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Abstract

Due to the clean, renewable and sustainable characteristics, the generation of wind energy

around the world grows rapidly. This rapid development of wind energy and the associated

high uncertainties and fluctuations in power generation present a big challenge for both wind

power generators and electric grids in many countries, especially Japan where the topography

condition is very complex. An effective way to solve these problems is providing accurate

and reliable wind power predictions in advance to properly adjust the integration of wind

power into existing electrical systems. However, to our best knowledge there is very limited

report in literature on any practice to establish a comprehensive forecasting system for wind

farm sites in Japan.

Therefore, the purpose of this thesis is to develop a wind power forecasting system

for a wind farm of interest in Awaji island of Japan as an effort to facilitate the short-

term wind power forecast in Japan area. Considering the specific situation in Japan, we

have combined meso-scale WRF (Weather Research and Forecasting) model, power curve

(approximated by a 10th-order polynomial), Kalman filter, data assimilation and the micro-

scale OpenFOAM (Open source Field Operation and Manipulation) model together to build

a novel and integrated forecasting system for wind energy prediction under complex terrain

conditions.

We firstly evaluated the forecasting ability of the WRF and power curve model separately

as the basic components of the integrated forecasting system. It is noted that the WRF model

has been tuned to adapt the wind farm in Japan. Compared with the observed data of both

wind speed and power, it is found that the two components are able to provide reasonably

reliable forecasting results in the target site which has complex geographic environment very
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typical in Japan. However, significant errors and uncertainties were also observed in this

preliminary system, for example the systematic overestimation of the wind power.

In order to improve the accuracy and reliability of wind power prediction, we have

integrated Kalman filter, data assimilation and a micro-scale CFD (computational fluid

dynamics) model (OpenFOAM model) as new modules in the system to reduce the errors and

uncertainties. The performance of those three modules has been validated with the observed

data. With Kalman filter, the raw wind prediction can be substantially improved. The 15-

turbine averaged improvements of ME (mean error), RMSE (root mean square error) and CC

(correlation coefficient) are 97%, 22% and 10% respectively. Meanwhile, the Kalman filter

also demonstrates a promising capability of reducing the uncertainties in the power curve

model. More specifically, Kalman filter could significantly improve the raw model prediction

of power by 92%, 33% and 15% in ME, RMSE and CC respectively. The validation results of

data assimilation also indicate that the WRF model forecasts can be markedly improved after

assimilating nacelle wind data, with the relative improvements of 34.3%, 23.9% and 8.8% in

ME, RMSE and IA (index of agreement) respectively. It is noted that the data assimilation

module can handle part of random errors which cannot be eliminated by Kalman filter module,

and integrating both Kalman filter and data assimilation with WRF model can obtain the

best performance. The resolution (500-m of horizontal direction) of the current forecasting

system is too coarse to capture the detailed flow information caused by the complex terrain in

the atmospheric boundary layer. Thus, the micro-scale OpenFOAM model has been coupled

with the WRF system to build a multi-scale forecasting system for short-term prediction of

hub-height wind under forcing of local geographic conditions. The ability of this multi-scale

system for simulating wind flow the complex terrain is firstly validated with an arbitrary

case. It is found that this system can capture reasonable distribution of the velocity and

turbulent kinetic energy at the atmospheric boundary layer compared with other researchers’

work. Moreover, this multi-scale forecasting system shows remarkable advantages against

the single meso-scale WRF component through validations with a 8-day series of observed

data (192 cases).



3

In summary, a novel integrated forecasting system has been developed by combining

the meso-scale WRF model, power curve model, Kalman filter, data assimilation and the

micro-scale OpenFOAM model in this study. Its performance has been validated with the

real-case observed data from the Awaji wind farm in Japan. Part of this system has been

installed and used as routine tool for operational prediction.
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Chapter 1

Introduction

1.1 Global status of wind power

Wind power is an important form of energy, which is collected from renewable resource of

air motion driven by heat energy from the sun. As similar to other forms of renewable energy,

e.g., tides and geothermal heat, it has apparent advantages against the traditional generators,

including the characteristic of sustainable, environmental friendly and the potential economic

benefits. Those are also why the wind power is now established around the world as a

mainstream source of energy and even is projected to provide at least 36% global electricity

demand in 2050, according to the latest report from the Global Wind Energy Council

(GWEC).

The development of wind power is dramatic in the last 16 years. Based on the statistical

data from GWEC (Figure 1.1), except for 2013, the global annual installed wind capacity is

increasing consistently. From Figure 1.2, it is obvious that the global cumulative installed

wind capacity was about 432,900 MW at the end of 2015, growing from 17,400 MW in the

year 2000. This growth at some extent directly meets the demand of cutting the emissions

of carbon dioxide with no-extra decrease of established economies. In addition, with the

development of wind power, a number of new jobs and industries are created and the energy

security also has been enhanced at the same time.
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A fact which can not be neglected is the current situation of wind energy in different

countries or regions has large distinctions. This can be proved with the evidences displayed

in the Figure 1.3. It is clear that several countries have already achieved relatively high levels.

China has the largest installed capacity (145,104 MW, 33.6% of the global installed wind

power), followed by the USA (17.2%) and Germany (10.4%). However, the development of

wind power for the rest of counties is not very well due to many factors, for example, lacking

of expertise on how to select perfect site in some developing countries or the government

policy on electricity generation. In this thesis, we mainly pay attention to the specific situation

in Japan.

Figure 1.1 The global annual installed wind capacity from 2000 to 2015. Data source:
GWEC.

Figure 1.2 The global cumulative installed wind capacity by the end of 2015, source: GWEC.
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Figure 1.3 The cumulative capacity share of top 10 countries in 2015, source: GWEC.

Table 1.1 Current status of renewable energy in Japan. Estimated renewable power generation,
by type and by proportion of total power generated in Japan by the end of 2012 and 2015,
respectively. Source: JFS [54]

Type of Renewable Energy
2012 2015

Annual Power Generation
Capacity (GWh)

Proportion of
Total (%)

Annual Power Generation
Capacity (GWh)

Proportion of
Total (%)

Solar photovoltaic (PV) 7,635 0.69% 34,085 3.31%
Wind 4,838 0.44% 5,381 0.52%

Geothermal 2,609 0.24% 3,115 0.30%
Small-scale hydropower 17,401 1.58% 17,777 1.73%

Biomass 12,186 1.11% 16,395 1.59%
Total 44,670 4.1% 76,205 7.41%

1.2 Current situation in Japan

In contrast to many other countries, the situation of wind power in Japan looks a bit different.

Japan has not made much progress yet since there are only 245 MW of wind capacity are

installed in 2015 and the cumulative capacity just reaches to 3,038 MW [26], which satisfied

a mere 0.52% of domestic electricity demand (Table 1.1).

In Table 1.1, we also can find the status of estimated annual power generation capacity

by other renewable energy sources and their percentage shares of total power generation in

Japan. Compared to the numbers in 2012, all of them have been developed at the end of
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2015, indicating positive trends for the expansion of renewable energy. However, except

for the largest increase of solar photovoltaic of 2.62%, the developments of other forms of

renewable energy are still not evident, especially for the wind power. This may suggest that

the transformation of energy system to allow for a more diverse energy mix in Japan is very

slow and far behind other developed countries.

To return to our interest of wind energy, the slow development in Japan may owe to

following factors:

• Energy Policy. Before 2011, energy supply of Japan was dominated by fossil fuels and

nuclear energy. The consequence of overusing traditional fossil fuels leads to plenty

of emissions of carbon dioxide and other poisonous gases which will generate severe

environmental problems, such as global warming and air pollution. Hence, Japan had

pledged to increase nuclear power’s share in electricity supply from 30% to 50% in

2009, in order to reduce its future greenhouse gas emissions, though this wish had

been broken by the 2011 Great East Japan earthquake and the subsequent nuclear

accident. Security of the nuclear plant is the key concern. Thus, the government

decided to fundamentally rethink its energy policy to balance the security, economic

efficiency and environmental protection. And this provides a favorable opportunity for

developing wind energy and other renewables. Unfortunately, such development may

have been constrained as nuclear power plants are being restarted in Japan.

• High Population Density. Japan has high population density of around 336 people

per km2. This directly leads to an unsuitability for constructing a wind farm which

generally needs extensive open areas without too many artificial buildings.

• Social Acceptance Issues. Social acceptance of wind farm projects is a serious bottle-

neck, due to construction of wind farm has a couple of disadvantages. In particular,

the issues related to large noise and low frequency vibration which are harmful for

the local residents’ normal lives, are considered most important for local community.

Moreover, the manufacturing of wind turbines somehow will cause some pollution, for

example destruction of landscape and damage on ecosystem.
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• Complex Terrain Conditions. Japan is an island nation and nearly 72% of its land

is mountainous. Thus, the development of its wind energy potential is very limited

compared to US or Europe.

• Grid Connection Issues. The distribution of wind resources across Japan is quite

uneven. Many of the most suitable wind farm sites are located in rural or mountainous

terrain, e.g., Hokkaido and Tohoku, where power demand is low. Besides, the local

grid condition is generally inadequate in those areas and the installation costs are high.

Those mentioned concerns could be solved or partly improved by making more appropriate

energy policy (especially on energy mix) or enhancing the grid connection and integration

with the existing smart grids. However, integrating the available wind power with smart grid

is a really tough task if the intrinsically variable and uncontrollable characteristics of wind

cannot be understood well.

1.3 The nature of the wind

Wind is the movement of air caused by differences in the atmospheric pressure. Specifically,

when a difference in atmospheric pressure exists, air will move from the higher region to the

zone of low pressure where air is rising. The strength of wind (i.e, wind speed) is mainly

affected by two factors. One is the magnitude of the pressure difference between the high

and low region. The greater such differences exit, the stronger winds may happen. The other

one is the funneling effects which might be caused by the regional topography, for example

canyons, passes, and downtown streets.

Types of the winds

Roughly, the winds may be classified into four types, namely the planetary winds, the

monsoon winds, cyclones and anticyclones and local winds.

• The Planetary Winds. It is known as the general distribution of winds throughout the

lower atmosphere, including the North-east and South-east Trade winds, the Temperate
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Westerlies and the Polar Easterlies. These winds blow very regularly throughout the

year and are controlled on the whole by the latitudinal pressure belts.

• The Monsoon Wind is traditionally defined as a wind system in which there is a

complete or almost complete reversal of prevailing direction from season to season.

The largest developed monsoonal area in the world is the southeast Asia.

• The Cyclone and Anticyclone Winds. A cyclone or anticyclone is a region of low

or high atmospheric pressure and associated storm system. Both of them move as

compete systems while cyclones moving much faster than the anticyclones.

• Local Winds, which are usually caused by local factors are basically confined to a

limited area compared to planetary winds. There are some well-known examples of

local winds including Fohn, Chinook, Tornado, and Sea and Land Breeze.

Except for some of local winds, the pressure systems of other winds are relatively stationary

due to the pressure gradients are balanced by the centripetal and the Coriolis accelerations.

However, this kind of balance of forces do not conserved because of the occurring drag forces

brought in by the earth’s surface roughness, which made the winds within the atmosphere

boundary layer (ABL) extremely complicated. Whereas, the atmospheric flows in ABL need

to be understood as much as we can, as there is a great increase in the demand for production

of wind energy.

Atmosphere boundary layer

The troposphere can be roughly classified to two parts: the free atmosphere (FA) and a bound-

ary layer (BL) near the surface (Figure 1.4), which is known as the atmospheric boundary

layer (ABL). ABL is defined originally as the lowest part of the atmosphere which has a

direct interaction with the earth’s surface and responds to surface forcing with a time scale of

about 1 hour or less [105]. It plays an important role in many fields, including aeronautical

meteorology, air pollution, agricultural meteorology, hydrology, weather forecasting and

climate, and wind energy. The depth of the ABL is variable, typically ranges from 100 m
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Table 1.2 Comparison of boundary layer and the free atmosphere characteristics. (from Stull
(1988) [105])

Property Free Atmosphere Atmosphere Boundary Layer

Turbulence Mostly Laminar.
Almost continuously turbulent

over its whole depth.

Friction Small viscous dissipation.
Strong drag against the earth’s sur-

face. Large energy dissipation.

Dispersion Small molecular diffusion.
Rapid turbulent mixing in
the vertical and horizontal.

Winds Winds nearly geostrophic.

Near logarithmic wind speed
profile in the surface layer.

Subgeostrophic, cross-isobaric
flow common.

Vertical Transport Mean wind dominates. Turbulence dominates.

Thickness
Less variable. 8-18 km.
Slow time variations.

Varies between 100 m to 3 km
in time and space,

Diurnal oscillations over land.

to 2000 m (i.e., occupying the bottom 10% to 20% of the troposphere). There are many

differences when we compare ABL with the free atmosphere, part of which have been

summarized in Table 1.2.

The ABL structure that evolves with the diurnal cycle is displayed in Figure 1.5. There

are three main components of this structure, namely the mixed layer (ML), residual layer

(RL) and the stable boundary layer (SBL). Near the surface, there is a thin surface layer at all

time, in which the vertical turbulent fluxes are nearly constant.

Flow over the complex terrain

The on-shore wind farms mostly locate in the mountainous areas in Japan, where the terrain

conditions are very complex. As known, the terrain effect (e.g., strong turbulence) plays a

vital role in modifying wind speed and direction at the site of interest, and indirectly makes the

evaluation of wind resources or wind-farm profitability very difficult. For the sake of figuring
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Figure 1.4 Location of the boundary layer, with top at zi

out how complex terrain affects the wind, a field measurement campaign is conducted, though

its impact is limited owing to the sparse measure locations. As a complement, additional

methods including experimental and numerical models have been developed. The wind

Figure 1.5 The structure of the atmospheric boundary layer (adaptive modified from Stull
(1988)[105]).

tunnel test is a common way to study the state of flow over a specific terrain feature. The

key step is to reproduce the complex terrain using various model scales (usually smaller than

1/1000). The first wind-tunnel investigations of flow over real topography are implemented

by Meroney [75] and Neal and Stevenson [82]. They studied the wind flow over mountains
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in New Zealand using scales of 1/5000 and 1/4000 respectively. Bowen [9] further suggested

taking 1/6000 as a limit in order to properly simulate turbulence. In recent years, there are

still several studies [19, 95, 21] related to the wind tunnel experiments with complex terrain

features. Nevertheless, to do the wind tunnel experiment needs a significant investment such

as experimental instruments and maintenance costs. Meanwhile, it is very difficult to bring

the turbulence process in the wind tunnel tests while it always exits in real ABL. Considering

those problems, using the method of numerical modeling could be an effective way to obtain

a detailed and accurate information of the airflow over the complex region.

In these days, using the computational fluid dynamics (CFD) methods to simulate the

airflow over complex terrain is a prevail trend. There are many models have been developed,

ranging from the very simple linear models to complex non-linear models, for example, the

Reynolds-averaged Navier-Stokes (RANS), Large-eddy Simulation (LES) and the Detached-

eddy Simulation (DES). The RANS model is a couple of time-averaged equations of motion

for fluid flow. The basic idea behind those equations is Reynolds decomposition (Eq. (1.1))

[90], whereby an instantaneous quantity can be decomposed into its time-averaged and the

corresponding fluctuating quantities.

u(x, t) = u(x)+u
′
(x, t) (1.1)

where u is an arbitrary and instantaneous variable, x = x(x,y,z) and u′
(x, t) = 0. The RANS

approach has been studied in the literature for flow over complex terrain, including the Serra

das Meadas mountainous [72], the Askervein hill [62, 13, 84] and the Blashaval hill [41].

Most of the results in those studies indicate that numerical models based on the RANS

approach could perform reasonably well on simulating mean flow conditions. However, the

RANS models somewhat lack the ability of simulating turbulent vortexes of different size

and scales owing to the assumption of steady-state solution in the numerical analyses. That’s

why the LES models has been used increasingly nowadays. Some of the studies [10, 108, 17]

on LES have been reported for atmospheric flow simulating over two dimensional hills or

ridges at laboratory scales. Unfortunately, it is difficult to apply the LES approach over real
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topography because of some numerical challenges, including reproducing realistic upstream

boundary conditions, inhomogeneous surface roughness, resolution of near-wall turbulence

structures, or high-Reynolds-number turbulent flow [20]. In addition, the computational

costs required by LES simulation are much greater that RANS. Thus, aiming to build a wind

power prediction system for operational use, the RANS-based models which have a good

compromise between accuracy and computational costs [88] will be chosen in our study.

1.4 Review of the wind and power forecasting

Though the chaotic property of wind results in large difficulties to predict wind power

accurately, numerous efforts have been done to develop and improve the power forecasting

methods, in order to schedule the spinning reserve capacity and to manage the grid operations.

Basically, a wind power forecasting is an estimate of the expected power production from

wind turbines (or wind farms) in the near future. It is usually generated using one or a

combination of wind forecast models. Therefore, in this section, the forecasting techniques

of wind are firstly reviewed. After that, the relationship between wind and power will be

discussed and finally an overview of wind power forecasting during various time periods is

reviewed.

1.4.1 Wind forecasting

Classification of wind forecasting

The basic role of wind speed forecasting is to provide useful information for operators in the

next few minutes, hours, or days. Based on the forecasting horizon, the wind forecasts can

be divided into different categories as following:

1. Very-short-term forecasting: from few minutes to 1 hour ahead.

2. Short-term forecasting: from 1 hour to several hours ahead.

3. Medium-term forecasting: from several hours to 1 week ahead.
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4. Long-term forecasting: from 1 week to 1 year or more ahead.

Table 1.3 presents the specific time-scale in view of the operation of electricity systems.

The applications of specific time-scale in electricity systems are consequentially different.

Very short-term forecasts are usually used for load tracking and regulation actions. Short-term

forecasts are mainly utilized for making load reasonable decisions. In terms of medium-term

forecasting, it could provide useful information for power system management and energy

trading. Long-term forecasting is always used for maintenance scheduling of the wind

turbines or designing the wind farm.

Table 1.3 Time-scale classification for wind forecasting. (from Stull (1988)[105])

Time-scale Range Applications

Very-short-term Few minutes to 1 hour ahead
Electricity market clearing
Real-time grid operations
Regulation actions

Short-term 1 hour to several hours ahead
Economic load dispatch planning
Load reasonable decisions
Operational security in electricity market

Medium-term Several hours to 1 week ahead
Unit commitment decisions
Reserve requirement decisions
Generator online or offline decisions

Long-term 1 week to 1 year or more ahead

Maintenance planning
Operation management
Optimal operating cost
Feasibility study for design of the wind farm

Wind forecasting techniques

A wind forecasting model is actually a couple of computer programs which uses various

inputs at current time or before to produce wind outputs for future times. There are many

wind forecasting techniques including persistence method, physical approach, statistical

technique and hybrid approach.
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A. Persistence method

In this model, the prediction for all times ahead is just set to the value which it has now, i.e,

wt+δ t = wt . In other words, it is assumed that the wind speed w at time ‘t +δ t’ will be the

same as it was at time ‘t’. Apparently, smaller δ t is, better forecasts will be obtained. It is a

quite easy way to forecast wind speed but can fabulously provide more accurate forecasts

than most of the physical and statistical methods for very-short or short-term forecasts [87].

B. Physical approach

Physical approaches often based on the numerical weather prediction (NWP) models, which

could project the real atmosphere state based on an approximation of known physical laws,

and result in accurate and reliable estimates for very long time horizons (from hours to

several days). Basically, a NWP model is operated by solving complex mathematical

models considering many kinds of conditions such as temperature, wind speed and direction,

pressure, surface roughness and so on. It is thus a really comprehensive system and needs

a lot of computational costs. Different limited-area NWP models, such as WRF (Weather

Research and Forecasting), RAMS (Regional Atmospheric Modeling System) and MM5

(Fifth-Generation Penn State/NCAR Mesoscale Model) have been used for wind energy

resource assessment by various researchers [104, 93, 106]. However, to a large extent the

wind forecasts derived from NWP models are affected by errors stemming from uncertainties

in initial / boundary conditions, simplifications in physics and numerical approximations [2].

Great efforts have been devoted to reduce these uncertainties by improving data quality [36]

and developing more accurate numerical models with improved dynamic cores and more

sophisticated physical parameterizations [70, 73].

C. Statistical technique

Statistical techniques are easier to conduct and more economical in comparison with the

NWP based physical methods. In general, the statistical methods used the previous history

of wind data to forecast the state at next few hours. They can provide accurate wind speed
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forecasts over short time scales with limited computational requirements. Sub-classification

of this kind of approach is time-series based models and neural network (NN) based methods.

The auto-regressive moving average (ARMA) model is a well known type in the time-

series based approaches to predict future values of wind speed. Its advantages have been

testified in the study of Torres et al. [114]. The results indicate that using an ARMA

model will make it possible to get 20% error reduction compared to persistence models for

forecasting average hourly wind speed for a 10-h forecast horizon. There are also several

derivations of ARMA method including auto regressive integrated moving average (ARIMA),

seasonal- and fractional-ARIMA, ARMA with exogenous input (ARMAX or ARX). Few

other time-series models are linear predictions, grey predictors and exponential smoothing.

The NNs are trained using historical data taken over a long time period to learn the

relationship between input data and output wind speed. The NN-based methods generally do

not need any predefined mathematical models. When the same or similar patterns are met,

the model will come up with a result with minimum errors. As the ARMA, the accuracy of

the forecasts for NNs also drops quickly when the time horizon is extended. A couple of

NN models including feed-forward neural networks (FNNs), multi-layer perceptrons (MLP),

recurrent neural networks (RNNs), radial basis function (RBF) and Adaline networks [23]

have been proposed and investigated.

Generally speaking, NNs methods often show priority over time-series models for almost

all time-scales, for example, NNs modeling are able to capture the nonlinear pattern in data

while traditional time-series methods may not be able to overcome that problem. However,

there are still exceptions which are displayed in two studies [12, 11]. It is found that s-

ARIMA better follows the actual pattern when both the s-ARIMA and Adaline NN models

are chosen to forecast wind speed in Mexico.

Except for the mentioned methods, there are some new techniques including spacial

correlation (good for short-term), fuzzy logic model, wavelet transform, ensemble forecasts

and entropy based training. Among them, only a brief description of fuzzy logic will

be introduced here. Basically, fuzzy logic is a research field based on the principles of

approximate reasoning. The fuzzy models are often employed in cases where a system is very
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difficult to model exactly or when ambiguity and vagueness is encountered in the problem

formulation. In the wind forecasting field, a fuzzy system that can predicts the wind speed

and generated electrical power has been developed in [30]. After tuning, the forecast horizon

has been considered from some minutes up to several hours ahead.

D. Hybrid approach

Hybrid approach is generally defined as a combination of different approaches mentioned in

former subsections. The main objective of hybrid approaches is to benefit from the advantages

of each model and then obtain a globally optimal forecasting performance. Many types of

hybrid approaches are utilized to predict wind, for example, ANFIS, a combination of ANN

and fuzzy logic. ANFIS is very good for providing very-short time wind forecast. Moreover,

the NNs can be coupled with physical model (NWP) or spatial correlation methods.

1.4.2 Relationship between wind and power

From the fluid mechanical definition, the power output P of a wind turbine is a function of

the wind speed and can be expressed as follows:

P =
1
2

CpρAv3 (1.2)

where Cp is the turbine coefficient of performance, and ρ is the air density which depends on

air pressure and temperature. A is the swept area of a turbine blade and v represents the wind

speed at the turbine site. From equation (1.2), it can be easily found that the relationship

between wind speed and power is nonlinear (basically cubic). Therefore, any errors in wind

speed forecasts will directly lead to very large errors in predictions of wind power. An easy

way to map wind speed into power is using manufacturer’s power curve, though it somehow

cannot be directly used to predict wind power in real cases. For example, the results in study

[25] indicate that using a power curve model derived based on the observed wind and power

can improve the forecast RMSE by nearly 20 percent compared to the application just using
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the theoretical model as equation (1.2). The possible reasons that make the manufacturer’s

power curve cannot be used in real application will be discussed in the section 2.4.1.

1.4.3 Wind power forecasting

In this section, the existing forecasting techniques of wind power are briefly introduced in

four different timescales as bellow.

A. Very-Short Term Forecasting

Very-short-term forecasting aims to provide useful information from few minutes to 1 hour

ahead. It is totally required to enable the real-time scheduling of load-frequency control and

electricity production. The accurate very-short-term forecasts are often of particular relevance

in deregulated energy markets. Moreover, anticipating very short-term load forecasts also

can meet the demands of electricity retailers to make appropriate decisions.

There are very few published works on very short-term forecasting of power. In general,

the proposed methods might be divided into two categories. One is classical approaches, such

as ARIMA models and exponential smoothing. The other one is artificial intelligence based

methods like artificial neural networks (ANN) and Neuro-Fuzzy models. Adoption of these

methods, from another aspect indicate that the very-short-time forecasting requires a different

approach in comparison with the other forecasting time frames. In other words, instead of

modeling relationships between demand, time and weather conditions, the very-short-term

forecasting is to pay attention to extrapolating the past or recently observed pattern to the

nearest future state [109, 16]. These two types of models can be enhanced through the use of

a time series of wind data from the nacelle or meteorological (MET) towers within the wind

plant. In particular, the second type of approaches may have an advantage if there are more

than one MET tower in a wind farm of interest, due to it may be possible to capture some of

the variability in weather conditions within the plant and thus will produce a better power

generation forecasting.
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B. Short-term forecasting

Most of researches related to wind forecasting have been done in this time scale. The

approaches for forecasting very-short-term power forecasting somehow can be applied to

short-term (day-ahead) forecasting. The ARMA method with only historical generation data

for 6-h ahead forecasts is investigated in the study [78] and it is found that ARMA has a

significant improvement over persistence models within six hours. Panteri and Papathanassiou

[85] introduced the ARX and NN models and then compared with simple persistence method

for the forecasting horizons of 1, 3, 6 and 12 hours. The results indicate that NN model

delivers the best performance whereas the statistical model shows inferior to the simple

persistence method. The RNN is another technique has been used for scheduling autonomous

wind-diesel system for next 2 hours [58]. It outperforms many other methods such as

persistence as well as classical methods in the literature. Mori et al. [81] proposed a new

method for estimating upper and lower bounds and average of wind speed of next 1-h. This

method is based on Gaussian Process (GP) with kernel-machine technique and Bayesian

estimation. It has been testified using real data of wind speed in the Muroto Cape in Japan.

Compared to the performance of MLP and RBF NN methods, the GP-based method can

reduce as much as 27% and 12% of average error, respectively. The spatial correlation

method also can be used to make short-term wind power forecasting. For example, developed

a model based on local and spatial relations of the wind speed at neighboring sites for the sake

of improving the accuracy and efficiency for short and long range forecasts, ranging from

a couple of minutes to several hours ahead. By using nearly a whole year’s measurements,

this method has been verified and the results illustrated that the forecasting efficiency has

improved by 28% compared to the persistence method, which indicates that the data at

neighboring sites is always very useful. Another similar application of spatial correlation

method using TSK fuzzy interface model for 2-hour ahead forecasting is presented in [30].

A novel technique for wind speed forecasting and wind power prediction based on using the

Grey model (GM) is [40]. The brief conclusion is that using the GM(1,1) the forecasts of

wind speed has an average accuracy of 11.2% better than the persistent model and while the

predicted output power has a better average accuracy of around 12.2%. Aiming to absorb
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the advantages of each methods, a hybrid method is presented in [68] which firstly uses

wavelet method to decompose original time-series into a couple of subseries and then an

improved ARIMA method is adopted to predict the next future values in each subseries. The

performance of this hybrid method is compared with classical time-series model and BP NN

using mean absolute error (MAE), mean square error (MSE) and mean absolute percentage

error (MAPE) criteria. It is found that the hybrid method gives better results (less error)

compared to others for 3-step, 5-step and 10-step ahead prediction respectively. As expected,

the bigger the forecasting steps are, the lower is the accuracy. Of course there still many

statistical methods for forecasting short-term power output have not mentioned here, more

specific review can be found in [101, 46].

Another common way we usually choose to obtain the short-term forecasts of power

begins with the grid point output (i.e., atmospheric variable, e.g, temperature, wind speed

and direction) from a meso-scale, limited area and physical-based atmospheric model. Then

inputing such outputs of atmospheric model as an input into a power forecasting system

(e.g, power curve), the expected forecasts of power output will be obtained. The procedure

of this kind of methods differ substantially. Some forecasting procedures attempt to start

directly from the limited area forecasting results to the local-scale by using either diagnostic

physical models, statistical models or a hybrid of both. The Prediktor tool developed by the

Risoe National Laboratory adopts this approach, aiming to provide the expected production

of wind farms up to 48 hours with a interval of 6-h. However, this approach often misses

the detailed information of processes occurring at the sub-regional. An alternative method

to resolve that problems is to execute sub-regional scale simulations with a physics-based

model, which has already used by TrueWind Solutions in their eWind system. There are lots

of other forecasting systems, some of which are called WPPT (wind power prediction tool),

Zephyr [47] and WPFS (wind power forecast system), have been implemented by many case

studies in Germany, Ireland, Spain, France and Denmark and all have a considerable skill

over persistence forecasts for 1 to 2 day periods [119]. Unfortunately, it is difficult to obtain

a quantitative assessment of all existing forecasting techniques as the methods, locations and

time periods which always vary substantially. An existing system which performed well in
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other countries may not be suitable in the case of wind farms in Japan. Therefore, one of

targets of this thesis is to develop a comprehensive system to provide short-term forecasts for

a wind farm considering the specific situation in Japan. Though, in this thesis we only focus

on short-term forecasting, the progress on medium-term and long-term is also necessary to

known for future plan.

C. Medium-term forecasting

Most of methods developed for power forecasts at this time-scale are mainly based on NN

approaches, physical weather models and the hybrid models combining both of these or other

new techniques. Some of them are reviewed as below.

The study [14] presents an ANN approach for short-term wind power forecasting in

Portugal. The implementation of this approach to do wind power forecasting has been proven

to be successful, due to its MAPE has 12% less than persistence model while the average

computation time is just 5 seconds. This indicates that the proposed method shows a good

compromise between forecasting accuracy and computation time. The method of wavelet

transform is used in the study [61] to decompose the signal and cut up original data into

different frequency components. This approach is successfully applied on the wind data

obtained from Colorado public utility sites and it can provide forecasts up to 24 hours. An

advanced statistical method based on NWPs and RBF NN for wind power forecasting (1-48

hours ahead) is developed in [96]. It provides an estimation of the forecasts quality based

on errors between forecasted and actual values of power, to subsequently improve the raw

NWP outputs using fuzzy rules. Results are compared using indexes of MAE and RMSE

against naïve predictor and ‘solely’ NWP method, which show substantial improvement

for both (nearly 46% for persistence). Kavasseri and Seetharaman [59] proposed a new

f-ARIMA model, which has been applied to hourly average wind speed records obtained

from four potential wind generation sites in North Dakota. The parameters of this model

were estimated using ‘exact maximum likelihood’ and optimized using Akaike’s information

criterion. The results show that on an average (over the four records considered) the DME

(daily mean error) is 79.3% with the persistence model, 117% with the ARIMA models
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while 47% for the f-ARIMA models. Moreover, the proposed f-ARIMA models yield a

much smaller variance (0.24) compared to the persistence (1.07) and ARIMA method (0.89).

In addition, the conversion from wind speed to power forecasts also could obtain accurate

results for 24 to 48-hour ahead. Lazić et al. [66] planned to apply the regional NWP Eta

model and describe its performance in validation of the wind forecasts for wind power plants.

Two sets of Eta model forecasts are generated, i.e, one with a very coarse resolution of 22

km and the other one added a nested grid of 3.5 km, centered on the Nasudden power plants

at island Gotland, Sweden. The 12 to 36- hour ahead wind speed forecasts are compared

with the observed wind at nearest surface station and at 10 m height above the ground at

a site in Sweden respectively. The results show a high coefficient of determination (COD)

of 0.8, and low MAE and RMSE, which indicates that Eta model is a very useful tool

for wind energy modeling. Fan et al. [42] developed a novel forecasting model based on

deep investigations of meteorological information. This model adopts a two-stage hybrid

network with Bayesian clustering by dynamics and support vector regression (SVR). In

this model, the role of “Bayesian clustering” is to classify the input training dataset into

several subsets (with similar properties) and then SVR fits training data in each subset in

supervised manner. This model is applied and tested on a 74-MW wind farm located in the

southwest Oklahoma of the US and results indicate that it can improve over persistent for

all predictions by 40% based on RMSE and MAE criteria. Recently, Croonenbroeck and

Dahl [27] suggest an accurate wind power forecasting methodology that exploits many of

the actual data’s statistical features, in particular both-sided censoring. The proposed model

produces turbine-specific forecasts which are significantly more accurate when compared

against the established benchmark models (persistence). Later, a new wind power forecasting

model that does not focus on providing the most precise forecasts but minimizing the financial

loss of forecasting impreciseness is presented in [28].

D. Long-term forecasting

The significance of long-term power forecasting is reflected in power system planning whose

purpose is to define the generation capacity trend that sufficiently meets the demand for
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electricity within a context of technical, economical and environmental constrains. A few

studies have been done on long-term wind forecasting approaches. Taylor et al. [110]

developed a new type of physical method to predict PDF of wind power generation for 1 to

10-day ahead forecasts using “weather ensemble predictions” (WEP). A calibration method

that incorporated kernel smoothing, with parameters optimized using maximum likelihood

is used to correct the systematic errors in the location and scale of the distribution of the

51 ensemble members. By comparing with statistical time series methods (i.e., ARMA

based models), it is found that WEP could give more accurate results over a period of

week. Another method of long-term wind speed and power forecasting using local RNN is

developed in [5]. The authors of this paper used three RNNs with NWP results as input from

four nearby nodes and the final results of comparing with the persistence model indicate a

50% improvement. However, this kind of technique is very exhaustive and time-consuming.

This means that it is required for RNN to forecast task in lesser time and without requiring too

much meteorological data or complications. As shown in [92], the problem can be slightly

solved by applying RNN for wind forecasts of each month separately. Salcedo-Sanz et al.

[91] choose MM5 model using meteorological data from a global NWP as its initial and

boundary conditions to study the long-term forecasting. Coupling the MM5 model with NNs

could obtain better forecasts compared against persistence model [89].

1.4.4 Meteorological modeling for wind power forecasting

As mentioned earlier, NWP model plays a very important role in wind power forecasting at

various time scales. Thus, a brief introduction of NWP models is described here. Generally,

NWP is a type of weather forecasting which is based on the output of complex computer

programs, known as forecasting model. The model actually is a translation of a set of

governing equations which describe the air flows. It usually consists of multiple parts

including data collection and assimilation, forecasting, post-processing and distribution

to users. The first two parts directly decide the forecasting skills of the whole forecasting

procedure. Therefore, many efforts have been done to improve them, for example, developing
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Figure 1.6 An example of a regional model domain over the Japan on a global grid.

optimal data assimilation algorithms to provide more precise initial condition and improving

the accuracy of numerical methods to reduce model errors.

According to space scales, the numerous NWP models can be simply divided into two

types. One is called global models whose calculation domain covers the entire Earth; the other

one is regional models also known as limited-area models which use finer grid resolution to

resolve explicitly smaller-scale meteorological phenomena. The relationship between these

two is displayed vividly in the Figure 1.6. Regional model is nested within the global model

to determine all the details for the region of interest and in turn the global model provides the

necessary information for running the regional model. Table 1.4 shows the information of

some existing NWP models in the world.

Those models can be used for a wide range of applications. The most important appli-

cation is to provide precise predictions in both time and space for daily activities such as

travel, health and safety. They also can provide timely warning of weather extremes (e.g.,

floods and gales) which could lead to great financial losses as well as people’s lives. To our

interest, the NWP models are very useful tools in the field of wind energy. They are widely
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Table 1.4 Selected main characteristics of the numerical weather prediction models.

Model
name

Hydrostatic or
nonhydrostatic

Global or
regional model Owner

ECMWF Nonhydrostatic Global European Union

GEM Hydrostatic Global Canada

GFS Nonhydrostatic Global NCEP

UKMET Nonhydrostatic Global/Regional United Kingdom

NOGAPS Nonhydrostatic Global Navy

T639 Nonhydrostatic Global China

GSM Nonhydrostatic Global Japan

WRF Nonhydrostatic Regional NCEP

MM5 Nonhydrostatic Regional PSU

NAM Nonhydrostatic Regional NCEP

MSM Nonhydrostatic Regional Japan

used for the wind resource assessment and power forecasting. In addition, they can be easily

combined with other models (e.g., micro-scale model) and post-processing methods (e.g.,

Kalman filter and MOS) to obtain better results. Considering that, in this study, one of them

which is named WRF is chosen to reach our research purpose of providing power forecasts

as accurate as possible.

1.5 Motivation and Objectives

The recent assessments of the World Energy Council have reported the difficulties that Japan

is facing in lieu of the shortage of energy caused by the shutdown of nuclear plants after the

Fukushima accident. In order to compensate for the loss of the nuclear power generation,

extra fossil resources are currently imported, which has led to the rise of electricity cost and

to an increase of the fossil fuel emissions. As an alternative to the traditional fossil energy

resources, renewable energy has been the focus of recent developments as a long-term and
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sustainable solution. In particular, wind energy has by far shown tremendous potential in

terms of economic and environmental effects.

However, numerous factors hinder the development of the wind power in Japan. One of

the biggest obstacles is the challenge of integrating the wind power with the existing smart

girds, which is mainly influenced by the variability and limited predictability of wind. That

is, accurate and reliable wind or power predictions are necessary to optimize the integration

of wind power into existing electrical systems. Therefore, based on the discussion above, we

give the purposes of our study from the following four parts:

• Building a preliminary forecasting system based on the WRF and a power curve

model for the Awaji wind farm.

We want to develop a wind power prediction system for the Awaji wind farm in

Japan as an effort to facilitate the short-term wind power forecasts in Japan area. The

preliminary system is mainly based on the high resolution WRF model and a simple

power curve model which is constructed based on a polynomial fit technique using the

historical data of the observed wind speed at hub-height and power output. Of course

the forecasting ability of the WRF and power curve model needs to be evaluated, to

show that they are able to provide reasonably reliable forecasting results in the target

site which has complex geographic environment very typical in Japan.

• Using the Kalman filter algorithm to improve the forecasting ability of the system

already built based on the available observations from the wind farm of interest.

As known, short-term wind energy prediction relies heavily on the low-level wind fore-

casts derived from the NWP model. As documented in [63, 24], recent progresses in

forecasting skills of NWP models make it possible to provide more reliable predictions

of surface wind field which is essential for wind energy management. However, the

current NWP models are still far from a mature stage and particularly large errors are

found in the prediction of the surface wind forecasts, which has motivated continuous

efforts to improve the NWP models themselves [31, 97]. The encouraging results in

these works suggest that more reliable forecasts can be made by using more advanced
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and sophisticated numerical models which are generally believed to possess dynamic

cores with less assumptions and accurate numerics, refined parameterization packages

for physical processes that directly affecting the phenomena of interests. Unfortunately,

other factors beside the model inaccuracy, such as the uncertainties in observations

and the chaotic nature of atmosphere, also prevent the outputs of deterministic NWP

models being directly usable to many applications. Based on these consideration, the

Kalman filter is regarded as a module of the integrated forecasting system we finally

want to develop. It mainly aims to post-process the outputs of WRF model (reducing

errors) to make the forecasts being suitable for the wind farm of interest.

• Using data assimilation technique to generate the initial conditions (known as

the “analysis”) as close as possible to the real atmosphere for the WRF in use to

improve its forecasting skills.

Apparently the Kalman filter module is aiming to reduce the WRF model errors,

however, it somehow cannot deal well with the random errors caused by many factors,

for example, the inaccurate initial conditions of the WRF model. The data assimilation

technique happens to have an ability of generating better initial conditions (known

as the “analysis”) [57] for WRF model. That is why we also want to develop the

data assimilation technique as another key module of our final integrated forecasting

system.

• Coupling meso-scale WRF model with micro-scale OpenFOAM to investigate

how the complex terrain affect the wind flow at a wind farm.

Japan has its unique topography which made the wind conditions more complex than

other countries (e.g., US and Europe) in the world. Although a forecasting system

has been developed by combining the Kalman filter and DA with WRF model and it

definitely can be used to do the operational forecasting over a common wind farm,

such system still needs to be improved to adapt the special situation in Japan’s wind

farm. The main starting point is WRF model based system cannot handle the local

terrain features because of the relatively coarse resolution. Higher resolution modeling
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might can fit this shortcoming. With this in mind, Computational Fluid Dynamics

(CFD) model is an option for simulating the flow characteristics of smaller scales due

to a finer resolution of terrain features. However, it is imperfect when we use those

two models solely to predict wind flows over the complex terrain at a real wind farm

for operational use. Coupling those two components together is expected to a better

way to accurately forecast short-term hub-height wind for any wind farms in Japan.

All in all, we want to develop an integrated and multi-scale forecasting system for operational

prediction of wind and power under complex geographic conditions, which is summarized in

the Figure 1.7. This integrated system consists of WRF model, a power curve, Kalman filter,

data assimilation and micro-scale OpenFOAM model.

Figure 1.7 A schematic workflow of the thesis.
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1.6 Outline of the thesis

This thesis consists of six chapters. Chapter 1 is focused on the global status of wind power

development, current situation in Japan, the properties of wind in ABL, the background of

wind power forecasting, and finally the motivation and objectives of this thesis.

Chapter 2 gives the information of a preliminary forecasting system we build based on

the WRF model and a power curve model. Initially, a brief description of datasets and WRF

model used through this thesis is introduced. Then the ability of WRF model for forecasting

hub-height wind at the Awaji wind farm is studied. In parallel, a power curve model is

constructed based on a polynomial fit technique to predict wind power for each wind turbine

of the Awaji wind farm.

In chapter 3, the Kalman filter is adopted as a module of our integrated system, which

could improve the forecasting skill of the preliminary system mentioned in chapter 2. In

this chapter, firstly, the details of Kalman filter is introduced. Then its impacts on both wind

speed and power forecasts are validated.

Chapter 4 considers the possibility of further improving the ability of our system. Thus,

the data assimilation technique is also chosen as another key module of the final integrated

forecasting system. The benefits obtained by applying data assimilation are clearly shown.

Chapter 5 describes the process of coupling the meso-scale WRF with the micro-scale

OpenFOAM model. Initially, the theoretical background based on OpenFOAM is presented.

Then the procedure of coupling those two models is stated and the performance of the coupled

system for predicting wind flow over the complex terrain conditions is studied eventually.

Finally, chapter 6 summarizes the overall conclusions from the present research works

and gives the perspectives for future study.



Chapter 2

The basic system for wind and power

forecasts

In this chapter, the two kinds of datasets (i.e., GFS data and nacelle wind and power

observations) used in this thesis are introduced firstly in the section 2.1. Then we will give a

brief introduction of the WRF modeling system in the section 2.2 and in the next section, its

ability of forecasting hub-height wind at the Awaji wind farm is studied. At last, a power

curve model is constructed based on a polynomial fit technique to predict wind power for

each wind turbine of the Awaji wind farm.

2.1 Datasets

2.1.1 GFS Data

The Global Forecast System (GFS) is a global numerical weather prediction system produced

by the National Centers for Environmental Prediction (NCEP). Dozens of atmospheric and

land-soil variables, ranging from winds, geopotential height, temperatures and precipitation

to soil moisture and atmospheric ozone concentration, are all available through this system.

The GFS model covers the entire globe and can provide deterministic and probabilistic

guidance out to 16 days. The GFS model is a coupled model, composed of four separate
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models (i.e., an atmosphere model, an ocean model, a land/soil model, and a sea ice model),

which could work together to make an accurate prediction of future weather conditions.

The main model used in GFS is a global spectral model (GSM). The current operational

dynamical core of the GFS/GSM is based on a two time-level semi-implicit semi-Lagrangian

discretization with three dimensional Hermite interpolation [15].

With the increased computing resources and changing computer architecture at NCEP,

the GFS has already evolved to higher resolutions, on both horizontally and vertically. The

current operational horizontal resolution is 13 km for the first 10-day and about 34 km from

240 to 384 hours (days 10-16). In the vertical direction, there are 64 sigma-pressure hybrid

layers with the most top layer centered around 0.27 hPa (nearly 55 km). There is no doubt

that many persistent changes are regularly made to the GFS model in order to improve its

performance and forecast accuracy.

The gridded products with four horizontal resolutions (i.e., 0.25, 0.5, 1.0 and 2.5 degree)

are available for downloading through the NOAA National Operational Model Archive and

Distribution System (NOMADS). The global forecasts are made four times daily at 0000,

0600, 1200 and 1800 UTC. The reason we choose those data products is that they can provide

initial and/or boundary conditions for other models, for example WRF model of interest in

this thesis. Therefore, nearly seven-month (2013/08/01-2014/01/31; 2016/01/01-2016/02/01)

GFS data are used as the initial and boundary conditions for the WRF model with a 6-hour

interval. The horizontal resolution of all variables we adopted is 1.0×1.0 degree, except for

the data in the year 2016 (using 0.5×0.5 degree). In the vertical, 27 pressure levels ranging

from 1000 to 10 hPa are chosen.

2.1.2 Observations and data quality control

The main target region is a wind farm located in south Awaji island, Japan, where 15 wind

turbines have been installed. All wind turbines (General Electric GE2.5) have a rated capacity

of 2.5 MW and the power curve is displayed in Figure 2.1. The rotor diameter of the turbines

is 84 m and the tower height is 80 m. The nacelle wind for each turbine is measured by

the anemometers placed on the top of the nacelle behind the rotor. Thus, in this study, the
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nacelle-based wind speed from 15 turbines at hub-height (80 m above ground) are utilized to

build as well as evaluate the performance of our integrated forecasting system. In addition,

observations of power output are also used to evaluate the reliability of the power prediction

proposed in this thesis. Both wind speed and power observational data are available every 10

minutes for the six-month period from 1 August 2013 to 31 January 2016. In the evaluation

process, the forecasts from the forecasting system are firstly interpolated (3D interpolation)

to those 15 turbines and then compared with the corresponding observations respectively.

Figure 2.1 The wind farm site at Awaji island, Japan. Contours stand for the terrain elevation.

In general, the nacelle-based wind data are always used by wind farm operators directly

for the turbine control (e.g. to determine the cut-in/cut-out speeds). However, some studies

has pointed out that this kind of data cannot be used for research or application directly

without considering the existing uncertainties, for example, the effects caused by the rotating

blades and nacelle. It seems that the observed data from the upwind meteorological tower

are more reliable. The effects of the rotating blades and nacelle on the observed wind can be
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taken into account by adjusting the relationship between the nacelle-based observations and

the measurements from the upwind meteorological tower [100]. Unfortunately, we cannot

expected to build a lot of meteorological towers close to turbines, which would increase

the cost and is always not adopted in practice, especially for small-scale wind farms in

Japan. Therefore, to some extent, as suggested in the study [29], the nacelle-based wind

speed observation might be a more reliable estimation to the target turbine site than the

measurement obtained from a meteorological tower with a large distance away. Thus, the

nacelle wind data still are chosen in this thesis. Apparently, it is very necessary that the

quality of the nacelle wind observations needs to be evaluated before using them, especially

for data assimilation. When the wind data are assimilated into the NWP models, its quality

must be checked so as to avoid the degradation of forecasting skill due to the assimilation of a

few bad data points, which might even outweigh the benefits of assimilating many other good

data points. Thus, we, in this study, implement the standards addressed in the technical report

of NOAA Earth Systems Research Laboratory (ESRL) [44] to flag out the unreasonable data

points for each turbine separately.

2.2 Introduction of WRF modeling system

The Weather Research and Forecasting (WRF) model is numerical weather prediction and

atmospheric simulation system which is designed for operational forecasting as well as

research. Its development has been a multi-agency efforts to build a next-generation NWP

model and data assimilation system to advance the understanding and prediction of mesoscale

weather system. Those efforts began in the latter part of the 1990’s and was a collaborative

partnership principally among the National Center for Atmospheric Research (NCAR), the

National Oceanic and Atmospheric Administration (represented by the National Centers

for Environmental Prediction (NCEP) and the Forecast Systems Laboratory (FSL)), the Air

Force Weather Agency (AFWA), the Naval Research Laboratory, the University of Oklahoma,

and the Federal Aviation Administration (FAA) [115].
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2.2.1 Structure of WRF modeling system

In general, the WRF modeling system consists of three major parts, including WPS (WRF

pre-processing system), the WRF model and post-processing and visualization component

(e.g., GrADS and NCL). The inter-relationships among those three parts are displayed in the

Figure 2.2. It is easily found that there are two kinds of dynamical cores. One is Advanced

Research WRF (ARW) and the other one is Nonhydrostatic Mesoscale Model (NMM). In this

thesis, the former one is chosen which can be used to do both idealized and real simulation.

In the subsequent subsections, the detail of the each components of WRF modeling system

will be introduced briefly.

Figure 2.2 The structure of the general WRF modelling system.
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2.2.2 WRF pre-processing system

This part actually is to generate the necessary information for the sake of running WRF

model properly. Its functions can be roughly divided into three classes, including defining

simulation domains, interpolating topography data (e.g., terrain, landuse, and soil types) to

the simulation domain and degribbing and interpolating background data from another model

(global or regional) to this simulation domain. The detail of each is briefly described below.

Map projections and domain configuration. In the current ARW WRF system, there

are four projection methods including Lambert conformal, Polar stereographic, Mercator

and latitude-longitude projection. Different projections are suitable for different areas on

the globe, for example, the Mercator projection is the best choice for low latitudes regions.

In the current study, we focus on the wind farms in Japan and thus the Lambert conformal

projection is chosen.

The choice of the resolutions (both horizontal and vertical) for WRF model is important.

In general, higher resolution lead to better forecasts over a limited region, though this will

increase the computational burden. Therefore, the nested-domain is always adopted for doing

real simulations. A common nested-domain configuration consists of one parent domain

and one or more children with higher horizontal resolution than the parent domain. The

nested domains receive information from their parent domain (the adjacent outer domain),

for example, obtaining boundary conditions. This kind of configuration is very important

for real prediction. It somehow can overcome the shortage of computational resource while

could obtain the same precision of forecasts for a target region (limited) as a single-domain

simulation with uniformly high resolution does. The configuration of the nested-domain are

various, some examples of nested-domains are displayed in the Figure 2.3.

There are two kinds of nesting options, i.e., one-way and two way. It is defined as one-

way if information exchange between the parent and the nested domain is strictly down-scale.

In other words, the nested solution does not feedback to the coarser or parent solution. On

the other hand, in two-way mode, information exchange between the parent and the nest

is bi-directional. The feedback from sub-domain usually impacts the coarse-grid domain’s

solution. The one-way nesting is chosen in this thesis.
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Figure 2.3 A couple of nested domain configurations for WRF model. (a) Telescoping nested
grid. (b) Nesting at the same level with respect to one parent domain. (c) Overlapping nesting.
(d) Most inner grid has more than one parent grid. It should be noted that the ways of (c) and
(d) are not allowed.

Topography data and interpolation. Using WRF modeling system to do the real pre-

diction, the terrestrial data are necessary. Various terrestrial datasets such as terrain height,

landuse, soil type, annual deep soil temperature, monthly vegetation fraction, maximum

snow albedo, monthly albedo and slope data are available. A few of the datasets are available

in only one resolution, but others are made available in resolutions of 30”, 2’, 5’, and 10’.

Those data are to be interpolated using an inside program named GEOGRID to the model

grids which have been decided at the domain configuration step. Except above data, new and

additional datasets also can be interpolated to the simulation domain through modifying a

table file named GEOGRID.TBL, which defines each of the fields that will be produced by

GEOGRID. Outputs from GEOGRID are written in the WRF I/O API format. Generally,

selecting the NetCDF I/O format, GEOGRID can be made to write its output in NetCDF for

easy visualization using some external software packages, for example ncview.
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Degribbing and interpolating meteorological data. Here the meteorological data refers

to the various atmospheric fields such as wind, temperature and pressure which are derived

from other models, for example NCEP GFS or ECMWF interim (European Centre for

Medium-Range Weather Forecasts). Those models usually can provide global and relatively

large-scale forecasts for nearly two weeks in advance. Therefore, they always are chosen

as the initial and boundary conditions for WRF model (over limited regions). However, the

format of these data usually is GRIB, which cannot be recognized by WRF model directly.

Fortunately, another program which is called UNGRIB could extract meteorological fields

from GRIB formatted files. It also uses a specific table file named VTABLE to control

what kind of information is needed. Various types of VTABLE are available for degribbing

different GRIB data taken from different models.

After degribbing the GRIB data using UNGRIB, the immediate outputs should be inter-

polated to model grids, in order to use them as the initial/boundary conditions appropriately.

This procedure could be done by using METGRID program. As GEOGRID, there is also a

similar table file, which is called METGRID.TBL. This file is possible to specify options

such as the interpolation methods to be used for the fields, the field that acts as the mask to

be used for masked interpolations, and the staggering (e.g., U, V in ARW) to which a field is

to be interpolated.

2.2.3 WRF model

WRF model initialization

The WRF model has ability to do two large classes of simulations and thus there are two

kinds of WRF initializations: an ideal initialization and utilizing real data. The WRF model

itself is not altered whichever is chosen, nevertheless the WRF pre-processors are to be

specifically built based upon a specific selection. The real data initialization is selected in

this thesis because of our interest which is to build a developed forecasting system for a real

wind farm.
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In order to explain how to do the real case initialization of WRF model, we recall the

description of WPS in section 2.2.2. In the first step, the model grids should be prepared,

which are controlled by some parameters in the file of namelist.wps, which can be generated

more easier by using a external package named WRF Domain Wizard. It is a graphical user

interface (GUI) for the new WRF Preprocessing System and it enables users to easily define

and localize domains (limited) by selecting a region of the Earth as well as choosing a map

projection. When the model grids are prepared, the program of GEOGRID will interpolate

various terrestrial data to this model grids and some files (i.e., geo_em.d0∗.nc) are generated.

Similarly, the METGRID program also can interpolate the meteorological fields generated

by program of UNGRIB to the model grids, and finally the files of met_em.d0∗.YYYY-

MM-DD_HH:MM:SS.nc are obtained. The generated data from METGRID consists of

meteorological fields and terrestrial information, however, it cannot directly recognized by

WRF model. Therefore, there is another program named REAL which is in charge of merging

the data provided by the WRF preprocessing system and finally outputting the initial and

boundary conditions for running WRF model. A brief summary [115] of other additional

roles of real data initialization are listed as follows,

• Read various data generated from the WRF preprocessing system

• Compute dry surface pressure, model levels, and vertically interpolate data

• Compute reference temperature profile (differently than with ideal cases, to allow for

seasonal norms)

• Prepare soil fields for use in model (usually, vertical interpolation to the requested

levels)

• Checks to verify soil categories, land use, land mask, soil temperature, sea surface

temperature are all consistent with each other

• Multiple input time periods are processed to generate the lateral boundary conditions

• Three dimensional boundary data (u, v, t, q, ph) are coupled with map factors (on the

correct staggering) and total mu
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WRF model solver

The WRF model is a fully compressible, Euler non-hydrostatic model (with a hydrostatic

option). The model uses the Runge-Kutta 2nd and 3rd order time integration schemes. The

spatial discretization may be selected from 2nd to 6th order advection schemes in both

horizontal and vertical directions.

The horizontal grid staggering is the Arakawa C-grid (as shown in Figure 2.4a). It is easy

to find that the components of horizontal wind (u,v) are normal to the respective faces of

the grid cell while the mass/thermodynamic/scalar variables (e.g., T, ρ , qv) are located in

the center of the cell. Similarly, the staggering grid is also adopted in the vertical direction

which can be found in Figure 2.4b.

Figure 2.4 Horizontal (a) and vertical (b) grids of the WRF model (Arakawa C staggering).

As displayed in Figure 2.5, in the vertical, WRF model choose a terrain-following

hydrostatic pressure coordinate denoted by η , which is defined as:

η =
Ph −Pht

µ
(2.1)

where ph is the hydrostatic component of th pressure and Pht stands for the pressure at the

top boundary. The parameter µ is expressed as,

µ = Phs −Pht (2.2)
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where Phs refers to the value of pressure along the surface. This kind of coordinate [64] which

is also called a mass vertical coordinate is similar to the traditional σ coordinate used in

many hydrostatic atmospheric models. Apparently, η varies from a value of 1 at the surface

to 0 at the top boundary of the model domain (Figure 2.5).

Due to the µ in equation 2.1 stands for the mass per unit area within the column in the

model domain, the appropriate flux form variables are defined as,

V = µv = (U,V,W ) (2.3)

Ω = µη̇ (2.4)

Θ = µθ (2.5)

where, v = (u,v,ω) are the covariant velocities in the two horizontal and vertical directions

respectively, and ω = η̇ . θ refers to the potential temperature.

Based on the above definitions, the flux-form Euler governing equations can be expressed

as following:

∂tU +(∇ ·Vu)−∂x(pφη)+∂x(pφx) = FU (2.6)

∂tV +(∇ ·Vv)−∂y(pφη)+∂y(pφy) = FV (2.7)

∂tW +(∇ ·Vω)−g(∂η p−µ) = FW (2.8)

∂tΘ+(∇ ·Vθ) = FΘ (2.9)

∂t µ +(∇ ·V) = 0 (2.10)

∂tφ +µ
−1[(V ·∇φ)−gW ] = 0 (2.11)

along with the diagnostic relation for the inverse density and the state equation:

∂ηφ =−αµ (2.12)

p = p0(Rdθ/p0α)γ (2.13)
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where FU ,FV ,FW and FΘ indicate forcing terms arising from model physics, turbulent mixing,

spherical projections, and the earth’s rotation. Rd is the gas constant for dry air and p0 is a

reference pressure (generally 105 Pascals). Also appearing in the governing equations are the

non-conserved variables φ = gz (the geopotential), p (pressure), and α = 1/ρ (the inverse

density). γ stands for the ratio of the heat capacities for dry air

γ = cp/cv (2.14)

where cp and cv are the the heat capacity at constant pressure and at constant volume,

respectively.

Except for the equation 2.11, the governing equations 2.6 – 2.10 are all cast in conservative

form. In fact, the equation 2.11 could be written in flux form, however we cannot find any

advantages in doing so due to µφ is not a conserved quantity. Additionally, it should be noted

that the relation for the hydrostatic balance (equation 2.12) does not represent a constraint on

the solution, rather it is a diagnostic relation that formally is part of the coordinate definition.

Physics options

In WRF model, the physics processes are insulated from the rest of the dynamics solver by

the use of physics drivers.This section will briefly outline the physics options available in

the WRF model, which fall into several groups: microphysics, cumulus parameterization,

planetary boundary layer (PBL), land surface model (LSM) and radiation. Each category

also contains several options.

Microphysics. It includes water vapor, cloud, and precipitation processes. In the current

WRF model, microphysics is carried out at the end of the time-step as an adjustment process,

and so does not provide tendencies. The start point of doing this is that condensation

adjustment should be at the end of the time-step in order to guarantee that the final saturation

balance is enough accurate for the updated temperature and moisture. There are many options

for these processes in the current WRF model. Kessler scheme [60] is one of them, which is

take from the COMMAS model and is a simple warm cloud scheme that contains water vapor,
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Figure 2.5 The vertical-coordinate of the WRF model.

rain and cloud water. Purdue Lin scheme which is based on the study of Lin et al. [67] is a

very famous scheme to resolve cloud water, rain, water vapor, cloud ice and snow. Another

scheme named WRF Single-Moment 3-class (WSM3) scheme [50] includes ice sedimentation

and other new ice-phase parameterizations revised from the older NCEP3 scheme. Similar

to the WSM3, there are other two schemes, i.e., WSM5 and WSM6 [51] are added in the

WRF model. In addition, there are still several schemes are available such as Thompson

Scheme, Stony–Brook University Scheme and NSSL 1–moment 6–class Scheme and the more

information can be found in the reference [98].
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Cumulus parameterization. These kinds of parameterization schemes are used to resolve

the sub-grid-scale effects of convective and/or shallow clouds. They are adopted only on

individual columns where the scheme is triggered and provide vertical heating and moistening

profiles. Moreover, some schemes could additionally provide cloud and precipitation field

tendencies in the column. Some of schemes and its basic characteristics are summarized in

the Table 2.1.

Table 2.1 Available cumulus parameterization options in the WRF model [98]

Scheme Cloud Detrainment Type of Scheme Closure

Kain-Fritsch Y Mass flux CAPE removal

Betts-Miller-Janjic N Adjustment Sounding adjustment

Grell-Devenyi Y Mass flux Various

Surface layer. The role of surface layer schemes is to calculate friction velocities and

exchange coefficients which will enable the calculation of surface heat and moisture fluxes

by the land-surface models and surface stress in the PBL schemes. As same as most of

the schemes of microphysics, it also cannot provide tendencies but the stability-dependent

information on the surface layer for the land-surface and PBL schemes. That is, these

schemes may be tied to particular boundary-layer options in the current WRF model. MM5

Similarity Schemes, Eta Similarity Schemes and MYNN Scheme are all available.

Land-surface model. The purpose of the land-surface models is to provide heat and

moisture fluxes over land points and sea-ice points. In order to realize that, those land-surface

models need to take atmospheric information from the surface layer scheme, precipitation

forcing from the microphysics and convective schemes, radiative forcing from the radiation

scheme. In the current version of WRF model, it includes 5-layer thermal diffusion [39],

Noah LSM [112] and Rapid Update Cycle (RUC) Model LSM [7].

Planetary Boundary Layer (PBL). The PBL is responsible for vertical sub-grid-scale

fluxes due to eddy transports not just in the boundary layer but in the whole atmospheric

column. It determines the flux profiles within the well-mixed BL and the SBL, and thus

provide atmospheric tendencies of temperature, horizontal momentum and moisture in the
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whole atmospheric column. Similarly, there also many options (e.g., MRF, YSU, MYJ, QNSE

or MYNN) can be chosen for a particular prediction, however, it should be balanced with

other physics schemes. In fact, the choice is vital to do the wind prediction at low level (e.g.

at hub-height) and that is the reason we intend to do some sensitivity tests before running

long period forecasts. The specific information will discussed in the section 2.3.1.3.

Atmospheric Radiation. The atmospheric radiation schemes are in charge of providing

atmospheric heating because of radiative flux divergence and surface downward longwave

and shortwave radiation for the ground heat budget. The longwave radiation contains infrared

or thermal radiation absorbed and emitted by gases and surfaces, while shortwave radiation

includes visible and surrounding wavelengths that make up the solar spectrum. For longwave

radiation, the upward radiative flux from the ground is determined by the surface emissivity,

which in turn depends on land-use types or the skin temperature. The upward radiative flux

for shortwave radiation is the reflection of surface albedo. All of the radiation schemes in

current WRF model are column (one-dimensional) scheme. Several of them are listed in the

Table 2.2 with the basic features of the radiation schemes.

Table 2.2 Available Radiation Options in the WRF model [98]

Scheme Longwave or Shortwave Spectral Bands CO2, O3, clouds

RRTM LW 16 CO2, O3, clouds

GFDL LW LW 14 CO2, O3, clouds

GFDL SW SW 12 CO2, O3, clouds

MM5 SW SW 1 clouds

Goddard SW 11 CO2, O3, clouds

2.2.4 WRF post-processing

In general, the format of outputs of WRF model is NETCDF. Many post-processing utilities in

current model are supported. One of them is NCL (NCAR Command Language), which is a

free interpreted language designed specifically for scientific data processing and visualization.

It has robust file input and output and has ability of reading the file data in the format of
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NETCDF, HDF4, HDF4-EOS, GRIB, binary and ASCII data. RIP4 (Read/Interpolate/Plot

4) is a fortran program that invokes NCAR Graphics routines for the purpose of visualizing

output from gridded meteorological datasets. It was originally designed for sigma-coordinate-

level output from meteorological models, for example WRF model. Another package usually

used is the ARWpost which can read WRF model data and then create outputs to either

GrADS or Vis5D format.

At the end of this section, a simplified WRF flow chart is displayed in the Figure 2.6.

Figure 2.6 A simplified work flow of running WRF modeling system.

2.3 WRF forecasts for Awaji wind farm

2.3.1 Configuration of the WRF model

The meteorological model adopted in this work is the Advanced Research WRF (ARW) model

version 3.6 (WRFv3.6 hereafter), which is based on a fully compressible and non-hydrostatic

dynamic core [115]. The WRFv3.6 is a limited-area mesoscale model, with a terrain-

following hydrostatic-pressure vertical coordinate, designed for operational forecasting as

well as research. Its ability of forecasting hub-height wind at wind farms of interest in Japan
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should be validate firstly for the sake of building an integrated and developed forecasting

system for operational use.

2.3.1.1 Domain configuration

In this chapter, the domain configuration of WRFv3.6 which follows the steps recommended

by Warner et al [117, 116] includes a parent domain (D01) and three nested domains (D02,

D03 and D04) (Figure 2.7) with one-way interaction. The D01 is centered at 34.65◦N and

134.635◦E with a 75×73 mesh of 48 km resolution. The horizontal resolution of D02, D03

and D04 are 12 km (97×97 grid points), 3 km (101×109 grid points) and 1 km (103×109 grid

points) respectively. The model top is located at 50 hPa and there are 35 vertical stretched

eta levels, 10 of which are within the lowest 1 km. Initial and boundary conditions are all

given by the GFS dataset and no data assimilation or grid nudging was used in this part. The

geographical data for the land use and topography are obtained from the U.S. Geological

Survey datasets and have resolutions of 5 arc minutes for the parent domain, 2 arc minutes

for D02 and 30 arc seconds (about 925 m × 925 m) for the nested D03 and D04. It should

be noted that the aforementioned model configuration allows the system to run operationally

on workstations for routine real-case use.

The main physical options adopted include the WRF Single-Moment 6-class (WSM6) mi-

crophysics parameterization [51], the Rapid Radiative Transfer Model (RRTM) scheme [79]

for long-wave radiation with Dudhia’s scheme [38] for shortwave radiation, the Kain-Fritsch

convective parameterization [55] and the Noah land surface model (LSM) [18]. The specific

information of the planetary boundary layer (PBL) scheme we selected is discussed in section

2.3.1.3.

The model prediction period is from 1 August to 31 January 2014 and the numerical

results are output at a one-hour interval. we re-initialize WRFv3.6 as a “cold-start" at 18:00

UTC each day and each re-initialization runs for 30 hours. Due to the cold start, there is

typically a spin-up time period of 6-hour as recommended by Wang et al.[115] before the

model turns to a stable state. Therefore, the forecasts during the initial 6 hours of each run

are excluded from the forecasting data series used to compute the performance metrics.
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Figure 2.7 WRF domains and model topography. a) D01, b) D02, c) D03 and d) D04 are
indicated by black frames. The detailed terrain height (shaded with the gray bar in meter) of
the D04 is shown in the panel d).

2.3.1.2 Evaluation metrics

To evaluate the performance of the integrated forecasting system we build quantitatively, the

following set of statistical metrics is used.

Mean error (ME):

ME =
1
N

N

∑
i=1

( f orei −obsi) (2.15)

where i is the time point and N is the total number of verification time points. f ore and obs

represent the predicted and observed values, respectively.

Root mean square error (RMSE):

RMSE =

√√√√√ N
∑

i=1
( f orei −obsi)2

N
(2.16)
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Index of agreement (IA):

IA = 1−

N
∑

i=1
( f orei −obsi)

2

N
∑

i=1
(| f orei −obs |+ | obsi −obs |)2

(2.17)

where obs denotes the mean of observations. The value of IA which indicates the agreement

between the observations and forecasts, ranges from 0 to 1. A larger IA value means better

agreement.

Pearson product-moment correlation coefficient (CC):

CC =

N
∑

i=1
( f orei − f ore)(obsi −obs)[ N

∑
i=1

( f orei − f ore)2
N

∑
i=1

(obsi −obs)
2
]1/2 (2.18)

where f ore indicates the average of forecasts.

2.3.1.3 Sensitivity test of the PBL schemes

The PBL is the lowest part of the atmosphere in which turbulent motions dominate the

atmospheric flow. In atmospheric models, the turbulent effects are taken into account by

PBL parameterizations. The current WRFv3.6 model has 12 PBL schemes that might exhibit

different performances even for the same simulation region [94, 37]. Therefore, prior to ap-

plying the WRFv3.6 model to the target wind farm, it is worthwhile to examine the prediction

skills of different PBL schemes for the low-level wind field. To this end, the sensitivity of

five PBL schemes, i.e., the Quasi-normal Scale Elimination (QNSE) [107], the Asymmetric

Convective Model version 2 (ACM2) [86], the Mellor-Yamada-Janjic (MYJ) [74], the Mellor-

Yamada-Nakanishi-Niino (MYNN) [53] and the Yonsei University Scheme (YSU) [52], are

tested over 15-day (from 1 October to 15 October 2013) for predictions of wind speed. The

setup of the numerical experiments for this inter-comparison of PBL schemes is summarized

in Table 2.3.
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Figure 2.8 (a) illustrates the predicted diurnal variations of the predicted wind speed of

No.3 turbine at 80 m from the five sets of experiments with different PBL parameterization

schemes, referred to as QNSE, ACM2, MYJ, MYNN and YSU, and the corresponding

observations. All the experimental runs capture the wind speed variations well and the

sensitivity of PBL schemes is more apparent in period 09:00-23:00 UTC than in period

00:00-08:00 UTC. The forecasts from all experiments overestimate the wind speed during

the whole period. The largest bias (0.94 ms−1, shown in the third row of Table 2.4) at No.3

turbine site is observed in the QNSE experiment, while the smallest bias (0.63 ms−1) is seen

in the ACM2 prediction. The RMSEs also indicate that the performances of the ACM2,

MYJ, MYNN and YSU schemes are better than that of the QNSE scheme, and ACM2 has

the smallest RMSE of 0.87 ms−1.

Table 2.3 The five sets of numerical experiments for the inter-comparison of PBL schemes.

Experiment PBL scheme Land surface model Surface-layer scheme

QNSE Quasi-normal Scale Elimination Unified Noah LSM QNSE

ACM2 Asymmetric Convective Model Pleim-Xu Pleim-Xu

MYJ Mellor-Yamada-Janjic Unified Noah LSM Eta similarity

MYNN Mellor-Yamada-Nakanishi-Niino Unified Noah LSM MYNN

YSU Yonsei University Scheme Unified Noah LSM Monin Obukhov

Table 2.4 Error statistics of diurnal variation between WRFv3.6 forecasts and observations
of wind speed at hub-height for different experiments. The verification metrics are computed
over the 1-15 October 2013 period at No.3, No.7 and No.14 wind turbine sites.

Experiment QNSE ACM2 MYJ MYNN YSU

❳❳❳❳❳❳❳❳❳❳❳❳Turbine
Errors

ME RMSE ME RMSE ME RMSE ME RMSE ME RMSE

No.3 0.94 1.16 0.63 0.87 0.75 0.99 0.90 1.13 0.88 1.09

No.7 0.58 0.98 0.20 0.79 0.39 0.88 0.53 0.96 0.55 0.93

No.14 1.42 1.68 1.08 1.30 1.21 1.49 1.33 1.62 1.38 1.60
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Figure 2.8 Comparisons of observations and forecasts of five sensitivity experiments shown in
Table I at No.3 turbine site. (a) The diurnal variation of 15-day (1-15 October 2013) averaged
wind speed at hub-height. The black line depicts the series corresponding to the observations,
whereas the colored lines correspond to the forecasts with different experimental setups.
(b) Taylor diagram shows normalized standard derivation and correlation of wind speed at
hub-height for five experiments referred to observation (“REF"). The number of samples is
360 (one hour interval from 1 October to 15 October 2013).
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The correlation and normalized standard deviation (NSD) of each experiment are cal-

culated and summarized in a Taylor diagram [111], which provides a synthetically visual

comparison in terms of centered RMSE, correlation and NSD. From Figure 2.8 (b), although

the NSD difference among five experiments is probably not significant, advantage of ACM2

is still observed. Moreover, regarding both NSD and correlation, the ACM2 prediction is

the one closest to the observations. Thus, the ACM2 scheme is chosen as the optimum PBL

scheme for the prediction of wind speed at the wind farm site of interest. We further substan-

tiated this conclusion by examining the values of ME and RMSE for other two turbines, i.e.,

No.7 and No.14 in Table 2.4, which show that the ACM2 scheme gives the best forecast for

the local wind field of the target area.

2.3.2 Validation of wind forecasts

Although the performance of WRFv3.6 does not appear highly sensitive to the PBL schemes

tested, the results of the experiments above partly demonstrate that the configuration including

the ACM2 PBL scheme with Pleim-Xu land surface model and Pleim-Xu surface-layer

scheme works best for the wind speed prediction at the wind farm site analyzed in this study.

With this configuration of the WRFv3.6 model, a six-month time series (i.e., from 00:00

UTC 2 August 2013 to 23:00 UTC 31 January 2014) of the low-level wind speed prediction

were generated following the procedure described in section 2.3.1. In this section, No.3

turbine is firstly chosen as an example to show that the WRFv3.6 model is able to predict the

wind speed at hub-height for the target area with reasonably good accuracy. The conclusion

is then confirmed by the consistent results obtained from other 14 turbines.

2.3.2.1 wind forecasts of the No.3 and No.7 turbine

Figure 2.9 shows the comparison between predicted (black), observed (red) and bias (green)

of wind speed at No.3 turbine site during the period from 00:00 UTC 2 August 2013 to 23:00

UTC 31 January 2014. The green dotted curve which lies close to the zero reference line

reveals that the predicted raw wind speed reproduces the observation with good accuracy.

Although there are occasional large errors, in general the predicted wind speed coincides
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Figure 2.9 Six-month series of the predicted raw (black), observed (red) wind speed (ms−1)
at hub-height and bias (green) of No.3 turbine. Panels from (a) to (f) stand for August,
September, October, November, December 2013 and January 2014, respectively.
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well with the observation through all six months. Similar conclusions characterized by small

value of ME (≤1.23) and RMSE (≤2.84), as well as relatively large value of CC (≥0.62),

can be drawn from the statistics listed in Table 2.5 (column 5). Those results show that WRF

based forecasting system has a relatively high ability of forecasting hub-height wind of No.3

turbine. In addition, the results displayed in the Figure 2.10 indicates the success of No.3

turbine is not by chance due to very similar conclusions can be obtained.

2.3.2.2 Overall results for 15 turbines

Table 2.5 also exhibits error statistics for other 14 turbines to ensure that the reasonable

prediction for No.3 turbine is not a success by chance. This table shows that only 3 out

of 90 CC are smaller than 0.60, which indicates that the trend of predictions is in good

accordance with observations. For most of turbines, the ME varies from -1.45 ms−1 to

2.00 ms−1, and the smallest ME (0.03 ms−1) is found in December for No.1 turbine. All

predictions overestimate the wind speed. Except for a few large values (bold in Table 2.5),

the RMSE retains a relative small value and does not change much through the six months

for all turbines. All these results substantiate that the WRFv3.6 model has reasonably good

forecasting skill in predicting low-level wind speed for the Awaji-island wind farm. However,

the relatively large variation in MEs and RMSEs still shows the possibility to further improve

the prediction of wind speed by using the Kalman filter as a post-processing approach or

data assimilation to provide better initial conditions, which will be discussed in the next two

chapters. Before doing that, the wind power forecasts need to be explored since the final

interests of wind companies is not wind speed forecasts but the near future power output.
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Figure 2.10 Same as Figure 2.9, but for No.14 turbine.
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2.4 Power forecasts

2.4.1 A power-curve model

Recall the fluid mechanical definition of the power output:

P =
1
2

CpρAv3

where Cp is the turbine coefficient of performance, and ρ is the air density which depends on

air pressure and temperature. A is the swept area of a turbine blade and v represents wind

speed over the wind farm site. The theoretical power curve of turbine No.3, which is a 2.5

MW horizontal-axis wind turbine (HAWT) with three blades, is shown in Figure 2.11 (black

line and points). In the Figure 2.11, the blue points represent the observed electrical power

output obtained for turbine No.3 measured from routine operation. It is easily found that

although the overall trend shows an agreement with the theoretical manufacture power curve,

there are remarkable uncertainties and deviations from it. This is not surprising considering

that there are still other factors that affect the power output, such as the unresolvable sub-scale

fluctuations, wake effects, wind direction, as well as operational control [49]. Consequently,

the manufacturer power curve cannot be directly used to predict wind power in real cases,

and the approach followed in this study is to build the empirical power model for each

turbine based on 4-month (from 1 August 2013 to 30 November 2013 with a 10-min interval)

observed wind speed and power data using a polynomial fit technique. The empirical power

curve is expressed by

P = a10 · v10 +a9 · v9 + · · ·+a1 · v+a0 (2.19)

where v is the wind speed, P the prediction of wind power, and a0,a1, · · · ,a10 are the

coefficients separately generated for different turbines. Table 2.6 displays the values of

coefficients of power curve models for the No.3 wind turbine and the corresponding power

curve is plotted in Figure 2.11 (red circles), which looks noticeably different from the

manufacturer power curve. It is also seen that there is an uncertainty between the observed

wind speed and power output, which might be attributed to other factors, such as variations
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Table 2.6 The coefficients of power curve models for the No.3 wind turbine.

Turbine a10 a9 a8 a7 a6 a5 a4 a3 a2 a1 a0

No.3 2.23E-06 -0.0002 0.0061 -0.1125 1.2089 -7.8032 29.3869 -55.9710 48.3195 -16.7577 2.0053

of wind direction, air temperature, as well as the effects of mechanical and operation control

systems. Our main interest in this thesis is to generate a power output prediction system as a

function of wind speed.

Figure 2.11 The theoretical (black line and points), observed (blue point) and the tenth-order
polynomial (red point) wind power curve of No.3 turbine.

2.4.2 Validation of the No.3 turbine

Figure 2.12 displays the comparison of predicted and observed power for No.3 turbine during

November , December 2013 and January 2014, respectively. It is clear that the forecasting

power reproduces the observation with a relatively good accuracy. Similar to the wind speed

forecasts, although there are occasional large errors, the predicted wind power generally

coincides well with the observed power output through all three months. This conclusion

can be further demonstrated with the relatively small value of ME (121.60 kW ) and RMSE
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(644.34 kW ), as well as large value of CC (72.43%), can be drawn from the statistics shown

in Table 2.7 (row 5). All of those results indicate that the power curve we build using the

polynomial fit technique and historical data has a relative high forecasting skill for a single

wind turbine.

Figure 2.12 Three-month series of the predicted (blue) and observed (red) power (kW) of
No.3 turbine. Panels from (a) to (c) stand for November, December 2013 and January 2014,
respectively.

2.4.3 Overall results for 15 turbines

In addition, Figure 2.13 also shows a 10-day series of predicted and observed power for

other two wind turbines (No.7 and No.14) except for the No.3 turbine, in order to validate

whether the procedure of constructing power model is suitable for other turbines where the
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Figure 2.13 A comparison of the raw wind power forecast (blue) against the observed power
output (red) for No.3 (a), No.7 (b) and No.14 (c) turbine over the same time period, which is
from 00:00 UTC 01 to 23:00 UTC 10 January 2014.

terrain features vary largely. Fortunately, the results from the Figure 2.13 indicate that the

predicted raw wind power generally coincides well with the observations at all three turbine

sites. Moreover, Table 2.7exhibits error statistics for all 15 turbines over a period of 3-month.

From this table, we can find that all predictions overestimate the wind power due to the values

of ME are all positive and the values of RMSE are smaller than 737.643 kW . The values of

CC are around 70% which indicates that the trend of predictions is in good accordance with

observations. All these results substantiate that the power curve model has a reasonably good

forecasting skill in predicting power output for a single turbine, as well as over the whole

wind farm in Japan.
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Table 2.7 The ME, RMSE and CC of power prediction for total 15 turbines over 3-month
period.

Turbine ME (kW) RMSE (kW) CC (%)

No.1 70.42 684.82 70.22

No.2 108.36 688.87 70.55

No.3 121.60 644.34 72.43

No.4 143.33 656.70 74.13

No.5 150.27 639.31 69.47

No.6 235.11 687.05 72.85

No.7 88.86 623.33 74.99

No.8 193.48 684.77 71.19

No.9 212.75 668.41 70.11

No.10 258.17 661.89 73.55

No.11 289.83 737.63 69.26

No.12 158.49 561.91 71.32

No.13 243.46 684.67 68.23

No.14 252.83 677.32 73.71

No.15 253.49 676.36 72.29

2.5 Summary

In this chapter, we have established a preliminary forecasting system for wind power predic-

tion, based on the meso-scale meteorological model WRFv3.6 and a power curve. The system

has been validated for the targeted wind farm in Awaji-island, Japan, which is characterized

by complex topographic features.

The global-scale GFS dataset is adopted as both initial and boundary conditions for the

regional-scale and high resolution WRFv3.6 model through a 4-level nesting refining the

horizontal grid resolution down to 1 km × 1 km for the target region. The model has been

tuned, and the ACM2 PBL and the corresponding parameterization schemes were chosen for

predicting the wind speed at hub height (80 m above ground) in the wind farm site. Compared

to the observed wind speed of 15 turbines in the target wind farm, from 1 August 2013 to
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31 January 2014, the WRFv3.6 model shows good performance in forecasting the surface

wind field. The power curve model used in this thesis is constructed using polynomial fit

technique. Its forecasting skills for 15 turbines of the Awaji wind farm have been validated

and the results indicate that given reliable wind prediction the power curve model constructed

from the historic wind speed and power data provides reasonable projection for wind power.

Therefore, combining the WRF model and the power curve model together, a preliminary

forecasting system has been built. In fact, the system has been installed by a wind energy

company to provide operational prediction twice each day. However, there is no doubt that

many errors and uncertainties exist in this system, which could affect the forecasting skill

of the system, for example the consistently overestimating the power in this chapter. These

problems lead to the possibility to further improve the prediction of wind speed and power

using Kalman filter and data assimilation which will be described in the next two chapters.



Chapter 3

Kalman filter module

As mentioned at the end of last chapter, there are many errors or uncertainties exist in

both WRF model and power forecasts. Specifically, to a large extent the wind forecasts

derived from NWP model (WRF) are affected by errors stemming from uncertainties in

initial/boundary conditions, simplifications in physics and numerical approximations [2].

Great efforts have been devoted to reduce these uncertainties by improving data quality [36]

and developing more accurate numerical models with improved dynamic cores and more

sophisticated physical parameterizations [70, 73].

Although efforts to improve NWP models have led to substantial progress in the accuracy

of deterministic predictions, it cannot be expected to eliminate all uncertainties in real-case

applications, which results in deviations between the NWP output and the real atmospheric

state. An effective way to reduce the uncertainties of the NWP models is by implementing

post-processing methods to revise or correct the NWP model outputs based on their past

performances. Typical and widely-used post-processing methods include Model Output

Statistics (MOS) [48] and Kalman Filter [56, 45, 32]. The Kalman filter is a popular

algorithm due to the simplicity of the algorithm, the moderate computational costs, and the

short training period required. It has been applied successfully for wind energy modeling

to produce more accurate predictions. The works by Louka et al [69] and Al-Hamadi et

al [1] clearly demonstrated that the forecasting errors of both wind power and electric load

can be effectively reduced with the Kalman filter. They have shown that combining NWP
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models and statistical post-processing into a tuned prediction system, can further improve

wind speed and power forecasts. Unfortunately, to the best knowledge of the authors, there is

no report in literature on any practice to establish such a prediction system for wind farm

sites in Japan. In this chapter, the Kalman algorithm used throughout this thesis is presented

firstly. Then its impact of improving both wind and power is investigated.

3.1 The Kalman filter

The Kalman filter is an estimation algorithm named after Rudolf E Kálmán, which operates

recursively on streams of input data (containing random variations) to produce a statistically

optimal estimate of the underlying system state. It is over 50 years old but is still one of the

most important and common data fusion algorithms in use nowadays. The great success of the

Kalman filter is due to its adaptive, recursive, optimal characteristics and small computational

requirement. Therefore, it is widely used in various fields from radar and computer vision

to meteorological purposes. The specific set of mathematical equations can be found in

[56, 118]. In this study, we focus on estimating and removing the bias of WRF model and

power model using the Kalman filter method presented in [32].

The implementation of the Kalman filter can be divided into two main steps: one is “time

update”, aiming to project forward the bias of the current state to estimate the forecasting

bias at the next time step; the other part is a “measurement update”, namely incorporating a

new observation into the previous estimation to obtain a corrected estimate of the forecasting

bias.

In general, the forecasting bias between the forecasts and measurements of a variable at

time t is related to the state at previous time t −δ t:

xt|t−δ t = xt−δ t|t−2δ t +ηt−δ t (3.1)

where xt is the true forecasting bias at time t, δ t is a time lag, xt|t−δ t is the priori state estimate

at time t, η is the white noise that has zero-mean, and the variance (σ2
η ) is uncorrected in

time. Although the real forecasting bias is unknown, it has certain relationships with the
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forecasting errors (also called measurement bias) yt . That is, the forecasting errors equal the

forecasting bias plus a random error εt :

yt = xt + εt = xt|t−δ t +ηt + εt (3.2)

where εt is normally distributed with zero-mean and variance σ2
ε . The source of random

errors εt comes mainly from uncertainty or errors in numerical models, as well as inaccuracy

in initial and boundary conditions.

The Kalman filter gives the recursive estimation of the unknown forecasting bias xt based

on the bias estimation at previous time and the historical forecasting errors y:

x̂t+δ t|t = x̂t|t−δ t +Kt|t−δ t(yt − x̂t|t−δ t) (3.3)

where the hat (ˆ) notation indicates the estimation of the variable. Kt|t−δ t is the Kalman gain,

which is recursively calculated as follows:

Kt|t−δ t =
pt−δ t|t−2δ t +σ2

η

pt−δ t|t−2δ t +σ2
η +σ2

ε

(3.4)

where p is the expected mean square error:

pt|t−δ t = (pt−δ t|t−2δ t +σ
2
η)(1−Kt|t−δ t) (3.5)

Given a reasonable initial guess of p0 and K0, as well as the model forecast Mt and

observation time series, the Kalman Filter can recursively generate an estimate of forecast

bias x at t + δ t through equations 3.3-3.5. Then, the model forecast can be corrected as

follows:

Mk f t+δ t = Mt+δ t − x̂t+δ t|t . (3.6)
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It is worthwhile to note that the calculation of white noise σ2
η and σ2

ε is crucial to the

implementation of Kalman filter procedure, though their priori are not usually known. We

first define a new variable zt as following,

zt = yt+δ t − yt = εt+δ t − εt +ηt (3.7)

which has variance [35],

σ
2
z = 2σ

2
ε +σ

2
η (3.8)

Assuming the estimation of σ2
η is derived from the estimation of σ2

ε with a ratio r:

σ
2
η = rσ

2
ε (3.9)

The ratio r is a parameter reflecting the relative weighting of observation and forecasts.

As r is somewhat sensitive to different models and predicted variables, several tests have to

be carried out to find the best values of r for in specific situation. Thus, the equation 3.8 can

be rewritten as,

σ
2
z = (2+ r)σ2

ε (3.10)

According to [32, 34], σ2
ε is a time-varying quantity which can be calculated with the

Kalman algorithm itself (using equations 3.3-3.5). Specifically, σ2
ε is firstly estimated by

applying equation 3.5:

pσ2
ε

t|t−δ t = (pσ2
ε

t−δ t|t−2δ t +σ
2
σ2

η

)(1−Kσ2
ε

t|t−δ t) (3.11)

where, pσ2
ε is the expected mean square error of the σ2

ε , σ2
σ2

η

is the variance in the σ2
η estimate

and Kσ2
ε is the Kalman gain for estimating σ2

ε . Similarly to equation 3.4, this Kalman gain

can be written as,

Kσ2
ε

t|t−δ t =
pσ2

ε

t−δ t|t−2δ t +σ2
σ2

η

pσ2
ε

t−δ t|t−2δ t +σ2
σ2

η

+σ2
σ2

ε

(3.12)
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where σ2
σ2

ε

is the variance of σ2
ε . Constant values of 1 and 0.0005 are assigned to σ2

σ2
ε

and

σ2
σ2

η

respectively. Considering the equation 3.3, 3.10 and 3.12, the σ2
ε can be estimated as

follows:

σ
2
ε,t+δ t = σ

2
ε,t−δ t +Kσ2

ε

t|t−δ t

[
(yt − yt−δ t)

2

2+ r
−σ

2
ε,t−δ t

]
(3.13)

7-day running mean method

Stensrud and Skindlov [103] showed that a simple bias correction method using the previous

7-day mean bias correction can improve the direct model forecasts of maximum temperature.

This method is easy to implement meanwhile has ability of improving the raw predictions.

Therefore, it is chosen as a reference to validate the performance of Kalman filter algorithm

for correcting the raw prediction of wind speed in this thesis.

3.2 Results of using Kalman filter

The Kalman filter procedure is applied independently to every prediction lead time. For

instance, WRFv3.6 raw predictions at 00:00 UTC are revised by the Kalman filter that is

updated by using the predictions and observations at the same time on the previous days. The

first 60 days (August and September) are chosen as a training period for implementing the

Kalman filter. The following discussions are all based on the statistic metrics computed over

the 4-month prediction period (from October 2013 to January 2014).

The following two subsections present and discuss the improvement of the Kalman filter

predictions for both wind speed and power in terms of the error quantifications, such as ME,

RMSE and CC. Additionally, the results of the 7-day running mean (7-day hereafter) method

are also included for comparison.

3.2.1 wind

A comparison of the 7-day method and the Kalman filter to correct the WRF prediction is

depicted in Figure 3.1. It presents hourly model raw forecasts (black line) and observed wind
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speed at 80-m of No.3 turbine (red line) as well as the corrected predictions using the Kalman

filter (blue line) and 7-day method (green line) for the 10-day period, from 00:00 UTC 14

to 23:00 UTC 23 October 2013. Again, the WRFv3.6 model demonstrates the capability of

predicting the local wind speed. Moreover, both the Kalman filter and 7-day method are able

to significantly improve the raw prediction of the WRF model, particularly the systematic

bias has been largely reduced.

When comparing the correction results of Kalman filter and the 7-day method, we see the

remarkable advantage of the Kalman filter in reducing the forecasting errors. This advantage

is further illustrated by the statistic parameters in Table 3.1. Compared to the 7-day method,

the Kalman filter shows much smaller RMSE and larger CC. This may be due in part to the

fact that the current Kalman filter can not only correct the systematical error but also part of

stochastic uncertainties, while the 7-day method has an effect barely on the systematic bias.

Figure 3.1 Hourly WRFv3.6 model raw forecasts (black) and corresponding observations
(red) of wind speed at hub-height of No.3 turbine for the 10-day period from 00:00 UTC 14
October to 23:00 UTC 23 October 2013. The blue and green line present the predictions
corrected by the Kalman filter and 7-day method respectively.

The ME, RMSE and CC of the Kalman filter and 7-day method predictions with respect

to the raw WRFv3.6 prediction are shown in Figure 3.2 for the total 15 turbines in the
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Awaji-island wind farm. From Figure 3.2a, it can be seen that most of the ME of raw forecast

range from 0.28 ms−1 to 1.54 ms−1. Although the ME looks different for each turbine, both

the Kalman filter and 7-day method can largely alleviate the systematic error tendency in

the raw forecast of the wind speed. The reduction of ME from the Kalman filter correction

ranges from 92% to 99%, while that of the 7-day method ranges from 74% to 96%. The

comparison of RMSE is given in Figure 3.2b. As expected, the Kalman filter reduces the

15-turbine mean RMSE by 22% which is much more significant compared to that of 7-day

method (4%). Consistent to RMSE, the CC displayed in Figure 3.2c further demonstrates

that the Kalman filter algorithm is superior than the 7-day method in improving wind speed

forecast .

From the validations discussed above, we may conclude that 1) the raw forecasts of

WRFv3.6 model with a tuned PBL package is able to produce reasonably good prediction

for the wind speed at the hub height in Awaji-island wind farm site which is characterized by

complex topography, and 2) The Kalman filter, as a better post-processing method against

7-day method, can significantly improve the forecasting skill for the surface wind at the

target turbine site considered in this study.

Table 3.1 Averaged ME, RMSE and CC of No.3 turbine over a 10-day period of 00:00 UTC
14-23:00 UTC 23 October, 2013.

Statistic quantity ME RMSE CC(%)

❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤Predicted variable
Approach

Raw KF 7-day Raw KF 7-day Raw KF 7-day

wind speed (ms−1) 1.79 -0.02 0.05 2.97 1.58 2.62 69.21 85.42 71.11

wind power (kW ) 371.19 -62.43 – 762.94 443.27 – 64.26 75.53 –

3.2.2 wind power

In this section, the power curve model described in section 2.4.1 is firstly tested with the

dataset of No.3 turbine over a 10-day period from 00:00 UTC 14 to 23:00 UTC 23, 2013.
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Figure 3.2 A comparison of the ME (a), RMSE (b) and CC (c) for wind speed at hub-height of
the Kalman filter (solid gray bar) and 7-day method (solid white bar) predictions with respect
to the raw WRFv3.6 prediction (solid black bar) for the 15 turbines of the Awaji-island wind
farm. The marked lines stand for the relative improvement of the Kalman filter (red) and
7-day method (blue) against the raw forecasts of WRFv3.6 model.
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Figure 3.3 A comparison of the raw wind power forecast (black) and the Kalman filter
corrected prediction (blue) against the observed power output (red) for No.3 turbine over the
period from 00:00 UTC 14 to 23:00 UTC 23 October 2013.

Then the Kalman filtered wind speed is used as an input of the power curve model to

investigate whether improvement can be seen in the power output by using the corrected

wind speed. The results are concluded in Table 3.1 and Figure 3.3.

Figure 3.3 shows a 10-day example for comparing the performances of raw forecast and

the Kalman filter prediction of wind power. The Kalman filter significantly improves the

power output prediction. The systematic overestimation of the raw wind power forecasts are

consistently reduced during the whole period. From Table 3.1, it can be seen that the power

output from the raw wind forecast is overestimated with an ME of 371.19 kW , which has

been effectively reduced down to −62.43 kW by using the Kalman filtered wind speed. Other

two statistic quantities, RMSE and CC, show consistent results revealing that the Kalman

filtered wind field effectively improves the power prediction. These results also indicate

that given reliable wind prediction the power curve model constructed from the historic data

provides reasonable projection for wind power.

Furthermore, three-month datasets (November, December 2013 and January 2014) of

the total 15 turbines were used to validate the performance of Kalman filter in predicting the

power output for the whole farm site. Figure 3.4 shows ME, RMSE and CC of the power

predictions with both raw wind speed and the Kalman filter corrected wind speed as the input
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of the power curve model for each turbine. It is found that the Kalman filter predictions

(Figure 3.4a) improved the power output predictions for all turbines. We also show the

relative improvement for each case (the right vertical axis in percentage), which reveals that

the improvement brought by the Kalman filter to each turbine is different from one another.

The relative improvement in ME varies from 44% to 97% with an averaged of 83%. As

shown in Figure 3.4b, the RMSE of the power forecasts for all 15 turbines are largely reduced

by Kalman filter, with No.13 being the best, having the value of relative improvement over

36%. Regarding to the CC parameter displayed in Figure 3.4c, the Kalman filtered wind

speed leads to an averaged improvement of 15% for all 15 turbines.

From all results shown above, it can be concluded that the accuracy of power output

prediction can be significantly improved when the Kalman filtered wind speed is used as the

input of power curve model equation (2.19).

In the power predictions discussed above, the Kalman filter is implemented to reduce

the systematical and random errors in the wind prediction of the WRFv3.6 model, which

exhibit significant improvement in power prediction. However, uncertainties still remain

in the power curve model as mentioned before. It motivates us to implement the Kalman

filter further to reduce the uncertainties in the power curve. To this end, we carried out four

experiments to evaluate the impact of Kalman filter for both wind speed prediction and power

curve model as follows.

• Baseline: We use it as a controlled case, where the raw forecasts of wind speed from

the WRF model is directly used to calculate the power output using (2.19). The Kalman

filter is not used to correct either wind speed or power curve model (2.19).

• KF-speed: The Kalman filter is used to correct the wind speed from the WRF model,

and the corrected wind speed is used to calculate the wind power by using (2.19).

• KF-power: The raw forecast of wind speed of the WRF model is used as the input

for the power curve model (2.19) and the Kalman filter is only applied to the power

output.
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Figure 3.4 A comparison of the ME (a), RMSE (b) and CC (c) of the Kalman filter (solid
white bar) and the raw power forecasts (solid black bar) for the 15 turbines of the Awaji-island
wind farm. The red line stands for the relative improvement of the Kalman filter against the
raw forecasts of the power curve model.
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• KF-speed & power: The Kalman filter is applied to the predictions of both wind

speed and the power curve model.

The results of the four cases are shown in Table 3.2. The larger positive value of ME for

controlled case (Baseline) indicates the overestimation of wind power. Having implemented

the Kalman filter, the ME is largely reduced, especially for cases KF-speed and KF-speed &

power showing 85% and 92% reductions in bias respectively. Furthermore, case KF-speed &

power has got the most significant reduction in RMSE and improvement in CC. Compared

with the baseline case, the KF-power case demonstrates that the Kalman filter indeed makes

significant positive impact on error correction of wind power curve model. This conclusion

is further validated by the differences between the case KF-speed and KF-speed & power

presented in Table 3.2.

Table 3.2 The ME, RMSE and CC of inter-comparison among four experiments with different
configurations of implementing the Kalman filter. Shown are the average results for total 15
turbines.

Case Baseline KF-power
Improve-
ment (%) KF-speed

Improve-
ment (%) KF-speed & power

Improve-
ment (%)

ME(kW ) 142.79 -65.52 54% -21.42 85% -11.27 92%

RMSE (kW ) 648.43 500.64 23% 470.57 27% 431.32 33%

CC(%) 74.24 76.37 3% 84.94 14% 85.46 15%

3.3 Summary

In this chapter, a hybrid forecasting system of wind power generation has been developed

by integrating the Kalman filter module with the high resolution Weather Research and

Forecasting (WRF) model as well as an empirical formula of wind power output (power

curve). The system has been validated with observations including wind speed and power

output over a six-month period for 15 turbine sites at a wind farm in Awaji-island, Japan. The

results show that the tuned WRF model is able to provide hub-height wind speed prediction
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for the target area with reliability to some extent. The predicted wind field can be substantially

improved by the Kalman filter as a post-processing procedure.

The Kalman filter presented in this thesis is a linear and adaptive algorithm which can

minimize both the systematical and random errors by recursively combining direct model

outputs with the most updated observations. It demonstrates the ability to improve the ME,

RMSE and CC in both wind speed and power predictions based on the WRFv3.6 NWP model

and the empirical power curve model. As shown in Table 3.2, Kalman filter significantly

improves the raw model prediction of power by 92%, 33% and 15% in ME, RMSE and CC

respectively. Compared with other post-processing methods, such as MOS and 7-day method,

Kalman filter is able to provide more reliable prediction with a short training period, and is

more flexible to adapt to any target prediction with available observation and forecasting

model. However, as other statistical correction methods, Kalman filter has limited ability to

predict the sudden changes in forecasting error [33]. It should be also noted that extra initial

tests are always needed to successfully implement the Kalman filter presented in this study,

since the correction effect depends on the ratio r (σ2
η ,t

/
σ2

ε,t ) which is somewhat sensitive to

different models and predicted variables.

In spite of these, the wind power forecasting system presented in the chapter can be

expected as an effective tool for short-term operational control for both single turbine and

whole wind farm in a target site. Having validated the system as a hybrid wind power

forecasting system of practical significance for the Awaji-island wind farm site, we are

planning to adopt it to other wind farm sites in Japan.

The present research has shown the promising performance of the proposed integrated

model for wind power prediction under complex topographic conditions which feature almost

all land-based wind farms in Japan. It also indicates some new directions worthy of further

investigations, for example, a more precise initial condition for WRF model to obtain more

reasonable input for power curve model; a computational fluid dynamic model with finer grid

resolution coupled with the WRF model to directly resolve the topographic effects on the

surface wind field; and more reliable power curve models that include more factors and are

thus able to remove the uncertainties due to the processes not reflected in the current model.



Chapter 4

Data assimilation module

As mentioned earlier, the data assimilation is chosen as another module of our integrated

forecasting system. It is worth to note that the observations are vital to the data assimilation for

the purpose of improving the forecasting skills of NWP models. For operational wind farms,

the conventional observations include upwind meteorological (MET) tower measurement

and nacelle wind data. In general, the measurements from an MET tower at a wind farm

site cannot accurately reflect the real wind field around the turbines which are located at

different locations away from the MET tower, particularly when the terrain of a wind farm is

complex. Instead, the nacelle-mounted anemometer which is placed on the top of nacelle

behind the rotor can provide the routine data of wind speed and direction for each turbine.

Although the wind observation of the nacelle-mounted anemometer is always affected by the

design/shape of the wind turbine and nacelle, as well as the operation condition of the turbine

[120, 99], some studies still show that nacelle-based wind speed observation, after proper

calibration and data quality control, is more representative to the wind behavior (e.g., wind

disturbance) experienced by the wind turbines in a wind farm than that from an upwind MET

tower [100, 29]. Thus, the nacelle-based wind data will be chosen for the data assimilation

module to further improve our system mentioned in the last chapter.

Before implementing the data assimilation procedure, several basic theories including

some basic elements in probability theory, the ingredients of data assimilation, mathematical

description and classification of data assimilation will be firstly stated. Then the impact
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of assimilating nacelle wind data on the wind forecasts derived from WRF model will be

checked. Lastly, the role of Kalman filter and data assimilation is compared.

4.1 Data assimilation and GSI system

Data assimilation is the process of combining all available information from models, back-

ground and observations, in order to obtain an optimal estimate of the state of a physical

system. It can be used for data reanalysis (using past observations), calibration and validation,

observing system design, better understanding of model errors, parameters and physical

process interactions, and for providing more accurate initial conditions for physical models.

In the subsequent section, we firstly state the mathematical description of data assimilation

and then several classical data assimilation algorithms are briefly introduced.

4.1.1 Basic elements in probability theory

4.1.1.1 Random experiment

A random experiment is a process for which the outcome cannot be predicted with certainty.

In general, it is described as follows [22],

• define a set Ω as all possible outcomes from an experiment and a subset of Ω is called

an event;

• the corresponding probability function, P: a numerical expression of a state of knowl-

edge. Assuming any two disjoint events A and B, P has following properties,

0 ≤ P ≤ 1

P(A∪B) = P(A)+P(B)

P(Ω) = 1
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If A and B are not independent, knowing the state of knowledge of A has occurred

changes on B, known as conditional probability:

P(B|A) = P(A∩B)
P(A)

• the outcomes of a random experiment are called random variables.

4.1.1.2 Probability density function

The probability density function is commonly referred as pdf (p), which is defined as:

P(a < X ≤ b) =
∫ b

a
p(x)dx

where X is a set and x is a random variable (x ∈ X).

4.1.1.3 Joint and conditional pdf

Assuming x and y are two random variables, their joint pdf would be p(x,y):

p(x,y) = p(x|y)p(y) (4.1)

4.1.1.4 Expectation and variance

Generally, a pdf is rarely known completely, but some properties such as expectation and

variance, the definitions of which are written as follows:

E(x) =
∫ +∞

−∞

xp(x)dx

Var(x) = E([x−E(x)]2) =
∫ +∞

−∞

[x−E(x)]2 p(x)dx

The standard deviation is the square root of the Var(x).
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When the random variable is a vector (x), its expectation also is a vector and the covariance

matrix is defined by

E([x−E(x)][x−E(x)]T )

4.1.1.5 Gaussian distribution

The Gaussian (normal) distribution is a very common continuous probability distribution and

often used in natural sciences. A Gaussian random variable x is characterized by:

• Mean: µ

• Covariance: σ2

We usually write the Gaussian random variable as x ∼ N(µ,σ2). If σ2 > 0, its pdf is given

by:

p(x) =
1√

2πσ2
exp

[
− (x−µ)2

2σ2

]

This distribution has some nice properties, in particular:

• It is a natural distribution for many signal noises;

• If there are two independent variables x1 ∼ N(µ1,σ
2
1 ) and x2 ∼ N(µ2,σ

2
2 ), then the

combination x1+x2 is also a Gaussian random variable and (x1+x2)∼N(µ1+µ2,σ
2
1 +

σ2
2 );

• In addition, if m and n are real numbers, then mx+n also obey the Gaussian distribution,

i.e., mx+n ∼ N(mµ +n,m2σ2).

When a Gaussian variable (x) is a vector with n size, its expectation and covariance are

usually noted as µ and P which is a n×n matrix, therefor the pdf is given by:

p(x) =
1

(2π)n/2|P|1/2 exp
[
− 1

2
(x−µ)T P−1(x−µ)

]
(4.2)
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where |P| stands for the determinant of P. It should be noted that any linear combinations of

Gaussian vectors are still Gaussian. For example, given x∼N(µ,P), then Lx∼N(Lµ,LPLT)

where L is a linear transformation matrix.

4.1.1.6 Bayes’ and marginalization rules

Those two are fundamental rules in estimation theory. Bayes’ rule:

p(x|y) = 1
p(y)

p(y|x)p(x) (4.3)

where the x and y are all random variables. The marginalization rule is shown as below:

p(y) =
∫

p(x,y)dx =
∫

p(y|x)p(x)dx

In the Bayes’ formula, the p(x), p(y|x) and p(x|y) are always called Prior, Likelihood and

Posterior, respectively.

4.1.2 Ingredients of data assimilation

Generally, the concept of data assimilation is based on three main ingredients, including a

dynamical system (stochastic or deterministic) based on some prior information, a sequence

of observations and a numerical model.

4.1.2.1 Prior information

We assume throughout this section that x is the true state. Usually, the prior knowledge of

x is available under the form of the prior pdf (p(x)). If this x obeys Gaussian distribution,

its expectation could be noted as xb, which is also called the background state. Thus the

background error eb and corresponding covariance matrix B can be defined as:

eb = xb −x (4.4)

B = eb(eb)T (4.5)
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4.1.2.2 Observation

The true field x results in a signal y in the observation space. This causality relation involves

a function (possibly nonlinear) H known as observation operator, as well as an additive

noise:

y = H(x)+η (4.6)

where η is the observation error and often is assumed as a Gaussian variable in practice. In

the data assimilation procedure, the measurement of pdf (or likelihood ) p(y | x) is needed.

In fact, this can be simply obtained with a translation of p(η) by H(x).

4.1.2.3 Numerical model

Here are considered the dynamical models, that is , the models that compute the time

evolution of the simulated state. Assuming our model is M and considering the Markov chain

x = {xt}t∈Z+ ,

xt+1 = M(xt)+ξt (4.7)

where ξt refers to model error which accounts for the errors in the numerical model (e.g.,

misrepresentation of physical processes) and for the errors due to the discretization.

4.1.3 General formulation of data assimilation

Together equation 4.7 and 4.6 provides a probabilistic model for the jointly varying random

variable (x,y). The aim of data assimilation is to find out information on the signal x, given

data of observation y. There are two key problems of data assimilation, namely smoothing

and filtering. In the subsequent section those two problems of which the key concept is

Bayes’ formula are briefly described respectively.
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4.1.3.1 Smoothing problem

For this problem, an instance of observe data y is needed, in order to determine information

about the signal x. To be more precise we wish to obtain the probability measure describing

the signal x on a time interval T0 = (0,1, · · · ,T ), given observation on the interval of T1 =

(1, · · · ,T ), denoted as x|y. Here T0 is often called data assimilation window. In the next

contexts, we define x = {xt}t∈T0 , ξ = {ξt}t∈T0 , y = {yt}t∈T1 and η = {ηt}t∈T1 and assume

that ξ and η are two independent Gaussian random variable. The Bayes’ theory (4.3) is used

to find the p(x|y) in what follows.

Prior (p(x). Using the condition pdf (4.1) and the structure of ξ in turn,

p(x) = p(xT ,xT−1, · · · ,x0)

= p(xT |xT−1,xT−1, · · · ,x0)p(xT−1, · · · ,x0)

= p(xT |xT−1)p(xT−1, · · · ,x0)

· · ·

=
T−1

∏
t=0

p(xt+1|xt)p(x0) (4.8)

where

x0 ∼ N(µ0,P0)

xt+1|xt ∼ N
(
M(xt),P

)
therefore using (4.2), we can get :

p(x0) ∝ exp
[
− 1

2
(x0 −µ0)

T P−1
0 (x0 −µ0)

]
(4.9)

p(xt+1|xt) ∝ exp
[
− 1

2
(xt+1 −M(xt)

T P−1(xt+1 −M(xt)

]
(4.10)



4.1 Data assimilation and GSI system 97

Combining (4.9) and (4.10), the prior p(x) (4.8) could be written as:

p(x) ∝ exp
(
− J1(x)

)
(4.11)

where J1(x) is defined by:

J1(x) =
1
2
(x0 −µ0)

T P−1
0 (x0 −µ0)+

T−1

∑
t=0

1
2
(xt+1 −M(xt))

T P−1(xt+1 −M(xt)) (4.12)

Likelihood (p(y|x). It is usually a Gaussian probability distribution with pdf proportional

to J2(x;y), which could be similarly obtained as described in the prior part:

p(y|x) ∝ exp
(
− J2(x;y)

)
(4.13)

where

J2(x; y) =
T−1

∑
t=0

1
2
(yt+1 −H(xt+1))

T R−1(yt+1 −H(xt+1)) (4.14)

In the above equations, µ0 and P0 are usually referred to as the background expectation

and background covariance, respectively. P and R are the covariance of model errors and

observation errors respectively. The J2 are named as the model-observation misfit functional.

Posterior (p(x|y). This is the purpose of data assimilation, which is looking for informa-

tion about the signal x given the observed data y. Recalling the Bayes’ formula in equation

(4.3), the posterior pdf can be defined by:

p(x|y) = 1
p(y)

p(y|x)p(x) (4.15)

∝ p(y|x)p(x)

Combining (4.11) and (4.13) together,

p(x|y) ∝ exp
(
− J(x;y)

)
(4.16)
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where J(x; y)is defined by

J = J1 + J2 =
1
2
(x0 −µ0)

T P−1
0 (x0 −µ0)

+
T−1

∑
t=0

1
2
(xt+1 −M(xt))

T P−1(xt+1 −M(xt))

+
T−1

∑
t=0

1
2
(yt+1 −H(xt+1))

T R−1(yt+1 −H(xt+1)) (4.17)

Here J is often referred to a cost function. Apparently, the smoothing problem can only

be performed off-line (e.g., reanalysis process in atmospheric area), because this kind of

algorithm is aiming to find information about signal xt0 based on the observationyt1 , however,

where t0 is often smaller than t1. On the contrary, the filtering problem can overcome this

drawback and can determine p(xt1|yt1) by using Bayes’ theory, which will be described in

the following section.

4.1.3.2 Filtering problem

A general filtering problem consists of two main steps: prediction and analysis. In order

to describe the theory conveniently, let Yt = {y j}t
j=1, where y j stands for the observation

data at time j. The signal is still referred to x. Thus, the aim of the filtering is to obtain the

p(xt+1|Yt +1) from p(xt |Yt). The details of each step are shown as below.

Prediction. Firstly, it is worth to note that p(xt+1|Yt , xt) actually equals p(xt+1|xt) since

Yt includes information about xt and cannot be improved based on perfect knowledge of xt .

Using the theory of conditional pdf, we can get

p(xt+1|Yt) =
∫

p(xt+1|Yt , xt)p(xt |Yt)dxt

=
∫

p(xt+1|xt)p(xt |Yt)dxt (4.18)

In (4.18), the p(xt+1|xt) is determined by the forward model (M(xt)). Therefore, the predic-

tion step can be regarded as a transition from p(xt |Yt) to p(xt+1|Yt).
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Analysis. In this step, we want to deduce p(xt+1|Yt+1) from p(xt+1|Yt). It is easy to

find that p(xt+1|Yt+1) = p(xt+1|Yt ,yt+1). Then using Bayes’ formula, the p(xt+1|Yt+1) can

be written as:

p(xt+1|Yt+1) = p(xt+1|Yt ,yt+1)

=
p(yt+1|xt+1,Yt)p(xt+1|Yt)

p(yt+1|Yt)
(4.19)

In the above equation, p(yt+1|xt+1,Yt) = p(yt+1|xt+1) because of Yt only contains noisy and

indirect information about the signal x and also cannot be improved upon the knowledge of

xt+1, thus (4.19) can be rewritten as:

p(xt+1|Yt+1) =
p(yt+1|xt+1)p(xt+1|Yt)

p(yt+1|Yt)
(4.20)

From (4.20), it is clear that the analysis step finally provides a map from p(xt+1|Yt) to

p(xt+1|Yt+1) .

4.1.4 Data assimilation algorithms

Many assimilation algorithms on smoothing problems have been developed. One of them

is Kalman smoother, which is aiming to find explicit expressions for the pdf p(x|y) in

the linear and Gaussian scenario. If the setting is non-Gaussian, an algorithm named

Metropolis-Hastings is proposed. However, sampling the posterior pdf using this method

can be prohibitively expensive due to the procedure of sampling involves generating a lot

of points in the state space of Markov chain. Thus, it will be more efficient if it is possible

to find a limited number of points which could represent the salient features of the pdf.

The variational method happens to meet this consideration, which aims to minimize the so-

called cost function to indirectly maximize the posterior probability. The typical one is four

dimensional variational method (4DVAR). As mentioned before, those methods of smoothing

problems usually can not be used on-line rather than applied to do some reanalysis works.

There are also various algorithms for the filtering problem, which could use the observations
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to sequentially update the probability distribution on the state. Several commonly used

algorithms are Kalman filter for linear system, Extend- or Ensemble Kalman filter and three

dimensional variational (3DVAR) method for non-linear dynamical system. In this thesis,

we choose 3DVAR to produce a better initial condition for WRF model, given the nacelle

observed wind data (as described in the chapter 2). Thus in the following a brief description

of 3DVAR which has been widely used in atmospheric field is given. The 3DVAR method

Figure 4.1 Global Observing system (http://www.wmo.ch/web/www/OSY/GOS.html).

uses a background (a priori state), which could provide a realistic reference state needed to

generate the nonlinear observation operators which is used to assimilate many of the indirect

observations (e.g., satellite-radiances) [4]. It is clear that the final estimate (i.e., analysis) is

determined by a good background as well as a number of observations with relatively high

resolution in both time and space (as shown in Figure 4.1). This also can be seen from the

so-called cost function:

J(x) =
1
2
(x− xb)

T B−1
f (x− xb)+

1
2
[y−H(x)]T R−1[y−H(x)] (4.21)

where x is the state variable, xb is the state of model background, B f and R are the static

background and observation error covariance matrices respectively, y stands for the observa-
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tion, and H is the observation operator. The aim of 3DVAR is to find a optimal x to minimize

this cost function (4.21) in turn to maximum the posterior pdf. Generally, the evaluation of

the error between the model solution and the observations is based on a cost function which

assumes that background and observation error covariances are all described using Gaussian

pdf with zero mean error [6]. It should be noted that the model error is assumed to be not a

source of error (i.e., assumption of “perfect-model” ) during the assimilation process.

One of the biggest limitations of WRF wind forecasts at hub-height is the difficulty of

obtaining accurate information on the current state of the atmosphere, which can be partly

solved by using data assimilation technique based on the available observations. Here the

Gridpoint Statistical Interpolation (GSI) analysis system which is capable of assimilating

a diverse set of observations, is integrated with the WRF-ARW mesoscale system. More

specifically, this study will implement the GSI 3DVAR system using the nacelle wind data to

improve the hub-height wind forecasts. More detailed description and information of the

GSI system can be found on the GSI website (http://www.dtcenter.org/com-GSI/users).

4.2 Model configuration

It should be noted that the GFS data and the domain configuration of WRF model in this

section are slightly different from what we adopted in the last chapter. Specifically, the

horizontal resolution of GFS data used in this section is 0.5× 0.5 degree and the model

domain configuration is displayed in the Figure 4.2. There are one parent domain (D01) and

three nested domains (D02, D03 and D04) with horizontal resolution of 24.0 km, 6.0 km, 1.5

km and 0.5 km respectively. The resolution of the most inner domain is half of the former one

(1km). We do this change based on some previous studies which show that better forecasting

performance will be obtained when the high resolution is chosen for WRF model as well as

the GFS data which are usually used as the initial and boundary conditions for WRF model.

Thus, such change might improve the forecasting skills of our integrated forecasting system

at some extent. As same as former configuration, 35 vertical stretched eta levels, 10 of which

are within the lowest 1 km is used for all domains and the top level is located at 50 hPa. The
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topography height with a 50-meter resolution data obtained from the Geospatial Information

Authority of Japan is used for D04, to furnish the local real observation information during

the GSI data assimilation processing.

Figure 4.2 Four nested domains ( a) D01, b) D02, c) D03 and d) D04) and model topography.
The detailed terrain height (shaded with the gray bar in meter) of the D04 is shown in panel
d). The red triangles stand for the observational sites for wind speed and direction in a wind
farm, in south Awaji island, Japan.

4.3 Experiment design

Four experiments (shown in Table 1) were carried out to investigate how assimilating nacelle

wind data and using Kalman filter algorithm influence the performance of WRF wind

forecasts at hub-height, and to understand the priority of those two procedures. In the first

experiment (Case1), only GFS data were used to obtain the raw wind speed forecasts by

re-initializing WRF model as a “cold-start" at 12:00 UTC each day. In each re-initialization

runs for 30 hours, the initial 6 hours (spin-up time) were excluded from the forecasting data

series. The second experiment (Case2) was conducted to evaluate the impact of assimilating

the nacelle wind data with cyclic mode, in comparison with the results of Case1. As displayed

schematically in the Figure 4.3, the final analysis field at 18:00 UTC each day was cyclically

assimilated three times with a 6-hour interval. Using this analysis field as initial condition,
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the wind speed forecasts of continued 24 hours were obtained. We designed the experiment

of Case3 to evaluate the contribution of the Kalman filter algorithm for improving the raw

forecasts of Case1 based on the available nacelle wind speed observations. Finally, the

experiment of Case4 was carried out to compare the contributions of the data assimilation

technique and the Kalman filter algorithm in improving the wind speed forecasts.

Table 4.1 The four sets of experiments for evaluating the impact of data assimilation and
Kalman filer. The “WRF”, “GSI_DA” and “KF” with “+” represent the use of WRF model,
GSI analysis system and Kalman filter, respectively.

Experiment Case1 Case2 Case3 Case4

WRF + + + +

GSI_DA + +

KF + +

Figure 4.3 The schematic of implementing GSI system in cyclic mode. The white boxes
stand for the total assimilation time of 18-h with an interval of 6-h, while the gray boxes
represent the forecasting length (24-h) of WRF model after assimilating the nacelle wind
data.

4.4 Impact of assimilating nacelle wind observations

In this section, firstly the overall result of comparison between the raw wind speed forecasts

of WRF model and the forecasts with data assimilation is presented based on the statistical

parameters introduced in section 2.3.1.2. Then the role of the data assimilation technique and
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the Kalman filter algorithm in improving the raw wind speed forecasts of WRF model will be

investigated. It is noted that all of the statistics and discussions are based on the 15-turbine

averaged data unless there is a special instruction.

4.4.1 Impact of assimilation on the hub-height wind forecasts for the

experiment period

Figure 4.4 (a) illustrates the comparison between raw forecasts (black), observations (red)

and the forecasts with data assimilation (blue) of wind speed, which are symboled with

“Case1”, “Obs” and “Case2” respectively, during the experiment period from 18:00 UTC 2

January to 23:00 UTC 31 January 2016. It can be seen that the raw wind speed forecasts

(Case1) reproduces the observation with relatively good accuracy, though there are occasional

large errors, especially when the observed wind speed is larger than 15 ms−1. It is also

easy to find that the blue line lies closer to the red line than the black one during almost

the whole period, which implies that the forecasts of wind speed with data assimilation are

remarkably improved in comparison with the forecasts without data assimilation (Case1).

Obviously, the evidence from Figure 4.4 (a) also shows that the forecasting skill of wind

ridge is largely increased after assimilating nacelle wind data, though the contribution of

data assimilation for other periods is relatively slighter or even not clear in some cases. This

might be attributed to the WRF model itself whose forecasting ability of large wind speed at

hub-height is inferior to that of regular wind speed (e.g. ranging from 4 ms−1 to 15 ms−1).

It reveals that implementing data assimilation with the nacelle wind data can significantly

improve the forecasting skill of WRF model in extreme weather conditions. The values of

ME, RMSE, IA and CC are listed in Table 4.2 to quantify the effects of assimilating nacelle

wind data into the WRF model, in comparison with the raw forecasts. Examining the second

column, the positive values of ME indicate that both cases overestimate the wind speed in

the whole period (nearly one month). Compared to the raw forecasts (Case1), the ME in case

2 is reduced by 34.3% where the nacelle wind data is assimilated. Regarding RMSE, the
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value of Case2 is much smaller compared to Case1, with a relative error reduction of 23.9%.

Similarly, both IA and CC are increased when assimilation is implemented.

The conclusions obtained from the 15-turbine averaged results needs to be further verified

on the individual turbine. Figure 4.4 (b) illustrates the comparison of the RMSE between the

raw wind speed forecasts and the forecasts with data assimilation for 15 turbines separately.

It is found that forecasting skills of wind speed are improved after assimilating nacelle wind

data for all 15 turbines, though small differeces are existing. The relative improvement in

RMSE varies from 19.5% to 25.9% with an average of 21.5%.

(a)

(b)

Figure 4.4 (a) One month series of the raw wind speed forecasts (black), the forecasts
with assimilation (blue) and the corresponding observations (red). (b) The comparison
of the RMSE of wind speed using data assimilation (solid white bar) with respect to the
raw forecasts (solid black bar) for the 15 turbines. The marked line stands for the relative
improvement after using data assimilation. The period is from 18:00 UTC 1 January to 23:00
UTC 31 January 2016.
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Figure 4.5 Comparison between the hub-height wind speed forecasts with (blue) or without
(black) assimilating the nacelle wind data based on the corresponding observations (red),
during the 24-h forecasting period (30-day averaged).

Table 4.2 The monthly mean ME, RMSE and CC calculated with the forecasts (with or
without assimilating the nacelle wind data) and the corresponding observations of wind speed
at hub-height.

Experiment ME (ms−1) RMSE (ms−1) IA CC
Case1 2.54 3.51 0.80 0.83
Case2 1.67 2.67 0.87 0.84

Figure 4.5 displays the 30-case mean (30 days) forecasts of Case1, Case2 and observations

during the 24-h forecasting length. Apparently, the overestimation of wind speed is found

no matter whether the nacelle wind data is assimilated or not. However, this systematic

discrepancy has been significantly corrected by using data assimilation technique. The

relative decrease of RMSE (36.4%) further demonstrates the large impact of assimilating

nacelle wind data in reduction of the systematic bias in WRF model.

From the above discussions, we may conclude that assimilating nacelle wind data can

substantially improve the accuracy of WRF model in forecasting the hub-height wind field in

the target wind farm site of interest.
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4.4.2 Comparison of the role of the Kalman filter and data assimilation

Having confirmed the effect of assimilating nacelle wind data on improving the raw wind

forecasts at hub-height, we further evaluated the integrated forecasting system which uses the

Kalman filter as another key technique to improve the prediction. To this end, we conducted

other two experiments, i.e. Case3 and Case4, to include the Kalman filter as another module.

In order to implement Kalman filter properly, the first 15 days are chosen as a training

period and thus the following discussions are all based on the forecasts and corresponding

observations of the second half 15 days. Figure 4.6 displays the statistical parameters that

quantify the performance of the integrated prediction system and the contributions of its

different components in forecasting the hub-height wind under configurations of the four test

cases.

As observed above, the ME and RMSE of Case2 are largely reduced compared to Case1,

while the values of IA and CC are increased, which shows the large improvement due to

assimilating nacelle wind data.

The effects of implementing Kalman filter to the raw forecasts of WRF model are also

examined by comparing the results of Case1 and Case3 in Figure 4.6. It seems that the bias

(Figure 4.6 (a)) in the raw forecasts can be largely revised and meanwhile the random errors

(Figure 4.6 (b)) can be partly reduced as well. Furthermore, the values of IA and CC of

Case3 become larger after using Kalman filter compared to the Case1. All of these results

demonstrate that the Kalman filter as a post-processing method, can significantly improve

the forecasting skill of hub-height wind speed.

Figure 4.6 also illustrates the difference between data assimilation and Kalman filter

when one compares among the results of Case2, Case3 and Case4. For Case4, in which the

data assimilation is used to improve the initial condition and then Kalman filter is adopted

to post-process the forecasts, the RMSE is further reduced and the values of IA and CC are

larger than both Case 2 and Case3, while the value of ME is nearly same. This implies that

combining the Kalman filter and the nacelle wind data assimilation can provide the best

forecasts and the role of Kalman filter is more important in calibrating the systematic bias.

On contrary, comparing the RMSE and IA of Case3 and Case4 suggests that assimilation
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of nacelle wind data shows better performance against Kalman filter in revising random

uncertainties. However, if we consider the differences represented by all four statistic

parameters of Case2 and Case3 synthetically, the Kalman filer shows the priority over data

assimilation for wind speed forecasts at hub-height.

( )a ( )b

( )c ( )d

Figure 4.6 The ME (a), RMSE (b), CC (c) and IA (d) of four cases described in Table 2.3.
All results are based on data series of the second half 15 days (16-31 January 2016 with 1-h
interval).

To further evaluate the improvements of assimilating nacelle wind data and Kalman filter,

we show in Figure 4.7 (a) to Figure 4.7 (c) the ME, RMSE and IA at different forecasting

periods (i.e., 0–12-h and 12–24-h). In regard to the raw forecasts (Case1), the forecasting

skill at period of 0–12-h is slightly higher than the period of 12–24-h. The same conclusion

can be drawn for the forecasts with data assimilation (Case2) where the errors in the raw

forecasts have been largely reduced after assimilating nacelle wind data. As same as shown
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in the Figure 4.6 (a, b and d), Kalman filter (Case3 and Case4) can significantly improve the

model forecasts under the situations with or without data assimilation for different forecasting

periods. Comparing the values of ME, RMSE and IA of Case3 and Case4 during different

periods, we observe that the impact of data assimilation is more apparent compared to

Kalman filter in the period of 12–24-h, due to the difference between Case3 and Case4 during

12–24-h is larger than that in the period of 0–12-h.

Figure 4.7 The statistical parameters of the hub-height wind speed forecasts for four cases in
different forecasting periods ((a)-(c)) and different wind speed bands ((d)-(f)). Same as in
Figure 4.6, the evaluation period is 15 days from 16 to 31 January 2016.
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Figure 4.8 The theoretical wind power curve for a 2.5 MW turbine used in this study and the
corresponding cut-in, rated output and cut-out speed.

In practice, the simplest way to obtain the wind energy forecasts of a specific turbine

is to use the designed (or theoretical) power curve provided by the turbine manufacturer,

which is usually a function of the mean hub-height wind speed. In this study, the target wind

farm consists of 15 2.5-MW horizontal-axis turbines and the corresponding power curve is

shown in Figure 4.8. As displayed, the value of cut-in (4 ms−1), rated output (15 ms−1) and

cut-out speed (25 ms−1) is crucial to power management in routine operations. Therefore,

the forecasts of 0-4, 4-15 and 15-25 ms−1 wind speed bands are further validated. The results

are displayed in Figure 4.7 (d) to Figure 4.7 (f). Apparently, almost all of the ME and RMSE

of the raw forecasts (Case1) are reduced by applying both data assimilation and the Kalman

filter, meanwhile the value of IA is increased. In addition, the smallest value of ME and

RMSE and the largest IA in the band of 4-15 ms−1 indicate that it is easier to obtain relatively

accurate hub-height wind speed forecasts in the interval of 4-15 ms−1 compared to other

wind speed bands. When the wind speed is larger than 15 ms−1 which is the rare case in the

experiment period, the performance of the system becomes worse (with small IA), and data

assimilation shows more significant effect in comparison with the Kalman filter. It suggests

that the data assimilation technique can be more effective in correcting the forecast under

rare or extreme weather conditions.



4.5 Summary 111

Overall, the forecasts are remarkably improved after assimilating nacelle wind (Case2) or

using the Kalman filer (Case3). The largest improvement is found when the two techniques

are combined (Case4). It seems that the role of the Kalman filter is more dominated as the

difference between the Case3 and Case4 is much smaller than that between Case1 and Case2,

while data assimilation becomes more important in rare or extreme weather conditions.

4.5 Summary

We have developed a practical forecasting system for surface wind and power output by

integrating data assimilation and Kalman filter into the WRF model. Both data assimilation

and Kalman filter modules make use the nacelle wind data which is routinely available, so

the system can be easily adopted in different wind farm sites for operational use. Due to

the complex topographic features, the surface wind field in Japan region is significantly

fluctuating and more difficult to predict, the present system employs data assimilation and

Kalman filter to eliminate the uncertainties from two aspects, i.e. the data assimilation

improves the accuracy in initial conditions and Kalman filter provides a posterior correction

to the raw model output, and thus can be expected as a promising tool in real-case operations.

The system has been validated using the data of a wind farm in Awaji island, Japan. The

wind speed forecasts at hub-height have been substantially improved by data assimilation to

refine the initial wind field for WRF model, i.e. the ME and RMSE errors in WRF prediction

were reduced by 34.3% and 23.9% respectively, while IA has been improved by 8.8% due to

the data assimilation technique. On the other hand, the Kalman filter, as a post-processing

method, is able to provide more reliable wind forecasts with a short training period (15-day in

this study). By using both Kalman filter and nacelle wind data assimilation, the raw forecasts

can be further improved. Detailed evaluation indicates that the role of the Kalman filter is

more dominant for the wind band of rated out speeds, while data assimilation becomes more

important in rare or extreme weather conditions.



Chapter 5

Coupling WRF and a CFD model

So far, an integrated forecasting system based on WRF model, Kalman filter and data

assimilation has been built. Comparing the forecasts from this system with the observations

indicates that it can provide reasonable predictions for the Awaji wind farm in Japan, where

the terrain conditions are usually very complex. In fact, the complex terrain features always

limit the forecasting ability of meso-scale WRF model for predicting wind at hub-height, due

to the relatively coarse grid resolution of WRF model. Thus it may not be appropriate to rely

solely on WRF based system to handle the locale-specific flow in the complex terrain regions.

As Zajaczkowski et al. [121] mentioned, the mesoscale model cannot accurately capture the

wind flow features (e.g., turbulence) finer than 1 km caused by the local terrain conditions.

With this in mind, Computational Fluid Dynamics (CFD) model may be an option for

simulating and predicting the flow characteristics of smaller scales due to a finer resolution

of terrain features. There are several studies [83, 8, 80] which have used CFD models to

investigate how the complex terrain affect the wind flow and several encouraging results have

been obtained. However, almost of those studies based on the ideal wind profile or fixed

wind direction which is not very suitable for the real applications, especially for short-term

forecasting. Actually, a couple of studies which have used CFD models with real boundary

conditions given by mesoscale models to study the flow and dispersion in built-up areas

[76, 77], though there are very limited application in prediction of wind energy.
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Inspired by those aforementioned studies, in this chapter, a multi-scale modeling system

which consists of a meso-scale NWP model and a micro-scale CFD model, to the knowledge

of the authors, is firstly developed to accurately forecast short-term hub-height wind for a

wind farm of interest in Japan. The CFD model adopted is the free and open-source package

which is called OpenFOAM, while the WRF model is chosen as the mesoscale component.

The remainder of this chapter is arranged as follows. Initially, the fundamental equations

of the mathematical models and a brief introduction of OpenFOAM used in this work are

presented. Then the specific procedure of conducting OpenFOAM model is described and

some simple simulation results are displayed to show the ability of OpenFOAM of simulating

wind flow over the complex terrain. Sequentially, the results from the multi-scale forecasting

system are validated with the nacelle wind observations at each wind turbine site, and finally

some conclusions are given.

5.1 Theoretical background

The Reynolds Averaged Navier-Stokes (RANS) equations combined with a turbulence model

is the most common way in wind engineering when simulating wind flow over complex

terrain. As mentioned in the chapter 1, this kind of approach shows a fair compromise

between computational burden and modeling accuracy.

5.1.1 Governing equations

This section presents the governing equations of fluid flow. The most common set of equations

employed to simulate the characteristics of turbulence flow is the Navier-Stokes equations.

RANS equations are often used to govern the so-called incompressible, isothermal flow of a

newtonian fluid. The RANS incompressible equation is adopted in this thesis to simulate and

solve the turbulent wind flow over the complex terrain. Applying the Reynolds decomposition

(a time-averaged part and a fluctuating part), the mass and momentum equations are displayed
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as follows:
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where µ is the dynamic viscosity, gi is the gravity acceleration, ρ is the density of dry air

and p is the averaged pressure. The most common method to capture the time and length

scale effectively is to associate the Reynolds stresses with the mean strain rate tensor using

the Boussinesq approximation:
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where k is the so-called turbulent kinetic energy (TKE) and µt is the turbulent viscosity. The

time averaged bars have been removed for convenience. Due to the flow is incompressible,

thus the pressure variations can be referred to the hydrostatic pressure, which implies that the

gravity term in the equation 5.2 can be added in the pressure term given by:

− ∂ p†

∂xi
=− ∂ p

∂xi
+ρgi (5.4)

According to the study [102], the term 2
3ρkδi j is also included in the above pressure term.

Therefore, combining equations from 5.1 to 5.4, omitting the Coriolis force and neglecting

superscripts of averaged bars and † for convenience, the governing equations can be rewritten

as:
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5.1.2 Turbulence model

The so-called turbulence model involves the averaging of the Navier-Stokes equations known

as RANS. In this thesis, the turbulence modeling is limited to two-equation RANS models

where the Reynolds stresses are calculated following the concept of turbulent viscosity.

k− ε model

In this model, the turbulent viscosity µt is calculated as [65]:

µt =Cµ

k2

ε
(5.7)

where Cµ is a model constant, k = 1
2(u

′2 + v′2 +w′2) stands for the turbulent kinetic energy

and ε is the dispassion rate. The value of k and ε can be obtained using the following two

equations:

ρ
∂ (u jk)

∂x j
= µt

∂ui

∂x j
(

∂ui

∂x j
+

∂u j

∂xi
)+

∂

∂x j

[
(

µt

σk
)

∂k
∂x j

)

]
−ρε (5.8)

ρ
∂ (u jε)

∂x j
=Cε1

ε

k
µt

∂ui

∂x j
(

∂ui

∂x j
+

∂u j

∂xi
)+

∂

∂x j

[
(

µt

σk
)

∂ε

∂x j
)

]
−ρCε2

ε2

k
(5.9)

where Cε1 and Cε2 are two additional model constants, which follows the following metric:

Cε1 =Cε2 −
κ2√
Cµσε

(5.10)

where Cµ = (u2
∗

k )
2, u∗ is the friction velocity and σε , σk are two other model constants. The

values of those model constants are usually obtained empirically to tune the model. Several

sets can be found in the Table 5.1.
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Table 5.1 A set of typical coefficients of the k− ε model. [71]

Coefficient κ Cµ σk σε Cε1 Cε2

Standard 0.4 0.09 1.00 1.30 1.42 1.92

5.1.3 Micro-scale model of OpenFOAM

The Open Source Field Operation and Manipulation (OpenFOAM) software package was

developed at Imperial College of London during 1990-1999. Its core library is written using

C++ and designed to effectively solve complex physic problems using finite volume method

(FVM) and structured or unstructured discretization grid. The OpenFOAM software package

integrates many multi-physics numerical solvers for incompressible and compressible fluid

in steady state, transient and turbulent flows as well as laminar, and thus variety range of real

fluid dynamic problems can be solved. It also has the ability for parallel calculation which is

an advantage for large and complex simulations.

Figure 5.1 Example of an OpenFOAM case folder structure and its content.

Before using the OpenFOAM properly, the users should be familiar with its file structure.

As displayed in the Figure 5.1, every OpenFOAM case contains three main folders: 0,
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constant and system. 0 folder contains files in which the initial field information for different

variables and surface patches can be specified. Constant folder, contains Poly mesh folder,

turbulence property and material property. The file of RASproperties includes the option to

choose a RANS turbulence model or change to laminar flow. transportProperties contains

the possibility to specify the value of the kinematic viscosity ν . By modifying this file, the

coefficients for different turbulence models can be decided. system folder includes solution

settings, time step and solver settings for each field which are controlled by editing the

controlDict file. Different discretization schemes for time and space are specified in the file

of fvSchemes. In the file of fvSolution, users are able to decide which solver is to be used to

solve the problems of interest.

5.2 Coupling WRF and OpenFOAM

5.2.1 Coupling Procedure

Two models mentioned above have been demonstrated that they have strong ability of solving

scientific problems in their own fields. However, it is imperfect when we use those two

models solely to simulate or forecast wind flow over the complex terrain at a real wind

farm for operational use. That is just the main reason why we intend to couple those two

components together. Typically, the coupling is achieved by using the mesoscale WRF

forecasts as the initial and boundary conditions for the micro-scale OpenFOAM. Thus, the

OpenFOAM will be provided instantaneous boundary values representing the real atmosphere

state. Figure 5.2 displays the relative position of WRF and OpenFOAM domains. Obviously,

the grid spacing and domain size of the WRF and OpenFOAM are quite different. The WRF

domain shown here is the most inner one among the four-nested domains as configured in the

chapter 4, of which the horizontal resolution is 500 m×500 m. Whilst, the resolution of the

OpenFOAM mesh is chosen as 50 m in this study, which is much higher than WRF model.

The size of the OpenFOAM is 10 km× 10 km which means that several WRF grids are

contained in this region. This kind of configuration is beneficial for extracting more useful

information from WRF model for providing initial/boundary conditions to OpenFOAM.
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Figure 5.2 Spatial comparison between WRF and the OpenFOAM domain.

The general steps for conducting the multi-scale system are shown as following:

• Meso-scale WRF component

– Domain configuration, Global data pre-processing and choosing the suitable

schemes for the wind farm of interest;

– Running the main WRF program with Parallel mode (40 cpus are used);

– Outputting the forecasted variables (u,v) with NetCDF format;

– Converting the pressure coordinate system to Cartesian coordinate system aiming

to OpenFOAM model use conveniently.

• Micro-scale OpenFOAM component
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– Processing surface terrain data from a topographical map into a surface mesh;

– Mesh generation using an external Fortran program and the blockMesh tool in

OpenFOAM;

– Mesh generation and discretization

– calculating the prevail wind direction to decide the patch attribute;

– interpolating the well prepared WRF outputs to the collocated mesh of Open-

FOAM, specifying appropriate boundary conditions, defining the fluid properties

and selecting the physical/chemical phenomena that need to model;

– Choosing reasonable solver (simpleFoam in this thesis) and turbulence model

(k− ε) to solve the problem;

– Using the tool of sample in the OpenFOAM to obtain the wind forecast at each

wind turbine sites.

The details of running WRF model have been stated in the former chapters. Thus, we mainly

describe the micro-scale component (namely OpenFOAM) in the following sections.

5.2.2 Terrain and mesh generation

The terrain data from Shuttle Radar Topography Mission (SRTM) (Jarvis et al., 2008) has

been downloaded for the Awaji wind farm region. This data is available in TIFF format on

the USGS website with a resolution of approximately 90 meters (3 arc-seconds) with the

user providing the latitude and longitude of the area. Since OpenFOAM uses the Cartesian

coordinate system, the coordinates are changed from Geographic to the UTM (Universal

Transverse Mercator) coordinate. The datum selected is WGS 84 and the zone selected is

53 N. Figure 5.3 shows the final terrain surface used in this study, of which initial size is

10 km×10 km.

There are a couple of tools can be used directly to generate the mesh if the terrain data

can be converted to stl format, for example, the tool of snappyHexMesh or extrudeMesh in

the OpenFOAM is a common choice. In addition, some external meshing softwares such as
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Figure 5.3 Surface model for Awaji wind farm region.

pointwise and icem also can be chosen to generate the mesh of the computational domain.

Those mentioned tools at some extent have some drawbacks. For example, as pointed out

in the study [71], the total amount of cell in the final mesh generated by snappyHexMesh

tool is difficult to control and the quality of the mesh is highly dependent on the available

computational resources as well as the users’ skills. Though the whole mesh quality e.g.,

(skewness) can be improved by fining the mesh near terrain surface, the large number of the

unstructured mesh will lead to heavy calculation burden and very long computational time

which is not favorable for operational forecasting use.

Therefore, we consider to develop an external program coded using Fortran language,

which could control the total amount of cells and the adequate aspect ratio near the terrain

surface to fine the local region. In fact, this program cannot generate the mesh directly instead

output a file named blockMeshDict which can be recognized by the tool of blockMesh in

the OpenFOAM. Thus, combining the Fortran program and the blockMesh tool, a structured

mesh has been generated as displayed in the Figure 5.4. The terrain surface grid spacing is 50
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Figure 5.4 The structured mesh of the computational domain.

m and the total number of the mesh is 200×200. In the vertical, the expansion ratio is set as

1.94, indicating the grid spacing in the vertical direction is increasing with the height above

the ground, which can be clearly found in the Figure 5.5. The current domain boundaries are

decomposed in six patches: ground to which was assigned the wall attribute, and the other

five named as top, north, south, west and east are all defined as generic patch attribute. It

is worth to note that we name the patches with north, south, west and east rather than inlet,

outlet, back or front because of the consideration of operational use. Usually, the real wind

direction changes hour by hour which will require us to change the patch attributes frequently

in order to obtain reasonable simulation results. Thus, the way of naming the patches will

avoid some misunderstandings. In this study, 30 levels in the vertical are adopted, indicating

that the total number of the mesh of the whole computational domain is 1,200,000.
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Figure 5.5 Detailed view of a clip (a) of the whole computational domain and the correspond-
ing grids (b).
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5.2.3 Boundary conditions

As known, in the CFD modeling, the boundary condition types and values must be specified

appropriately in order to get a reasonable solution. In the following sub-sections, details of

setting boundary condition for every patch will be presented briefly.

• Wall boundary condition

In our study, only the ground patch is considered as wall. The no-slip condition is set

for the velocity U (a constant value of (0, 0, 0) is fixed at the wall). For the pressure p,

the condition is set as zerogradient. The nutRoughWallfunction which can take into

account roughness is used to calculate the µt .

• Top boundary condition

As stated in the study [43], the choice of the top boundary condition is very important

for sustaining equilibrium boundary layer profiles. Here the slip condition is chosen.

For a scalar, it represents a zerogradient condition while for a vector the normal

component is fixed to zero and the tangential component is set as zerogradient.

• Inlet boundary condition

The velocity U is prescribed by the real data from meso-scale WRF model, while p

is still treated as zerogradient condition. It should be noted that there is not just one

inflow patch for the real applications due to the wind direction always changes hourly.

In other words, the decision of which patch has inlet attribute is made by the real wind

direction. Specifically, if the wind direction is during 0-90 degree, the patches of north

and east are set the inlet attribute; when it comes to 90-180, east and south will be

chosen; for 180-270 degree, the patches of south and west should be inlet boundary

condition and finally the patches of west and north are regarded as inlet boundary when

the wind direction is from 270 degree to 360 degree.

• Outlet boundary condition

The zerogradient condition is applied for all variables except for the pressure p, where
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a fixed value of zero is set. As similar to the Inlet boundary condition, the outlet

patches are also decided by the real wind direction.

5.2.4 Roughness modeling

Usually, the roughness of the terrain surface is vital to the calculation of the kinetic turbulence

viscosity. In the OpenFOAM package, it is included in the nut file as a boundary condition of

kinetic turbulence viscosity, being the aerodynamic roughness length which is a parameter

of a wall function for calculating the fluid kinetic viscosity µt . As mentioned in the study

[3], the way of terrain roughness modeling has three types. The first one (or the easiest one)

is considering the aerodynamic roughness length over all terrain surface is a uniform value,

which can be set as an empirical coefficient based on the different surface types as displayed

in the Table 5.2. The second option is developing an appropriate roughness model based on

some specific situations, for example, different ground height with different roughness. The

third type is using the real roughness map data. For the simplification, the constant roughness

is adopted to solve our problems.

Table 5.2 Typical roughness parameters for non-urban homogeneous terrain [113].

Surface type Roughness (m)

Sea, sand and snow 0.0002

Flat desert 0.0002-0.0005

Short grass 0.008-0.03

Long grass 0.02-0.06

Low crops 0.04-0.09

High crops 0.12-0.18

Continuous bush land 0.35-0.45

Mature pine forest 0.8-1.6
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5.3 Results of the coupled system

In this section, we initially intend to check the rationality (e.g., the assumption, setting of

boundary conditions or the choice of some coefficients) of the coupled system by simulating

an arbitrary case. Then forecasting ability of the multi-scale system is validated with the

nacelle wind observations at each wind turbine site over a 8-day period (192 cases).

5.3.1 One case validation

The simulation case at 00:00 UTC 01 October, 2013, is selected to preliminarily validate

the performance of multi-scale forecasting system for simulating wind flow over complex

terrain. Due to the prevail wind is northwest, thus the patches north and west are set as inlet

while east and south are regarded as outlet boundaries. The boundary condition of velocity

for both north and west patch is derived from meso-scale WRF model, which is displayed in

the Figure 5.6. The solver simplefoam and turbulence k− ε model are chosen. Throughout

all this study, we assume that the wind flow turns to steady state when the residual of Ux, Uy,

Uz and k are all smaller than 10−3, meanwhile the residual of p should be smaller than 10−2.

Figure 5.6 Generated boundary conditions for patches with inlet attribute from WRF forecasts
at 00:00 UTC 01 October, 2013.

Figure 5.7 and Figure 5.8 show the simulation results of three variables. Figure 5.7

displays the information of a slice in the y direction (x = 470307) around the Awaji wind

farm. It is easy to find from Figure 5.7 (a) that the wind velocity (shaded) over the hills

tends to be significantly increased and it reaches the maximum around the top of the hills,
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while decreased at the lee of hills. The characteristic of streamlines indicate that there are

no flow separation occurred behind the downwind hills in this case. The turbulent kinetic

Figure 5.7 Two snapshots of a x-plane (where x = 470307) around the Awaji wind farm. (a)
The horizontal component of the velocity (shaded) and streamlines over hills; (b) Magnitude
of the turbulent kinetic energy k.

energy k produced by the mean strain rates is displayed in the Figure 5.7 (b). Clearly, the k is

greatly enhanced over the hills at the first part and then generally smoothed out by the viscous

dissipation as the flow moves toward downstream. Then with the terrain height higher, the

increase of k at the lee of the hill is found. Those results seem to be reasonable following

the theory of fluid dynamics and comparable with existing studies. More results of k and

pressure over the whole ground are described in the Figure 5.8. It can be seen, there is also a

y-plane in the Figure 5.8 aiming to clarify the performance of pressure and turbulent kinetic

energy at the x− z direction. Obviously, low pressure has been found at the top of the terrains

while high pressure is found at the front of the hills (Figure 5.8 (a)). Meanwhile, Figure 5.8

(b) shows the reasonable distribution of the turbulent kinetic energy over the complex terrain.
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Figure 5.8 The distribution of the pressure (a) and the turbulent kinetic energy (b) over the
whole ground patch as well as a y-plane where y = 3795441 for a real case (the dominant
wind is northwestern) at 00:00 UTC 01 October, 2013.

5.3.2 Validating the ability of multi-scale forecasting system

It has been demonstrated in the above section that the coupled system especially the micro-

scale component OpenFOAM has strong ability of handling the wind flow over the complex

terrain. However, for the final purpose of providing operational predictions at some specific

turbine sites, this forecasting system need to be further validated using the real observations

collected at each turbine site. Obviously, only one case (i.e., described in the section 5.3.1) is
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far from enough. Thus, in order to fully validate whether the multi-scale forecasting system

has an advantage against the WRF based system, additional 192 cases (from 00:00 UTC 02

October to 23:00 UTC 09 October, 2013; hourly interval) are computed and the results of

the multi-scale forecasting system for 15 turbine sites are compared with the corresponding

nacelle wind observations separately. The intuitive comparisons are displayed in the Figure

5.9 and Figure 5.10. In those two figures, both WRF forecasts symboled with “WRF_fore”

and the prediction of the multi-scale system characterized by “WRF+OpenFOAM” are

compared with the nacelle observations (“OBS""), during the period of 00:00 UTC 02

October to 23:00 UTC 09 October, 2013 (192 cases).

At first glance, it is not difficult to find that two kinds of forecasts both could capture the

wind speed variations well for all 15 turbines, especially for the No.4, No.5, No.7, No.10,

No.11 and No.15 turbines. For other turbines, the WRF forecasts of some cases (e.g., 30-60

and 120-150) have relatively large errors. Obviously, after coupling with the micro-scale

OpenFOAM, this situation has been changed. The performance of the cases from 120-150

and 180-192 have been largely improved. Similar but relatively slight improvement for

the case 30-60 also can be seen for all 15 turbines. Except for those three groups of cases,

though the improvement brought by coupling technique is limited, worsening cases are

barely obtained at least. Therefore, based on above discussions, we may conclude that the

accuracy of wind speed forecasts of WRF based system can be significantly improved when

a micro-scale OpenFOAM model is coupled. This conclusion is further confirmed from the

Figure 5.11, where the statistical parameters as well as relative improvements of themselves

are drawn. Firstly, we can find that the value of all three parameters ME, RMSE and CC

of the WRF forecasts is in an acceptable range, due to the largest ME is around 3 m/s and

the values of CC are almost larger than 60%. Despite all this, the multi-scale forecasting

system indeed has an ability of improving the performance of the WRF modeling system.

The distribution of the red lines in the three panels of Figure 5.11 notably demonstrates the

positive effects brought by coupling the micro-scale OpenFOAM with the meso-scale WRF

model.
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Figure 5.9 The WRF forecasts (“WRF_fore” ), the predictions of multi-scale system
(“WRF+OpenFOAM”) and the corresponding observations (“OBS"") of 7 turbines for
192 cases, from 00:00 UTC 02 October to 23:00 UTC 09 October, 2013.
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Figure 5.10 Same as the Figure 5.9, but for the turbines from No.8 to No.15.
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Figure 5.11 A comparison of the ME (a), RMSE (b) and CC (c) of the WRF (solid black bar)
and the multi-scale system forecasts (solid white bar) for the 15 turbines of the Awaji-island
wind farm. The red line stands for the relative improvement after implementing the coupling
procedure against the WRF raw forecasts of the wind speed.

5.4 Summary

This chapter has described in detail the start-point and procedure of coupling the meso-scale

WRF system with the micro-scale OpenFOAM model modified as a multi-scale forecasting
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system for operational use, to forecast short-term hub-height wind accurately for a wind farm

of interest, where the geographic condition is complex.

Typically, the coupling is achieved by applying the WRF forecasted low-level wind as

the initial and boundary conditions for the OpenFOAM, to calculate the steady state of the

airflow affected by the local terrain feature. During this process, several useful programs have

been developed to generate structured mesh and automatically change the inlet patches based

on the prevail wind direction. This work made the OpenFOAM no longer just a simulation

tool, but can be used to do the real-time prediction in the wind energy forecasting area.

The developed multi-scale forecasting system has a strong ability of predicting wind flow

under the complex terrain conditions, which is not very accurate using WRF based system

solely. This conclusion has been fully validated with nacelle wind observations of 15 turbines

at the Awaji wind farm in Japan.



Chapter 6

Conclusions and Future work

Global wind energy capacity has been doubling nearly every three and a half years since 1990,

due to its clean, renewable and sustainable characteristics. However, wind makes up only

0.56% of the total power supply in Japan by the end of year 2016, where the development of

wind energy is limited by a number of factors, such as complex geographic features, high

population density and the government policy. Among them, the topographical complexity

may be an important reason that complicates wind flow, and thus causes greater fluctuation in

power output, which makes the integration of wind power into the electric power grids more

challenging than other regions. An effective solution to stabilize the wind power output is to

make use of supplementary electric sources/sinks through active operations before delivering

the power to the grid systems. In order to optimize the operation plan, accurate predictions of

both the wind speed and wind power for the targeted turbines and wind farms are of crucial

importance. However, to our best knowledge, most of the wind energy companies do not

have a synthetic forecasting system yet.

Therefore, considering the specific situation in Japan, we have established a preliminary

forecasting system initially for wind power prediction based on the meso-scale meteorological

WRF model and a power curve. The global-scale GFS dataset is adopted as both initial and

boundary conditions for the regional-scale and high resolution WRFv3.6 model through a

4-level nesting refining the horizontal grid resolution down to 1 km × 1 km for the Awaji

wind farm. On one hand, the WRF model has been tuned based on some basic studies in
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order to make it suitable for Awaji wind farm with complex terrain conditions, and the ACM2

PBL and the corresponding parameterization schemes were chosen for predicting the hub

height wind speed of each turbine (15 turbines in total) in that wind farm. On the other hand,

based on the historical observation of power output, a novel power curve model is proposed,

which is different from the one provided by the turbine manufacturers and it can be expected

to be an efficient model predicting power output for each turbine separately. Combining

this developed power curve with WRF model, a basic forecasting system has been built. Its

forecasting ability of both wind and power are validated by comparing with the observed

wind speed and power of 15 turbines in the target wind farm, from 1 August 2013 to 31

January 2014. The results indicate this basic forecasting system indeed has a relatively high

forecasting skills for both wind and power. In fact, this system has been installed by a wind

energy company to provide operational prediction twice each day. However, there is no

doubt that many errors and uncertainties exist in this system, for example the simplification

of physical complexity, spatial/temporal discretization and errors in the initial/boundary

condition, which could affect the forecasting skill of the system, for example the consistently

overestimating the power in the section 2.4. Those problems lead to the possibility to

further improve the prediction of wind speed and power by developing Kalman filter, data

assimilation modules and coupling a CFD model.

Initially, the Kalman filter module is developed as an effective module to reduce the errors

and uncertainties in the basic system we have already built. The Kalman filter actually is an

estimation algorithm named after Rudolf E Kálmán, which operates recursively on streams

of input data (containing random variations) to produce a statistically optimal estimate of the

underlying system state. In this study, the Kalman filter is used as a predictor of forecasting

errors of WRF and power model. Compared to the traditional formulation of the Kalman

filter algorithm, the bias of predicted field is chosen in this study instead of the field itself. In

addition, the white noises in the forecasting model and observations are estimated with the

Kalman algorithm itself, which is better than the way used in the previous studies [45, 69].

After integrating with the basic forecasting system, the impacts on both wind and power

forecasts against the raw forecasts derived from the basic system are validated, compared
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to the corresponding observations. The results show that the predicted wind field can be

substantially improved by the Kalman filter as a post-processing procedure. In specific,

the 15-turbine averaged improvements of ME , RMSE and CC are 97%, 22% and 10%

respectively. Meanwhile, the Kalman filter also demonstrates a promising capability of

reducing the uncertainties in the power curve model. More specifically, Kalman filter could

significantly improve the raw model prediction of power by 92%, 33% and 15% in ME,

RMSE and CC respectively. Systematic validations regarding both wind speed and power

output were carried out against the observations for the target wind farm, which show that

the integrated power forecasting system presented here can be an effective and practical tool

for short-term predictions of wind speed and power output in Japan area.

Though the function of Kalman filter module for reducing the errors in the existing

forecasting system has been demonstrated, it somehow cannot deal well with the random

errors caused by many factors, for example, the inaccurate initial conditions of the WRF

model. That is the main reason we try to integrate data assimilation as another key module

for our forecasting system. The main function of the data assimilation is to obtain an optimal

estimate of the state of a physical system by combining all available information from models,

background and observations. In other words, it can provide accurate initial condition for the

WRF model, which is vital to the short-term forecasts. In this thesis, one of data assimilation

methods the so-called 3DVAR (3D variational) is chosen to assimilating the nacelle wind

observations to improve the wind speed forecasts, to our best knowledge, which has never

been done in Japan. As displayed schematically in the Figure 4.3, the final analysis field

at 18:00 UTC each day was cyclically assimilated three times with a 6-hour interval. The

cyclical way could take more information from the observations which are regarded as the

representative of the real atmosphere state. Similar to the Kalman filter module, its role also

has been validated with the historical observations. The validation results indicate that the

WRF model forecasts can be markedly improved after assimilating nacelle wind data, with

the relative improvements of 34%, 24% and 9% in ME, RMSE and IA respectively. It is also

worth to mention that the data assimilation module can handle part of random errors which

cannot be eliminated by Kalman filter module. This kind of study also indicates an import
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information that the nacelle wind data seems very reliable after data quality control, though

the previous studies always use upwind meteorological tower measurement instead of the

nacelle wind observations.

Therefore, so far, integrating those two modules with the basic system, the best forecasting

performance can be obtained for the Awaji wind farm. However, as mentioned in the chapter

5, the current system only focus on capturing the relatively large scale weather or flow

systems. Due to its coarse resolution (500 m of horizontal direction), the complex terrain

features always limit the forecasting ability of meso-scale WRF based system for predicting

wind flow around hub-height, which means coupling a smaller scale model might resolve

the flow driven by the complex terrain. In this thesis, the micro-scale OpenFOAM model

is chosen to build a multi-scale forecasting system by coupling with the WRF system,

to forecast short-term hub-height wind accurately for a wind farm of interest, where the

geographic condition is complex. We build this kind of multi-scale system assuming the

CFD model could generate more detailed and reasonable information to reveal the wind

flow over the complex terrain in the ABL. The Reynolds Averaged Navier-Stokes (RANS)

equations combined with a turbulence model (k− ε), which has a fair compromise between

computational burden and modeling accuracy, is adopted. Typically, the coupling is achieved

by using the mesoscale WRF forecasts as the initial and boundary conditions for the micro-

scale OpenFOAM. Thus, the OpenFOAM will be provided instantaneous boundary values

representing the real atmosphere state. The ability of this multi-scale system for simulating

wind flow the complex terrain is firstly validated with an arbitrary case. It is found that this

system can capture reasonable distribution of the velocity and turbulent kinetic energy at

the atmospheric boundary layer compared with other researchers’ work. By using several

external programs we have developed, the OpenFOAM can be used to do the real-time

prediction in the wind energy forecasting area. A 8-day series of the forecasts from the

multi-scale forecasting system is validated with observations at 15 turbine sites. It is found,

fortunately, that this system indeed has a strong ability of forecasting wind flow under the

complex terrain conditions.
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In summary, we have combined the meso-scale WRF model, a novel power curve, Kalman

filter, data assimilation modules and the micro-scale OpenFOAM model together to build

an advanced and integrated forecasting system for wind energy forecasting under complex

terrain conditions, of which the performance has been validated at the Awaji wind farm in

Japan. Part of this system has been installed and used by a wind energy company in Japan to

do the realistic and operational prediction, meanwhile, others also show strong potential to

be realistic application. Actually, this research has not exhausted all possible experiments

that could beneficially be performed. We suggest the following aspects which could provide

insights and possibly lead to improvements of our current forecasting system.

• The sensitivity of turbulence models, schemes and mesh for conducting OpenFOAM

component should be further tested, in order to find the best combination to possibly

improve the current system;

• Uncertainties of the coefficients in the turbulence model might be studied using En-

semble Kalman filter (EnKF);

• In the process of data assimilation, we always lack of data with high quality. Thus

assimilating the output from the multi-scale system we have already built in turn could

possibly improve the initial conditions of the WRF model at some extent.
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