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Cross-view Human Action Recognition from Depth Maps
Using Spectral Graph Sequences

Tommi Kerolaa,∗, Nakamasa Inouea, Koichi Shinodaa

aDepartment of Computer Science, Tokyo Institute of Technology, Tokyo 152-8552, Japan

Abstract

We present a method for view-invariant action recognition from depth cameras based on graph signal processing tech-
niques. Our framework leverages a novel graph representation of an action as a temporal sequence of graphs, onto
which we apply a spectral graph wavelet transform for creating our feature descriptor. We evaluate two view-invariant
graph types: skeleton-based and keypoint-based. The skeleton-based descriptor captures the spatial pose of the subject,
whereas the keypoint-based is able to capture complementary information about human-object interaction and the shape
of the point cloud. We investigate the effectiveness of our method by experiments on five publicly available datasets.
By the graph structure, our method captures the temporal interaction between depth map interest points and achieves
a 19.8% increase in performance compared to state-of-the-art results for cross-view action recognition, and competing
results for frontal-view action recognition and human-object interaction. Namely, our method results in 90.8% accu-
racy on the cross-view N-UCLA Multiview Action3D dataset and 91.4% accuracy on the challenging MSRAction3D
dataset in the cross-subject setting. For human-object interaction, our method achieves 72.3% accuracy on the Online
RGBD Action dataset. We also achieve 96.0% and 98.8% accuracy on the MSRActionPairs3D and UCF-Kinect datasets,
respectively.

Keywords: Human action recognition, depth cameras, spectral graph theory, graph signal processing, graph wavelets,
wavelet transform

1. Introduction

We live in a world where machines are able to either
aid or completely replace humans in a large variety of
tasks. Most such tasks are quite trivial and monotonic,
but thanks to the advent of machine learning, we are at the
verge of being able to demand satisfying performance even
for more complex tasks. One such task is action recogni-
tion. If machines could robustly recognize and interpret
human actions and gestures, the benefits would be vast
for a number of areas, including games, health care and
the security industry.

Classic approaches to action recognition based on sim-
ple color images face numerous difficulties due to intra-
class variations of actions, background clutter and illu-
mination variations. However, thanks to the emergence
of cheap and affordable depth maps with devices such as
the Microsoft Kinect, there has been a recent increase in
research using 3D features [1]. Leveraging 3D cameras
solves the problem of separating the action subject from
the video background, and also eliminates irrelevant in-
formation such as illumination variance. Recently, due
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to the work of Shotton et al. [2], we have access to low-
dimensional skeletons mapped to the human body. Out
of the box, these skeletons are much more discriminative
than the raw high-dimensional RGB-D data and allow the
development of efficient methods for action recognition.
However, while the 3D skeletons provide means of allevi-
ating the action recognition task, they also provide new
challenges due to unstable joint positions resulting from
tracking errors in the noisy depth maps.

A recurring question in machine learning is the one
of how to best represent objects for handling the pattern
learning task. Generally, the approaches to this problem
can be divided into two: statistical and structural [3].
While statistical methods have received a great deal of
attention in the past years, we ask ourselves if objects are
not better represented by an explicit structure suitable to
the task at hand. Actions are typically defined by a se-
quence of interactions between several interest points [4].
E.g. “draw circle”:

1. Move hand towards left side of waist.

2. Move hand up.

3. Move hand down towards right side of waist.

4. Move hand down towards feet.

Naturally, a good descriptor for action recognition needs to
capture interactions between different parts of the body,
all of which also vary temporally during the duration of
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the action. While most existing action recognition meth-
ods from depth maps capture such interactions [5–9], most
of them are inherently view-dependent. That is, their per-
formance depend on the camera angle from which the ac-
tion was recorded. Cross-view action recognition is the
task of recognizing an action independent of the camera
angle used for recording the video. For RGB videos, this
has previously been explored to some extent [10–20]. For
depth maps, however, the number of methods that apply
to cross-view action recognition from pure 3D data are
much fewer [21–23]. This despite the added advantage of
being able to perform action recognition without compro-
mising the identity of the user, which is essential for health
care applications.

In this work, we consider to use graphs to represent ac-
tions due to the following reasons. First, a graph provides
a natural structure for representing interactions between
interest points. Furthermore, since graphs naturally cap-
ture pair-wise information, a graph-based representation is
inherently view-invariant provided that this holds for the
signal defined on the vertices. This is our motivation for
exploring the usage of graphs for action recognition.

In real life problems, graphs can be found everywhere.
They occur in forms of e.g. social- and transportation
networks, finite state machines, and also in domains
such as brain fMRI and computer graphics [24]. Recent
approaches for using graphs in machine learning include
graph kernels [25–29], generalizations of signal processing
frameworks to the graph domain [24, 30], and also graph
wavelets [31–35].

Graph signal processing allows signal propagation that
follows the natural structure of objects, and applications
include edge-aware image processing [36], depth video cod-
ing [37], image compression [38], anomaly detection in
wireless sensor networks [39], bridge structure health mon-
itoring [40], brain functional connectivity analysis [41] and
mobility pattern prediction [42].

Our interest in using graph signal processing for human
action recognition lies in the graph frequency information
it is able to provide. As our results will show in this pa-
per, using generalizations of wavelet transforms to graphs
allows us to capture multi-scale information about the in-
teractions between depth map interest points along with
their temporal propagation, leading to an efficient method
for classifying a wide range of actions.

In this paper, we propose a system for view-invariant
depth map action recognition based on graph signal
processing techniques. Our framework leverages a novel
graph representation of an action as a temporal sequence
of graphs. Specifically, our method takes depth map
interest points and embeds these on an augmented graph
describing said points’ temporal progression. Extending a
preliminary study on this subject [43], we investigate two
types of interest points:

• Tracked skeleton joints, which capture subject pose
and provides a semantic labeling of body parts.

• Spatio-temporal keypoints, which capture human-
object interaction and other fine intrinsic detail.

We define view-invariant graph signals based on the above
interest points, and we represent them using a novel graph
representation that is shown to out-perform more clas-
sic representations, such as bag-of-words (BoW) [44] com-
bined with a support vector machine (SVM) [45]. Partic-
ularly, we leverage the spectral graph wavelet transform
(SGWT) framework of Hammond et al. [31] for creating
a multi-scale representation of the interest points. Graph
wavelets capture information about a signal at different
scales, in several dimensions on the augmented temporal
graph; both between interest points and along time. Fur-
ther, spectral graph wavelets offer more flexibility than
classical wavelets due to the freedom of graph design. To
capture the sequential behavior of actions, we utilize a
temporal pyramid pooling scheme [6, 8, 46] on the wavelet
coefficients. This improves over approaches that consider
only global information [47, 48], since it allows us to cap-
ture differently segmented levels of temporal dependen-
cies. Classification is finally performed using an off-the-
shelf SVM.

Our proposed method has the following advantages:

• The underlying graph has an explicit block spar-
sity structure, which we exploit to create a memory-
efficient algorithm for calculating the SGWT (see
Sec. 4.3.1).

• The feature’s underlying spectral basis is mathemat-
ically well defined [31], enabling analysis about each
part of the descriptor. On the contrary, methods
based on e.g. sparse coding [6] or deep learning [16]
produce bases that are not easily analyzable (see
Sec. 4.9).

• For skeleton-based graphs, the number of interest
points N is small, making the method efficiently
computable in O(TN) time, where T is the num-
ber of frames, making it more computationally ef-
ficient than approaches that rely on solving heavy
optimization problems [6, 7] (see Sec. 4.7).

• For keypoint-based graphs, the descriptor is shown
to capture more information than a baseline BoW-
representation, which makes our method perform
better using our spectral representation (see Sec 5).

While this paper focuses on recognition of actions, the
framework can in general be applied to any time series of
graphs.

The paper is organized as follows. Section 2 reviews re-
lated research in action recognition and graph signal pro-
cessing. Section 3 discusses how to represent actions as
graphs. Our proposed method is then shown in Sec. 4,
with related experiments in Sec. 5. Section 6 finally con-
cludes the paper.
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1.1. Notation

We use lower-case bold letters a = [a(1), . . . , a(n)]T

to denote vectors, and a(i) denotes the i-th element of a
vector. We use upper-case bold letters A,B,C to denote
matrices, with A(i, j) referring to the element at the i-th
row and j-th column of A. Let an denote the n-th vector
in a set of vectors. We use G = (V, E ,W) to denote an
undirected graph with vertex set V = {vi} and edge set
E = {ek : ek = (vi, vj) ⇔ vi ∼ vj ; vi, vj ∈ V} and vi ∼ vj
denotes that vertices i, j are connected by an edge. The
weight matrix W stores the weight of an edge (vi, vj) in
entry W(i, j).

2. Related Work

2.1. 3D Action Recognition

The advent of cheap 3D cameras such as the Kinect
has enabled a great performance increase for action recog-
nition tasks [47]. The availability of RGB-D data has con-
siderably eased the task of segmenting an actor from its
background; something that is normally quite challenging
when using only RGB data. Related research in this field
can be roughly divided into three categories: depth map-
based, skeleton-based, and methods that utilize both.

Methods that make use of the raw depth map voxel
data include Li et al. [47], who present a method where
a bag of 3D points is sampled from 2D projections of
salient depth map poses. Their results show that 3D
action recognition clearly outperforms 2D approaches
while additionally providing robustness against occlu-
sions. Viera et al. [49] introduced space-time occupancy
patterns (STOP), where the 3D points of the depth map
are represented by a modified 4D histogram. Oreifej
and Liu [5] learn a non-uniformly quantized 4D space,
in which histograms of oriented 4D normals (HON4D)
of the depth map are used for classification. Yang et
al. [48] create DMM-HOG, which stacks orthogonally
projected depth maps that are then applied to histograms
of oriented gradients. Rahmani et al. [21] develop his-
tograms of oriented principal components (HOPC), which
capture a quantized spatio-temporal shape of the point
cloud using a 20-dimensional regular polytype. Their
work also introduces spatio-temporal keypoints (STKP),
which represent view-invariant spatio-temporal locations
that can be used as base features for cross-view action
recognition. In another work, the same authors develop
a transfer-learning system based on deep learning for
engineering a bottleneck feature that can be used for
cross-view action recognition (NKTM) [16]. Although
their bottleneck feature is effective in the cross-view case,
their system requires generating synthetic poses from a
large auxiliary motion capture dataset for learning the
neural network. While depth map-based methods are able
to capture information about shapes in great detail, they
do however suffer from not knowing the correspondence
between regions in the RGB-D data and the human body.

Other approaches rely only on the provided 3D skele-
tons. This includes DL-GSGC by Luo et al. [6], which
uses sparse coding with constraints for group sparsity and
feature geometry to increase the discriminative power. To-
gether with max pooling and a temporal pyramid pooling
scheme, their method also achieves an enhanced sequential
representation structure. Zhao et al. [9] create SSS, which
employs sparse coding and dictionary template learning to
learn gestures based on distances between pairwise joints.
Another method includes HOJ3D by Xia et al. [22], which
applies linear discriminant analysis to create a time series
of visual words (postures) that are then used as features
in a hidden Markov model. Other methods use nearest-
neighbor classifiers for classifying derivatives [50] (MP), or
dimensionality-reduced relative measurements [51] (Eigen-
joints) of 3D joint positions. Gowayyed et al. [46] create
histograms of oriented displacements (HOD), where quan-
tized angles of skeleton joints are applied to a temporal
pyramid for handling temporal dependencies of actions.
Ellis et al. [52] create a low latency scheme for classifying
actions by finding canonical poses using multiple instance
learning. While their method is efficiently computable, it
is unsuitable for actions that have a strict temporal struc-
ture rather than a characteristic pose, such as the action
“drawing an x”. Wang et al. [53] uses the tracked skeleton
information to learn an AND-OR graph (AOG) of base
features (which is actually a tree structure ) for cross-view
action recognition that is able to capture the composi-
tional structure of base features among different views.
While their method is able to recognize actions using only
RGB data once trained, adding new action classes requires
expensive re-tuning of the parameters of the AOG.

Finally, some works utilize both depth data and 3D
skeletons simultaneously. Wang et al. [8] create an algo-
rithm for selecting discriminative relative joint pairs that
reduce ambiguity between action classes (AE). They also
utilize a temporal pyramid, and classification is done us-
ing multiple kernel learning. Wang and Wu [7] develop
MMTW for tackling temporal misalignment of actions by
leveraging a discriminatively learned warping matrix for
aligning action sequences before the classification step.
Warping templates are learned one per class and classi-
fication is done using a latent structural SVM.

While the availability of depth maps has resulted in a
recent boost in performance on benchmark datasets [8, 47],
most approaches to human action recognition are however
inherently view-dependent [5–7]. That is, they depend
on the camera angle from which the action was recorded.
Natural actions can not however be said to be defined
by the angle from which they are seen, but rather from
what interactions occur between different body parts.
Cross-view action recognition has been explored to some
extent for RGB-based action recognition, which includes
approaches based on geometric transformations [10, 11],
view-invariant features [12–15] and knowledge transfer
between different views [16–20]. The number of ap-
proaches using only depth maps for cross-view action
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recognition are, however, much fever [21–23, 54], despite
the added privacy advantage of being able to perform
action recognition without compromising the identity of
the user. Preserving privacy is essential for e.g. health
care applications. The approach proposed in this paper
falls in the first category of geometric transformations,
with the added benefit of being computable using only
depth data.

2.2. Signal Processing on Graphs

Recently, several techniques for generalizing classical
signals processing (CSP) techniques to arbitrary graphs
have been proposed [24]. Graph signal processing (GSP)
provides graph analogs to classical Fourier transform tools,
such as filtering, translation, convolution, etc.. CSP is re-
stricted to signals in regular grids, but most natural signals
do not follow this structure (e.g. sensor networks and an-
thropometric meshes). On the other hand, GSP allows
processing signals on graphs that are directly adapted to
the signal domain itself. By the increased freedom of graph
design, we are able to extend CSP approaches to include
additional information along e.g. extra added graph edges,
ultimately increasing the descriptive power of the signal it-
self.

Several works have created wavelets on graphs using
GSP [31–35]. One of the earliest works on graph wavelets
include a method by Crovella and Kolaczyk [33] for ana-
lyzing computer traffic data on unweighted graphs. Ham-
mond et al. [31] develop a spectral graph wavelet trans-
form (SGWT), which allows analysis of localized signals
on the graph Fourier spectrum of an undirected graph. We
note that spectral graph wavelets can been seen related to
sparse coding [55, 56]. The spectral graph wavelets are
however more efficiently computable, since they are based
on a fixed mathematical structure (see Appendix B).

In addition to these frameworks, applications of graph
signal processing include edge-aware image processing [36],
depth video coding [37], image compression [38], anomaly
detection in wireless sensor networks [39], bridge structure
health monitoring [40], brain functional connectivity anal-
ysis [41] and mobility pattern prediction [42]. To the best
of our knowledge, at time of publication, our conference
paper [43] was the first application of GSP to human action
recognition. Since then, some related work has emerged in
this direction [57].

3. Representing Actions as Graphs

3.1. Outline

In this section, we will discuss about how to rep-
resent actions as graphs, and consider two different
view-invariant candidates for explicit graph construction.
The first candidate is based on tracked skeleton joints [2],
while the second variant is based on spatio-temporal
keypoints [21] (see Fig. 1).

Joint

(a) Skeleton joints

STKP

(b) Spatio-temporal keypoints

Figure 1: Interest point types used as basis for graph construction.
The detected interest points (red) for three frames are here shown for
the point cloud of the “two hand wave” action. The skeleton joints
have the benefit of their spatial locations having a semantic meaning,
while the keypoints are mostly detected on locations describing fine
intrinsic detail about the spatio-temporal shape of the point cloud.

Graphs based on skeleton joints capture the spatial
pose of the human body, which is suitable for representing
actions that are defined by larger general limb movements,
where the semantic knowledge of body part positions is vi-
tal for recognition.

Spatio-temporal keypoints, on the other hand, cap-
ture complementary detailed information directly from the
point cloud. Each keypoint describes the spatio-temporal
shape of a point cloud, and is thus able to capture fine in-
trinsic detail, while also being robust against noisy skele-
ton estimates, which can be caused by complex poses.

The graph constructions in this section focus on the
part-wise interactions within a single frame; how these
graphs will be used to create a feature for action recog-
nition will be discussed in Sec. 4.

3.2. Motivation

Actions can be defined as a sequences of interactions
between parts. Indeed, an early study by Johansson [4]
investigated human motion perception from limited infor-
mation. In his series of experiments, a number of lights
were attached to the subject’s body, and the 3D human
motion perception is evaluated depending on the number
of activated lights. 1 The study showed that capturing the
interactions between several parts of the human body is

1Online at e.g. https://www.youtube.com/watch?v=1F5ICP9SYLU
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Depth map sequence

Skeleton joints Spatio-temporal keypoints

Skeleton graph Keypoint graph

Track skeletons Detect STKPs

Joint positions Codeword counts

Figure 2: Procedure for graph construction. Given a depth map
sequence, we detect interest points, such tracked skeleton joints or
spatio-temporal keypoints (STKP). The skeleton-based graph con-
struction uses the relative position of the joints, which yields a graph
that follows the human skeleton structure. Keypoint-based graphs,
on the other hand, are constructed from the occurrence counts of
STKP codewords, and the graph structure is defined by pair-wise
similarities of the codewords based on χ2-distance. Note that in
practice, the keypoint graph is not necessarily complete; dissimilar
codeword pairs will get edge weights close to zero.

helpful for decreasing the ambiguity between several mo-
tion categories. Therefore, we consider using a graph for
representing the interactions in order to jointly capture
information about the different parts.

Each interactive part, or interest point, can be thought
of as a vertex vi in a graph G = (V, E ,W). An edge
e = (vi, vj) ∈ E ⊆ V × V then captures some relationship
between the points using a weight W(i, j) ∈ R+. Fur-
ther, we assume we have additional information about each
point using aD-dimensional feature vector mapped to each
vertex.

In the next two sections, we consider two candidate
graph representations for actions based on interest points.

3.3. Skeleton-based Graphs

As shown in the study by Johansson [4], the human
skeleton joints can be used for discriminating between ac-
tion categories given that we make use of enough joint po-
sitions (the study concluded 10–12 joints to be adequate).
Recently, due to the nominal work of Shotton et al. [2], we
have ready access to tracked skeletons of the human body

gotten directly from depth images. Their skeleton track-
ing algorithm results in N = 20 tracked joint positions. In
previous action recognition research, these joint positions
have been shown to provide useful as a good base feature
for building a discriminative feature [6, 8, 50].

The i-th joint at frame t has a 3D position pt,i =

[xi(t), yi(t), zi(t)]
T . As body size differs between different

human subjects, we use the limb normalization procedure
of Zanfir et al. [50] for normalizing skeleton limb length,
while still keeping limb angles and positions intact. As
noted in previous research [6, 8], the relative inter-joint
positions give quite discriminative features. As the center
hip joint of the tracked 3D skeleton is deemed quite sta-
tionary throughout actions, we create a relative position
vector

p̂t,i = pt,i − pt,center hip (1)

for describing the position of joint i.

3.3.1. Rotation Cancellation

Since depth cameras conform to a Cartesian coordinate
system, the relative joint positions are not view-invariant
by nature. Therefore, we propose a simple approach to
rotate the skeletons in order to bring them into a canoni-
cal coordinate system which is independent of the camera
angle.

View-invariant action recognition with 3D skeletons
has been described previously by e.g. Xia et al. [22], where
spherical histograms are rotated to a canonical view for
each frame. Our approach differs in that we achieve rota-
tion normalization using information from the whole ac-
tion sequence, which increases robustness against tracking
errors and non-straight poses. This approach is also taken
by Wang et al. [23], where a plane is fit using the RANSAC
procedure to estimate a rotation matrix. We choose a sim-
pler approach that does not rely on fitting any parameters
from data. To the best of our knowledge, we are not aware
of any previous work achieving view-invariance in our pro-
posed manner.

Our approach is as follows. We first find a vector point-
ing upwards (perpendicular to the floor). Note that since
the camera view angle cannot be assumed to be planar to
the floor (e.g. slanted top-down view), the up vector does
not necessarily point along the positive y-coordinate of
the Cartesian coordinate system. Consequently, we turn
to the tracked skeleton information. Since the skeleton
joints have a semantic meaning, we can define the up vec-
tor candidate for frame t as vt,up = pt,head − pt,center hip.
Assuming the camera to be static, we then vote for an
up vector vup representing the whole action sequence by
taking the marginal median

vup(d) = median
t∈{1,...,T}

{vt,up(d)} , ∀d , (2)

which is gotten by taking the median for each axis indepen-
dently. The reason for using the median instead of taking
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Figure 3: Rotation cancellation using the Gram-Schmidt process for
a frame of the “stand up” action on the left. The right skeleton shows
the resulting canonical view facing the camera at (x, y, z) = (0, 0, 0).
See text for details.

the mean is because some candidate up vectors can be re-
garded as noise due to some frames containing poses where
the head-hip vector is not pointing straight up, e.g. when
bending down. We assume, however, that the majority
of the frames in the action sequence feature the subject
standing straight up, which should allow the above pro-
cedure to yield an up vector estimate close to the ground
truth.

Next, we define the vector pointing to the right as
vt,right = pt,right hip − pt,left hip. Our goal is to find a ro-
tation matrix so that we can put the skeleton pose into a
canonical view. Since vup and vt,right are not orthonor-
mal, they cannot directly be used for rotation. To rem-
edy this, we employ the Gram-Schmidt orthonormaliza-
tion process [58] in order to create a rotation matrix R =
[rx, ry, rz], where

uy = vup , (3)

ry = uy/‖uy‖ , (4)

ux = vt,right −
vTt,rightuy

〈uy,uy〉
uy , (5)

rx = ux/‖ux‖ , (6)

rz = rx × ry . (7)

The orthogonal matrix R satisfies R−1 = RT and thus we
can cancel the camera angle and create a view-invariant
relative position vector p̂t,i = RT (pt,i − pt,center hip) for
describing the position of joint i independent of the camera
angle. An example of rotation cancellation can be seen in
Fig. 3. As we will see in our experiments, this rotation
is crucial for achieving good performance in recognizing
actions across different views. Naturally, for non-cross-
view recognition tasks, we can choose to not apply the
rotation R−1.

3.3.2. Graph Construction

Given a set of N tracked joints, we seek to construct a
graph and an associated signal that describes the subject
pose at a time t. Note that each tracked skeleton itself
can be viewed as a graph Gskel = (Vskel, Eskel) in 3D space
(see Fig. 2). We thus proceed and create a graph with N
vertices, where each vertex corresponds to a skeleton joint.

We assume that a signal along an edge provides rel-
evant information inversely proportional to the distance
between a pair of joints. Edge weights are therefore set by
a radial basis function

W(i, j) = exp

(
−
‖p̂t,i − p̂t,j‖

2

2

2σ2

)
(8)

for neighboring joints (vi, vj) ∈ Eskel, which gives spatially
closer joints a higher weight. We assume that σ is not equal
for all connected joint pairs in the skeleton, and therefore
define a pair-specific σ = { 13

∑
a σi,j(a)}, where σi,j ∈ R3

is a vector describing the axis-wise standard deviation be-
tween joints i and j.

Note that we only connect edges corresponding to
neighbors in the natural human body structure. This
is because due to natural physical constraints of human
limbs, any signal defined on e.g. the subject’s hand will
be correlated with the signal on the elbow. Using a fully
connected graph is not appropriate, as this would imply
that there is strong correlation between your hand and
foot, which does not usually hold for human motions, and
would only introduce noise into any subsequent feature
extracted from the graph.

The feature vector associated with each vertex vi is
set to be the relative position vector p̂t,i, with optional
rotation cancellation.

3.4. Keypoint-based Graphs

Although graphs obtained through skeleton tracking
are easily constructible, skeleton joint positions have sev-
eral flaws:

• Abundant noise due to complex poses.

• Inability to capture fine intrinsic details, such as
human-object interaction and hand shapes.

Therefore, we consider an alternative graph construction
gotten directly from the 3D point cloud in the depth image
sequence. Care must however be taken when considering
the size of the graph to be created. Actions of interactive
nature are typically a few seconds of length, which cor-
responds to a spatio-temporal point cloud containing the
order of 106 points. Clearly, using each point as a vertex
will create graphs of intractable size. Furthermore, not
each point is relevant for action recognition. We therefore
propose to detect a set of keypoints in locations that are
of interest for describing actions.

3.4.1. Spatio-temporal Keypoints

We use the recently proposed spatio-temporal keypoint
(STKP) detector by Rahmani et al. [21]. These keypoints
have several desirable properties, including detection re-
peatability, which means that the keypoints can be de-
tected in different samples of the same action sequence de-
spite noise. The keypoints also have a unique coordinate
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basis, which allows them to create a view-invariant descrip-
tion of the point cloud. Finally, the keypoints are localized
spatio-temporally, which means that they are mainly de-
tected at spatio-temporal locations where the actual action
is being performed (see Fig. 1).

For detecting keypoints, we proceed in line with pre-
vious work and calculate histograms of oriented princi-
pal components (HOPC) [21] for each point p ∈ R3 at
time t in the depth map sequence. Each HOPC describes
the principal axis distribution of the variance of all points
within the spatio-temporal support volume Ω(p), which is
a set containing all points within radius r and time inter-
val [t − τ, t + τ ] of the point p, where τ is a parameter.
The smallest principal axis is the least squares estimate
for the surface normal, which renders HOPC more robust
against noise than surface-normal methods based on depth
gradients [5].

Subsequently, two HOPC descriptors are calculated for
each point: hs using the spatial support volume (i.e. τ =
0), and hst using the spatio-temporal support volume.
Points are then pruned based on low eigenratios in order
to discard candidates whose support volume is symmetri-
cal along any pair of axes. The candidate keypoints are
then sorted according to their χ2 distance between hs and
hst in descending order and a set of L keypoints are se-
lected. Non-maximum suppression is also performed, by
discarding points that are within a radius σrr and time
interval σττ of a keypoint, where σr, στ are parameters.
The resulting STKPs have non-ambiguous eigensystems,
so any surrounding point cloud can be aligned with the
STKP axes. Consequently, any subsequent feature com-
puted from the rotated points will be view-invariant.

3.4.2. Graph Construction

Given a set of detected keypoints, we seek to construct
a graph and an associated signal that describes the spatio-
temporal shape of the point cloud at a time t. We proceed
to construct our graph as follows (see also Fig. 2). A code-
book with N codewords is created using K-means cluster-
ing of the detected STKPs. Each STKP is then assigned
to its closest codeword and a BoW representation is used
for representing the STKPs in each frame. We then create
a graph with N vertices, where each vertex corresponds to
a codebook vector. Edge weights are set using a χ2 kernel
on a pair of vertices, assuming the signal to be correlated
amongst keypoints of approximately similar shapes:

W(i, j) = exp

(
−
∑
d

(hi(d)− hj(d))2

hi(d) + hj(d)

)
, (9)

where hi is the spatio-temporal HOPC descriptor of the
keypoint represented by vertex i.

Note that unlike the skeleton-based graph, we can as-
sume correlation between STKPs of close χ2 distance, as
they will describe a similar spatio-temporal shape. This
means that we can use a (weighted) fully connected graph
for describing the relationships between the keypoints.

The feature vector associated with each vertex vi is
set to be the codeword occurrence count for the codeword
represented by vi in the current video frame, which does
not affect the view-invariant property of the STKPs.

4. Spectral Graph Sequences (SGS)

4.1. Outline

In this section, we present our feature descriptor (SGS)
for temporal sequences of graphs based on the spectral
graph wavelet transform (SGWT) [31]. The overview of
our method can be seen in Fig. 4. We assume that we
have sequence of graphs created from interest points in a
depth video (gotten using e.g. the Kinect).

Our system consists of five parts. First, we design
an augmented graph by connecting together a sequence
of graphs using temporal edges. Each graph in the se-
quence describes the point cloud in a single frame using
either skeleton-based or keypoint-based graphs, as previ-
ously discussed in Sec. 3. Second, spectral graph wavelet
coefficients are calculated using the SGWT. The coeffi-
cients capture second order gradient information about
the graph signal along both temporal and local edge direc-
tions. Third, in order to cope with varying action sequence
length, we leverage a temporal pyramid pooling scheme.
The pooling operator aggregates information about the
wavelet coefficients, while the pyramid structure allows us
to capture the temporal order of the graph signal propaga-
tion. Fourth, we reduce the dimensionality of the feature
vector using PCA and apply a standard SVM for classifica-
tion. Finally, using late fusion of SVM decision functions,
we can also combine the complementary effects of several
graph types.

In addition, the end of this section presents some analy-
sis of the interpretation and effects of the proposed feature
descriptor.

4.2. Graph Design

We consider a temporal sequence of T graph signals
f1, . . . , fT , all of which are embedded on a common graph
G = (V, E ,W) with |V| = N . Our goal is to create a de-
scriptor of the temporal propagation of the signals. Each
vertex v is associated with a D-dimensional feature vec-
tor. For comparing graphs, while previous work has em-
ployed graph kernels for creating an implicit vector map-
ping into a reproducing kernel Hilbert space [25–29], we
instead look at the propagation of signals defined on the
vertices of the graph, as will be explained in the follow-
ing. As graph signals are scalars by definition [24], we
subsequently process each axis of the D-dimensional space
separately, by the graph signal f : V → R. We proceed
to create an augmented graph Gaug = (Vaug, Eaug,Waug)
by stacking T copies of G to create a sequence of graphs
G1, . . . ,GT . The choice of the graph G can be e.g. one of
the two we previously discussed in Sec. 3. Since we assume
the signals to be embedded on a common graph G, we let

7



Depth map sequence

Skeleton graph sequence

Keypoint graph sequence

C

Coefficient matrix
z

SGS descriptor
d

Decision function

C

Coefficient matrix
z

SGS descriptor
d

Decision function

“two hand wave” Yes

“hammer” No

“draw x” No

“draw circle” No

Prediction

Graph design

SGWT Pyramid

pooling
PCA & SVM

Late

fusion

Graph design
SGWT Pyramid

pooling
PCA & SVM

Figure 4: Overview of the proposed action recognition system. Given an input depth map sequence, SGS descriptors based on graphs from
both skeletons and keypoints are calculated. An SVM is trained for each descriptor and their decision functions are finally combined using
late fusion. Note that the skeleton graph in this figure is simplified for the purpose of illustration, and thus has fewer than the 20 joints given
by Shotton et al. [2].

vit denote the i-th vertex in the t-th copy of the graph.
The signal associated with vertex vit is therefore given by
ft(i). We then connect each vertex vit in frame t with
its temporally equivalent vertices vit−1

, vit+1
correspond-

ing to the same vertex in the previous and next frame,
respectively, creating temporal edges. Each graph in the
sequence already has pre-defined local edge weights, set by
some distance kernel exp(−dist(vit , vjt)) (see Sec. 3). We
assume strong signal correlation across the temporal direc-
tion (exp(−dist(vit , vit+1

)) ≈ 1), so we set temporal edge
weights to unity. The augmented weight matrix Waug

therefore has the following fixed sparse block structure:

Waug =


W I
I W I

. . .
. . .

. . .

I W I
I W

 , (10)

where I is the identity matrix and W is the local edge
weight matrix, which is similar for all graphs in the se-
quence.

We have two edge categories:

Temporal
These edges capture the propagation of the graph
signal between consequent graphs.

Local
These edges connect vertices within one single graph
and capture pair-wise interactions within a frame.

The structure of Gaug now allows us to analyze the
temporal propagation of the signal.

4.3. Spectral Graph Wavelet Transform

We seek a multi-scale decomposition of the graph signal
in order to capture information about the signal propaga-
tion with respect to the graph structure. For this, we turn
to the SGWT framework of Hammond et al. [31], which
is a generalization of classical wavelet transforms onto ar-
bitrary graphs. Given a kernel g : R+ → R+ acting as a
band-pass filter, a spectral graph wavelet ψt,n ∈ RN at
scale t localized around vertex n can be written explicitly
as a vector [31]

ψt,n(m) =

N−1∑
`=0

g(tλ`)u`(n)u`(m) , (11)

where {λ`,u`}`=0,...,N−1 denote the eigenvalue and eigen-
vector pairs of the graph Laplacian, which is used for rep-
resenting a graph as a matrix. Details about the graph
Laplacian and its eigenvectors are deferred to Appendix A.
Given a graph signal f , SGWT coefficients are extracted
by the matrix-vector multiplication ΨT

tj f , where Ψtj =
[ψtj ,1, . . . ,ψtj ,|V|]. Details are deferred to Appendix B.

We proceed to create the normalized graph Lapla-
cian matrix Laug = I − D−1/2WaugD

−1/2, where
D = diag(Waug1) and 1 is the vector of all ones. The
matrix Laug has an eigenbasis that conforms to harmonic
analysis of graph signals [24], and has a maximum
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eigenvalue λmax = 2 [59]. Hammond et al. [31] presented
a fast approximation of the SGWT based on truncated
Chebyshev polynomial series [60], which avoids expensive
eigendecomposition of Laug (see Appendix C). Using this
approximation, we extract wavelet and scaling coefficients
from Gaug at each vertex n and scale tj . The wavelet
scales tj are chosen to be a set of J values logarithmi-
cally equispaced in the range [0, λmax]. We acquire the
transform coefficients by calculating the approximate
SGWT [31]

ΨT
tj faug ≈

1

2
cj,0faug +

Mj∑
k=1

cj,kTk(Laug)faug , (12)

where faug = [f1; . . . ; fT ] ∈ RNT is the vector of stacked
graph signals representing the human action sequence, and
Tk(Laug), cj,k are the Chebyshev polynomials and coeffi-

cients, respectively. The scaling vector coefficients ΦT faug,
which capture low-frequency information of the signal, are
calculated in a similar way. Consequently, each vertex will
result in J + 1 coefficients per axis, one for each wavelet
scale (including the scaling kernel). The coefficients cap-
ture information about localized frequencies of the graph
signal that follow the graph structure. We store the coef-
ficients in a matrix C ∈ RT×DN(J+1), shaped so that the
coefficient ψTtj ,nfaug is stored on the t-th row.

Note that in order for the coefficients to capture simi-
lar information across graphs created from different action
sequences of the same class, we require the graph Lapla-
cian basis to be constant (i.e. temporal edge weights are
fixed). We assume that the only varying quantity is the
graph signal. Variable temporal edge weights are not sup-
ported by the proposed formulation of the method, and
investigation of this matter is left as an open problem.

4.3.1. Efficient algorithm

The fast approximate SGWT accesses the graph Lapla-
cian matrix L only through matrix-vector multiplications,
which takes O(|E| + J |V|) time for J scales and is fast if
L is sparse [31]. Since our graph has a special sparsity
structure (10), we can further optimize this step. Fig. 5
presents the algorithm for calculating the transform. Cal-
culating the matrix-vector multiplication (L − I)τ k−1 =
(L − I)Tk−1(L)faug is by far the most expensive opera-
tion in the SGWT approximation, which is done maxjMj

times during the course of the algorithm.
We propose to modify two steps of the SGWT approx-

imation algorithm. While the standard fast approximate
SGWT requires explicit construction of L to calculate
(L − I)τ k−1 in step 3 and 9, we propose to exploit the
explicit sparsity structure of our graph to avoid unneces-
sary memory usage by using the algorithm in Fig. 6. The
algorithm can be derived by explicitly expanding said ma-
trix multiplication and noting that for each f t in faug, the
transform always depends at most on f t−1 and f t+1 in the
neighboring frames. Our algorithm avoids explicit con-

Require: f : Graph signal; f = [f1; . . . ; fT ]
Ensure: C : Approximated wavelet coefficients

1: function FastSGWT(f)
2: τ 0 ← f
3: Calc. v← (L− I)f using alg. in Fig. 6.
4: τ 1 ← v
5: for j = 0, . . . , J do
6: rj ← 1

2cj,0τ 0 + cj,1τ 1

7: end for
8: for k = 2, . . . ,maxjMj do
9: Calc. v← (L− I)τ k−1 using alg. in Fig. 6.

10: τ k ← 2v − τ k−2
11: for j = 0, . . . , J do
12: if Mj ≥ k then
13: rj ← rj + cj,kτ k
14: end if
15: end for
16: end for
17: R← [r0, . . . , rJ ]
18: C← R, reshaped to store ψTtj ,nf on row t.
19: return C
20: end function

Figure 5: Fast SGWT approximation with incorporated efficient
matrix-vector multiplication steps on lines 3 and 9.

struction of L by carrying out the calculations implicitly
using only the weight matrix W.

While the näıve algorithm requires O(N2T ) memory,
our efficient matrix-vector algorithm ensures that we need
only O(N2) memory for calculating the transform, which
can result in a memory usage difference crucial for be-
ing able to carry out the transform for long action se-
quences. Furthermore, due to reduced requirements on
memory bandwidth, we have found the algorithm to also
be computationally faster than the conventional SGWT
approximation algorithm in practice.

4.4. Pyramid Pooling

Since wavelets have zero mean, taking the average
of the coefficients does not yield any information [61].
However, by applying a non-linearity (taking the absolute
value) and then taking the mean, we can retain some
useful information about the signal. In order to cope
with varying action sequence length, we leverage a vector-
valued pooling function p : Rt×DN(J+1) → RDN(J+1) to
create a feature vector z = p(C), where t is equal to the
input matrix row count. The pooling function can for
example be chosen as to do either absolute max or mean
pooling along the temporal axis as

pmax(C) =
[
max
t
|C(t, i)|

]
i=1,...,DN(J+1)

, (13)

pmean(C) =

[
1

T

T∑
t=1

|C(t, i)|

]
i=1,...,DN(J+1)

. (14)
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DN(J + 1)

T
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p
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Figure 7: Temporal pyramid pooling. Coefficient matrix C from a T frames long action sequence is pooled by a function p : Rt×DN(J+1) →
RDN(J+1) into K = 3 pyramid levels. The arrows illustrate the creation of the level 3 pyramid level vector z3. The final feature vector z is
given by concatenation of the pyramid level vectors {zk}k=1,...,K .

Require: f : Vector to multiply with; f = [f1; . . . ; fT ]
Require: W : Weight matrix for local edges
Ensure: r = (L− I)f

1: function EfficientMatVec(f ,W)

2: Define xk : xk(i) =
√∑

j W(i, j) + k

3: Define Xk : W � (xkx
T
k )

4: Define yab : (xa � xb)
5: if T = 1 then
6: r1 ← −X0f1
7: else if T=2 then
8: r1 ← −X1f1 − f2 � y11

9: rT ← −X1fT − fT−1 � y11

10: else
11: r1 ← −X1f1 − f2 � y12

12: rT ← −X1fT − fT−1 � y12

13: if T=3 then
14: r2 ← −X2f2 − (f1 + fT )� y12

15: else
16: r2 ← −X2f2 − f1 � y12 − fT−1 � y22

17: rT−1 ← −X2fT−1 − fT−2 � y22 − fT � y12

18: end if
19: end if
20: for t = 3, . . . , T − 2 do
21: rt ← −X2f t − (f t−1 + f t+1)� y22

22: end for
23: r← [r1; . . . ; rT ]
24: return r
25: end function

Figure 6: Efficient matrix-vector multiplication algorithm for our
graph. The operators � and � denote element-wise multiplication
and division, respectively.

In the case of absolute mean pooling, the resulting feature
will encode the average second order gradient of the graph
signal for each dimension and vertex, windowed by SGWT
kernels.

Similar to previous research [6, 8, 46], we create a tem-
poral pyramid of coefficients for capturing the temporal
order of actions. Let K denote the maximum pyramid
level. Then, the pooled feature vector at pyramid level
k ≤ K is defined as zk = [p(B1)T , . . . , p(B2k−1)T ]T , where
{Bi} is a set of non-intersecting block matrices dividing
C uniformly so that C = [BT

1 , . . . ,B
T
2k−1 ]T . The final fea-

ture vector z is then a concatenation of the pyramid level
vectors {zk}k=1,...,K . A visual explanation of the tempo-
ral pyramid pooling scheme applied to C can be seen in
Fig. 7.

4.5. PCA & SVM

Most natural signals are sparse [62]. If our graph sig-
nal between each time step varies only sparsely (i.e. only
a subset of the vertices have changed signal value), then
most elements of z will become close to zero. We therefore
reduce the (2K−1)N(J+1)-dimensional z using PCA. Af-
ter applying PCA to z, we `2-normalize and finally classify
each action using a standard SVM.

4.6. Late Fusion

We can combine the descriptors from skeleton-based
and keypoint-based graphs. Here, we consider late fusion
by averaging the output from the SVM decision functions
d for an input depth map x as

f(x) =
1

2
dskeleton(x) +

1

2
dkeypoint(x) . (15)

We take care to normalize each decision function so that it
has unit variance, in order to give the contributions from
each feature equal weight. While a convex combination
of the decision functions could be explored [63], we have
found simple averaging to yield good enough results.

4.7. Feature Vector

The resulting feature descriptor encodes the spectral
content of a sequence of graphs, so we name it spectral
graph sequences (SGS). As computing the SGWT approx-
imation [31] inO(|E|+ J |V|) time is the most costly part of
the descriptor creation process, we have that for one action
sequence, the descriptor is computable in O(TN) time,
treating parameters K,J constant. Therefore, when N is
small, such as for skeleton-based graphs, our descriptor
becomes essentially linear in the action sequence length,
and more computationally efficient than approaches that
rely on solving heavy optimization problems [6, 7].
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4.8. Ring Structure

We note that if we apply our method to a task where
the start and end position of the sequence tends to be the
same, then we can additionally connect the first graph in
the sequence together with the first one, in order to create
a ring structure. Indeed, it has been shown that the graph
Fourier transform on the graph Laplacian of a 1D ring
graph produces an eigenbasis equal to the basis of the dis-
crete Fourier transform on the real line [64]. In our exper-
iments, we have found ring structure to help on applicable
datasets. In such conditions, the ring structure will not
hinder signal smoothness, and may actually provide addi-
tional information to the graph. Consider the case where
the start and end poses are identical. The graph signal on
such a graph with a ring structure will then be blind to
where the action sequence starts and ends 2. Thus, the
ring structure is able to help with localization of the ac-
tion in the graph, as the action descriptor will no longer be
biased on the action starting on any specific frame in the
time sequence. Note that if a ring structure is used, then
the algorithm in Fig. 6 needs to be modified accordingly to
ensure that the exactness of the calculation of (L−I)τ k−1
still holds true.

4.9. Interpretation and Effect of Coefficients and Edges

Unlike methods based on e.g. sparse coding [6] or deep
learning [16], our method allows for some direct interpreta-
tion of the effects of the descriptor. In this subsection, we
present some insights about the information captured by
the SGWT coefficients and the edges of our graph struc-
ture.

The graph Laplacian is a difference operator that sat-
isfies [24]

(Lf)(i) =
1√
di

∑
(vj ,vi)∈E

W(i, j)

(
f(i)√
di
− f(j)√

dj

)
. (16)

For our graph structure (10), this becomes

(Lf)(it) =
1√
dit

(
2

f(it)√
dit
− f(it−1)√

dit−1

− f(it+1)√
dit+1

)
+

1√
dit

∑
(vjt ,vit )∈E

exp(−dist(vit , vjt))

(
f(it)√
dit
− f(jt)√

djt

)
,

(17)

where dit denotes the degree of vertex vit . This is the tem-
poral second order gradient of the signal plus the second
order gradient between neighboring interest points within
the same frame, which we can denote as

(Lf)(it) = ∆2
temporal(it) + ∆2

local(it) . (18)

2We never assume any explicit order on the vertices of a graph.

Therefore, since the SGWT is essentially a frequency-
modulated graph Laplacian matrix acting as an operator
on a signal [31], the SGWT coefficients capture second
order information about the propagation of the signal.
Another property of the SGWT coefficients can be seen
by noting that due to (11), the coefficient ψTtj ,if at scale
tj and vertex i satisfies

ψTtj ,if =

N−1∑
`=0

g(tjλ`)
∑
j

u`(i)u`(j)f(j) (19)

=
∑
j

f(j)

N−1∑
`=0

g(tjλ`)u`(i)u`(j) . (20)

Following Shuman et al. [24], if we assume that g is an or-

der K polynomial g(λ) =
∑K
k=0 ckλ

k, we can simplify (20)
to

∑
j

f(j)

K∑
k=0

ck(Lk)(i, j) . (21)

Inserting (18) then leads to

c0f(i) +

K∑
k=1

ckLk−1(∆2
temporal + ∆2

local)(i)

= ∆̂2
temporal(i) + ∆̂2

local(i) ,

(22)

where ∆̂2(i) = 1
2c0f(i) +

∑K
k=1 ck(Lk−1∆2)(i) denotes

the second order gradient modulated by the kernel g(tj ·),
That is, the SGWT coefficients depend on vertices j
in a weighted K-hop neighborhood of vertex i, since
(Lk)(i, j) = 0 if i, j are more than K hops apart [31].
If (Lk)(i, j) 6= 0, then there exists an s-length path
vi, vp1 , vp2 , . . . , vps−1

, vj between the vertices, weighted by
the edges along the path, which can be seen by explicit ex-
pansion of the matrix power [31]. Using the approximate
SGWT, the wavelet kernel g becomes exactly an order
K polynomial and the coefficients ck are gotten from the
K-degree Chebyshev approximation (see Appendix C).

Consequently, doing absolute mean pooling on the
SGWT coefficients captures the quantity

1

T

∑
t

|∆̂2
temporal(it) + ∆̂2

local(it)| ≤

1

T

∑
t

(
|∆̂2

temporal(it)|+ |∆̂2
local(it)|

)
.

(23)

This shows that our method captures the average second-
order information of the graph signal along both temporal
and local edges.

Another way of thinking about the interaction between
local and temporal edges is to consider a numerical exam-
ple with the scenario in Fig. 8. In the figure, we have
graphs corresponding to a time series of T = 3 graph
signals of two interest points. First, let us have a look
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Figure 8: Graphs corresponding to a time sequence of T = 3 graph
signals. (a) Without local edges. (b) With local edges. See text for
details.

at graph (a). Suppose the signal on v1 increases over
time, similar to v2. An example of such a graph sig-
nal is f1 = [1, 2, 4, 1, 2, 4], where the three first compo-
nents belong to the first interest point and the rest be-
long to the second one. Applying the graph Laplacian
matrix  L(a) of graph (a) as an operator to this signal
reveals the second-order gradient information  L(a)f1 =
[−1,−1, 2,−1,−1, 2]. Contrast this with a graph signal
where v2 is constant: f2 = [1, 2, 4, 1, 1, 1]. Applying the
graph Laplacian matrix as an operator to this signal re-
veals  L(a)f2 = [−1,−1, 2, 0, 0, 0]. Indeed, the information
about the acceleration of v1 is kept intact, despite v2 not
changing.

Consider instead that we would want to know how
v1 and v2 are changing together in a joint fashion.
In graph (b), we have local edges connecting v1 and
v2. Applying the graph Laplacian to f1 gives the
same result as before, but applying it to f2 results in
 L(b)f2 = [−1, 0, 5, 0,−1,−3], which shows that the change
in v2 has affected v1 as well. Therefore, using both local
and temporal edges captures more information than just
using temporal edges. Of course, using the normalized
graph Laplacian L is possible as well, although the
example becomes slightly less pedagogical due to the
degree normalization [24].

5. Experiments

In this section, the proposed method is evaluated
on five publicly available datasets: MSRAction3D [47],
MSRActionPairs3D [5], UCF-Kinect [52], N-UCLA
Multiview Action3D [53] and Online RGBD Action [65].
Accuracies of previous work are obtained from literature.
In addition to the experiments, the end of the section
provides some analysis of the parameters of the method.

MSRAction3D is a standard benchmark dataset for
3D action recognition, which has remained a challenging

dataset due to high inter-class similarities between actions.
For testing the ability of our method to capture tempo-
ral directionality of actions, we turn to the MSRAction-
Pairs3D dataset, which consists of pairs of actions that
differ only in the direction that the action is performed.
UCF-Kinect is a dataset that contains actions suitable for
interactive movements used in games. The N-UCLA Mul-
tiview Action3D dataset is quite different from the previ-
ous three, as it was captured with three different camera
angles, which drastically changes the appearance of the
actions, requiring the usage of features that are invariant
across different views. Finally, the Online RGBD Action
dataset aims to evaluate human-object interaction, and
contains several action types that differ in the type of ob-
ject interacted with.

Experiments on these datasets using both skeleton-
based and keypoint-based graphs show the efficiency of
our method. In particular, skeleton-based graphs work
well for interactive actions due to the semantic labeling of
the skeleton joints to body parts, whereas keypoint-based
graphs show their strength in capturing complementary
information to the skeleton joints, as it provides a feature
that captures the spatio-temporal shape of the depth map
point cloud. The details of our experiments are described
in the sections that follow.

5.1. Experimental Settings

The PCA dimension is set so that 98% of the variance
explained by the principal components is retained. For
the SVM, we use a linear or radial basis function kernel.
Both absolute max (Eq. (13)) and mean (Eq. (14)) pooling
are tried. The choice of kernel, pyramid level K, and the
number of spectral graph wavelet scales J is decided by
cross-validation on the training set of each dataset.

Due to the lack of a publicly available implementa-
tion of STKP, we carefully implemented the method in
C++. For simplicity, we use a fixed radius r of 10cm for
the spatio-temporal support volume Ω(p), which is large
enough to capture e.g. hand shapes but still small enough
to capture fine detail.

As the parameter settings of the STKP detector are
not disclosed, we here propose a set of parameter settings
suitable for our purpose. For the non-maximum suppres-
sion step in STKP detection, two points are to be pruned
if their volume intersection ratio ρ is larger than 0.5. This
value is inspired by common intersection ratios used in
non-maximum suppression for bounding boxes [66]. This
gives us σr = 0.7 using the relation 4 cos[(2π − arccos(ρ−
1))/3]. By a similar argument, we want temporal overlap
to be 0.5, so στ = 0.5. We detect L = 400 keypoints per
action sequence, which we found empirically results in a
good balance between the number of keypoints detected,
and a low number of noisy keypoints. For keypoint-based
graphs, we use N = 1500 codewords, which was selected
by cross-validation.
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Table 2: Recognition performance on the MSRAction3D dataset for the three different subject configurations on the three action sets as in
Li et al.. [47] Each cell shows accuracy (%). Test 1 uses the first 1/3 samples for training and the rest for testing. Test 2 uses the first 2/3
samples for training and the rest for testing. The cross-subject test follows the same setup as in Table 1.

Method
Test 1 Test 2 Cross-subject test

AS1 AS2 AS3 Avg. AS1 AS2 AS3 Avg. AS1 AS2 AS3 Avg.

DL-GSGC [6] 100 98.7 100 99.6 100 98.7 100 99.6 97.2 95.5 99.1 97.3
SGS(pmax, skeleton-view-dep.) 94.5 94.8 96.6 95.3 94.6 98.7 97.3 96.9 89.3 95.0 100 94.8
SGS(pmean, skeleton-view-dep.) 96.6 90.8 98.0 95.1 98.6 96.0 98.6 97.7 88.4 91.6 100 93.3
DMM-HOG [48] 97.3 92.2 98.0 95.8 98.7 94.7 98.7 97.4 96.2 84.1 94.6 91.6
STOP [49] 98.2 94.8 97.4 96.8 99.1 97.0 98.7 98.3 84.7 81.3 88.4 84.8
Eigenjoints [51] 94.7 95.4 97.3 95.8 97.3 98.7 97.3 97.8 74.5 76.1 96.4 82.3
HOJ3D [22] 98.5 96.6 93.5 96.2 98.6 97.9 94.9 97.2 88.0 85.5 63.5 79.0
Bag of 3D points [47] 89.5 89.0 96.3 91.6 93.4 92.9 96.3 94.2 72.9 71.9 79.2 74.7

Figure 9: Frontal view examples of the actions “hammer” (left),
“draw x” (middle) and “draw circle” (right) in the MSRAction3D
dataset.

Table 1: Recognition performance on the MSRAction3D dataset.

Method Accuracy (%)

DL-GSGC [6] 96.7
MMTW [7] 92.7
MP [50] 91.7
SGS(pmean, skeleton-view-dep.) 91.4
HOD [46] 90.2
HON4D [5] 88.9
AE [8] 88.2
SGS(pmax, skeleton-view-dep.) 86.3
SGS(pmean, skeleton-view-inv.) 83.5
SSS [9] 81.7
SGS(pmax, skeleton-view-inv.) 79.4
SGS(pmean, keypoint) 73.9
Canonical poses [52] 65.7
HMM [67] 63.0
Motion Templates + DTW [68] 54.0
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Figure 10: Confusion matrix for using our method on the MSRAc-
tion3D dataset. Each cell shows classification accuracy (%) from
white (0) to black (100) in the cross-subject setting. The average
accuracy is 91.4%.

5.2. Datasets and Results

5.2.1. MSRAction3D

The MSRAction3D dataset [47] contains 10 subjects
performing 20 different actions, of out which some are
quite similar, such as “draw x” and “draw circle”. Each
subject performs each action up to three times; not neces-
sarily in the same manner each time. Due to a large body
of related research, this dataset has become quite a rep-
resentative benchmark for 3D action recognition. Despite
the availability of discriminative depth maps, this dataset
remains quite challenging due to an abundance of visu-
ally similar actions as well as noisy joint positions. For
fair comparison with previous research, we run our experi-
ments in the cross-subject setting, where samples from half
of the subjects (i.e. subjects 1, 2, 3, 4, 5) are used for train-
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ing, and the rest for testing. This dataset contains some
frames where the skeleton tracking fails, resulting in the
joints to be erroneously located at the origin of the 3D co-
ordinate system. We judge values to be missing only when
the coordinates (x, y, z) = (0, 0, 0), which Kinect outputs
when the object is closer than 40 cm, or when no depth
value could be found. For such missing values, the invalid
joint positions are repaired using standard inter-frame lin-
ear interpolation.

The best parameters were K = 4 and J = 50. PCA
reduced the feature dimension from 45900 to 152. The
best results was gotten using view-dependent skeleton-
based graphs and can be seen in Table 1. The confusion
matrix is shown in Fig. 10. This dataset contains actions
all captured from the frontal view, so view-invariance
is seen to actually harm the performance, as the ro-
tation cancellation can remove some information vital
for classification (consider “side boxing” vs. “forward
punch”). We see that mean pooling works better than
max pooling, although both seem to be quite effective.
Our SGS descriptor worked best with K = 4, but we
note that even with K = 1 (no temporal pyramid), we
got 83.5% recognition accuracy. Note that K > 4 could
not be tested due to insufficiently long sequences in the
dataset. Our method is able to fully distinguish between
visually similar actions such as “draw x/circle” (see
Fig. 9) and achieves perfect accuracy for most actions.
On the other hand, the method repeatedly mistakes
the action “hammer” for “draw x”. These two classes
are both characterized by similar highly accelerating
movements along all axes of the 3D space. While SGS
is able to capture different ranges of acceleration, it has
trouble capturing the small temporal order of how these
accelerations occur.

Although our method gains comparable results to most
previous researches, it is unable to achieve results compa-
rable to the sparse coding approach DL-GSGC [6]. Note
however that our method has the advantage of being com-
putable in time linear in the sequence length, while DL-
GSGC requires solving a computationally heavy optimiza-
tion problem. A difference between our method and sparse
coding-based methods is that while sparse coding learns
the relations between the interest points from data, our
approach uses the explicit graph structure for describing
this relationship. An interesting future direction would be
to close this gap by learning the graph structure from data.
Indeed, there has recently been some initial work in this
direction [69].

Our method falls just short of MMTW [7], but it should
be noted that while MMTW discriminatively learns a non-
uniform warping of the time axis, our method works with
a mere uniform division of the action sequence due to
our temporal pyramid pooling scheme. Augmenting our
temporal pyramid with non-uniform division is a probable
point of future work.

Using SGS based on spatio-temporal keypoints (J = 1)
did not yield a competitive result on this dataset since clas-

Table 3: Ablative analysis of performance on the MSRAction3D
dataset.

Method Accuracy (%)

SGS(pmean, skeleton-view-dep.) 91.4
SGS(pmean, skeleton-view-dep.), no PCA 88.3
SGS(pmean, skeleton-view-dep.), no local edges 88.0
SGS(pmean, skeleton-view-dep.), no ring graph 87.6
3D joints + DTW 77.7
3D joints + SGWT + DTW 74.9
SGS(pmean, skeleton-view-dep.), no SGWT 74.2

sification of actions in this dataset does not require the
knowledge of human-object interaction. Indeed, we found
that doing late fusion of the skeleton-based and keypoints-
based graphs did not improve performance. Additionally,
since MSRAction3D is a frontal-view dataset, the view-
invariant property of the STKPs can actually hurt perfor-
mance, which was shown to happen with view-invariant
skeleton graphs. We conclude that for this dataset, the
information about the spatial locations of semantically la-
beled body parts provides more discriminative information
than the spatio-temporal shape of the point cloud. Note
that while methods such as HON4D [5] perform well us-
ing only spatio-temporal point cloud data, they represent
their feature using a spatial histogram, which implicitly
encodes the spatial locations.

Earlier work has also reported results on three separate
action sets of MSRAction3D. The three action sets are de-
fined to group visually similar action classes together [47],
in order to test performance on small sets of similar ac-
tions. Our experiments follow this setup and results are
shown in Table 2. Contrary to the previous experiment,
max pooling is here seen slightly superior to mean pool-
ing, indicating that the choice of max or mean pooling
might depend on datasets. We can see that in this sce-
nario with fewer action classes, our method achieves per-
formance closer to DL-GSGC while being more efficiently
computable.

Ablative Analysis. In order to illustrate the effect of each
part of the proposed method, we perform an ablative anal-
ysis. Basically, our pipeline consists of the following parts:
relative 3D joint positions, SGWT, temporal pyramid
pooling, PCA, and SVM. We illustrate the significance of
each part in Table 3, where several parts of the pipeline
have been disabled. First, we disable PCA, and train
an SVM directly on the high-dimensional pooled SGWT
coefficients. This causes a slight decrease in performance,
which supports our argument in Sec. 4.5 for doing dimen-
sionality reduction. We also note that an added bonus
of PCA is that the SVM training time is significantly
reduced. Second, if we set the local edges to zero, we can
see that we get inferior performance, illustrating the effect
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of the spatio-temporal graph structure. Third, the table
also shows that connecting the last skeleton with the first,
creating a “ring graph”, provides a slight improvement
in performance, as argued in Sec. 4.8. Fourth, we can
see that if we disable the SGWT, by applying temporal
pyramid pooling directly to the raw 3D coordinates, we
get a large decrease in performance. This is because the
SGWT captures second-order information important for
several action classes consisting of accelerating movement,
as analyzed in Sec. 4.9.

Finally, we conduct an experiment where we apply dy-
namic time warping (DTW) [70] to the raw relative skele-
ton joint 3D coordinates and perform classification by find-
ing the nearest neighbor to each test sample in terms of
DTW measure. DTW has been popular with previous
work in this field, and is a standard benchmark [8, 68].
Wang et al. [8] reported that while DTW is sensitive to
noise, temporal pooling is more robust against noise and
also temporal misalignment. DTW therefore makes an in-
teresting baseline method for seeing the effects of tempo-
ral pooling on the SGWT coefficients. We note here that
while stochastic variants of DTW have been proposed [71],
estimation of the parameters requires a large number of
available frames [72], and we here only evaluate the deter-
ministic version.

The frame-to-frame distance used for comparing the
sequence of graphs with DTW is the sum of the Euclidean
distance between the corresponding skeleton joint 3D posi-
tions (Eq. (1)), and the optimal warping function between
the sequences is found by dynamic programming [70]. By
the results in the table, we can conclude that while this
DTW-based approach is able to capture some characteris-
tics for action classification, it inherently becomes a pose-
based approach that will ignore higher-order characteris-
tics such as velocity and acceleration. Still, we can see
from the table that DTW is able to perform better than
the temporal pyramid on the raw 3D coordinates. This
is is due to DTW being able to handle non-linear expan-
sions and contractions of the action (i.e. speed variation).
The temporal pyramid is unable to do this, and will only
be able to capture linear speed variations, as the tempo-
ral bins used for pooling are stretched uniformly in a lin-
ear manner. The proposed pipeline does however handle
speed variations in a different manner: the SGWT cre-
ates a multi-scale decomposition of the graph signal, so
different speeds will correspond to different scales of the
decomposed signal.

It is also interesting to note that the positive effect
that the SGWT coefficients have on the temporal pyra-
mid pooling step does not generalize to DTW, as can be
seen in the table by doing DTW on the SGWT coefficients
with J = 50 scales. This is probably because DTW uses
Euclidean distance, which does not work well in the high-
dimensional space created by the SGWT [73].

Note also that the proposed pipeline has another ad-
vantage over DTW. Since DTW can only stretch the sig-
nal, it is unable to distinguish periodic actions when the

Table 4: Recognition performance on the MSRActionPairs3D
dataset.

Method Accuracy (%)

HON4D [5] 96.7
SGS(pmean, skeleton-view-dep.) 96.0
SGS(pmax, skeleton-view-dep.) 93.1
AE [8] 82.2
DMM-HOG [48] 66.1

Table 5: Recognition performance on the UCF-Kinect dataset.

Method Accuracy (%)

SGS(pmean, skeleton-view-dep.) 98.8
SGS(pmax, skeleton-view-dep.) 98.8
MP [50] 98.5
Canonical poses [52] 95.9

number of periods differ [74]. One such action is wav-
ing your hand. It does not matter how many times you
wave the hand; the action remains unchanged. Since the
SGWT basis is wavelike with respect to the graph struc-
ture [31], the SGWT coefficients will be invariant to the
exact number of repeats of the waving motion, while the
DTW measure will differ in this case.

In summary, we can conclude by the ablative analysis
that each step in the pipeline is effective and important
for achieving the full performance of the SGS descriptor,
where the SGWT accounts for most of the improvement.

5.2.2. MSRActionPairs3D [5]

This dataset was created to test performance for recog-
nizing action pairs that are similar in motion, and differ in
motion directionality only. An example of such an action
pair is “pick up box” and “put down box”. The dataset
contains six action pairs performed by ten subjects, each
subject performed each action three times. We run our ex-
periments in the cross-subject setting, where the first five
actors are used for training, and the rest for testing. As
this is a frontal-view dataset, we only evaluate SGS based
on view-dependent skeleton graphs.

The best parameters were K = 5 and J = 1 (decided
by 5-fold cross-validation). PCA reduced the feature di-
mension from 3720 to 80. Results on MSRActionPairs3D
can be seen in Table 4. Our method achieves compara-
ble performance to HON4D [5], despite using only skele-
ton information. Additionally, HON4D discriminatively
learns a non-uniform quantization of the 4D space, while
our method works with only a simple uniform quantization
along time using the temporal pyramid. We note that our
method gets accuracy 56.6% with K = 1 and 86.3% with
K = 2, confirming the importance of the temporal pyra-
mid pooling scheme for recognizing motion directionality.
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View 1 View 2 View 3

Figure 11: Cross-view examples of the action “pick up with one
hand” from three different views in the N-UCLA Multiview Ac-
tion3D dataset.

Table 6: Recognition performance on the N-UCLA Multiview Ac-
tion3D dataset. The plus sign indicates late fusion.

Method Accuracy (%)

SGS(pmax, skel.-view-inv.+keypoint) 90.8
SGS(pmax, skel.-view-inv.) 87.4
SGS(pmean, skel.-view-inv.) 84.4
SGS(pmean, keypoint) 77.7
SGS(pmax, keypoint) 77.3
NKTM [16] 75.8
SGS(pmax, skel.-view-dep.) 74.7
AOG [53] 73.3
nCTE [75] 68.6
SGS(pmean, skel.-view-dep.) 64.9
CVP [19] 60.6
DVV [18] 58.5
Hankelets [12] 45.2

5.2.3. UCF-Kinect

The UCF-Kinect dataset [52] contains pre-segmented
actions suitable for games, e.g. “climb ladder”, “leap” and
“twist left”, with 1280 action sequences in total. 16 actions
are performed by 16 subjects, with each subject perform-
ing each action five times each. Note that in this dataset
the provided skeletons only have 15 joints. As the center
hip joint is missing, we approximate it by the average of
the left and right hip joint positions. We run our exper-
iments in the same setting as Ellis et al. [52], reporting
the average accuracy of 4-fold cross-validation. As this
is a frontal-view dataset, we only evaluate SGS based on
view-dependent skeleton graphs.

The best parameters were K = 3 and J = 43. PCA
reduced the feature dimension from 18480 to 127. Re-
sults on UCF-Kinect can be seen in Table 5. We can see
that our method achieves superior performance compared
to the original canonical pose approach [52], while per-
forming slightly better than MP [50]. This shows that our
proposed framework is suitable for recognition of game-
related actions that make use of all tracked parts of the
body.

Table 7: Ablative analysis of performance on the N-UCLA Multiview
Action3D dataset.

Method Accuracy (%)

SGS(pmean, keypoint) 77.7
SGS(pmean, keypoint), no local edges 75.4
SGS(pmean, keypoint), no SGWT 73.6
STKP + BoW vector 68.5
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Figure 12: Confusion matrix for using our method on the N-UCLA
Multiview Action3D dataset. Each cell shows classification accuracy
(%) from white (0) to black (100) in the cross-view setting. The
average accuracy is 90.8%.

5.2.4. N-UCLA Multiview Action3D

The N-UCLA Multiview Action3D dataset [53] aims
to capture daily actions performed by humans from multi-
ple camera angles, such as “throw trash”, “walk around”,
“stand up” or “carry”. Ten subjects were instructed to
perform 10 actions. The dataset was captured simultane-
ously by three Kinect cameras and contains 1493 action
sequences in total (see also Fig. 11). Further, several ac-
tions include interaction with objects, such as “drop trash”
and “carry”. This dataset is very challenging not only due
to each action being captured from different views; most
actions also include walking and some actions are very sim-
ilar, such as “pick up with one hand” and “pick up with
two hands”. Another challenging action is “drop trash”,
which includes some sequences with extremely subtle mo-
tion that could be easily mistaken for “walk around”.

For the skeleton-based graph, we apply our proposed
rotation scheme to make the feature view-invariant. The
keypoint-based graph is also well-suited for cross-view ac-
tion recognition as STKPs are view-invariant, captures in-
teraction with objects, and the BoW graph signal is largely
unaffected by viewpoint changes (up to occlusions). Our
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experiments are run in the cross-view setting, with the first
two views used for training, and the third one for testing.

Results can be seen in Table 6. Accuracies of previ-
ous work are due to results by Rahmani et al. [16]. The
confusion matrix is shown in Fig. 12. The best param-
eters were K = 4 and J = 1 for keypoint-based graphs
and K = 4 and J = 11 for skeleton-based graphs. PCA
reduced the feature dimension for keypoint-based graphs
from 45000 to 863 and from 10800 to 513 for skeleton-
based graphs. We achieve good results despite the dataset
containing some labeling noise (mislabeled samples) and
noisy subject segmentations. Our method performs bet-
ter than NKTM [16], which requires a large labeled auxil-
iary motion-capture dataset with about 26000 samples for
training a deep neural network. Our method, on the other
hand, is able to represent view-invariant actions using only
the raw point cloud training data.

On this dataset, even keypoint-based graphs achieve
state-of-the-art results, but we achieve ever better perfor-
mance with view-independent skeleton graphs. Finally,
by combining the two graph types through late fusion,
we achieve a large increase in performance, advancing the
state-of-the-art results on this dataset by 19.8% compared
to NKTM. We believe this increase in accuracy is due to
the view-invariant graphs used by our method being solely
depth map-based, in contrast to AOG and NKTM, which
make use of skeleton information during training, but ap-
ply their method only on RGB images during testing. In-
deed, depth-map methods do in general outperform RGB-
based methods, since they alleviate the problems caused
by illumination variations and background clutter [1].

To illustrate the power of our proposed framework, we
perform ablative analysis of the keypoint-based graphs,
showing the performance of each part of our system in Ta-
ble 7. In the table, BoW vector refers to training an SVM
with a histogram intersection kernel on the BoW vector
representation of the detected STKPs (this is the same
setup as in Rahmani et al. [21], but they do not test on
a public dataset, so a direct comparison is not possible).
As can be seen in the table, each part of the system gives
a significant improvement over the baseline of using just
a BoW vector representation of the STKPs. The differ-
ence in performance between the BoW vector representa-
tion and our keypoint-based SGS representation is statis-
tically significant (p < 3 ·10−5 using McNemar’s test [76]).
We can also see a drop in accuracy when removing the
SGWT coefficients from the pipeline, and just applying
a pyramid pooling directly to the graph signal of the key-
point graph. Furthermore, the performance deteriorates to
75.4% when setting all local edge weights to zero, which
shows that local edges capture additional information rele-
vant for discriminating between action classes and, in this
case, achieving a better result than NKTM.

5.2.5. Online RGBD Action

The Online RGBD Action dataset [65] aims to cap-
ture various daily life actions, with focus on human-object

Table 8: Recognition performance on the Online RGBD Action
dataset in the SameEnv setting. The plus sign indicates late fusion.

Method Accuracy (%)

SGS(pmax, skel.-view-dep.+keypoint) 72.3
Orderlet mining [65] 71.4
AE [8] 66.0
SGS(pmax, keypoint) 64.7
DSTIP+DCSF [77] 61.7
SGS(pmax, skel.-view-dep.) 59.4
HOSM [78] 49.5
Eigenjoints [51] 49.1
MP [50] 38.4

Table 9: Recognition performance on the Online RGBD Action
dataset in the CrossEnv setting. The plus sign indicates late fusion.

Method Accuracy (%)

Orderlet mining [65] 66.1
AE [8] 59.8
SGS(pmax, skel.-view-dep.+keypoint) 57.1
SGS(pmax, skel.-view-dep.) 46.4
HOSM [78] 50.9
SGS(pmax, keypoint) 42.0
Eigenjoints [51] 35.7
MP [50] 28.5
DSTIP+DCSF [77] 21.5

interaction. It contains several actions that are similar in
motion, but only differ in object appearance, such as “read-
ing phone (sending SMS)” and “reading book”. In total,
the dataset contains seven action classes, and is divided
into several subsets. Subset S1 contains 8 subjects per-
forming each of the seven actions twice, yielding 112 action
sequences. Subset S2 is constructed in a similar manner,
but contains 8 new subjects. Finally, subset S3 follows the
same setup, with 8 new subjects, but was recorded in a
different environment from S1 and S2, which means that
it can be used for a cross-environment evaluation. This
dataset is therefore useful for evaluating the ability of an
action recognition method to distinguish between different
types of human-object interaction.

We follow the two experimental configurations used by
Yu et al. [65]: SameEnv and CrossEnv. SameEnv reports
the two-fold cross-validation accuracy of S1 and S2, while
CrossEnv trains on S1 ∪ S2 and tests on S3. For sim-
plicity, we evaluate only max pooling and view-dependent
skeleton graphs for this experiment. The results are shown
in Tables 8 and 9.

Our proposed method achieves state-of-the-art results
for human-object interaction for the SameEnv setting, and
slightly worse results for the CrossEnv setting. This is
despite that our method is designed for actions defined
largely by movement, which is not the case for actions such
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as “reading phone”, where there is very little movement
close to the object of interest and will not be captured by
the STKPs in our keypoint-based graph. We can also see
that the skeletons and keypoints capture complementary
information, where we get the best results by late fusion.
While the orderlet mining method [65] generalizes slightly
better across environments when doing the CrossEnv eval-
uation, we can see that our method is also able to retain
reasonable performance. This is not true for methods such
as DSTIP+DCSF [77], which works well in the SameEnv
setting, but fails to generalize to new environments, as can
be seen in Table 9.

We further note that Yu et al. [65], similar to us,
achieve their best performance of 71.4% accuracy when
using both object and skeleton features. They report that
when using only their object feature, Local Occupancy
Pattern (LOP), they get 46.4% accuracy, while our
proposed keypoint-based graphs achieves 64.7%. This is
probably due to STKPs capturing the spatio-temporal
shape of the point cloud, while LOPs only capture spatial
3D shape information [8].

5.3. Quality of the Estimated Up Vector

For achieving cross-view action recognition for
skeleton-based graphs, our method relies on the rotation
cancellation scheme presented in Sec. 3.3.1. One concern
is that the rotation cancellation is largely determined
by the estimated up vector vup in (2). In this section,
we briefly investigate the robustness of the up vector
estimates for different action classes in the N-UCLA
Multiview Action3D dataset. Essentially, the up vector
creation process using the marginal median is based on
the assumption that the subject will stand up-right in
most of the frames in the action sequence. For some
action classes, however, this might not hold true. Such
examples are “pick up with one hand” and “pick up with
two hands”. Visualizations of estimated up vectors are
shown in Fig. 13. We can see that while the estimated
up vector turns out quite sensible for most actions,
there is indeed some trouble with action classes where
the subject is bending down for an extended amount of
time. By looking at the example frames in the figure,
one might suggest that the up vector estimate should be
taken from the beginning or end of the action sequence,
as there the subject always seems to be standing up
right. We argue, however, that such an approach is not
general enough, and is merely an exercise of overfitting
on this particular dataset. This approach would fail in
a real-world scenario, where the subject might be taking
any possible pose configuration at the boundaries of the
segmented sequence.

Nevertheless, despite the sometimes faulty up vector
estimates for the action “pick up with two hands”, we can
see that our method is able to still recognize this class with
98% accuracy, as was shown in Fig. 12, and the up vector
is estimated in a sensible way for most other action classes.

(a) “pick up with one hand”, view 1

(b) “pick up with one hand”, view 2

(c) “pick up with one hand”, view 3

(d) “pick up with two hands”, view 1

(e) “pick up with two hands”, view 2

(f) “pick up with two hands”, view 3

(g) “sit down”, view 1

(h) “sit down”, view 2

(i) “sit down”, view 3

(j) “carry”, view 1

(k) “carry”, view 2

(l) “carry”, view 3

Figure 13: Visualization of estimated up vectors (blue arrow) on ex-
ample frames from the N-UCLA Multiview Action3D dataset. Best
viewed in color.

Essentially, we can conclude that the up-vector esti-
mation works reasonably well given the assumption that
most of the frames contain the subject standing straight
up. Note that this also works when the subject is sitting
straight up on a chair, as seen in e.g. Fig. 13i. For ac-
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Figure 14: The percentage of detected STKPs in the subset S1 ∪ S2
of the Online RGBD Action dataset, that overlap with ground-truth
bounding boxes for each action class. The grand mean is 44.95%.

tion sequences where this assumption does not hold, such
as in Fig. 13b and 13c, the estimated vector becomes of
lower quality, which is an inherent weakness of the current
method, and should be investigated in future work.

5.4. Keypoint Locations

For detection of human-object interaction, it is crucial
that the STKPs in our keypoint-based graph are detected
in close proximity to objects. Recall that each STKP cap-
tures information about the spatio-temporal shape of the
surrounding point cloud by using a sphere with radius r
that is centered at the STKP. In this section, we inves-
tigate the number of STKPs that are overlapping with
the ground-truth rectangular object bounding boxes in the
Online RGBD Action dataset. The proportion of overlap-
ping STKPs can be seen in Fig. 14. Qualitative examples
on aggregated point clouds are shown in Fig. 15.

We can see that “drinking” has decent overlap since the
motion in the video often involves moving a water bottle
between a table and the subject’s mouth, which generates
high quality STKPs close to the object (the water bottle).
Similarly, “reading book” has high overlap since most of the
motion in the video happens when turning book pages. On
the contrary, “reading phone” has slightly lower overlap
since most of the motion in the video is really fine motion,
used for navigating the cellphone with the subject’s fingers.
This small motion causes the STKP candidate’s quality
score to become small, which causes them to be pruned as
noise.

Nevertheless, we can conclude that a suitably large
number of STKPs are detected at locations relevant for
human-object detection, which was also verified by the
experimental results in Table 8.

5.5. Parameter Analysis

This section analyses the effect of the parameters of our
method. The number of wavelet scales J for the MSRAc-

(a) “Drinking”. 43.97% of de-
tected STKPs are overlapping
with the water bottle.

(b) “Reading book”. 89.00% of
detected STKPs are overlapping
with the book.

Figure 15: Visualization of detected STKP locations (red) and
ground truth object bounding boxes (blue) on aggregated point
clouds from the Online RGBD Action dataset. Best viewed in color.

tion3D dataset can be seen in Fig. 16a, and for the N-
UCLA Multiview Action3D dataset in Fig. 16b and 16c.
Note that due to the increased graph size for keypoint-
based graphs, we cannot test as many wavelet scales as for
skeleton-based graphs.

Perhaps surprisingly, we can see in Fig. 16c that on
the N-UCLA Multiview Action3D dataset, skipping the
SGWT and doing max pooling of the view-invariant rel-
ative joint positions works equally well as utilizing the
SGWT. We believe this is due to max pooling capturing
a set of key poses using the temporal pyramid that pro-
vide enough information for classifying the actions in this
dataset. This does not hold for absolute mean pooling,
which gets 82.4% without the SGWT. Note that the ro-
tation cancellation process is very important for the max
pooling performance on this dataset, as we get 66.2% ac-
curacy if we use view-dependent skeleton graphs without
the SGWT, in which case using the SGWT gives a better
result. Fine-grained knowledge of acceleration is in this
dataset not as important as for the skeletons in MSRAc-
tion3D, which can be seen by an increasing number of
wavelet scales J causing decreasing performance. We can
also see that for small J , we get degraded performance,
which indicates that low-frequency information alone can-
not capture enough information, as small J attenuates
high frequencies [31]. For MSRAction3D, however, tun-
ing J is important for good performance, as the dataset
contains many spatially similar actions.

For keypoint-based graphs, we can see that a small J
is better. A low number of wavelet scales focuses the de-
scriptor on low-frequency information. Since the accuracy
does not change much with increasing number of scales
on N-UCLA Multiview Action3D, this indicates that high-
frequency information is not important for recognizing the
actions in the dataset. Indeed, if the dataset does not con-
tain actions that have large intra-class similarity, then the
finer distinction of second order information that higher
frequencies provide does not help classification. Rather,
the difficulty of this dataset is the cross-view camera an-
gles, while the actions themselves are defined by larger
global motions. On the contrary, MSRAction3D contains
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(a) MSRAction3D, skeleton
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(b) N-UCLA Multiview Action3D, keypoint
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(c) N-UCLA Multiview Action3D, skeleton
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(d) MSRAction3D, skeleton
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(e) N-UCLA Multiview Action3D, keypoint
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(f) N-UCLA Multiview Action3D, skeleton

Figure 16: Test set accuracy as a function of the number of wavelet scales J (top row) and pyramid levels K (bottom row) on the MSRAction3D
and N-UCLA Multiview Action3D datasets. The dashed line shows accuracy without using the SGWT.

actions that are very similar spatially, such as “draw x”
and “draw circle”. Recognition of these two actions re-
quires knowledge of fine-grained second-order information
(in the case of the skeleton-based graph, acceleration),
which explains why a larger number of wavelet scales helps
improving the recognition performance. Indeed, for the
UCF-Kinect dataset, knowledge of acceleration is more im-
portant for actions differing by smaller movements such as
“climb ladder” and “climb up”. On the other hand, for
MSRActionPairs3D, the knowledge of temporal direction-
ality is more important, which explains the choice of scales
in these cases as well.

The number of pyramid levels K for the MSRAction3D
dataset can be seen in Fig. 16d, and for N-UCLA Multi-
view Action3D in Fig. 16e and 16f. Accuracy is increasing
steadily with increasing number of pyramid levels, which
can be explained by that a larger number of pyramid lev-
els better capture the temporal order of actions, although
diminishing returns can be seen for larger values of K.

In its basic form (K = 1), our descriptor is not able
to capture the order in which the information from the
coefficients occur, something which is important for ac-
tions bound by motion directionality, such as the ones
in MSRActionPairs3D. While using the temporal pyramid
(K > 1) effectively helps capturing such temporal order,
we believe that a non-uniform partition of the time-axis
might be required to fully capture action classes that ex-
hibit a very locally dependent temporal order. Increasing
the value of K does however double the size of the fea-
ture descriptor. So in practice, a decision of compromise

between accuracy and computational speed might have to
be made.

5.6. Descriptor Properties

In this section, we discuss some properties of our pro-
posed descriptor. Since the graph Laplacian matrix L acts
as a graph-analog to the classical Laplace operator [24],
SGS is able to capture, per each vertex and axis, the ex-
istence of ranges of differential second order information.
This range is determined by the SGWT kernel g. The
window created by the SGWT kernel h in turn captures
aggregated low-frequency information, such as the aver-
age position of the action in 3D space. We believe that
for skeleton-based graphs, SGS is able to distinguish be-
tween actions that can be characterized by different accel-
eration at each joint. On the other hand, this means that
SGS potentially has trouble separating sets of actions that
have the same such characteristics. This became evident
in MSRAction3D, where “hammer/draw x/draw tick” ex-
hibit a set of actions that when looked at along each axis,
display similar ranges of acceleration around the same spa-
tial location.

For keypoint-based graphs, our descriptor captures the
frequency with which the keypoints are detected on the
point cloud and more specifically second order information
about their occurrence both temporally and locally.

5.7. Computational Time

For skeleton-based graphs, the whole feature can be
calculated in about 0.3 seconds using a Python imple-
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mentation on a machine with an Intel i7-3770K 3.5GHz
CPU and 32GB RAM given a pre-segmented action se-
quence. For a 2 second long action sequence recorded at
33 frames per second, this corresponds to a frame rate of
220 FPS. For the keypoint-based graphs, STKP detection
takes about 1.6 seconds per frame in C++. The subsequent
SGWT calculation then takes about 2.6 seconds per action
sequence in Python due to the larger graph size.

6. Conclusion

We have presented a method for view-invariant ac-
tion recognition from depth cameras based on graph signal
processing techniques. Our framework leverages a novel
graph representation of an action as a temporal sequence
of graphs, onto which we apply the SGWT framework [31]
for creating an overcomplete representation of an action
that captures both local and temporal variations of the
signal. The graph wavelet coefficients are applied to a tem-
poral pyramid pooling scheme, which creates a descriptor
of an action sequence. For a T frames long action se-
quence withN keypoints in each frame, the SGS descriptor
is computable in O(TN) time. We also presented an effi-
cient algorithm that exploits the explicit sparsity structure
of our graph for calculating the fast approximate SGWT.
The power of our method was demonstrated by experi-
ments on five publicly available datasets, resulting in su-
perior performance for cross-view action recognition, or
results comparable to state-of-the-art action recognition
approaches for the frontal-view case and for human-object
interaction.

In the future, we will investigate other interest point
types, as well as explore applying the proposed framework
to other temporal classification tasks. For rotation cancel-
lation, alternative methods for up-vector estimation robust
to a larger variety of action classes should also be explored.
This paper has focused on action recognition, but the pro-
posed framework is in general applicable to any time series
of graphs.

Appendices

A. The Graph Laplacian Matrix

Let G = (V, E ,W) denote a graph with vertex set V and
edge set E with N = |V| vertices. We let W ∈ RN×N de-
note the weight matrix associated with G, where W(i, j) ∈
R+ is the weight of the edge between vertices vi and vj ,
or 0 if there is no edge. Then  L = D −W is the graph
Laplacian matrix, where D = diag {W1} is the diago-
nal degree matrix and 1 is the vector of all ones. We let
{λ`,u`}`=0,...,N−1 denote the eigenvalue and eigenvector
pairs of  L. The spectrum of  L carries a frequency inter-
pretation [64], making it applicable for harmonic analysis
on graphs. We consider only undirected simple graphs,
which makes all eigenvalues real and non-negative, since  L

is a real positive-semidefinite matrix [59]. For the normal-

ized graph Laplacian matrix L = D−1/2  LD−1/2, there is a
trivial upper bound λmax = 2 for the maximum eigenvalue,
which is tight when the graph is bipartite [59].

A graph signal is a function f : V → R that assigns
a value to each vertex. Such a signal can be represented
as a vector f ∈ RN lying on a graph G. By writing the
eigendecomposition  L = UΛUT , frequency analysis of f
can be performed by taking the graph Fourier transform
f̂ = UT f , which gives a graph Fourier mode decomposition
of the signal [24].

B. Spectral Graph Wavelets

Hammond et al. [31] define a spectral graph wavelet
transform (SGWT) for graph signals on the eigenspectrum
of  L.3 Each spectral graph wavelet is realized by taking
a kernel function g : R+ → R+, scaling its domain by a
scalar t, and finally localizing the result by convolving it
with an impulse δn ∈ RN , which has value 1 at vertex n,
and 0 everywhere else. A spectral graph wavelet ψt,n ∈
RN at scale t localized around vertex n can be written
explicitly as a vector

ψt,n(m) =

N−1∑
`=0

g(tλ`)u`(n)u`(m) . (B.1)

Given a graph signal f , an SGWT coefficient is extracted
by the inner product 〈ψt,n, f〉. The kernel g is chosen to
act as the following band-pass filter [31]

g(x) =


x−α1 xα for x < x1

s(x) for x1 ≤ x ≤ x2
xβ2x

−β for x > x2

, (B.2)

where α = β = 2, x1 = 1, x2 = 2 and s(x) is a unique
cubic spline that respects the curvature of g. Then,
coefficients for smaller scales (small t) will localize
high-frequency information around a vertex, while larger
scales (large t) capture low-frequency information. The
transform also includes a scaling kernel h : R+ → R,
h(x) = γ exp(−(x/(0.6ε))

4
), for creating a scaling function

φn for stably representing low-frequency content in the
graph [31]. Here, γ is set so that h(0) equals the maximum
value of g, and the design parameter ε = λmax/20, where
λmax is an upper bound of the maximum eigenvalue of
the graph Laplacian. The scaling vector φn is defined
similarly to Eq. (B.1), with g replaced by h and setting
the parameter t = 1.

Let J denote an integer such that the set of
wavelet scales is {tj}j=1,...,J . Then, the SGWT pro-
vides a transform with J + 1 scales; J wavelets and
one scaling function. By gathering the wavelet and

3Online source code available at http://wiki.epfl.ch/sgwt .
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scaling function vectors in a transformation matrix
T = [Ψt1 , . . . ,ΨtJ ,Φ] = [ψt1,1, . . . ,ψtJ ,N ,φ1, . . . ,φN ],
the transform coefficients can be expressed as a (J + 1)N -
dimensional vector c = TT f .

We also note that the SGWT is an overcomplete trans-
form, as it contains more wavelet coefficients than vertices
in the graph. If a signal is representable using only a few
wavelet scales, then the SGWT can be viewed as quite
similar to sparse coding [55], and each wavelet as an atom
in a sparse dictionary [56]. However, since spectral graph
wavelets are based on a fixed mathematical structure, they
can be computed more efficiently, while sparse coding re-
quires solving a heavy optimization problem [62]. It should
be noted that while attempts to embed graph structure
into the learned dictionary exists, this does not guaran-
tee an efficient implementation [56]. Another advantage
of spectral graph wavelets is that the explicit mathemati-
cal structure enables formal analysis of the effects of each
wavelet basis.

C. Fast Approximate Wavelet Transform

In order to avoid explicit computation of the eigen-
spectrum of L, which takes O(|V|3) time (and is thus only
feasible for graphs up to about 1000 vertices), the authors
of the SGWT introduced a method based on truncated
Chebyshev polynomials for approximating the transform
in O(|E|+ J |V|) time [31]. They approximate the kernels
g and h using low-dimensional Chebyshev polynomials

g(tjλ) ≈ 1

2
cj,0 +

Mj∑
k=1

cj,kT k(λ) , (C.1)

where Mj is the degree of the approximation, typically
Mj = 50. The expression T k(λ) = Tk(λ− 1) is the shifted
Chebyshev polynomial of order k, which satisfies the recur-
rence relation Tk(λ) = 2λTk−1(λ)−Tk−2(λ). Further, cj,k
denote the Chebyshev coefficients, which can be estimated
given a spectrum upper bound λmax [60].

The approximated transforms are given by

ΨT
tj f ≈

1

2
cj,0f +

Mj∑
k=1

cj,kTk(L)f , (C.2)

ΦT f ≈ 1

2
c0,0f +

M0∑
k=1

cj,kTk(L)f , (C.3)

with T0(L) = I and T1(L) = L− I. The approximation
accesses L only through matrix-vector multiplications and
is fast for sparse graphs.
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