T2R2 東京科学大学 リサーチリポジトリ Science Tokyo Research Repository

論文 / 著書情報 Article / Book Information

論題(和文)	地震動特性を考慮した座屈拘束ブレースの簡易的な疲労損傷度評価法 の検討	
Title(English)		
著者(和文)	松井征生, 佐藤大樹, 北村春幸, 松田頼征, 植木卓也, 宮川和明	
Authors(English)	Daiki Sato, Haruyuki Kitamura, Yoriyuki MATSUDA, Takuya Ueki, Kazuaki Miyagawa	
出典 / Citation		
Citation(English)	, , , рр. 481-484	
発行日 / Pub. date	2017, 3	

北村 春幸 *1

宮川 和明 *4

地震動特性を考慮した座屈拘束ブレースの簡易的な疲労損傷度評価法の検討

正会員

正会員 ○ 松井 征生 *1

松田 頼征 *1

構造一振動

座屈拘束ブレース	、 疲労損傷度語	平価	マイナー則
レインフロー法	等価平均歪み	f値	

1. はじめに

東北地方太平洋沖地震以降,建物を早期に復旧させて継続 的に使用する必要性が高まり,建物には高い耐震性能が要求 されている。高耐震化を図る手立ての1つに,地震動によ る入力エネルギーをダンパーに集中させる制振構造が挙げ られ¹⁾,現在では多くの建物に適用されている。一方,想定 を上回る地震動の発生を受け,近年では強震動予測による 地震動の見直しが進められ,南海トラフを震源とする長周 期地震動の発生が懸念されている²⁾。固有周期が比較的大き な建物と共振することで,大振幅の応力振幅が長時間続く 長周期地震動においては,ダンパーの変形増大の他に,多数 回の繰返し変形による疲労損傷がダンパーの破断に大きく 影響するため,今後の制振構造の設計においてダンパーの疲 労損傷度の評価が重要になると考える。

筆者らは、時刻歴応答解析やマイナー則によるダンパー の歪みの波形分解を行わない簡易的な疲労損傷度の評価法 を導出するにあたり、疲労損傷度に起因する値であるダン パーの等価平均歪みに着目したが³⁾、入力地震動と等価平均 歪みの関係性を明かすに至っていなかった。本報では、等価 平均歪みと最大歪みの関係性の傾向を地震動毎に分析した 上で、等価平均歪みを最大歪みから求める簡易な評価式を 導出する。また、上記で評価した等価平均歪みと、ダンパー のエネルギー吸収量より疲労損傷度を評価し、時刻歴応答 解析、および歪みの波形分解により求めた疲労損傷度と比 較することで上記の簡易評価法の妥当性を検証していく。

2. 検討対象建物及びダンパー諸元

検討対象建物は図 1 に示す 10 層の鋼構造建物とし,地上 10 階,高さ42.4m(1 階 4.6m, 2~10 階 4.2m),長辺方向が43.2m (7.2m×6 スパン),短辺方向が14.0m+6.0m=20.0m,主架構の 1 次固有周期 T_f は2.01s で⁴⁾,ダンパーは長辺方向に各層 8 基設置している。また、本報では第1層におけるダンパーの 降伏せん断力係数 $d\alpha_{y1}$ (以降ダンパー量と呼ぶ)を0.01,0.03, 0.05,0.07,0.10の建物モデルを扱う。時刻歴応答解析は検討 対象建物の長辺方向のみを対象とし、主架構を弾性とした。 構造減衰は、主架構の1次固有周期 T_f に対してh=2%とな る初期剛性比例型とした。

ダンパーは軸材に LY225 材を用いた履歴減衰型のハーフ 十字ブレースダンパーを想定し,解析ではダンパーを弾性部, 塑性化部を含めた 1 要素でモデル化している ⁵⁾。また,第 i 層のダンパーの降伏軸力 *cFyi*は Ai 分布に基づき決定した。 図 2 にダンパーの構成と断面を示す。検討対象ダンパーは図 1(a)に示すように,A 通り 2,3間の外側のダンパーとする。

同 佐藤 大樹 *2
 同 植木 卓也 *3

3. 時刻歴応答解析

3.1 解析用入力地震動の概要

検討用入力時振動は表1に示す,観測波8波,模擬波7波 と、地震動の加速度入力倍率を変更した2波(Elcentroの入 力倍率を2倍、UEMACHIの同値を0.5倍した)の計17波を 採用した。なお、入力時振動は選択には、地震動毎の単位地 震動の反復数f値のに着目しており、f値が0.48~2.85のもの を扱っている。図3に入力地震動の擬似速度応答スペクトル *pSv*(減衰定数*h*=5%)とエネルギースペクトル*VE*(*h*=10%)を示 す。また、主架構と、ダンパー量 *day*1=0.01、0.03、0.05、0.07、 0.10の建物の一次固有周期を同図に示す。

図3 解析用入力地震動のスペクトル

表1 入力地震動の概要

入力地震動	種類	f値	備考	
OS1	模擬波	2.85	国土交通省による,大阪平野における南海トラフ地震時の想定波	
CH1	模擬波	2.52	国土交通省による,中部圏における南海トラフ地震時の想定波	
MYG004	観測波	2.51	2011年東北地方太平洋沖地震におけるK-NET築館での観測波	
KANTO	模擬波	2.30	東京・新宿地区における東海・東南海・南海連動地震の予測波	
ART HACHI	模擬波	1.89	十勝沖地震を位相特性とし, $T_c=0.64$ s以降の $_pS_v$ が80 cm/s で一定とした告示波	
BCJL2	模擬波	1.79	日本建築センターより配布されているレベル2の地震波	
TOHOKU	観測波	1.69	1978年宮城県沖地震における神奈川県小田原市での観測波	
HACHINOHE	観測波	1.31	1968年十勝沖地震における観測波	
TAFT	観測波	1.01	1952年Kern County地震における観測波	
Elcentro	観測波	1.00	1940年Imperial Valley地震における観測波	
JMA KOBE	観測波	0.89	1995年兵庫県南部地震における観測波	
KMM006	観測波	0.67	2016年熊本地震の熊本市における観測波	
UEMACHI	模擬波	0.64	大阪市域A4ゾーンにおける上町断層帯のフラットタイプ地震動	
ART KOBE	模擬波	0.64	兵庫県南部地震を位相特性とし, $T_c=0.64$ s以降の $_pS_v$ が80cm/sで一定とした告示波	
MZQ-EW	観測波	0.48	2008年四川地震の綿竹における観測波のEW成分	

3.2 検討対象建物の時刻歴応答解析結果

図3に全地震動(表1)入力時の, ダンパー量 $day_1=0.01, day_1$ =0.05, $day_1=0.10$ の建物における,最大層間変形角 R_{max} を示 す。ダンパー量が大きい程,各層の最大層間変形角 R_{max} は小 さくなることが確認できる。また, $day_1=0.01$ において,地震 動 CH1 と UEMACHI入力時に, $day_1=0.05, 0.10$ においては地 震動 UEMACHI入力時に,最大層間変形角 R_{max} が 1/50 を越 えている。それ以外の入力地震動における最大層間変形角 R_{max} は各建物において,おおむね 1/75 程度である。

4. ダンパーの等価平均歪み、および疲労損傷度の評価4.1 マイナー則によるダンパーの疲労損傷度の算出

マイナー則によりダンパーの疲労損傷度 (D_m)を算出す るため、レインフロー法 ⁷⁾によりダンパー塑性化部における 歪みの時刻歴波形 $c\epsilon$ (t)を個々の半波長の振幅に分解する。 $c\epsilon(t)$ は次式で求められる。

$${}_{c}\mathcal{E}(t) = \frac{{}_{c}u(t)}{\alpha L} \qquad {}_{c}u(t) = u(t) - F(t)/{}_{e}K \qquad (1-a,b)$$

ここで,*cu*(t):ダンパー塑性化部における変形量,*L*:ダンパー 全体の長さ, *a*:ダンパーの部材長さに対する塑性化部長さの 比(=1/3)⁸), *u*(*t*):ダンパー全体の軸方向における変形量, *N*(*t*): ダンパーに生じる軸力, *_eK*:ダンパー弾性部の初期剛性であ る。 また,抽出した個々の半波長の歪み振幅 $\Delta \epsilon_i$ (%)に対する限界 繰返し回数 n_{cri} と,レインフロー法により抽出した個々の半 波長の歪み振幅数を n とした時のマイナー則におけるダン パーの疲労損傷度 D_m は次式で求められる ⁸⁾。

$$n_{cri} = \left(\frac{\Delta \varepsilon_i}{15.83}\right)^{-\frac{1}{0.44}} \qquad D_m = \sum_{i=1}^n \frac{1}{2} \left(\frac{1}{n_{cri}}\right)$$
(2-a,b)

なお、 Δc_i は歪み振幅が弾性歪み範囲($\Delta c_i \leq 0.22\%$)のものは除いている。

4.2 ダンパーの等価平均歪みの算出

等価平均歪み*Accm* は,式(2-a,b)の疲労損傷度 *D*m と,半波 長である等価平均歪み*Accm*の振幅数 *nm*(以降,等価平均歪み 振幅数と呼ぶ)を用いて次式で求められる。

$$\Delta_c \varepsilon_m = 15.83 \times \left(\frac{D_m}{n_m/2}\right)^{0.44}$$
(3)

また,等価平均歪み振幅数 nm は次式で求められる。

$$n_m = 2 \times \frac{c}{e} \frac{\eta_E}{\eta_1} \qquad _c \eta_E = \frac{c}{e} \frac{W}{cF_y \cdot _c u_y} \qquad _e \eta_1 = \left(\frac{\Delta_c \varepsilon_m}{0.184}\right)^{1/0.717}$$
(4a-c)

ここで、 $e\eta_E:$ ダンパー塑性化部の累積塑性変形倍率、 $e\eta_1:$ 実験から得られた1波長あたりの累積塑性変形倍率 eW:ダンパー塑性化部のエネルギー吸収量、 $eF_y:$ ダンパー塑性化部の降伏 応力、 $eu_y:$ ダンパー塑性化部の降伏変位である。

以上より、等価平均歪み Δ_{cem} は(2)~(4)式を Δ_{cem} について解いた次式で求められる。

$$\Delta_{c} \mathcal{E}_{m} = \left(\frac{D_{m \cdot c} F_{y \cdot c} u_{y}}{cW} \times (0.184)^{\frac{-1}{0.717}} \times (15.83)^{\frac{1}{0.44}}\right)^{\frac{1}{0.44} - \frac{1}{0.717}}$$
(5)

4.3 ダンパーの等価平均歪みの傾向と、評価式の提案

図4に、ダンパー量 day1 が 0.01 から 0.10 までの、入力地震 動毎におけるダンパーの最大歪み*Δ*c*E*max – 平均歪み*Δ*c*E*m 関係 を、f 値が 1.0 以下の直下型の地震動入力時とf 値が 1.0 を超 える長周期型の地震動入力時に分けて示す。ここで、横軸の ダンパーの半波長の最大歪み*Δ*c*E*max は次式で求められる。

$$\Delta_c \varepsilon_{\max} = 2 \cdot \varepsilon_c \varepsilon (t)_{\max}$$
(6)

ここで $c \in (t)_{max}$: ダンパー塑性化部における歪みの絶対値の 最大値である。

図4より、ダンパーの最大歪み Δ_{cEmax} と平均歪み Δ_{cEm} には、 ダンパー量や変形量によらず高い相関関係があり、入力地 震動のf値(表1)がおよそ1.0を境にその関係性が分かれ ることが確認できる。表2に入力地震動毎の最大歪み∆cEmax と平均歪み $\Delta_{c\mathcal{E}m}$ の比 $\Delta_{c\mathcal{E}m}/\Delta_{c\mathcal{E}max}$ における平均値を示す。傾 向として、f値が1.0以下の地震動入力時における $\Delta_{c \mathcal{E}m}$ / $\Delta_{c \mathcal{E}max}$ の値は比較的大きく、0.5~0.6の間に集中している。一方、f 値が1.0を越える地震動入力時においてはΔcEm /ΔcEmaxの値は 比較的小さく、0.4~0.45 付近に集中している。また、図 5(i) にダンパー量毎の高さ方向におけるΔ cEm /Δ cEmax を示す。ダ ンパー量が大きいほど,高さ方向における*Δ cEm / Δ cEmax*の値 のばらつきは大きくなるが、全体として、f 値が 1.0 以下の地 震動入力時における*Δ_{cEm} / Δ_{cEmax}*の値は0.5~0.6の間に,f値が 1.0 を越える地震動入力時におけるΔ cEm /Δ cEmax の値は 0.4~ 0.45 付近に集中している。さらに同図(ii)に、各入力地震動に おけるダンパー量毎のダンパーの最大塑性率 cµmax および累 積塑性変形倍率 $c\eta_E \geq \Delta_c \varepsilon_m / \Delta_c \varepsilon_{max}$ の関係をそれぞれ示す。 ここからも、多少のばらつきはあるものの上記と同様な傾 向が見られ、ダンパー量や変形量に寄らず、入力地震動の f 値が 1.0 を境にダンパーの最大歪み $\Delta_{c}\epsilon_{max}$ – 平均歪み $\Delta_{c}\epsilon_{m}$ 関 係が大まかに2種類に分けられることが分かる。次に、以上 の関係性を利用して、平均歪み $\Delta c \mathcal{E}m$ を最大歪み $\Delta c \mathcal{E}max$ から求

める簡易評価式を提案する。

表 2 入力地震動の f 値とΔc ε_mΔ/c ε_{max}の平均値

入力地震動	⊿ cɛm/ ⊿ cɛmaxの平均値
OS1	0.451
CH1	0.447
MYG004	0.390
KANTO	0.420
ART HACHI	0.406
BCJL2	0.407
TOHOKU	0.413
HACHINOHE	0.413
TAFT	0.447
Elcentro	0.507
JMA KOBE	0.541
KMM006	0.520
UEMACHI	0.627
ART KOBE	0.500
MZO-EW	0.492

(ii) ダンパーの応答値と $\Delta_c \mathcal{E}_m / \Delta_c \mathcal{E}_{max}$ の関係

図 5 $\Delta_c \varepsilon_m / \Delta_c \varepsilon_{max}$ の傾向

図4の,f値が1.0以下の直下型の地震動入力時における $\Delta c c_m - \Delta c c_{max}$ 分布と,f値が1.0を超える長周期型の地震動入力時における $\Delta c c_m - \Delta c c_{max}$ 分布においてそれぞれ最小二乗法により,原点を通るように求めた $\Delta c c_m - \Delta c c_{max}$ 関係式を式(7)に示す。

$$\Delta_c \varepsilon_m = \lambda_m \cdot \Delta_c \varepsilon_{\max} \tag{7}$$

ここで, λm=0.53 (f 値が 1.0 以下の直下型の地震動入力時), λm=0.42(f 値が 1.0 を超える長周期型の地震動入力時)

以降,式(7)をダンパーの等価平均歪みの評価式として扱い, ここで評価する等価平均歪みをΔc&eqとする。

図6に、式(7)より簡易評価した等価平均歪み $\Delta_{c}\varepsilon_{eq}$ と、マイ ナー則により算出した等価平均歪み $\Delta_{c}\varepsilon_{m}$ を比較した図を、f 値が 1.0 以下の直下型の地震動入力時と f 値が 1.0 を超える 長周期型の地震動入力時に分けて示す。両図において多少の ばらつきはあるものの、 $\Delta_{c}\varepsilon_{eq} \ge \Delta_{c}\varepsilon_{m}$ には、ダンパー量や変形 量の違いに関わらず対応性が見られる。ここで両図において $\Delta_{c}\varepsilon_{eq} / \Delta_{c}\varepsilon_{m}$ は 1.5 以下に留まった

図6 等価平均歪みΔ_cEmとΔ_cEegの比較

4.4 評価式の妥当性の検証

本節では、式(7)で評価したダンパーの等価平均歪み $\Delta_{c}\mathcal{E}_{eq}$ およびこの値から評価した疲労損傷度 D_{eq} を、それぞれマイナー則により算出した値 $\Delta_{c}\mathcal{E}_{m}$ 、 D_{m} と比較することで、簡易評価法の精度について検討する。ここで疲労損傷度 D_{eq} は式(8)で評価する。

図7に、式(8)で評価したダンパーの疲労損傷度 $D_{eq} \epsilon$ 、マイナー則による疲労損傷度 D_m と比較した図を示す。ここでは式(8)の検討が目的であるため、式(8)中の $_eW$ は解析結果を用いている。図8より、f値が1.0を越える地震動入力時においては、ダンパー量や変形量に関わらず、 D_m と D_{eq} に良い対応関係が見られ、 D_{eq} / D_m の値は常に1.2以下に留まるが、危険側の評価になる場合も見られる。一方、f値が1.0以下の地震動入力時においては、損傷度が大きいほど D_{eq} / D_m の値が小さくなり、危険側の評価になる場合もある。

5. まとめ

本報では、ダンパーの歪みの波形分解を行わずに、地震動 特性とダンパーの最大変形量から疲労損傷度を簡易評価す る手法を提案し、この評価法の精度について検証した。以下 に、この過程で得られた知見を示す。

- (1) ダンパーの疲労損傷度を評価する上で重要となる等価平 均歪みと最大歪みの関係性は、ダンパー量や変形量の違いに寄らずf値が1.0以下の直下型の地震動入力時と,f 値が1.0を超える長周期の地震動入力時に分けられる。
- (2) ダンパーの等価平均歪みは(1)の傾向を利用し,最大歪み からおおよその値を評価することができる。
- (3) ダンパーの等価平均歪みと最大歪みの分布から最小二乗 法より求めた疲労損傷度の評価法は、マイナー則と高い 対応性があるもの、危険側の評価に繋がる場合もある。

本報では1つの建物を対象に検討を行ったものだが、今後 は異なる固有周期の建物でも同様な検討が必要である。

謝辞

本報は JFE スチール株式会社, JFE シビル株式会社, 東京理科大 学北村研究室,東京工業大学佐藤研究室の共同研究の成果による ものです。

参考文献

- 1) 秋山宏:建築物の耐震極限設計 第2版,東京大学出版会,1987
- 2) 日本建築学会長周期地震動WG:長周期地震動に対する公開研究集会,対象とする巨大地震動と地域,2011.3
- 3) 高橋真人,植木卓也,宮川和明,佐藤利昭,佐藤大樹,北村春幸:地震動特性が座屈拘束ブレースの疲労損傷度評価に与える 影響の分析,日本建築学会大会学術講演梗概集,2015.9
- 4) 松澤祐介,佐藤大輔,佐藤大樹,北村春幸,山口路夫,脇田直 弥,松蔭知明:架構応答に弾性,弾塑性が混在する場合の制振 構造建物のエネルギー配分に関する研究その1,2011年度日本 建築学会関東支部研究報告集 82(I), pp193-196, 2012.3
- 5) 栗林晃司,佐藤大樹,北村春幸,山口路夫,西本晃治:実効変 形を考慮した履歴減衰型制振部材を有する鋼構造建物のエネ ルギーの釣合に基づく応答予測法,日本建築学会構造系論文集 76(661), pp543-552, 2011.3
- 6) 秋山宏,北村春幸:エネルギースペクトルと速度応答スペクト ルの対応,日本建築学会構造系論文集,第608号,pp.37-43, 2006.10
- 遠藤達雄,松石正典,光永公一,小林角市,高橋清文:「Rain Flow Method」の提案と応用,九州工業大学研究報告(工学)28, pp33-62, 1974.3
- 8) 高橋真人,植木卓也,宮川和明,橋本奨吾,佐藤利昭,北村春 幸:極大地震に対する二重鋼管ブレースの性能評価その1,日 本建築学会学術講演梗概集,pp1115-1116,2014.9.
- *1 東京理科大学 *2 東京工業大学 *3 JFE スチール株式会社 *4 JFE シビル株式会社
- ·4 JFE 2 L /V 体式云1