for 1 <i<m, ag € V(C}), and a,, € V(Cp,).
(b) degea(ap) <2 and degq(ayn,) < 2.

(c) For1 <i <m, if C; € H, then C; is an outer planar graph with at most two

end-regions. Moreover, each end-region contains a;_1 or a;.

(d) Forl<i<m,ifC; €T, then the path in C; connecting a;_1 and a; is a 2-spine
Of Cz

(e) DDCP

(f) There exists a one-to-one mapping f : D' — {i | 1 <i < m} x {0, 1} satisfying

the following statement.

For P e D', f(P)= (i,7) if and only if C; € H and there exists x such
that x is an end vertex of P and that (z,a,—;) € E(C}). (*)

Proof of Necessity for Theorem 2.9

We first show the necessity. Condition 2.3 is trivially satisfied if ppw(G) =1 or |[V(G)| <
3. Moreover, if |D| = 1 then there exist ag and a; satisfying Condition 2.3 for C = (D)
(D € D) by Lemmas A and 2.5. Therefore, we assume that ppw(G) =2, |V(G)| > 4, and
|D| > 2. There exists a 2-proper-path-decomposition X = (Xi,...,X,) of G. Since X
satisfies (a) in Condition 2.1 and |V (G)| > 4, there exist s € X; — Xs and t € X, — X,._;.
It should be noted that H # 0 from the assumption that |D| > 2.

Claim 2.10 deg.(s) < 2 and degq(t) < 2.
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Proof |X;| < 3 and |X,| < 3 since X has width 2. Thus, we have deg.(s) < 2 and
degq(t) < 2 since X satisfies (c¢) in Condition 2.1. O

We define that S is a path connecting s and t.
Claim 2.11 For H € H, HN S is a path with at least two vertices.

Proof 1t suffices to show that |V(H) NV (S)| > 2 and that H N S is connected.

We first show that |V(H) N V(S)| > 2. We prove this by contradiction. If V(H) N
V(S) = 0, then G — V(S) has a cycle since H has a cycle. However, this contradicts
Lemma 2.8. We next assume that V(H) N V(S) = {z}. If x € V(S) — {s,t} then we
have degg(x) = degy(x) + degg(x) > 2+ 2 = 4. However, this is a contradiction since
A(G) = 3. If x € {s,t} then we have deg.(z) = degy () +degg(z) > 2+1 = 3. However,
this also contradicts Claim 2.10. Thus, we have that |V (H) NV (S)| > 2.

We next show that HNS' is connected. We again prove this by contradiction. Suppose
that H N S has disjoint connected components P, and P,. Since P, and P, are vertex-
disjoint subgraphs of S and S is connected, there exists a path P; connecting the end-
vertex of Py and that of P, in S — (E(P1) U E(P)). H U Py is clearly a 2-connected
component of GG. Since P; and P, are disjoint connected components of H NS, P; has
an edge e ¢ E(H). This means that H is a proper subgraph of H U P;. However, this
contradicts the fact that H is a block of G. Therefore, H N S is connected. O

Suppose that H = {Hy, ..., H;} and that s; and ¢; are end-vertices of the path H; NS
for 1 <i <. Since A(G) =3, H; and H; are vertex-disjoint for any distinct H;, H; € H
(1 <i<j<l). Thus, H;NS and H;NS are also vertex-disjoint. We may assume without
loss of generality that d(s1) < d(t1) < d(s2) < d(t2) < --- < d(s;) < d(t;), where d(v) is
the number of edges of the subpath of S connecting s and v € V(.S). We define that R;
is the subpath of S connecting ¢; and s,41 (1 <i <1). Since E(H;) N E(R;) = ( for any i
and j with 1 <4 </l and 1 < j <, there exists a component K; € 7 UP containing R;
as a subgraph for 1 < ¢ < [. Similarly, there exists a component Ky € 7 U P containing
the subpath Ry of S connecting s and s; if s # s;. Moreover, there exists a component

K; € 7T UP containing the subpath R; of S connecting ¢, and t if ¢; # t.
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We define the sequence C of components in D and the sequence A of vertices of G as

follows:
C’ ifs;=sandt; =t
B (Ko) +C' if s #sand t; =1
¢ = C'+ (K)) if sy =sand t; #¢ ’ where

(Ko) +C' +(K;) if sy #sandt; #t
CI = (H17K17H27K27"'7Kl717Hl>-

A’ if sy =sand t; =t
B (s) + A if s #sandt;, =t
A = A"+ (t) if sy =sand t; #1 , Where
(s)+ A +(t) ifsg#sand t; #t
.A/ = (Sl,tl,SQ,tQ,...,Sl,tl).

Suppose that C = (C4,...,C,,) and A = (ag,...,a,). We show that C and A satisfies
Condition 2.3.

C and A clearly satisfies (a) in Condition 2.3 by definition. Moreover, (b) in Condi-
tion 2.3 is satisfied from Claim 2.10. The following claim is used to show that C and A
satisfies (c) in Condition 2.3.

Claim 2.12 For a 2-connected component H € 'H with two end-regions, each end-region

contains an end-vertex of HN S.

Proof 1t follows from Claim 2.11 that there exist distinct end-vertices v and v of H N S.
We assume without loss of generality that d(u) < d(v). Let Ps be the subpath of S
connecting s and u, and let P, be the subpath of S connecting v and ¢. If H has an end-
region Z which contains neither « nor v, then there exists a path P in H which connects
w and v and contains no vertices in Z. Since P, P,, and P are internally vertex-disjoint,
S" = P,UPUP, is a path connecting s and ¢. Since S’ and Z are vertex-disjoint, G—V (S’
contains a cycle as a subgraph. However, this contradicts Lemma 2.8 and the assumption

that ppw(G) = 2. Thus, each end-region contains an end-vertex of H N S. O

We see in the following claim that C and A satisfies (c¢) in Condition 2.3.

Claim 2.13 If C; € H (1 <i < m), then C; is an outer planar graph with at most two

end-regions. Moreover, each end-region contains a;_1 or a;.
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Proof Suppose that C; € H (1 < i < m). Since ppw(G) = 2, we have that ppw(C;) = 2.
Thus, it follows from Lemma 2.5 that C; is an outer planar graph with at most two end-
regions. Moreover, it follows from Claim 2.12 that each end-region contains a;_; or a;.

O

We see in the following claim that C and A satisfies (d) in Condition 2.3.

Claim 2.14 If C; € T (1 < i < m), then the path in C; connecting a;—1 and a; is a
2-spine of C;.

Proof Let S; be the path in C; connecting a;,_; and a;. Every connected component of
G —V(9) is a path by Lemma 2.8. Since S; is a subpath of S, every connected component
of C; — V(5;) is a path. This means that S; is a 2-spine of C;. O

We see in the following claim that C and A satisfies (e) in Condition 2.3.
Claim 2.15 D' C P.

Proof Every 2-connected component of G is an element of C by Claim 2.11 and the
definition of C. Thus, it suffices to show that every tree component of G is an element of
C. We prove this by contradiction. Assume that 7€ 7 — {C; | 1 <i < m}. It follows
from the assumption that |D| > 2 that, for ¢ € V(T') N A, there exists H € H such that
V(H)NV(T) = {c}. It follows from Claim 2.11 that H € {C; | 1 < i < m}. Suppose
that H = C; (1 <i <m). Since T ¢ {C; | 1 <1i < m}, it follows from Claim 2.10 and
the assumption that A(G) = 3 that ¢ is not an element of A. Since C; is 2-connected,
there exists a path P in C; which connects a;_; and a; and does not contain c. Let P, be
the subpath of S connecting s and a;_1, and let P; be the subpath of S connecting a; and
t. Since P,, P;, and P are internally vertex-disjoint, S’ = P,UPUP, is a path connecting
s and t. Since S’ and T are vertex-disjoint and 7" has a vertex with degree 3, G — V' (5")

has a vertex with degree 3. However, this contradicts Lemma 2.8. O

We prove by a sequence of claims that C and A satisfies (f) in Condition 2.3. Let ¢(P)
be a unique element of V(P)N A for P € D'.

Claim 2.16 For P € D', there exists a unique C; € H (1 < i < m) such that V(C;) N
V(P)={c(P)}. Moreover, (c(P),a;—1) € E(C;) or (¢(P),a;) € E(C;).
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Proof 1t is clear by A(G) < 3 and by the definition of path components that, for P € D’,
there exists a unique C; € ‘H (1 < ¢ < m) such that V(C;) N V(P) = {¢(P)}. We show
that (c(P),a;—1) € E(C;) or (¢(P),a;) € E(C;). We prove this by contradiction. Assume
that (c(P),a;—1) € E(C;) and (c(P),a;) € E(C;). If a;—; # s then degq, ¢, ,(ai—1) = 3.
Thus, we have ¢(P) # a;—1 since A(G) = 3. If a;_; = s then deg, (a;—1) = 2. Thus,
we have ¢(P) # a;_1 by Claim 2.10. Therefore, it follows that ¢(P) # a;—;. We can
show by a similar argument that ¢(P) # a;. Thus, neither a;_; nor a; is contained in
Ne(e(P)) U {c(P)}. Since C; is outer planar and A(G) < 3, ¢(P) incident to just two
outer edges of C; and to exactly one edge of P. Therefore, there exists a path P in C;
which connects a;—; and a; and does not contain a vertex in Ng(c(P)) U {c(P)}. Let Py
be the subpath of S connecting s and a;_;, and let P, be the subpath of S connecting
a; and t. Since P,, P, and P are internally vertex-disjoint, S’ = P, U P U P, is a path
connecting s and t. Since V(S") and Ng(c(P)) U {c(P)} are disjoint, G — V' (S’) has ¢(P)

with degree 3. However, this contradicts Lemma 2.8. O
Claim 2.17 For distinct Py, Py € D', ¢(Py) # c(Ps).

Proof Each ¢(P;) (i = 1,2) is contained in a 2-connected component of G by Claim
2.16. If ¢(P)) = ¢(P,) then degq(c(P;)) > 4 (i = 1,2), contradicting the assumption that
A(G) = 3. 0

Claim 2.18 If C} is 2-connected, then |[{P € D' | ¢(P) € Ng(ao)}| < 1.

Proof Since s = ay, it follows from Claim 2.10 that |Ng(ag)| = 2. Suppose that Ng(ag) =
{u,v}. We prove the claim by contradiction. Assume that there exist distinct Py, P, € D’
such that {c¢(P),c(P2)} € Ng(ag). By Claim 2.17, we may assume without loss of
generality that ¢(P) = u, ¢(P,) = v. It follows from Claim 2.16 that a1 & {u,v}. If (u,v)
is an outer edge of Cy, then V(C}) = {ag,u,v} and a, is either u or v, a contradiction.
If (u,v) is an inner edge of Cy, then degg (u) > 3 since each vertex in a 2-connected
component is incident to two outer edges. Thus, degg(u) = degq, (u) + degp (u) >
3 + 1 = 4, contradicting the assumption that A(G) = 3. Therefore, u and v are not

adjacent.
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Since s € X; — X, and X satisfies (c) in Condition 2.1, we have that X; = {s,u,v}.
Suppose that T'g(u) = {(s,u),e1,e2} and T'g(v) = {(s,v), e3, e4}. It should be noted that
since u and v are not adjacent, eq, ey, e3, and ey are distinct edges. Let j(i) = max{j |
X, contains both end-vertices of e;} for 1 <+i < 4. Moreover, let 7 be ¢ which maximize
j(i). We assume without loss of generality that v € {3,4}. If j(v) = j(1) = j(2),
then G[Xj(,)] is isomorphic to K3 since | Xy < 3 and G is simple. However, this is
a contradiction because u and v are not adjacent. Thus, it follows that j(y) > j(1) or
J(v) > j(2). We assume without loss of generality that j(1) < j(2) < j(vy). Since both
end-vertices of e; are not contained in X;, we have that j(1) > 2. Since {u,v} € Xj,
u € Xj@o), v € Xj), and X satisfies (d) in Condition 2.1, it follows that {u,v} C
X1 N Xj0) N Xj2)-

Case 1 j(1) < j(2). Since |X;u| < 3, we have | X — | X1 N Xjg)| <3 -2 =1,
contradicting that X satisfies (e) in Condition 2.1.

Case 2 j(1) = j(2). Suppose that e; = (u,z1) and es = (u,z2). In this case, it follows
that {u,v, 21,22} € Xj). u, v, 1, and x5 are distinct since u and v are not adjacent

and G is simple. Thus, we have that |X;)| > 4, contradicting that & has width 2.
Therefore, we conclude that [{P € D' | ¢(P) € Ng(ap)}| < 1. 0

Claim 2.19 Suppose that Cy € H. If there exist distinct Py, Py € D’ such that both c¢(P;)

and c(Py) are adjacent to aq, then c(Py) or ¢(Py) is adjacent to ay.

Proof We show the claim by contradiction. Assume that there exist distinct P, P, € D’
such that both ¢(P;) and ¢(P,) are adjacent to a; and that neither ¢(P;) nor c¢(P) is
adjacent to ag. Let L be the subgraph of GG induced by all the outer edges of C'y. Since
s = ap and C € H, it follows from Claim 2.10 that |Ng(ag)| = 2. Suppose that Ng(ag) =
{u,v}. It follows from the assumption and Claims 2.16 and 2.17 that ag, a1, u, v, ¢(P;),

and c(P,) are distinct vertices.

If (u,v) € E(G), then P(201010) shown in Figure 2.1 is a minor of the subgraph
LU P, UP,UG[{u,v}] of G. This means that (u,v) ¢ F(G) and that the graph G’
obtained from G by joining v and v by an additional edge has proper-path-width more
than 2.
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On the other hand, since ayp = s € X; — Xy and X satisfies (c) in Condition 2.1,
we have that X; = {ag,u,v}. Therefore, X' is a 2-proper-path-decomposition of G’, i.e.
ppw(G') = 2, a contradiction. O
The proofs of the following Claims 2.20 and 2.21 can be accomplished by similar arguments

for Claims 2.18 and 2.19, and is omitted.

Claim 2.20 If C,, is 2-connected, then |[{P € D' | ¢(P) € Ng(an)}| < 1. 0

Claim 2.21 Suppose that C,,, € H. If there exist distinct Py, Py € D" such that both c(P;)

and c(Py) are adjacent to a,_1, then c¢(Py) or ¢(Ps) is adjacent to a,,. O

Claim 2.22 Suppose that C; € ‘H (1 < i < m). If there exists distinct Py, P, € D’
such that both ¢(Py) and c(Py) are adjacent to a € {a;—1,a;}, c(Py) or ¢(P2) adjacent to

a e{ai_1,a;} —{a}.

Proof We show the claim by contradiction. Assume that there exist distinct Py, P, € D’
such that both ¢(P;) and ¢(FP) are adjacent to a € {a;_1,a;} and that neither c¢(FP;)
nor ¢(P,) is adjacent to a’ € {a;—1,a;} — {a}. Let L be the subgraph of G induced by
all the outer edges of ;. Since 1 < ¢ < m and C; € H, it follows from Claim 2.10
that |Ng(a’)| = 2. Suppose that Ng(a') = {u,v}. It follows from the assumption and
Claims 2.16 and 2.17 that a, o', u, v, ¢(P;), and ¢(P;) are distinct vertices. Moreover,
there exists b € V(G) — V(C;) adjacent to o’ since 1 < i < m. Therefore, P(101010)
shown in Figure 2.1 is a minor of the subgraph LU P, U P,UG[{d, b}] of G, contradicting
the assumption that ppw(G) < 2. O

Claim 2.23 C and A satisfies (f) in Condition 2.3.

Proof 1t follows from Claim 2.16 that there exists a mapping f satisfying (x). Moreover,
it follows from Claims 2.17 through 2.22 that there exists one-to-one mapping f satisfying
(%). a

Thus, C and A satisfies Condition 2.3. Therefore, the proof of necessity for Theorem 2.9

is completed.
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Proof of Sufficiency for Theorem 2.9

We next show the sufficiency. Assume that G has a sequence C = (C4,Cy,...,C,,) of
components in D and a sequence A = (ag, a1, ...,a,) of vertices in V(@) such that
Condition 2.3 is satisfied. If C; € 7 and deg(ap) = 2 then we can easily find a vertex
ay, € V(C4) such that degs(ap) = 1 and that the path connecting af, and a; is a 2-spine
of Cy. Moreover, C and the sequence (ag,ay,...,a,) satisfies Condition 2.3. Thus, we
assume without loss of generality that, if C; € 7, then degy(ag) = 1. Similarly, we
assume without loss of generality that, if C,, € 7, then degq(a,,) = 1.

For C; € H (1 < i < m), we define that [; and r; are distinct outer edges in C; incident

to a;_, and a;, respectively, such that:
(i) I; = (aj_1,c(P)) if there exists P € D’ such that f(P) = (i,1);
(ii) 7 = (a;, c(P)) if there exists P € D’ such that f(P) = (¢,0);
(iii) /; and r; are contained in distinct end-regions if C; has two end-regions;
(iv) {; and r; are a matching of C; if |V(C;)| > 4.

Since C and A satisfies (f) in Condition 2.3, for every C; € H, [; and r; satisfies Condi-
tion 2.2.

We show that the sequence X = (X1,..., X,) of subsets of V(G) defined as follows is
a 2-proper-path-decomposition of G.

X = Z L'+ Y + R where

1<i<m
for 1 <i<m,
; | PPD_SPINE(C;, path connecting a;_; and a;) if C; € TUP
o { PPD_PATH(P = (po,...,c(P)))U{a;_1} if 3P € D’ such that f(P) = (3,1)
nul otherwise

Ri_ { PPD_PATH(P = (¢(P),...,p))) U{a;} if AP € D’ such that f(P) = (4,0)

nul otherwise

Since G satisfies Condition 2.3, X satisfies (a), (b), and (c) in Condition 2.1 by definition.

Moreover, every element of X' contains at most three vertices of G. Thus, it suffices to
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show that X satisfies (d) and (e) in Condition 2.1. By the definition of PPD_PATH and

Corollary 2.4 and 2.7, we can observe the following claim.
Claim 2.24

(i) For1<i<m,veV(C;)—({ai-1,a;} U{c(P) | P € D'}) appears in consecutive

elements of V.

(ii)) For Pe D', v € V(P) —{c(P)} appears in at most two consecutive elements of
X.

(ili) For0 <1i < m, a; is contained in every element of (the tail of Y*)+R'+ L7 +
(the head of Y1), where Y° = R® = Y™+l = L1 = nul.

(iv) For P € D' with f(P) = (i,1), ¢(P) appears in the tail of L* and in consecutive

elements of V' including its head.

(v) For P € D' with f(P) = (i,0), ¢(P) appears in the head of R' and in consecutive

elements of V' including its tail.

O

It follows from Claim 2.24 that every vertex in GG appears in consecutive elements of X.
Thus, X satisfies (d) in Condition 2.1.

It remains to show that X satisfies (e) in Condition 2.1. If X,NX,. =0 for all @ and ¢
with 1 <a+1 < c¢—1 < r, then this is immediate. Thus, we assume that there exist a and
cwithl<a+1<c—1<rsuchthat X,NX.# (. For 1 <i<m, )*is a proper-path-
decomposition of C;. Thus, we have that | X, N X.| < |X,| — 2 for any b with a < b < ¢
if there exists ¢ with 1 <4 < m such that both X, and X, are elements of ). Therefore,
we assume that there exists no ¢ with 1 <4 < m such that both X, and X, are elements
of Y'. Tt follows by Claim 2.24 that X, N X. C {a; | 0 <i <m} U{c(P)| P € D'}. We

see the following two claims.

Claim 2.25 |X, N X, =1.
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Proof By Claim 2.24, X, N X, contains at most one vertex in A and at most one vertex
in {c(P) | P € D'}. Thus, it suffices to show that both a;(0 < ¢ < m) and ¢(P) are
not contained in X, N X.. We prove this by contradiction. Assume that there exist ¢
(0 <i<m)and P € D such that {a;,c¢(P)} C X, N X.. By Claim 2.24, f(P) = (¢,0)
or f(P)=(i+1,1). We may assume without loss of generality that f(P) = (¢,0). Then,
both X, and X, are elements of Y + (the head of R?). Suppose that Y = (Y{,...,Y}).
Since both X, and X, are not elements of V!, X, is the head of R’. Moreover, X, is
not the tail of }* since ¢ — a > 2. This means that both a; and c¢(P) are contained in
an element of ) except the tail. However, this is impossible since (a;, c(P)) = r; and

r; € E(G[Y}]) — E(GlUy<j<, Y;]) by Corollary 2.7. O

J
Claim 2.26 |X,| =3 for any b with a < b < c.

Proof Let b be any integer such that a < b < ¢. If there exists i (1 < i < m) such that X,
is an element of ' and that C; € H, then |X;| = 3 by the definition of PPD_0OPG. If there
exists i (1 < i < m) such that X} is an element of £* or R, then | X;| = 3 by the definition
of PPD_PATH and by the fact that |V (P)| > 2 for any P € D’. Thus, it suffices to show
that X}, is not an element of Y* such that C; € 7 U P. We prove this by contradiction.
Assume that X, is an element of }* (1 <4 < m) such that C; € T UP. It follows from
the assumption and Claim 2.25 that either X, N X, = {a;_1} or X, N X. = {a;}. We
assume without loss of generality that X, N X. = {a;}. Since X}, is an element of )*, it
follows that X, is an element of ) except the tail. This means that a; is contained in
an element of )’ except the tail. However, this is impossible since a; is an end-vertex of

2-spine of C; and a; appears only in the tail of ) by Corollary 2.4. O

It follows from Claims 2.25 and 2.26 that | X, N X | — |X)| =3 —-2=1fora <b <c
Thus, X satisfies (e) in Condition 2.1.

Therefore, X is a 2-proper-path-decomposition of G and the proof of sufficiency for
Theorem 2.9 is completed.

We describe in Figure 2.5 Algorithm PPD_GENERAL based on Theorem 2.9. It is well-
known that we can find all blocks of a graph in linear time. Thus, step 2 can be executed
in linear time. To find ag and a,, in step 3, we need the algorithm to find a 2-spine of a

binary tree, which has not been described yet. Although the details are not mentioned
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here, it should be noted that this can be done in linear time by using a simple postorder
searching and the algorithm in [25], which outputs, for a rooted binary tree, the proper-
path-width of every subtree rooted at a vertex. The other operations in PPD_GENERAL

clearly executed in linear time.
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Procedure PPD_GENERAL ( G )
Input: a connected graph G with A(G) < 3;
Output: the 2-proper-path-decomposition of G;

1. if A(G) <2 then return ( PPD_PATH(G) );

2. let H be the set of 2-connected components of G;
let 7 be the set of tree components of G;
let P be the set of path components of G;
let D=HUT UP;

3. find a sequence C = (C1,Cy,...,C,,) of components in D and a sequence A =
(ap,ai,...,any) of vertices in V(G) such that Condition 2.3 and the conditions in the
following are satisfied;

o degg(ag) =1if Cy € T,
o degg(am) =11 Cy, € T,

4. if C and A do not exist then reject ;
6. for each C; € H do

(a) find distinct outer edges I; and r; in C; incident to a;—1 and a;, respectively, such
that:
i. I = (ai—1,c(P)) if P € D’ such that f(P) = (i, 1);
ii. 7, = (ai,c(P)) if 3P € D’ such that f(P) = (i,0);
iii. l; and r; are contained in distinct end-regions if C; has two end-regions;
iv. l; and r; are a matching of C; if |C;| > 4.
endfor
7. fori=1tom do
(a) if C; € T UP then )’ := PPD_SPINE(C}, path connecting a;_1 and a;);
else V' := PPD_OPG(C}, l;, ;);

(b) if 3P € D’ such that f(P) = (i,1) then L' := PPD_PATH(P = (po,...,c(P))) U
{ai—1};

else L' := nul;

(c) if 3P € D’ such that f(P) = (i,0) then R’ := PPD_PATH(P = (c¢(P),...,p;)) U{a;};
else R' := nul;

endfor
8. return (Y e, L'+ V' +RY);
End

Figure 2.5: Algorithm for computing the 2-proper-path-decomposition of a general graph
graph.



Chapter 3

Embedding into Grids

3.1 Introduction

The problem of efficiently implementing parallel algorithms on parallel machines and the
problem of efficiently laying out VLSI systems onto VLSI chips have been studied as the
graph embedding problem, which is to embed a guest graph within a host graph with
certain constraints and/or optimization criteria. For the former problem, guest graphs
and host graphs represent parallel algorithms and parallel machines, respectively, and the
purpose is to minimize communication overhead, such as dilation and/or congestion of the
embedding. For the latter problem, a guest graph represents connection requirements of
a system and a host graph usually represents a rectangular grid modeling wafer. In VLSI
layout, there are various criteria such as wire length, wire congestion, crossing number,
and the layout area.

We consider minimal congestion embeddings of graphs into grids. The grids are well-
known not only as a model of VLSI chips but also as one of the most popular processor
interconnection graphs for parallel machines. It is well-known that the minimal conges-
tion embedding is very important for a grid-connected parallel machine that uses circuit
switching for node-to-node communication. In VLSI layout, the minimal congestion em-
beddings are crucial in the sense that the congestion is a lower bound for the number of
layers.

Let G be a graph and let V(G) and E(G) denote the vertex set and edge set of G,
respectively. We denote by A(G) the maximum degree of a vertex in G. An embedding
(¢, p) of a graph G into a graph H is defined by a one-to-one mapping ¢ : V(G) — V(H),

33
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together with a mapping p that maps each edge (u,v) € E(G) onto a path p(u,v) in H
that connects ¢(u) and ¢(v). The congestion of an edge ¢/ € E(H) under (¢, p) is the
number of edges e in G such that p(e) contains ¢’. The congestion of an embedding (¢, p)
is the maximum congestion of an edge in H. The one dimensional n-grid denoted by M (n)
is the graph with vertex set {0,1,...,n — 1} and edge set {(¢,i+1) |0 <i<n—2}. A
Cartesian product M(nq) x M(ny) is called a two dimensional ny X ng-grid and denoted
by M(nq,n2). We define that nins is the area of M(ny,ng). M(2,n) is called an n-ladder
and denoted by L(n). The embedding of a graph G into a two dimensional grid H is
called a layout of G into H if it has unit congestion. A layout (¢, p) of G into H is said to
be planar if p(e1) and p(ez) are internally vertex-disjoint for any distinct eq, es € E(G).
Formann and Wagner [8] showed that the following problem is NP-complete.

GraprPH LAvyouT 1

Instance A planar graph G with A(G) < 4 and an integer A.

Question Does there exist a layout of GG into the grid of area at most A?

Kramer and Leeuwen [13] showed that GRAPH LAYOUT I can be reduced to the following

problem:
GRAPH LAvyout 11

Instance A planar graph G with A(G) < 4 and integers m, n.

Question Does there exist a layout of G into M (m,n)?

and thus GrRAPH LAayouT II is NP-hard! .

We consider the following problem which is a variant of GRAPH LAyouUT II:
GRAPH k-LAyouT

Instance A planar graph G with A(G) < 4 and an integer n.

Question Does there exist a layout of G into M (k,n)?

1 [13] claimed that GRAPH LAYOUT II is in NP without proof. However, this is not trivial as mentioned
in Subsection 3.3.2.
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We prove that the GRAPH k-LAYOUT is NP-complete for any fixed & > 3. GRAPH
1-LAYOUT can be trivially solved in polynomial time. Although we do not know the
complexity of GRAPH 2-LAYOUT, we consider a closely related problem of laying out
a graph into a ladder. We show a necessary and sufficient condition for a graph to be
laid out into L(oo) and show that the graph satisfying the condition can be laid out into
L(]V(G)]). Based on the characterization, we suggest a linear time algorithm for deciding
if a given graph can be laid out into L(00).

This chapter is organized as follows. Some definitions are given in Section 3.2. In
Section 3.3, we prove the NP-completeness of GRAPH k-LAYOUT for any fixed integer
k > 3. In Section 3.4, we review the proper-path-width of graphs and show some lemmas
used in the following section. In Section 3.5, we give a necessary and sufficient condition
for a graph to be laid out into L(co). We conclude this chapter with some remarks in

Section 3.6.

3.2 Preliminaries

[g(v) is the set of edges incident to a vertex v in a graph G. |I'¢(v)| is called the degree
of v and denoted by deg.(v). For S C V(G), let I'¢(S) = U{T¢(v) | v € S}. G[S] is the
subgraph of G induced by S C V(G).

For graphs G and H, G U H is the graph with vertex set V(G) U V(H) and edge set
E(G)U E(H). We write G C H if G is a subgraph of H. For an embedding ¢ = (¢, p) of
G into H and G’ C G, let €(G') = Ueepa ple)-

Let M = M(ny,ny). For a vertex (i,5) € V(M), let [1(4,j) = ¢ and I5(¢,5) = j.
Let RM = {(i,j) €e V(M) | 0 < j < mny—1} and C} = {(i,j) € V(M) | 0 < i <
ny — 1}. Subgraphs M[R}] and M[C}'] are called the ith row and the jth column of
M, respectively. For an embedding (¢, p) of M and a vertex (i,7) € V(M), we denote

¢((i, 7)) simply by é(i, j).

3.3 NP-Completeness of GRAPH k-LAYOUT

We prove the following theorem in this section.

Theorem 3.1 GRAPH k-LAYOUT is NP-complete for any fized integer k > 3.
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We prove in Subsection 3.3.1 that GRAPH k-LAYOUT (k > 3) is NP-hard by constructing
a pseudo-polynomial reduction from 3-PARTITION which is well-known to be NP-complete
in the strong sense to GRAPH k-LAYOUT. We show that GRAPH k-LAYOUT is in NP in
Subsection 3.3.2.

3.3.1 NP-Hardness of GRAPH k-LAYOUT

3-PARTITION is defined as follows.

3-PARTITION

Instance A positive integer B, and a set of 3m integers A =
{ag, a1, ...,a3m1}, such that B/4 < a, < B/2 and " ' a, = mB.
Question Can A be partitioned into m disjoint sets A, ..., A,,_1 such that

Yaca, @ =Blor 0 <y <m-—17

For given integers B, ay, ..., as3,_1 as an instance of 3-PARTITION, we construct the

instance of GRAPH k-LAYOUT as follows:

G(A,B) = F(Bmk)U J M(a,),

0<z<3m—1

n(A,B) = m(B+k+1)+k+1,
where F'(B,m, k) is the graph obtained from M (k,n(A, B)) by removing the vertex (1, )
and joining (0,7) and (2,7) by an edge for each j = (B4+k+ 1)y +2z+k+1(0 <
y<m-—10<2z< B-—1). Figure 3.1 shows F(B,m,k). It should be noted that G is
well-defined if £ > 3.

Throughout this subsection, k£ > 3 is a fixed integer. For 0 < y < m, we define that
IV ={B+k+Dy+2|0<z<k}, JM={B+k+1ly+z|1<z<k-1}
M, = F(Bm, W{(i,) | 0 < i < k—1,j € JMY], and 7, = F(B,m, K{(i,j) | 0 <
i<k—-1,5€ Jyﬁ}] It should be noted that A, is isomorphic to M (k, k + 1) for each
0 <y < m. Moreover, for 0 <y < m — 1, we define that Jf ={(B+k+1y+z+k|
0<z<B+1},and Dy, = F(B,m,k)[{(i,j) | 0<i<k—1,5€ JP}]

Now we show that A can be partitioned into disjoint sets Ag,..., A,,_1 such that
Yaea,a = B for 0 <y < m — 1if and only if there exists an layout of G(A, B) into
H = M(k,n(A, B)) by a series of lemmas.
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Figure 3.1: F(B,m, k). The gray area is grid-connected.

Lemma 3.2 For any layout ¢ = (¢, p) of M = M(k,k+ 1) into H = M(k,n(A, B)),

0<Vi<k—13" : eM[RM —{(i,0),(i,k)}]) C H[RY], (3.1)
1<Vj<k-135 : eM[C)])) =HICT]. (3.2)

J

Proof For0<i<k—1and0<j <k, let P/ =¢e(M[RM])and P{ = e(M[C}"]). Let

@ = Orgnfgkogr%aélb(éb(%]))a
¢ = max min Ily(¢(i,7)),

0<j<k 0<i<k—1

and

g€ {0<j<k| max b(¢@ 7)) =aq},

0<i<k—1

g2 € {0<j<k| min b(¢@ 7)) = g}

0<i<k—1

It follows from the definitions of ¢; and ¢, that
0<Vj<kIvelC:q <l(p(v)), and Juy € C 1 go > ls(p(v2)). (3.3)

Claim 3.3 ¢; < ¢o.

Proof 1f q; > ¢ then it follows from (3.3) that P¢, ..., PS¢ are k + 1 edge-disjoint trails
across the columns between the ¢;st column and the gand column of H. However, this is
impossible since H has just k rows. Thus, we have ¢; < gs.

It remains to show that ¢ # ¢». We prove this by contradiction. If ¢ = ¢2 = ¢
then it follows from (3.3) that P{,..., P¢ are k + 1 edge-disjoint trails across the gth
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column of H. Thus 0 < ¢ < n(A, B) — 1, for otherwise, ¢ = 0 or ¢ = n(A, B) — 1, and we
have that (b(C]M )N C’f # () for every 0 < j < k, contradicting that ¢ is one-to-one since
{C M} > |C)|. We define that

Em = {((ig—1),(,q) € E(H)[0<i<k—1}
E* = {((i,q),(i,q+ 1)) € B(H)|0<i<k—1}.

For each 0 < j < k, if ¢(C)NCJ =  then there exist vy, vy € C}' such that ly(¢(vs)) <
q < la(¢p(vy)) from (3.3). Thus, it follows that for any 0 < j < k,

P(CM)NCI #0 or (3.4)
E(PFYNE~ #0 and E(PY)NE*T # 0. (3.5)

Claim 3.4 For any 0 <j <k,
E(P{)N(E-UEY) #0. (3.6)

Proof 1f there exists 0 < j' < k such that E(P7) N (E~ U E") =0, then PS is identical
with H [C’f]. This means that a vertex with degree at least 3 in C’]M is mapped into
{(i,q) € V(H) |1 <4 < k—2}, and that a vertex with degree at least 2 in C} is mapped
into {(i,q) € V(H) | i = 0 or k — 1}. Thus, both (3.4) and (3.5) do not hold for any
j# 7 (0<j<k), acontradiction. Therefore, (3.6) holds for any 0 < j < k.
End of proof of Claim 3.4

Claim 3.5 j; # jo.
Proof If j; = ja, then ¢(C}') = C} by definition. Thus, for every j # j1 (0 < j < k),
(3.5) holds since (3.4) does not hold. However, since (0,q) € ¢(C') and degy(0,q) = 3,
ch does not pass through (0, q) for every j # j; (0 < j < k). Thus ch does not pass
through T'x(0, q) for every j # j; (0 < j < k). Since P¢, ..., PC are edge-disjoint, it
follows from (3.5) that

> IE(PONET |+ > |E(PONET[+|Tu(0,q)N(E"UET)| > k+k+2 =2k+2.
0<j<k—1 0<j<k—1

However, this is a contradiction since the left hand side of the inequality is no more than

|E~ U Et| = 2k. Therefore, we have j; # js. End of proof of Claim 3.5
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Let

C; = {ve C’;‘l/[ | ls(p(v)) = q}, and
Cy = {veCy (o(v) =q}.

Since

Yu € C;‘I/I —Cy : ly(o(v)) < q, and
Yv € C’Jj»‘f —Cy : b)) >q

by definition, it follows that

Vie X, : E(PHYNE™ #10, (3.7)
Vie Xy @ E(PF)YNET £, (3.8)
where
X, = {0<i<k—1|(,5)eC) —C},
Xy = {0<i<k—1](ijo) € C}Y —Ca}.
Since PE, ..., PF and PE,... Pl are edge-disjoint, we have

S E(PON(E-UE) |+ Y [E(PRNE |+ Y |E(PF)NEY| < |[EUE*| = 2k. (3.9)

0<j<k i€X1 i€Xo

Since ji # jg, it follows that |Cy| 4 |Cy| = |Cy U Co| < |CF| = k. Thus, it follows from
(3.6), (3.7), and (3.8) that

(the left hand side of (3.9)) > (k+ 1)+ |X1| + | X2
= (b + (= [Ci]) + (k= [Cl)
> (k+1)+2k—k
> 2% 41,

a contradiction. This proves that q; # ¢o.
Therefore, we have ¢; < gs. End of proof of Claim 3.3
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Thus Pf, ..., Pl are k edge-disjoint trails across the columns between the ¢;st col-
umn and the gond column of H. Each PR (0 < i < k — 1) passes through only edges in
one row of H' = H[U,, <;j<q, C/'] since H has just k rows. Thus, it follows from (3.3) that

forany 0 < j <k (5 € {j1,J2}) P]C passes through only column edges of H’. Therefore,
we have {j1,72} = {0, k}, and (3.1) and (3.2) hold. O

Throughout this subsection, we assume that ¢ = (¢, p) is a layout of F(B,m, k) into
H = M(k,n(A, B)). We may assume without loss of generality that

1(¢(0,1)) < li(¢(k — 1,k — 1)), and I2(¢(0,1)) < la(¢(k — 1,k — 1)). (3.10)
Lemma 3.6 For any 0 <y < m,

0<Vi<k—13" : (F(B,mk){(j)]|je M} C H[RY, (3.11)
Vi€ JM 35 1 e(F(B,m,k){(5,5) |0 <i<k—1}])) = H[CH]. (3.12)

J

Proof Immediate from Lemma 3.2. O

Corollary 3.7 For any 0 <y <m and e € E(F(B,m,k)) — E(M,), p(e) does not pass
through an edge of e(M,). O

Lemma 3.8 For any j € JyM and j' € Jyv (G<j,0<y<y <m),

l2(6(0, 7)) < l2(¢(0,5)). (3.13)

Proof We first consider the case when y = 0. It follows from Lemma 3.6 and assumption

(3.10) that

l(¢(0,1)) < la(0(0,2)) < --- < 12((0,k —1)).
Thus, (3.13) holds for any j, 5" € JOM (j < j'). Furthermore, for any j € JOM and j' € Jyv
(7 <j'0<y <m), (3.13) follows from Corollary 3.7.

We next consider the case when y > 0. Suppose j € JyM and j' € Jyv G<iy<y <
if 15(¢(0,)) > 12(4(0,5')) then P passes through a vertex in C/f, ;). This means that
e(F(B,m, k)[{(i,7) |0 <i <k —1}]) # Cl 40,5y, contradicting to (3.12).

Therefore, we have l5(¢(0,7)) < l2(¢(0,4')) for any j € JyM and j' € Jy (5 < 7,
0<y<y <m). O
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Lemma 3.9 For any j € JyM 0 <y <m)andj, j" such that 0 < 7/ < j < j" <
n(A, B) — 1,

. i . . . /4
oJnax (¢, 7) < l(6(0,5)) < min (g7, 7). (3.14)
Proof Immediate from (3.12), Corollary 3.7, and Lemma 3.8. O

Lemma 3.10 Forany0 <y <m—1andanyj,j € JP (j <j'), l2(6(0, 7)) < 12(4(0,")).
Proof 1t follows from Lemma 3.9 that

(A0, (B+k+1)y+k—1)) <lb(s(0,5) <l(6(0,(B+k+1)(y+1)+1)) (3.15)
for any j € J). Fix j,j' € JP (j < j') and let ¢ = I5(¢(0, j)). We define that

B~ = {(lig—1),(i,q) € E(H) [0<i<k—1},

= {((i,¢q
ET = {((i,9),(,q+1) € B(H)|0<i<k—1}.

Fori € {0,2,...k—1}, let PR =e(F(B,m,k)[{(i,(B+k+1)y+z+k) | —1 < 2 < B+2}]).
Since Pft ... P, are edge-disjoint and each Pf* (3 <4 < k — 1) contains at least one

edge in £~ and at least one edge in E™ from (3.15), it follows that

> |E(PHYNET| > k-3, (3.16)
3<i<k—1

> |E(PHNEY > k-3 (3.17)
3<i<k—1

First assume that lo(¢(0, 7)) > lo(¢(0, 5)). It follows from (3.15) that P{ contains at
least 3 edges in E~, and PJ contains at least one edge in E~. Since P, Pt ... Pl are

edge-disjoint, it follows from (3.16) that

> |E(PHNE|>3+k-2=Fk+1,
i€{0,2,....k—1}

which is a contradiction since the left hand side of the inequality is no more than |E~| = k.
Next assume that l5(¢(0, 7)) = l2(#(0, 5')).

Assume that [h(¢(2,7)) = (6(2,7)) = ¢ Since all the vertices in U =
{(0,9),(0,4",(2,7),(2,7)} € V(F(B,m,k)) have degree at least 3, none of Pt ... PF,
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passes through a vertex in ¢(U). Thus none of PF, ... PP passes through an edge in
T'y(p(U)). Since [L'y(¢(U)) N E~| > 4 by the assumption that ¢(U) € CJ, it follows
from (3.16) that
Yo IEPHNE |+ Tu(eU)NE | >k-3+4=k+1.
3<i<k—1

This is a contradiction since the left hand side of the inequality is no more than |E~| = k.

Thus, we conclude that ls(¢(2,7)) # q or la(p(2,5")) # q. We assume without loss
of generality that l5(¢(2,7)) # ¢ and show a contradiction. For i € {0,2}, let Pf~ =
(B, m W, 1) | (B+k+Ly+k—1< 1< j})), and PR = <(F(B,m. K){(i.]) | j <
I < (B+k+1)(y+1)+1}]). Moreover, let P = e(F(B,m, k)[{(i,5) | 0 <i < k—1}]).

Case 1 l5(¢(2,])) < ¢: Each of Pj*~, P3*", and PY contains at least one edge in £, and
they together with PJ ... Pt are edge-disjoint. Moreover, none of Pf~, Pft
P]C, and Pf ... Pl passes through ¢(0,;5'). Thus none of P~, Pst, ch, and
P ... PP passes through an edge in T'y(¢(0,;')). Thus, it follows from (3.16)
that
> E(PFH)NET|+Tr(e(0,5) N E™[+

3<i<k—1

|B(R)NE™|+|E(R) N E™| + |E(P) N E"|
>k—-3+4=Fk+1.
This is a contradiction since the left hand side of the inequality is no more than
|E~| = k.
Case 2 l5(4(2,7)) > ¢ Let P' = «(F(B,m,k)[{(2,4),(2,7),(0,5)}]). Each of Pi",

Py, P]C, and P’ contains at least one edge in ET, and they together with

PE ..., P, are edge-disjoint. Thus, it follows from (3.16) that

> E(RHNET +|EFT) NET+

3<i<k—1

|E(P) N E*|+ |E(PY)NE*|+|E(P)NE*
>k—3+4="k+1.

This is again a contradiction since the left hand side of the inequality is no more

than |[ET| = k.
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Therefore, we conclude that l(¢(0, 7)) < l2(¢(0, 7). O
Lemma 3.11 For any 0 <y < m,

vie M o o({(i,j) |0<i<k—1}) =CH, (3.18)

viedl + o({(i,j)|0<i<k—1}) c{G,)eV(H)|0<i<k-11l€.J}319)

Proof 1t follows from Lemmas 3.9 and 3.10 that I5(4(0, 7)) < l2(¢(0, 7)) for any 0 < j <
j < n(A,B) — 1. Since H has just n(A, B) columns, we have l3(¢(0,7)) = j for any
0 <j<n(A, B)—1. Thus, (3.18) holds by Lemma 3.6, and (3.19) holds by (3.18) and

Lemma 3.9. O

Now we are ready to prove the following.
Lemma 3.12 GRAPH k-LAYOUT is NP-hard for any fixed integer k > 3.

Proof We first assume that A can be partitioned into disjoint sets Ao, ..., A,,_1 such that
Yaea,a = B for 0 <y < m — 1. We construct a layout (¢, p') of G(A, B) into H as
follows: By the definition of F/(B,m, k), F'(B,m, k) has a planar layout into H such that
@' (i,7) = (i,7). For each 0 <y < m — 1, we layout M(a,) into H[{(1,(B+k+1)y+ 2+
k+1)]|0<z<B-1}]ifa, € A,. We can construct such layout by the assumption
that A can be partitioned into disjoint sets Ao, ..., A,,—1 such that 35,c4 a = B for
0 <y <m — 1. Thus, we have obtained the desired layout.

Conversely, we assume that there exists a layout ¢’ = (¢, p/) of G(A, B) into H. For
0<y<m—1,let U, = U, —¢'(V(F(B,m,k))), where U, = {(i,j) € V(H) | 0 <i <
k—1,7 € Jf}. It follows from Lemma 3.11 that |U,| = B for 0 < y < m — 1. Let
U = Uo<y<m—1 Uy- Every M(a,) (0 <z < 3m — 1) is mapped into either U, or U — U, by
Lemma 3.11 and the structure of F'(B,m, k). This means that A can be partitioned into
disjoint sets Ay, ..., Ap—1 such that 35,cq,a =B for 0 <y <m—1.

The reduction is pseudo-polynomial since G(A, B) has kn(A, B) = O(Bm) vertices.
Thus, GRAPH k-LAYoOuT is NP-hard for any fixed integer £ > 3 since 3-PARTITION is

NP-complete in the strong sense. O
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3.3.2 GRAPH k-LAYOUT is in NP

In this subsection, we prove that GRAPH k-LAYOUT is in NP. This is not trivial in the
sense that every layout of GG into H itself may not be a witness of polynomial size if n is
much greater than |V(G)|. However, the following lemma guarantees that there exists a

witness of polynomial size for any instance.

Lemma 3.13 A graph G which can be laid out into M(k,n) can be laid out into
M(k,2k|V(G))).

Proof Let e = (¢, p) be alayout of G into H = M(k,n). Let J = {j | o(V(G))NC" # 0},
and we suppose J = {j1,..., s} where j; < --- < jjs. Obviously, |J| < |V(G)|. For 1 <
E< [T =1,det By = {((650), (4, 50+ 1)) € E(H) [0 <4 < k=1}U{((, Jira = 1), (4, 5142)) €
EH)|0<i<k-—1},and M, = H[U C1']. Moreover, let My = H[Up<;<;, C/'],
and My = H[Uj, <j<n1 C'].

N<i<di+1

Suppose that M; (1 <1 < |J|—1) has more than 2k + 1 columns. If an image of p
contains an edge in F; then the image forms one or more subtrail(s) contained in M, called
“net(s)” each of which contains exactly two edges in F;. Notice that the image contains the
even number of edges in F since no vertex of G is mapped by ¢ into V (M;) — (C’ﬁUCﬁH).
Thus, for 1 < 1 < |J| — 1, the layout forms a solution of a “channel routing problem”
on M; by considering a vertex in C’f U Cﬁﬂ to be a “terminal” which is connected by a
net in M;. It is known that for a fixed channel length k, if there exists a routing for an

instance then there exists a routing with channel width at most 2k — 1 [10]. Thus, we can

compact M; by applying the result so that it has at most 2k + 1 columns.

For M; (I € {0,]J|}), terminals are on only single side of the channel, i.e. C{, and it
is easy to see that channel width |k/2] are sufficient for such case. It follows that we can

compact M; so that it has at most [k/2] + 1 columns.

Thus, we can obtain a layout of G into M(k,z), where

v < (2k—1)(|J] = 1) +2|k/2] + |J|
< 9k|J| - (2k — 1)+ k
< 2%[V(G)|.
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Lemma 3.14 GRAPH k-LAYOUT 1is in NP.

Proof Suppose that there exists a layout € of G into M (k,n). Then A(G) < 4 obviously.
From Lemma 3.13, we can assume that n is at most 2k|V(G)|. Thus, we can check that € is
alayout in O(|E(M (k,n))[|E(G)|+[V(G)]) = O(2kn-2|V(G)|+|V(G)]) = O(F*|V(G)?)

time. O

3.4 Proper-Path-Decomposition

In this section, we show some lemmas related on proper-path-decomposition used in the
following section.

A k-proper-path-decomposition (X, Xs,...,X,) is said to be full if |X;| = k+ 1
(1<i<r)and |X;NX;| =k (1 <i<r—1)[25. The following lemma is shown in
[25].

Lemma A For any graph G with ppw(G) = k, there exists a full k-proper-path-

decomposition of G.
The following lemma will be used in the next section.

Lemma 3.15 Let X = (X1, Xs,...,X,) be a full proper-path-decomposition. For 2 <
i <1 —1, there ezist a unique s; € X; — X;_1 and a unique t; € X; — Xiv1 (si # ti).
Moreover, X; — {s;,t;} = X;—1 N Xi41.

Proof 1t is obvious from the definition (a) that there exist s; € X;—X;_; and t; € X;— X, 1
for 2 <i <r —1. Since & is full, it follows that |X; — X; 1| = |X; — Xi11| = 1, so we
have X; —{s;} C X;_1 and X; —{t;} C X;11. Thus, X; —{s;,t;} C X;_1NX;41. It follows
from the definition (e) that | X;| —2 > |X;_1 N Xi1| > | Xi| — [{si, ti}|. Therefore, we have
si#tiand Xy — {s;,t;} = X;o1 N X for 2 < <r—1. O

Corollary 3.16 Let X = (X1, Xs,...,X,) be a full 2-proper-path-decomposition. For
2 <i<r—1, there exist a unique s; € X; — X;_1, a unique t; € X; — X;41 (8; # t;), and

a unique v; € X;—1 N Xiy1. O
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3.5 Graph Layout into Ladders

In this section, we show a necessary and sufficient condition for a graph G to be laid out
into L(o0) based on the proper-path-width of G, and show that G satisfying the condition
is embeddable into L(|V(G)|). Based on the characterization, we suggest a linear time

algorithm for deciding if a given graph can be laid out into L(c0).

Lemma 3.17 If a graph G can be laid out into L(o0), then A(G) < 3 and ppw(G[S]) < 2,
where S = {v € V(G) | degs(v) > 2}.

Proof Suppose that there exists a layout (¢, p) of G into L(co). Then, we have A(G) < 3
since A(L(o0)) < 3. Moreover, for (u,v) € E(G) and w € V(G) — {u, v}, degs(w) < 1 if
p(u,v) contains ¢(w). Thus, p(e;) and p(es) are internally vertex-disjoint for any distinct
edges ey, ey € F(G[S]). This means that G[S] is homeomorphic to a subgraph of L(c0).
It is not difficult to see that ppw(L(n)) < 2 for any positive integer n. Therefore, we have
ppw(G[S]) < 2. O

Lemma 3.18 For a graph G such that A(G) < 3, |V(G)| > 2, and ppw(G) < 2, there
exists a planar layout of G into L(|V(G)| — 1).

Proof We denote L(|V(G)| —1) simply by L. It is easy to see that there exists an desired
layout of G into L if ppw(G) =1 or |V(G)| < 3. Thus we assume that ppw(G) = 2 and
|[V(G)| > 4, and we will construct a desired layout € = (¢, p).

There exists a full 2-proper-path-decomposition X = (X1, Xs,..., X,) of G from the
assumption that ppw(G) = 2 and Lemma A. It should be noted that r = |V(G)| —2 > 2.
The following is an algorithm for laying out G into L(|V(G)| — 1).

Phase 1 Denote s; € X; — X; 1, t;, € X; — Xjip,andy; = X, 1 NXjfor2<e<r—1
according to Corollary 3.16. In addition, let £; be a unique element in X; — X5, s,
be a unique element in X, — X, 1, v, = v,_1(€ X,), and ¢, = s,_;.

Phase 2 Set ¢(t1) = (0,0), ¢(ve) = (1,1), and ¢(to) = (0,1). If (t1,v2), (t1,t2), and
(vg,t2) are contained in E(G), then set p(t1,v2) = L[{(0,0), (1,0), (1, 1)}], p(t1,t2) =
L[{(0,0),(0,1)}], and p(vs, t2) = L[{(1,1), (0, 1)}].
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Phase 3 Execute the following for ¢+ = 2 to r:

(a) Set o(s;) = (h((t),1). Let

IN
.
IN
=

Pr = L{(L(e(t:)), 7) | la(&(t:))
Py = L{(Li(e(vi)),7) | la(@(vs)) < j <},
Py = LI[CH.

(b) If (t;,s;) € E(G), then set p(t;,s;) = P.

(c) If (si,v;) € E(G) and no sy (¢ > i) is adjacent to v;, set p(v;, s;) = Py U Ps.

(d) If (si,v;) € E(G) and there exists sy (i' > 7) adjacent to v;, reset ¢(v;) = (I1(x), 1)
and p(s;,v;) = P3, where x is the vertex in L into which v; was mapped before
reseting. Moreover, if there exists y € V(G) — {s;, sy} adjacent to v;, then reset
p(y,v;) = Py U Py, where Py is the trail in L in which (y, v;) was mapped before

reseting.

Let Y; = Ui<j<; X;. We show that ¢ is the planar layout of G into L by induction on
the number of steps in Phase 3. It should be noted that, up to step i in Phase 3, G[Y;] is
laid out into L and that ¢(v;) may be reset later.

The layout of G[Y}] defined in Phase 1 is obviously desired one. We assume that ¢ is
the planar layout of G[Y;_1] into L(|Y;_1] — 1) for step ¢ — 1, and show that this is also
true for step i. Notice that |Y;| =i + 2.

We first show that e(G) C L(]Y;| — 1). It is easy to see that ¢ is an injection of Y;
since Iy (¢(t;)) # li(d(vi)). d(Yie1) € Uoejcio1 Cf by induction hypothesis. After step i,
¢(s:) € CF and ¢(v;) € Up<j<; Cf since t; € Y;_y. This means that ¢(Y;) C V(L(]Y;|—1)).
Moreover, the images of p defined in step ¢ are contained in P,UP,U P3, and PLUP,UP; C
L(]Y;| = 1). Thus, we conclude that e(G) C L(]Y;| — 1).

We next show that ¢ is the planar layout. Notice that P, P, and P; are internally
vertex-disjoint. P; and p(e) are internally vertex-disjoint for any e € F(G[Y;_1]) since
neither vertices nor edges in (G[Y;_1]) are contained in L[{({1(¢(t;)),7) | 7 = la(o(t:))}]
except @(t;). If (s;,v;) € E(G) then € is the planar layout since (G[Y;]) C e(G[Yi—1]) U P;.
If (s;,v;) € E(G) then Py, P3, and p(e) are internally vertex-disjoint for any e € E(G[Y;_1])
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since neither vertices nor edges in (G[Y;_1]) are contained in L[{(l1(¢(v;)),5) | 7 >
lo(é(v;))}] except ¢(v;). Thus, we conclude that € is the planar layout. O

Lemma 3.19 For a graph G such that A(G) < 3, |S| > 2, and ppw(G[S]) < 2, there
exists a layout of G into L(|V(G)| — 1), where S = {v € V(G) | degq(v) > 2}.

Proof Tt follows from Lemma 3.18 and the assumption that A(G[S]) < 3, |S| > 2, and
ppw(G[S]) < 2 that there exists a planar layout of G[S] into L(|S|—1). Let v € V(G) -8,
and let u € V(G) be a vertex adjacent to v if such u exists. Since deggg(u) < 2, We can
map v and (u,v) by adding a new column next to the column containing ¢(u) so that the

congestion of the resulting embedding is one. Thus, we can obtain the layout of G into

L(JV(G)] — 1) since the number of additional columns is at most |V (G) — S]|. O

We have the following theorem from Lemmas 3.17 and 3.19.

Theorem 3.20 A graph G can be laid out into L(oco) if and only if A(G) < 3 and
ppw(GS]) < 2, where S = {v € V(G) | deg(v) > 2}. 0

Based on this theorem, we can obtain a linear time algorithm for deciding if a given
graph G can be laid out into L(c0) by using the algorithm PPD_GENERAL described in Chap-
ter 2. If a full 2-proper-path-decomposition of G[S] is given, the algorithm obtained from
the proofs of Lemmas 3.18 and 3.19 provides a layout of G into L(|V(G)|) in O(|V(G)|)
time. For a graph G with A(G) < 3 and ppw(G) < 2, we can construct in linear time
a full 2-proper-path-decomposition of G from the output of the algorithm PPD_GENERAL,
although the details are omitted here. Therefore, our algorithm can be modified so that

it lays out G satisfying the condition of Theorem 3.20 into L(|V(G)]) in O(|V(G)|) time.

3.6 Concluding Remarks

Let A(G) be the minimum area of a ladder into which an N-vertex graph G can be laid
out. We can easily modify the algorithm obtained from the proofs of Lemmas 3.18 and
3.19 so that it lays out G into L(N — 2) if G has at least 5 vertices with degree at least
2. Thus we have A(G) < 2(N — 2). This is the tight bound for A(G) as described in the

following corollary.
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Corollary 3.21 If an N-vertex graph G has at least 5 vertices with degree at least 2 then
N < A(G) < 2(N — 2). Moreover, these are tight bounds, i.e. there exist graphs with
A(G) = N and graphs with A(G) = 2(N — 2).

Proof The lower bound is trivial. It is not difficult to see that the graph G shown in
Figure 3.2 has A(G) = 2(N — 2). O

Figure 3.2: A graph G with A(G) = 2(N — 2).



Chapter 4

Embedding into Hypercubes

4.1 Introduction

The problem of efficiently implementing parallel algorithms on parallel machines has been
studied as the graph embedding problem, which is to embed the communication graph
underlying a parallel algorithm within the processor interconnection graph for a parallel
machine with minimal communication overhead. It is well-known that the dilation and/or
congestion of the embedding are lower bounds on the communication delay, and the
problem of embedding a guest graph within a host graph with minimal dilation and/or
congestion has been extensively studied.

We consider minimal congestion embeddings of graphs in hypercubes, which are well-
known as one of the most popular processor interconnection graphs for parallel machines.
It was pointed out by Kim and Lai [12] that minimal congestion embeddings are very
important for a hypercube that uses circuit switching for node-to-node communication
such as Intel iPSC/2 [19].

Let G be a graph and let V(G) and E(G) denote the vertex set and edge set of G,
respectively. We denote by A(G) the maximum degree of a vertex in G. A tree T is said
to be binary if A(T) < 3. An embedding (¢, p) of a graph G into a graph H is defined
by a one-to-one mapping ¢ : V(G) — V(H), together with a mapping p that maps each
edge (u,v) € E(G) onto a path p(u,v) in H that connects ¢(u) and ¢(v). ¢ and p are
called the labeling and routing of an embedding (¢, p), respectively. The dilation of an
edge e € F(G) under (¢, p) is the length of the path p(e). The dilation of an embedding
(¢, p) is the maximum dilation of an edge in G. The congestion of an edge ¢’ € E(H)

20



CHAPTER 4. EMBEDDING INTO HYPERCUBES ol

under (¢, p) is the number of edges e in G such that p(e) contains e’. The congestion of an
embedding (¢, p) is the maximum congestion of an edge in H. The n-cube (n-dimensional
cube) Q(n) is the graph with 2" vertices labeled 0 through 2™ —1 such that two vertices are
joined by an edge if and only if their labels in the binary representation differ by exactly
one bit. We assume that the bits are numbered 0 through n —1. An edge (u,v) in Q(n) is
called an i-edge (i-dimensional edge) if the labels of u and v in the binary representation
differ in the ith bit (0 <i <n —1). It is well-known that Q(n) is n-connected.

Kim and Lai [12] showed that for a given N-vertex graph G and a hypercube it is NP-
complete to determine whether GG is embeddable in the hypercube with unit congestion,
but G can be embedded with unit congestion in Q(6[log N) if A(G) < 6[log N|. They
posed the question of whether G can be embedded with unit congestion in a hypercube of

dimension less than 6[log N|. We answer the question by proving the following theorem.

Theorem 4.1 Every N-vertexr graph G can be embedded with unit congestion in

Q(2[log N1) if A(G) < 2[log NT.

The basic idea of the embedding is quite simple. We adopt a plain labeling of vertices and
a simple routing for edges, and the embedding can be constructed in polynomial time. We
do not know whether GG can be embedded with unit congestion in a hypercube of dimension
less than 2[log N'|. However, we can show that some graphs can be embedded with unit
congestion in hypercubes of asymptotically smaller dimensions. More precisely, we can
easily show by combining the results of Saad and Shultz [22] and Valiant [29] that every
N-vertex tree T with A(T') < 4 can be embedded with unit congestion in a hypercube
of dimension log N + O(1), and every N-vertex planar graph G with A(G) < 4 can be
embedded with unit congestion in a hypercube of dimension log N + 2loglog N + O(1).
Bhatt, Chung, Leighton, and Rosenberg [2] showed that every N-vertex binary tree
can be embedded in Q([log N'|) with dilation and congestion both O(1). Although their
embedding is optimal to within a constant factor, there is much room for reducing the
dilation and/or congestion. They posed the question of finding a simple embedding of
binary trees into hypercubes with smaller dilation and/or congestion. Monien and Sud-
borough [18] partially answer the question by proving that every N-vertex binary tree

can be embedded in Q([log N) with dilation at most 5. We also partially answer the
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question by proving the following theorem.

Theorem 4.2 FEvery N-vertex binary tree can be embedded in Q([log N'|) with congestion

at most b.

Theorem 4.2 is the first result that shows a simple embedding of a binary tree into an
optimal sized hypercube with explicit small congestion of 5. The embedding is quite
simple. We use the postorder labeling of vertices and a greedy (shortest path) routing for
edges, and the embedding can be constructed in polynomial time. It is interesting that
such a simple embedding guarantees a small congestion of 5. We do not know an N-vertex
binary tree that cannot be embedded in Q([log N]) with unit congestion except K3 (a
complete bipartite graph). The author verified that every N-vertex binary tree except
K 3 can be embedded in Q([log N]) with unit congestion if N < 16. In this connection,
based on some conjecture, Wagner [30] mentioned a heuristic algorithm which would
embed every N-vertex binary tree into @Q([log N|) with dilation and congestion both at
most 2.

The chapter is organized as follows. We prove Theorems 4.1 and 4.2 in Sections 4.2 and
4.3, respectively. In Section 4.4, we conclude with remarks on dilations of our embeddings

and some other remarks.

4.2 General Graph Embedding

Let V(G) ={0,1,...,N=1} and n = [log N|. We assume that A(G) < 2n. We construct
an embedding (¢1, p1) of G into Q(2n) with unit congestion. We define the labeling ¢; in
Section 4.2.1. In Section 4.2.2, we consider an arc coloring of a digraph associated with
G. We define the routing p; in Section 4.2.3 based on the results in Section 4.2.2. We
analyze the congestion of embedding (¢4, p1) in Section 4.2.4.

4.2.1 Labeling ¢,

The labeling ¢; : V(G) — V(Q(2n)) is defined as follows. For each u € V(G), ¢1(u) =
u(2™ + 1). That is, the binary representation of ¢;(u) is the concatenation of two copies

of the binary representation of w.
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4.2.2 Arc Coloring

In this section, we consider an arc coloring of a digraph associated with G which will be
used to define routing p;. The associated digraph D of G is the digraph obtained from G
by replacing each edge e of G by two oppositely oriented arcs with the same ends as e.
We denote the vertex set and arc set of D by V(D) and A(D), respectively. We denote
an arc a by [u,v] if u is the tail of a, and v is its head. Let I'},(u) denote the set of arcs
with tail u, and df,(u) = |[T5(u)|. Let I'y(u) denote the set of arcs with head u, and
dp(u) = [Tp(u)]. Since A(G) < 2n, df(u) < 2n and dp(u) < 2n for any u € V(D).

We construct a coloring C' of the arcs of D with two colors {0,1} such that both
of the following two conditions are satisfied. We denote by Cfu,v] the color of an arc
[u,v] assigned by C. Define that X2(w) = {[w,z] | [w,z] € TH(w), Clw,z] = 0}, and
Xe(w) =A{[w,y] | [w,y] € ThH(w), Clw,y] = 1}.

Condition 4.1 For each edge (u,v) € E(G), Clu,v] =0 if and only if Clv,u] = 1.
Condition 4.2 For any vertex u € V(D), | X2(u)| <n and | X (u)] <n
Lemma 4.3 There exists a 2-arc coloring of D satisfying Conditions 4.1 and 4.2.

Proof Tt is well-known that G has an orientation D’ such that |d}, (u) — dp/(u)] < 1
for any u € V(D). It follows that df,(u) < n and dp(u) < n for any u € V(D')
since A(G) < 2n. Moreover, for each (u,v) € E(G), exactly one of the associated arcs
[u,v] and [v,u] of D is contained in T'f,(u) U T, (u). Thus, |I'f(u) NTF,(u)] < n and
ITH(u) — T (u)] = |Th(uw) NTh(u)| < nfor any u € V(D). For each vertex u € V(D),
we assign color 0 to the arcs in T'5(u) NI}, (u), and color 1 to the arcs in T} (u) — '}, (u).

The resulting 2-arc coloring of D satisfies Conditions 4.1 and 4.2. O

4.2.3 Routing p;

For two vertices w and w’ of G, let m(w,w’) be the vertex of Q(2n) labeled with w2™ +
w’. There exists a 2-arc coloring C' of D satisfying Conditions 4.1 and 4.2 by Lemma
4.3. For a vertex w € V(G), suppose that X2(w) = {[w, z1], [w, z3], ..., [w, ]}, and
X&(w) = {[w, ], [w,ys], ..., [w,y]}, where k& = |X2(w)| and | = | X (w)|. k& < n
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and [ < n since C satisfies Condition 4.2. Let QY (n) and QL (n) be the n-dimensional
subcubes of Q(2n) induced by the vertices {w2™ +i | 0 < i < 2" — 1} and the vertices
{i2" +w | 0 <4 < 2™ — 1}, respectively. Notice that ¢i(w) € V(Q%(n)) N V(QL(n))
and that m(w,w’) € V(Q2(n)) N V(QL,(n)). Since Q% (n) is n-connected, there exist k
vertex-disjoint paths P; in Q% (n) connecting ¢;(w) and m(w, z;) (1 <14 < k). Define that
Plw,z;] = P, (1 <i < k). Also, since Q! (n) is n-connected, there exist [ vertex-disjoint
paths Pj in Q,,(n) connecting ¢;(w) and m(y;,w) (1 < j <1). Define that Plw,y;] = P;
1<j<i)

Now we define the routing p;. Let (u,v) be an edge of G. We may assume that
Clu,v] = 0 and Cfv,u] = 1 since C satisfies Condition 4.1. Define the path p;(u,v)
connecting ¢1(u) and ¢1(v) in Q(2n) as the concatenation of Plu,v] connecting ¢1(u) and
m(u,v) in Q%(n) and Plv, u] connecting ¢;(v) and m(u,v) in Q!(n).

Notice that the embedding (@1, p1) defined above can be constructed in polynomial

time.

4.2.4 Congestion of (¢, p1)

Lemma 4.4 The congestion of (¢1, p1) is one.

Proof Tt suffices to show that Plu,v] and P[s,t] are edge-disjoint for any distinct arcs
[u,0), [5,1] € A(D).

Case 1 Clu,v] # C[s,t]. We may assume without loss of generality that Clu,v] = 0
and C[s,t] = 1. Since Q%(n) and Q!(n) are edge-disjoint, and Plu,v| and P[s, ] are
contained in Q%(n) and Q!(n), respectively, Plu,v] and P[s, ] are edge-disjoint.

Case 2 Clu,v] = C[s,t]. We assume that Clu,v] = Cls,t] = 0. The proof for the
case when Clu,v] = C[s,t] = 1 can be accomplished by a similar argument, and is
omitted.

Case 2.1 u # s. Since Q%(n) and Q%(n) are vertex-disjoint, and Plu,v] and P[s,t] are
contained in Q%(n) and QY(n), respectively, Plu,v] and P[s, t] are edge-disjoint.

Case 2.2 v = s. Since [u,v],[u,t] € X&(u), Plu,v] and Plu,t] are edge-disjoint by

definition.



CHAPTER 4. EMBEDDING INTO HYPERCUBES 95

4.3 Binary Tree Embedding

Let T be an N-vertex binary tree and n = [log N|]. We construct an embedding (¢, p2)
of T into Q(n) with congestion at most 5. We define (¢9, p2) in Section 4.3.1. In Section
4.3.2, we show some lemmas on the postorder numbering. In Section 4.3.3, we analyze

the congestion of (¢, p2) based on the results of Section 4.3.2.

4.3.1 Embedding (¢o, po)

The embedding we propose here is quite simple. We choose a vertex of T" with degree
at most two as the root of 7', and we suppose that 7" is a rooted tree. Without loss
of generality, we assume that for each vertex w of T', the number of left descendants of
u (i.e., the number of vertices of left subtree rooted at ) is not less than that of right
descendants of u. Give each vertex of 7" a number from 0 through N — 1 according to the
postorder numbering of 7" so that the left most leaf has the number 0.

We define the labeling ¢, : V(T') — V(Q(n)) as follows. For each u € V(T'), ¢o(u) is
the vertex of QQ(n) labeled with the postorder number of u.

We define the routing p, as follows. Let (u,v) be an edge of T', and ¢o(u) < ¢o(v). The
path po(u,v) connecting ¢o(u) and ¢o(v) in Q(n) starts at ¢o(u), passes through i-edges
in the increasing order of 7 such that the binary representations of ¢o(u) and ¢o(v) differ
in the ith bit. Thus, p, is a greedy (shortest path) routing for edges.

Notice that the embedding (¢s, p2) defined above can be constructed in polynomial
time.

In what follows, for each u € V(T'), we denote the postorder number of u and ¢2(u)

simply by w. In addition, if we denote an edge of T' by (u,v), we assume that u < v.

4.3.2 Properties of Postorder Numbering

The following lemmas on the postorder numbering will be used in the next section to

analyze the congestion of (¢, po).
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Lemma 4.5 For any distinct edges (u,v), (s,t) € E(T) (u < s), u < s <t < v or

u<ov<s<t.

Proof Since the vertices of T are labeled according to the postorder numbering, each
y € V(T) is adjacent to at most one vertex with a label more than y. Thus, u # s and
we may assume that v < s. Define that I = {z € V(T') | u < x < v}. I is the set of right
descendants of v if w is the left child of v, and I is the empty set if u is the right child of
v. It follows that any x € I is adjacent only to vertices of I U {v}. Thus, if s € I then
t € I U{v}. This means that u < s <t <wv. If s ¢ I, we have u < v < s < t by the

assumption that u < s and the definition of I. O
Lemma 4.6 For any distinct edges (u,v), (s,t) € E(T) (u<s<t<w),t—s <s—u+1.

Proof Since u < s <t < v, u is the left child of v and both s and ¢ are right descendants
of v. If s is the right child of ¢ then ¢t — s = 1 and the lemma is immediate. Thus, we
assume that s is the left child of ¢. Let m; and mp be the numbers of left descendants and
right descendants of ¢, respectively, and let w be the vertex with the minimum postorder

number in the descendants of s. It follows that
w—u > 1. (4.1)

Since my — 1 is the number of descendants of s and m; > mpg,

s—w=mp—1>mpr—1. (4.2)

Since s is the left child of ¢,
mp=t—s—1. (4.3)
From (4.1), (4.2), and (4.3), we have t — s < s —u + 1, as desired. O

4.3.3 Congestion of (¢, po)

In this section, we show that the congestion of (@5, p2) is no more than 5. We will prove
this by a series of lemmas. Let bit(m, k) denote the number (0 or 1) in the kth bit (k > 0)
in the binary representation of a non-negative integer m. For each edge (u,v) € E(T)

and an integer k (0 < k < n — 1), define that dir((u,v), k) = bit(v, k) — bit(u, k). If some
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paths in Q(n) contain an edge d € F(Q(n)) then the paths are said to share d. We can

easily see the following lemma from the definition of ps.

Lemma 4.7 For any distinct edges (u,v),(s,t) € E(T), pa(u,v) and ps(s,t) share a
k-edge in Q(n) if and only if the following three conditions are satisfied.

Condition 4.3 dir((u,v),k) # 0 and dir((s,t), k) # 0.

Condition 4.4 If k <n — 1, the (n — k — 1)-bit strings consisting of the (k + 1)st bit

through the (n — 1)st bit in the binary representations of u and s are identical.

Condition 4.5 If k > 0, the k-bit strings consisting of the Oth bit through the (k — 1)st

bit in the binary representations of v and t are identical. O
Lemma 4.8 For any distinct edges (u,v), (s,t) € E(T) such that
u<s<t<wv anddir((u,v),k) = dir((s,t), k), (4.4)
if po(u,v) and py(s,t) share a k-edge in Q(n) then
t—s<2% and (4.5)
v—u > 2 (4.6)

Proof We have bit(u, k) = bit(s, k) # bit(v, k) = bit(t, k) from (4.4) and Lemma 4.7
(Condition 4.3). Thus, s —u < 2¥ and v — t > 2¥*! by Lemma 4.7 (Conditions 4.4 and
4.5). Therefore, we have (4.5) by Lemma 4.6, and (4.6) since u < t. O

Lemma 4.9 For any distinct edges (u,v), (s,t) € E(T) such that
u<s<t=w, (4.7)
if po(u,v) and py(s,t) share a k-edge in Q(n) then
t—s <2k (4.8)

Proof Since t = v, bit(u, k) = bit(s, k) # bit(v, k) = bit(¢, k) by Lemma 4.7 (Condition
4.3). Therefore, s —u < 2 by Lemma 4.7 (Condition 4.4). By Lemma 4.6, we have (4.8).
O
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Lemma 4.10 For any distinct edges (u,v), (s,t) € E(T) such that
u<s<t<wv and dir((u,v), k) # dir((s, 1), k), (4.9)
if po(u,v) and py(s,t) share a k-edge in Q(n) then
t—s < 2FFL (4.10)

Proof s —u < 2¥1! by Lemma 4.7 (Condition 4.4). Thus, we have (4.10) by Lemma 4.6.

(]
Lemma 4.11 For any distinct edges (u,v), (s,t) € E(T) such that
u<v<s<t, (4.11)
if pa(u,v) and pa(s,t) share a k-edge in Q(n) then
v—u < 28 (4.12)
Proof s —u < 281 by Lemma 4.7 (Condition 4.4). Since v < s, we have (4.12). O

Lemma 4.12 Any distinct edges (u,v), (s,t) € E(T) (u < s) satisfy exactly one of (4.4),
(4.7), (4.9), and (4.11).

Proof Immediate from Lemma 4.5. O

Lemma 4.13 For any distinct edges (u,v), (s,t) € E(T) (u < s) such that ps(u,v) and
p2(8,t) share a k-edge in Q(n), (u,v) and (s,t) satisfy either (4.4) or (4.7) if and only if
dir((u,v), k) = dir((s,t), k) # 0, and (u,v) and (s,t) satisfy either (4.9) or (4.11) if and
only if dir((u,v), k) = 1 and dir((s,t), k) = —1.

Proof We first show the necessities. If (u,v) and (s,t) satisfy either (4.4) or (4.7) then
dir((u,v), k) = dir((s, t), k) # 0 from the proofs of Lemmas 4.8 and 4.9. If (u,v) and (s, t)
satisfy (4.9) then dir((u,v), k) =1 and dir((s,t), k) = —1 by Lemma 4.7 (Conditions 4.3
and 4.4). Assume that (u,v) and (s, t) satisfy (4.11). If £ < n— 1 then the (n —k — 1)-bit
strings consisting of the (k+1)st bit through the (n—1)st bit in the binary representations
of u, v, and s are identical by Lemma 4.7 (Condition 4.4). Thus, dir((u,v),k) = 1 and
dir((s,t),k) = —1 by Lemma 4.7 (Condition 4.3).

The sufficiencies are immediate from Lemma 4.12 and the necessities. O
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For distinct edges eq,es, ..., and ¢, in T, suppose that ps(e1), pa(€2), ..., and ps(e;)
share a k-edge d € E(Q(n)). If dir(er,k) = dir(eg, k) = ... = dir(e;, k) # 0 then

p2(e1), pa(ea), ..., and pa(e;) are said to share d in the same direction.

Lemma 4.14 For any distinct edges (u,v), (s,t), and (w,x) in T which are a matching,

p2(u,v), pa(s,t), and pe(w,x) do not share an edge in the same direction.

Proof We may assume without loss of generality that u < s < w. Assume that ps(u,v)
and po(s,t) share a k-edge e € E(Q(n)) in the same direction. Since (u,v) and (s,t)
are a matching of T, we have u < s < t < v from Lemma 4.13. Thus, it follows from
Lemma 4.8 that t —s < 2%, If py(s,t) and pa(w, z) share e in the same direction, we have
s <w <z <tfrom Lemma 4.13, and it follows from Lemma 4.8 that ¢t — s > 2kl g4

contradiction. O

Lemma 4.15 For any distinct edges (u,v), (s,t), and (w,z) in T which are incident to

a vertex, ps(u,v), pa(s,t), and pa(w,z) do not share an edge in the same direction.

Proof Suppose that ps(u,v), pa(s,t), and pa(w,z) share an edge in the same direction.
Then we have v = t = & by Lemma 4.13. Therefore u < v, s < v and w < v. This is
a contradiction, however, since each y € V(T') is adjacent to at most two vertices with

labels less than y by the definition of the postorder numbering. O
Let d be a k-edge of Q(n). We define that

H*(d) = {e|ee€ E(T),dir(e, k) =1, py(e) contains d},
H (d) = {e|ee E(T),dir(e, k) = —1, pa(e) contains d}.

Lemma 4.16 |H"(d)| <3 and |H (d)| < 3 for anyd € E(Q(n)). That is, the congestion
of (@2, p2) is at most 6.

Proof Suppose that d is a k-edge (0 < k < n—1). If all edges in H*(d) are incident to a
vertex then |HT(d)| <2 by Lemma 4.15. We next consider the case that there are edges
(u,v), (s,t) € H"(d) (u < s) which are a matching of T. Then we have u < s <t < v by

Lemma 4.13, and it follows from Lemma 4.8 that

v —u > 2k (4.13)
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Suppose that there exists an edge (w,z) € H*(d) — {(u,v), (s,t)}. By Lemma 4.14,

(w, x) is adjacent to (u,v) or (s,t).

If (w, x) is adjacent to (u,v) then z = v from Lemma 4.13. Thus we have z—w < 2* by
Lemma 4.9 and (4.13). Since t < v = z, it follows from Lemma 4.13 that w < s <t < x
for (w,x) and (s,t). Thus, we have z—w > 2*! from Lemma 4.8, which is a contradiction.
Therefore, (w,z) is adjacent to (s,t), and x = ¢ from Lemma 4.13. In addition, (w,z) is

the only edge in H"(d) adjacent to (s,t) by Lemma 4.15. Thus we conclude |H*(d)| < 3.

Similarly, we can show that |H~(d)| < 3. O
Lemma 4.17 The congestion of (¢, p2) is al most 5.

Proof |H*(d)] < 3and |H (d)| <3 forany d € E(Q(n)) by Lemma 4.16. If |[H*(d)| < 2
and |H ™ (d)| <2 for any d € E(Q(n)) then the lemma is immediate.

Suppose first that |H*(d)| = 3 for a k-edge d € E(Q(n)). Then H*(d) contains non-
adjacent two edges from the proof of Lemma 4.16. Let (u,v) be one of such edges which
satisfies (4.13). Then, we have v — u > 281, Let (s,t) be an edge in H~(d). It follows
from Lemma 4.13 that we have either u < s <t <wvoru <wv <s <t for (u,v) and (s,?).
However, if u < v < s <t then v — u < 2! from Lemma 4.11, which is a contradiction.
Thus, u < s <t < v and we have

t—s < ok (4.14)

by Lemma 4.10. Suppose (w,z) and (y, z) are any distinct edges in H~(d) (w < y). We
have  —w < 28! from (4.14). Tt follows that z = 2, for otherwise w < y < 2z < =
from Lemma 4.13, and we have z — w > 2*! by Lemma 4.8, which is a contradiction.

Therefore, |H~(d)| < 2 by Lemma 4.15.

Suppose next that |H~(d)| = 3 for a k-edge d € E(Q(n)). Then there exists an edge
(s,t) € H™(d) such that t — s > 281 Let (u,v) be an edge in H*(d). It follows from
Lemma 4.13 that we have either u < s <t <wvoru <v < s <t for (u,v) and (s,t).
However, if u < s <t < v then t — s < 2! from Lemma 4.10, which is a contradiction.
Thus, ©u < v < s <t and we have

v —u < 2" (4.15)
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by Lemma 4.11. Suppose (w,z) and (y, z) are any distinct edges in H*(d) (w < y). We
have 2 — w < 281 from (4.15). It follows that z = z, for otherwise w < y < z < x
from Lemma 4.13, and we have z — w > 2*! by Lemma 4.8, which is a contradiction.

Therefore, |H*(d)| < 2 by Lemma 4.15.

Thus, we conclude that the congestion of (¢9, p2) is at most 5. O

4.4 Concluding Remarks

Although (@1, p1) may have a large dilation, we can also construct an embedding of G
into @(2n) with dilation at most 2n + 2 and unit congestion using a more sophisticated
routing. It should be noted that the dilation of (@9, po) is at most the diameter of the
hypercube since ps is a shortest path routing.

Our analysis of the congestion of (@9, po) is tight possible. That is, there exist binary
trees for which the congestion of (¢, po) is exactly 5. For the tree shown in Figure 4.1,
the image paths of five bold edges by ps share (10000, 10100) € E(Q(6)). This is also true
when we choose any vertex in the right subtree (represented as the gray triangle) as the
root. Moreover, the same situation occurs if the root is not in the right subtree. Thus

the congestion of (¢, po) for the tree is independent of the choice of the root.
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Figure 4.1: An example with 58 vertices of binary trees for which the congestion of (¢2, po)
is 5.



Chapter 5

Conclusion

In this thesis, we investigate the small congestion embeddings of graphs into grids and
hypercubes.

In Chapter 2, we discuss the results on the proper-path-width which is used in Chapter
3. We show a necessary and sufficient condition for a graph with maximum vertex degree
at most 3 and with proper-path-width at most 2. Based on the characterization, we give
a practical linear time algorithm for computing a proper-path-decomposition with width
at most 2 of a graph with maximum vertex degree at most 3.

We do not have any polynomial time algorithm to compute an optimal proper-path-
decomposition of a given graph with bounded proper-path-width.

In Chapter 3, we show the complexity results on graph embeddings into grids. First,
we prove that GRAPH k-LAYOUT is NP-complete for any fixed £ > 3. We do not know
the time complexity of GRAPH 2-LAYOUT. Next, we consider the problem of laying
out a graph into a ladder, which is closely related with GRAPH 2-LAyouT, and show
a necessary and sufficient condition for a graph to be laid out into L(cc). Based on
the characterization and the algorithm described in Chapter 2, we show a linear time
algorithm which decides if a given graph G can be laid out into L(oco) and lays out G into
L(|V(G)|) whenever G satisfies the condition. In addition, we give the tight upper and
lower bounds for the minimum area of a ladder into which an N-vertex graph G can be
laid out.

It is still open (i) whether every N-vertex binary tree can be embedded into N-vertex

grid with O(1) congestion; (ii) whether any N-vertex binary tree can be embedded into

63
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N + o(1)-vertex grid with unit congestion.

In Chapter 4, we show some results on graph embeddings into hypercubes. First, we
prove that every N-vertex graph G can be embedded with unit congestion in Q(2[log N])
if A(G) < 2[log N|. Next, we prove that every N-vertex binary tree can be embedded
in Q([log N]) with congestion at most 5. The latter is the first result that shows a
simple embedding of a binary tree into an optimal sized hypercube with explicit small
congestion of 5. The embeddings proposed here are quite simple and can be constructed
in polynomial time.

We do not know an N-vertex binary tree that cannot be embedded in Q([log N|) with

unit congestion except K 3.
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