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Abstract

In this dissertation, we present a method for view-invariant action recogni-

tion from depth cameras based on graph signal processing techniques. Our

framework leverages a novel graph representation of an action as a tempo-

ral sequence of graphs, onto which we apply a spectral graph wavelet trans-

form for creating our feature descriptor. We evaluate two view-invariant

graph types: skeleton-based and keypoint-based. The skeleton-based de-

scriptor captures the spatial pose of the subject, whereas the keypoint-based

is able to capture complementary information about human-object interac-

tion and the shape of the point cloud. We investigate the effectiveness of

our method by experiments on five publicly available datasets. By the graph

structure, our method captures the temporal interaction between depth map

interest points and achieves a 19.8% increase in performance compared

to state-of-the-art results for cross-view action recognition, and competing

results for frontal-view action recognition and human-object interaction.

Namely, our method results in 90.8% accuracy on the cross-view N-UCLA

Multiview Action3D dataset and 91.4% accuracy on the challenging MSRAc-

tion3D dataset in the cross-subject setting. For human-object interaction,

our method achieves 72.3% accuracy on the Online RGBD Action dataset.

We also achieve 96.0% and 98.8% accuracy on the MSRActionPairs3D and

UCF-Kinect datasets, respectively. While this study focuses on action recog-

nition, the proposed framework can in general be applied to any time series

of graphs.
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Notation

We use lower-case bold letters a = [a(1), . . . , a(n)]T to denote vectors, and

a(i) denotes the i-th element of a vector. We use upper-case bold letters

A,B,C to denote matrices, with A(i, j) referring to the element at the i-

th row and j-th column of A. Let an denote the n-th vector in a set of

vectors. We use G = (V, E ,W) to denote an undirected graph with vertex

set V = {vi} and edge set E = {ek : ek = (vi, vj) ⇔ vi ∼ vj ; vi, vj ∈ V}
and vi ∼ vj denotes that vertices i, j are connected by an edge. The weight

matrix W stores the weight of an edge (vi, vj) in entry W(i, j).
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1
Introduction

SINCE the beginning of the industrial revolution in the late 18th century,

humans have benefitted from the autonomous help gained by machines

for alleviating mundane tasks in daily life. Recently, however, advancements

in computer vision and machine learning research has pushed the limits of

what machines are capable of to the next level. This level of performance

includes autonomous understanding of speech, images and videos. Such

multimedia content naturally includes information about human behavior.

Autonomous understanding of human behavior has been, and is still, an

ambitious goal for the computer vision research community. The task of

human action recognition is to develop algorithms for understanding what

action is taking place, given a sequence of video frames. Problems such as

subject segmentation, lighting, and inter-subject variations make this task

challenging at first glance. Successfully solving all involved problems would

result in large benefits for several industries, such as health care, games,

surveillance and the security industry.

Traditionally, human action recognition has been attempted on standard

RGB videos. Such approaches, however, encounter several hardships due

to problems such as background clutter, illumination variations, and action

intra-class variations. These problems have been remedied to some extent

by the recent availability of affordable depth cameras for a reasonable price.

Such devices includes the Microsoft Kinect, which has contributed to a re-

1
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cent surge in research using RGB-D data [38]. The Kinect and similar devices

solve the problem of video subject-background separation, while also being

robust against varying illumination, due to the usage of infrared sensors for

capturing the depth data. Further, the nominal work of Shotton et al. [88]

has led to ready access of tracked 3D skeleton joints of low dimension that

are mapped to points on the human body. Compared to the raw RGB-D data,

the tracked skeleton joints offer a much more discriminative description of

the human body, which has led to the possibility of efficient, real-time meth-

ods for human action recognition. However, the skeleton joint estimates are

not perfect and often subject to large amounts of noise, which has created a

new set of challenges for utilizing the joints in an optimal way for recogniz-

ing actions.

In machine learning, it is often debated how a certain object should be

modeled or represented for best suiting the task of pattern recognition. Typ-

ically, the debate is divided into two camps: approaches that are statistical,

and those that are structural [14]. Statistical approaches are very popular

and have previously enjoyed a great amount of attention. In this disserta-

tion, however, we ask ourselves if an explicit structure suitable to the task at

hand is better for representing an object, such as a human action. Generally,

human actions can be defined as a sequence of interactions between several

interest points [44]. One example is “draw circle”:

1. Move hand towards left side of waist.

2. Move hand up.

3. Move hand down towards right side of waist.

4. Move hand down towards feet.

Of course, in order to capture the characteristics of an action, an ideal ac-

tion descriptor needs to capture the interactions that occur between several

different parts of the body. Further, these interactions do typically have sig-

nificant temporal variation throughout the course of the performed action.

Although previously proposed 3D action recognition methods do capture

these interactions [72, 60, 100, 101, 118], the majority of them are view-

dependent. This means that the viewing angle of the camera towards the
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subject plays a major role in the resulting action recognition performance.

Cross-view action recognition is the task of recognizing an action from any

possible viewing angle, independent of the angles used for recording the

videos in the training dataset. In the case of RGB videos, this problem has

been previously researched to some extent [105, 112, 55, 73, 80, 104, 76,

32, 57, 117, 119]. For 3D action recognition methods, however, the number

of approaches that are view-independent using pure depth data are much

fewer [78, 108, 102]. In our opinion, this is unfortunate, since the action

recognition performed using only depth data has the added advantage of

protecting the identity of the user, which is often essential for health care

applications.

In this work, we are interested in leveraging graphs for action sequence

representation due to the following reasons. Firstly, interactions between

interest points can be naturally modeled by a graph, as it captures pair-wise

relations between points. Second, due to graphs capturing only pair-wise

information, a graph is able to provide a representation that is invariant to

viewpoint changes, assuming that this holds for any signal that is defined on

the vertices of the graph. This summarizes our motivation for using graphs

for the task of 3D human action recognition.

In the real world and its related problems, it is easy to find graph repre-

sentations that occur in various shapes and appearances. Some examples are

finite state machines, and social- and transportation networks. Graphs are

also abundant in computer graphics and the brain fMRI domain. Machine

learning has also turned to graphs before, where recent examples include

graph kernels [13, 121, 39, 45, 20, 50, 92, 87], as well as graph signal pro-

cessing frameworks [89, 84] and graph wavelets [37, 19, 23, 79, 67].

The field of graph signal processing is quite recent. Although much is

based on results from spectral graph theory from the 90’s [18], many ex-

citing results in the field have appeared in roughly the past ten years [89].

Graph signal processing generalizes classical signal processing methods to

arbitrary graphs and allows signals to be propagated in a manner that is

true to the intrinsic structure of an object. Examples of applications in-

clude mobility pattern prediction [27], brain functional connectivity analy-

sis [54], bridge structure health monitoring [16], anomaly detection in wire-

less sensor networks [29], edge-aware image processing [68], depth video
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coding [48] and image compression [83].

Our primary interest in leveraging graph signal processing for the task

of 3D human action recognition is due to the graph frequency information

gained from using such methods. As our findings will show in the latter

part of this work, wavelet transform generalizations onto graphs enables

us to gather information about the interactions between interest points on

a depth map at multiple scales. Together with knowledge of the temporal

propagation of the points and their interactions, we will derive an efficient

method that is able to classify and recognize a large set of human actions.

In this study, we propose an efficient system for 3D human action recog-

nition from depth maps, based on graph signal processing techniques. We

represent an action as a time series using a novel graph structure, which

is further robust against viewpoint changes. The main contributions in this

dissertation are the following:

• We present a framework for the task of 3D human action recognition

based on graph signal processing. Contrary to previous approaches

based on e.g. only temporal pyramids, the proposed method is capa-

ble of capturing interest point interactions throughout time due to the

novel graph structure [46].

• We propose a simple, but efficient skeleton rotation cancellation method

based on Gram-Schmidt orthonormalization [91].

• We present a graph-based action representation that is view-invariant

due to the graph structure. Our approach is shown to significantly ad-

vance the performance compared to previous state-of-the-art methods

for the task of cross-view action recognition [47].

• We present an efficient algorithm for doing the calculation of the spec-

tral graph wavelet transform. Our algorithm is memory-efficient due

to it taking explicit advantage of the block sparsity structure of our

graph representation [47].

Specifically, our methods works as follows. Given a set of interest points

gotten from a depth map, we embed the points on an augmented graph that

is capable of describing the temporal progression of the points. We conduct

investigation on two types of interest point candidates:
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• Tracked skeleton joints. These capture the subject’s pose, and addi-

tionally associates a semantic label to each body part.

• Spatio-temporal keypoints. These capture the interaction between hu-

mans and objects, as well as other fine intrinsic detail.

Based on the above interest points, we define graph signals that are view-

invariant, and represent the signals using a novel graph structure. Our graph

structure is shown to outperform several more traditional representations,

such as bag-of-words (BoW) [82] combined with a support vector machine

(SVM) [15]. In particular, for analyzing the signal on the graph, we turn

to the recently proposed spectral graph wavelet transform (SGWT) frame-

work of Hammond et al. [37]. Through the SGWT, we create a multi-scale

representation of the extracted interest points. The graph wavelets of the

SGWT are capable of capturing multi-scale information about a signal. The

information is captured in several dimensions on the augmented temporal

graph, and the signal propagates throughout both between interest points

and time. Compared to classical wavelets, spectral graph wavelets follow the

graph design, and provide a more flexible representation directly adapted to

the graph structure. Subsequently, we leverage a temporal pyramid pooling

scheme [60, 34, 101] on the wavelet coefficients for capturing an action’s

sequential behavior. In comparison to approaches that use only global in-

formation [58, 111], our method gains better performance, as it captures

information about temporal order and dependencies along several temporal

segmentation levels. After pyramid pooling, classification is done using a

standard SVM classifier.

The method proposed in this dissertation has the following advantages:

• Our method uses a graph with an explicit sparse block structure, which

we exploit to create a memory-efficient algorithm for doing the SGWT

coefficient calculation (see Sec. 5.2.1).

• Our method creates a feature descriptor that has a mathematically

well-defined underlying spectral basis [37]. This, in turn, enables us to

perform analysis of the effects of the proposed feature descriptor. This

is not true for other approaches, such as methods based on e.g. sparse
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coding [60] or deep learning [76]. Both sparse coding and deep learn-

ing tend to produce bases that do not submit easily to analysis (see

Sec. 5.8).

• For skeleton-based graphs, the number of interest points N is small,

making the method efficiently computable in O(TN) time, where T is

the number of frames. Compared to approaches that are based on solv-

ing large optimization problems [60, 100], our method is computable

in a more efficient manner (see Sec. 5.6).

• For keypoint-based graphs, the descriptor is shown to capture more in-

formation than a baseline BoW-representation, which makes our method

perform better using our spectral representation (see Chapter 6).

Although this study focuses on 3D human action recognition, the pro-

posed framework is general enough to be applied to other problems where

the input can be formulated as a time series of graphs.

The remainder of this dissertation is organized as follows. Chapter 2

introduces the task of human action recognition, and reviews previous ap-

proaches towards solving the task. Chapter 3 discusses several important

concepts in graph signal processing, and reviews related research. Chapter 4

discusses how to represent actions as graphs. Our proposed method is then

presented in Chapter 5. Experimental evaluation is presented in Chapter 6.

Finally, conclusions and future work are discussed in Chapter 7.



2
3D Human Action Recognition

IN this chapter, the task of human action recognition will be introduced,

along with fundamental approaches towards solving the task. Addition-

ally, problems to solve for creating a good action recognition system will be

discussed, as well as a survey of previous research.

Words such as “action”, “gesture” and “activity” are often used inter-

changeably for referring to either the same or different visual things humans

do in daily life. To clarify the focus of this study, we turn to a taxonomy sim-

ilar to previous studies [96, 3], and define three levels of abstraction for

human behavior:

Gesture

A basic simple movement, such as lifting your arm.

Action

A combination of gestures, such as waving or doing a tennis swing.

Possible interaction with single object.

Activity

A combination of actions. This can include complex interactions be-

tween multiple persons and objects, such as playing basketball or ball-

room dancing.

Naturally, there is no clear definite border that divides these categories from

each other; there is a significant gray area between different types of human

7
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behavior. For example, consider the gestures of a music conductor, which

requires rigorous training. Are these movements to be classified as simple

gestures despite the inherent difficulty of the task? Nevertheless, the above

definitions provide a weak guidance, where in general actions tend to be

around 2-10 seconds long, gestures much shorter, and activities even longer

(example actions can be seen in Fig. 2.1).

In the remainder of this chapter, we will state the limitations set for

this study, present a general framework for action recognition, as well as

discuss potential applications, and finally conclude with describing previous

approaches towards solving this task.

2.1 Limitations

We limit ourselves in this dissertation to focus on the recognition of actions,

and do not perform any explicit detection of interaction between objects or

multiple people. 1 Therefore, we seek to create a system that is able to

implicitly explore the interaction between several gestures or body parts in

order to recognize actions. Further, multi-action classification is out of the

scope of this study; classifying a single action is already a challenging task.

Therefore, we do not perform any action detection or localization [17, 90,

106], and assume that each input video only contains one single action.

Further, we choose to consider only action recognition using depth cam-

eras due to the following reasons. Traditionally, human action recognition

has been attempted on standard RGB videos. Such approaches, however, en-

counter several hardships due to problems such as background clutter, illu-

mination variations, and action intra-class variations. These problems have

been remedied to some extent by the recent availability of depth cameras

for a reasonable price. Such devices includes the Microsoft Kinect, which

has contributed to a recent surge in research using RGB-D data [38]. The
1Although we do not target explicit human-object interaction, some of the experiments

in Chapter 6 include object interaction, such as “pick up box”. We emphasize here that our
system primarily intends to recognize the movement of picking up something, and will not
focus on distinguish between picking up a box and a pen, as this could be solved by an
explicit object recognition method. Of course, if the interest points are altered by the shape
of objects, then our method will be able to capture implicit human-object interaction.
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(a) The action “high arm wave” in the MSRAction3D dataset [58].

(b) The action “pick up box” in the MSRActionPairs3D dataset [72].

(c) The action “balance” in the UCF-Kinect dataset [31]. This dataset does not contain any
depth maps, only skeletons.

(d) The action “pick up with one hand” in the N-UCLA Multiview Action3D dataset [103].

Figure 2.1: Example depth frames and skeletons of actions from datasets explored
in this study. Each skeleton consists of joints (red) and limbs (green),
connecting the joints together. Note that the tracked skeletons are not
always following the underlying raw depth data closely and are subject
to noise.
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Depth map sequence

Algorithm

Database

Hand catch?

Prediction

Algorithm

Low level features Intermediate features Classification

Figure 2.2: General framework for human action recognition. The input to our sys-
tem is a sequence of depth maps, gotten by a depth camera such as the
Microsoft Kinect. These are then fed to a database and an algorithm for
doing action recognition. The algorithm consists of three main parts:
low-level feature extraction, intermediate feature representation, and a
classification result. At the end of the pipeline, we get the output label
of the predicted action, such as “hand catch”.

Kinect and similar devices solve the problem of video subject-background

separation, while also being robust against varying illumination, due to the

usage of infrared sensors for capturing the depth data. Depth cameras are

currently quite affordable, and it is our belief that the future will only pro-

vide ever more consumer applications that take advantage of depth cameras.

We are therefore able to ignore the problems faced by RGB cameras, and can

focus on recognizing actions using only depth maps. We also note that depth

cameras have the added advantage of being able to perform action recog-

nition without compromising the identity of the user, which is essential for

health care applications.

2.2 General Framework

The essential task solved by a human action recognition system is presented

in Figure 2.2. Given an input video with unknown content, the task is to
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IR projector.

RGB camera.

IR sensor.

Figure 2.3: Microsoft Kinect depth camera [2]. The three circles are (from the left)
infrared (IR) projector, RGB camera, and infrared sensor, respectively.

Table 2.1: Microsoft Kinect camera specifications [1].

View angle (hor. × ver.) Frame rate Depth range (near mode)

57◦ × 43◦ 30 frames/sec. 0.8-4.0 m (0.4-3.0 m)

recognize any ongoing action that the system is aware of. The task consists of

three basic steps. First, low-level features are extracted from the input video

data that contains the action. Second, the low-level features are transformed

into an intermediate feature representation that describes the whole action

sequence. Finally, the intermediate feature representation is used to train

a classifier, which learns a decision boundary for distinguishing between

actions of different classes. In the following, we well discuss fundamental

concepts applicable for each step.

2.2.1 Low-level Feature Extraction

Depth Data

The acquisition of reliable depth data measurements used to be difficult

and expensive. For example, the SwissRanger SR-4000 time-of-flight cam-

era [71] had a price tag of about $10, 000 in 2010. These problems have

been remedied to some extent by the recent availability of affordable depth

cameras for a reasonable price. Such devices includes the Microsoft Kinect
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(∼ $100), which has contributed to a recent surge in research using RGB-D

data [38]. The Kinect camera uses an infrared laser projector in order to

project a regular grid onto the 3D world (see also Fig. 2.3). A sensor is then

used for calculating the deformation of the grid, from which the depth of

each pixel in a 640 × 480 resolution image is predicted using 3D triangula-

tion. Camera specifications can be seen in Table 2.1. The Kinect for Windows

includes near mode, which is improved firmware for allowing depth data to

be measured as close as 40 cm from the camera, at the cost of long range

measurements.

Skeleton Joint Tracking

Recently, ground-breaking work of Shotton et al. [88] has led to ready access

to tracked 3D skeleton joints of low dimension that are mapped to points on

the human body. Their method predicts 31 intermediate body parts from

a single depth image, by formulating the task as a per-pixel classification

problem. That is, each pixel in the depth map is mapped to either a specific

body part or the background. Local modes of the body parts are then found

by using mean shifts, which are used as skeleton joint proposals. Specifically,

given a depth image I they use a simple depth feature

f(I,p) = dI

(
p +

u

dI(p)

)
− dI

(
p +

v

dI(p)

)
, (2.1)

where dI(p) is the depth at pixel p and θ = (u,v) are offset parameters

that are learned in order to distinguishing between different body parts. For

predicting the body parts using the above feature, a random forest classi-

fier [12] is used. A random forest is a set of decision trees [75] that are

trained on random subsets of the data. Each tree contains split and leaf

nodes, where the leaf nodes store a learned probability distribution over

body parts. Using a large database of synthesized body poses, a random for-

est classifier is learned using different parameters θ at each split node. They

train a set of 3 trees of depth 20 using a database of about 1 million images

using a computer cluster with 1000 cores. Mean shift clustering [21] is then

used to cluster the predicted body part pixels into a fixed set of 20 skele-

ton joints. Examples of tracked skeleton joints can be seen in Figures 2.1

and 2.4a.
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Joint

(a) Skeleton joints

STKP

(b) Spatio-temporal keypoints

Figure 2.4: Low-level features used as basis for intermediate-level feature construc-
tion. The detected feature locations (red) for three frames are here
shown for the point cloud of the “two hand wave” action. The skele-
ton joints have the benefit of their spatial locations having a semantic
meaning, while the keypoints are mostly detected on locations describ-
ing fine intrinsic detail about the spatio-temporal shape of the point
cloud.
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Spatio-temporal Keypoints

Rahmani et al. [78] recently proposed spatio-temporal keypoints (STKP), a

descriptor robust to view changes that describes the spatio-temporal shape

of a 3D point cloud.

These keypoints have several desirable properties, including detection

repeatability, which means that the keypoints can be detected in different

samples of the same action sequence despite noise. The keypoints also have

a unique coordinate basis, which allows them to create a view-invariant

description of the point cloud. Finally, the keypoints are localized spatio-

temporally, which means that they are mainly detected at spatio-temporal

locations where the actual action is being performed (see Fig. 2.4b).

For detecting keypoints, first histograms of oriented principal compo-

nents (HOPC) [78] are calculated for each point p ∈ R3 at time t in the

depth map sequence. Each HOPC describes the principal axis distribution

of the variance of all points within the spatio-temporal support volume

Ω(p), which is a set containing all points within radius r and time inter-

val [t− τ, t+ τ ] of the point p, where τ is a parameter. Specifically, we create

a scatter matrix C of all the points q ∈ Ω(p):

C =
1

|Ω(p)|
∑

q∈Ω(p)

(q− q̃)(q− q̃)T , (2.2)

where q̃ is the mean of the points in Ω(p). We subsequently take the eigen-

decomposition of C to get Cuk = λkuk, k = 1, . . . , 3. The eigenvalues

satisfy λ1 ≥ λ2 ≥ λ3 and describe the magnitude of the principal direc-

tions of maximum variance in the point cloud. The smallest principal axis

u3 is the least squares estimate for the surface normal, which renders HOPC

more robust against noise than surface-normal methods based on depth gra-

dients [72].

Next, each eigenvector is binned into a set of 20 directions, described

by a regular icosahedron (see Figure 2.5). This polytype has 20 vertices
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Figure 2.5: An icosahedron is a 3D polytype with 20 vertices. For creating the
HOPC descriptor, each eigenvector is quantized into 20 bins repre-
sented by each vertex.
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(2.3)

where φ = (1 +
√

5)/2 denotes the golden ratio, and z =
√
φ2 + φ−2 is

factor for making all vi of unit length. Since the variance represented by
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an eigenvector uk is symmetric along the principal axis, the sign of each

eigenvector is determined by voting as

uk ← uksign

 ∑
q∈Ω(p)

sign(rq,k)r
2
q,k

 , (2.4)

where rq,k = (q − p)Tuk and sign : R → {−1, 1} returns the sign of the

input.

Finally, the binning of the eigenvectors is done using soft thresholding

by projecting onto each vertex vj as

ζj,k = max(uTk vj − ψ, 0), ∀j , ∀k , (2.5)

where ψ = (φ + φ−1)/z2 is a threshold value for sparsifying the projec-

tion. By gathering the thresholded projections per eigenvector as ζk =

[ζ1,k, . . . , ζ20,k], the HOPC descriptor h ∈ R60 is calculated by

h =

[
λ1ζ1

‖ζ1‖2
;
λ2ζ2

‖ζ2‖2
;
λ3ζ3

‖ζ3‖2

]
, (2.6)

which describes the distribution of the principal axes of variance in the point

cloud around point p.

Subsequently, two HOPC descriptors are calculated for each point: hs

using the spatial support volume (i.e. τ = 0), and hst using the spatio-

temporal support volume. Points are then pruned based on low eigenratios

in order to discard candidates whose support volume is symmetrical along

any pair of axes. The candidate keypoints are then sorted according to their

χ2 distance

dχ2(hs,hst) =
∑
j

(hs(j)− hst(j))
2

hs(j) + hst(j)
(2.7)

between hs and hst in descending order and a set of L keypoints are se-

lected. Non-maximum suppression is also performed, by discarding points

that are within a radius σrr and time interval σττ of a keypoint, where σr, στ
are parameters. The resulting STKPs have non-ambiguous eigensystems, so

any surrounding point cloud can be aligned with the STKP axes. Conse-

quently, any subsequent feature computed from the rotated points will be

view-invariant.
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Figure 2.6: Temporal pyramid pooling example. A time series with T frames is
represented by a feature matrix C, which is then pooled by a function
p : Rt×D → RD into a set of K = 3 pyramid levels. The creation of the
pyramid level vector z3 at level 3 is shown by the arrows. Finally, by
concatenating the pyramid level vectors {zk}k=1,...,K , the final feature
vector z is created.

2.2.2 Intermediate Feature Representation

Temporal Pyramid Pooling

Analysis of time series data bring two problems. First, each input sequence

often is of varying length, despite any subsequent classification step usually

requiring feature vectors of fixed size. Second, knowledge of the temporal

location of certain low-level features is often vital for correct understand-

ing of the time series. For example, for distinguishing between two actions

“stand up” and “sit down”, a feature describing the up-right height of the

subject might not help if the average height over the whole time sequence

is used. But if we know the height at the beginning of the sequence, then

distinguishing between the two classes becomes much easier.

In order to solve these two problems, the method of temporal pyramid

pooling has been popular [60, 34, 101]. Pyramid pooling methods were

first introduced for image classification tasks in order to capture multi-scale

aggregate information about local features [35, 52, 109]. Temporal pyra-

mid pooling follows essentially the same idea, but with the aggregation of

features being done over time, instead of spatially.

The methods works as follows. Assume we have a matrix of features

C ∈ Rt×D describing a set of t D-dimensional feature vectors, gathered

from a time series of length t. As time series have varying length, a vector-
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valued pooling function p : Rt×D → RD is used for creating the feature

vector z = p(C), where t is equal to the input matrix row count.

Let the maximum pyramid level be denoted by K. Then, the pooled fea-

ture vector at pyramid level k ≤ K is defined as zk = [p(B1)T , . . . , p(B2k−1)T ]T ,

where {Bi} is a set of non-intersecting block matrices dividing C uniformly

so that C = [BT
1 , . . . ,B

T
2k−1 ]T . The final feature vector z is then a concatena-

tion of the pyramid level vectors {zk}k=1,...,K . The temporal pyramid pooling

scheme being applied to C with K = 3 pyramid levels is visually illustrated

in Fig. 2.6.

Bag of Words

A popular way of representing a set of low-level features in aggregate form is

the bag of words (BoW) approach, which originally was used in the natural

language processing community for text classification [43, 94, 59], but has

since become a popular technique also in computer vision [24, 52, 5, 78].

Given a codebook D = [d1, . . . ,dK ] with a set of K codeword vectors, each

feature xi is assigned to the closest feature in the codebook according to

Euclidean distance, creating a K-dimensional vector ci defined as

ci(j) =

1 if j = arg min k ‖x− dk‖22
0 otherwise

. (2.8)

We call ci the one-of-K representation of xi. The aggregate representation of

the set of features is then given by

c =
∑
i

ci . (2.9)

K-means Clustering

Since the number of detected low-level features might vary for different

depth maps, it is often desirable to find a clustering of the features X into

a fixed-size set of clusters. A classic approach towards this is the K-means

clustering algorithm [9]. A codebook D = [d1, . . . ,dK ] is learned by an it-

erative expectation-maximization (EM) procedure. First, some initial values

for dk, ∀k are chosen. Second, a one-of-K representation ci is computed for
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each xi. Third, the codebook is updated by the average of the members in

each cluster as

dk =

∑
i ci(k)xi∑
i ci(k)

, ∀k . (2.10)

The second and third step are then repeated until convergence; when the

distortion measure ∑
i

∑
k

ci(k)‖xi − dk‖22 (2.11)

does not change more than a certain threshold. The final cluster member-

ships are then computed for each xi using the one-of-K representation.

Principal Component Analysis

Principal component analysis [9] (PCA) is a standard technique for dimen-

sionality reduction of a set of features, while keeping much of the informa-

tion containing the largest variance.

Given a matrix X ∈ RD×N describing a set of N D-dimensional features,

the idea behind PCA is to project the feature vectors onto a new basis that

preserves the maximum amount of variance. Accordingly, the data covari-

ance matrix C is constructed:

C = (X− x̂1T )T (X− x̂1T ) , (2.12)

where x̂ is the mean feature vector in X and 1 is the vector of all ones of

the appropriate size. In order to find a basis that represents the projected

variance, an eigendecomposition can be done as

C = VDVT , (2.13)

where V is an orthogonal basis and D is a diagonal matrix containing the

eigenvalues of C. Essentially, the eigenvalues encode the amount of vari-

ance explained by each basis vector vi in V, so dimensionality reduction

can be done by selecting a subset of the basis vectors in order to create a

matrix V̂ ∈ RD×R that can be used to project X into a more compact R-

dimensional space. Note that in practice, eigendecomposition of C is not

typically done, but rather V is gotten by the singular-value decomposition

X− x̂1T = VΣQT , avoiding explicit creation of the covariance matrix.
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Figure 2.7: Principal component analysis (PCA) on toy data in 2D. The method is
applied to the data matrix X ∈ R2×20 (blue points), whose members
clearly have an approximate linear relationship, subject to some noise.
PCA reveals the data mean (red triangle) and the two principal com-
ponent axes, which point along the directions of maximum variance in
the data. Note that the second principal axis does not help much in
explaining the linear behavior of the data (it explains the noise). We
could simply drop the axis in order to get a one-dimensional represen-
tation of the data that gives us a better view of the underlying cause of
the data using only the first principal axis.

2.2.3 Classification

Classification of the feature vectors into a specific class can be done using

several methods. Popular ones include support vector machines, logistic

regression and K-nearest neighbor classifiers [9]. The focus of this study

is not to compare several classification approaches, so we simply choose to

leverage a standard support vector machine.
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Figure 2.8: Two classes that are linearly separable are separated by a hyperplane.
The normal of the hyperplane is denoted by w and the perpendicular
distance from the origin to the hyperplane is given by b

‖w‖ . The support
vectors lie on the hyperplanesH1 andH2. Note that the support vectors
lie exactly on the margin boundary. The SVM margin is d1 = d2.

Support Vector Machine

A support vector machine [9] (SVM) is a linear binary classifier that finds

a decision boundary between two classes of input vectors. The SVM is a

supervised learning model, whose current form was studied early by Boser

et al. [10]. Additional early studies were done by Cortes and Vapnik [22] in

1995, where they showed the SVM to in general have quite low error rate of

test datasets (that is, high generalization ability). It is of crucial importance

for a learning machine to have good generalization capabilities.

A classifier that simply memorizes the training data cannot be expected

to work well on real-world data, as the data is assumed to be subject to

noise. Memorizing the training data (called overfitting [9]) will then also

memorize the noise or detail irrelevant for separating one class from an-

other. An example of overfitting is learning that a zebra is something that
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has exactly 27 stripes on its back. The other extreme, underfitting, could be

learning that a zebra is something with four legs. It is clear that neither of

the two above classification rules are able to generalize and accurately rep-

resent of the concept of a zebra. We seek something in between, something

that is able to generalize to examples not seen in the training set.

An SVM is trained to discover a hyperplane separating the set of input

vectors X = {x} into two classes using as a large margin as possible. The

SVM hyperplane is formulated as

wTx + b = 0 , (2.14)

where w is the normal vector of the hyperplane and b is a bias term. The

distance from the origin to the hyperplane is then b/‖w‖2. The concept of

margin is illustrated in Figure 2.8. Let the training examples having the min-

imum distance to the hyperplane from each class be called support vectors.
We define the margin to be the minimum distance from the hyperplane to

the support vectors in both of the two classes. A test data vector xtest is

classified into one of the two classes by

ytest = sign(wTxtest + b) , (2.15)

where sign : R→ {−1, 1} returns the sign of the input.

In order to use an SVM on test data, the SVM must be trained. That

is, the hyperplane normal w must be learned from training data. Given a

training data set {(xi, yi)}i=1,...,n, we solve the SVM primal problem

w = argmin f(w) =
λ||w||2

2
+ `emp(w) , (2.16)

where λ is a hyperparameter, and `emp(w) = 1
n

∑n
i=1 `((xi, yi); w). The loss

function `(·) penalizes misclassified samples. A standard candidate for ` is

the hinge-loss

`((xi, yi); w) = max(0, 1− yi(wTxi + b)) , (2.17)

which has been shown to have good generalization properties for SVMs [64].

Naturally, real-world data is noisy and not always linearly separable. The

SVM can handle this case as well using the hyperparameter λ, by finding a

hyperplane that does not necessarily separate the training data into two
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classes, but finds a large margin as possible, while keeping the total number

of misclassified samples to a minimum. In the literature, some other works

use an alternative hyperparameter C that scales `emp(·). These can be re-

lated by λ = 1
nC . [64] The parameter λ is problem-dependent, and must be

set differently for each dataset used. In practice, an analytical solution for

λ is usually not known, and it is thus set by cross-validation. 2 Generally,

a small λ causes the SVM to severely penalize misclassification of samples.

A small λ being optimal might therefore indicate that the problem itself is

difficult, and perhaps a better feature vector representation is needed [64].

The SVM primal (2.16) has an alternative dual formulation, which can

be solved using quadratic programming (QP) [11]. Using the Lagrangian

duality [11], the primal can be explicitly translated into the dual

α = arg max f(α) =

n∑
i=1

αi −
1

2

∑
i,j

αiαjyiyj〈xi,xj〉 , (2.18)

subject to 0 ≤ αi ≤
1

λn
, (2.19)

whereα is a dual variable to be optimized. Reconstruction of the hyperplane

normal w is gotten by

w =
n∑
i=1

αixi. (2.20)

This result is due to the representer theorem [49], which states that in some

high-dimensional space, the optimal hyperplane is a linear combination of

the training examples.

While we have so far discussed the SVM as a linear classifier, it can in

fact be made non-linear by using the so-called kernel trick. A kernel is a

function K : X× X→ R, mapping two features vectors in a feature space X
to a scalar value. Intuitively, the image of K represents how similar the

two inputs are. The kernel K is commonly realized as the dot product
2K-fold cross-validation is a method for evaluating the generalization performance of a

classifier when no explicit validation data is available. One part of the training set is left
out and then the classifier is trained on the remaining k − 1 parts. The performance of
the classifier is then tested on the left-out part. By repeating the above procedure using k

different left-out parts, we can get an estimate of the generalization capability of the classifier
by measuring the average error rate of the left out parts [9].
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Figure 2.9: Example of non-linearly separable features in 2D space. By mapping
the features using a non-linear map φ, the data becomes linearly sep-
arable in a higher-dimensional space. (a) Data in R2 that is linearly
inseparable. (b) The same data mapped to R3 using a kernel, which
makes it linearly separable.

K(xi,xj) = 〈φ(xi), φ(xj)〉, where φ : X → H is a map to a (possibly infinite

dimensional) Hilbert space H [85]. Figure 2.9 illustrates a simple example

of a problem that is not linearly separable in the feature space X. Using a

kernel, for mapping the data into a higher-dimensional space H, the data

becomes linearly separable.

A certain class of kernels, called Mercer kernels, have the important prop-

erty that they are guaranteed to be representable as a dot product in some
Hilbert space H. Mercer kernels must satisfy the following conditions:

1. They are continuous functions.

2. They are symmetric functions. That is, K(xi,xj) = K(xj ,xi).

3. They are positive semi-definite. That is, the n × n kernel matrix K

must satisfy vTKv ≥ 0, ∀v ∈ Rn.

Since the input vectors x are only appearing as dot products in the SVM
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dual (2.18), the dual can be rewritten as [10, 33]

α = arg max f(α) =
n∑
i=1

αi −
1

2

∑
i,j

αiαjyiyjK(xi,xj) (2.21)

=

n∑
i=1

αi −
1

2
αTHα , (2.22)

subject to 0 ≤ αi ≤
1

λn
, (2.23)

where H(i, j) = yiyjK(xi,xj). The kernel being expressible as a dot product

is an important property, since explicit evaluation of the mapping φ can be

prohibitively expensive as H can be of very high (or even infinite) dimension-

ality. For Mercer kernels, we do not necessarily know the explicit mapping

φ. However, satisfying the above conditions guarantees that the mapping

exists, and for practical use of the kernel, only the scalar values of the dot

product have to be known. These scalar values are efficiently computable

for a set of commonly used Mercer kernels, including:

K(xi,xj) =



exp
(
−‖xi−xj‖2

2σ2

)
Radial basis function (RBF) kernel.

(〈xi,xj〉+ a)b Polynomial kernel.

tanh(a〈xi,xj〉 − b) Sigmoid kernel.

〈xi,xj〉 Linear kernel.

(2.24)

The hyperparameters, σ, a, b control the behavior of the kernel and are usu-

ally set using cross-validation.

Although SVMs are usually formulated as binary classifiers, multi-class

classification can be made by using the one-versus-all approach [9]. Given

a problem involving K classes, multiclass classification can be performed

by training K SVMs. One SVM is trained for each class k using training

samples from class k as positive examples, and samples from all the other

K − 1 classes as negative examples. Prediction of a test vector xtest is then

performed by

ytest = arg max
k

fk(xtest) , (2.25)

where fk(x) = wT
k x + b is the SVM decision function for class k.
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An alternative approach for multi-class classification is to train K(K −
1)/2 different SVMs, where each SVMs is trained on a pair of two classes.

This approach is called one-versus-one. The predicted class is then set to

be the class with the most “votes” using its decision function. Although this

approach helps with class-balance problems suffered by one-versus-all, sig-

nificantly more computational time is required for both training and testing.

While, more sophisticated multi-class approaches exist [9], the above two

are by far the most common in the context of SVMs.

2.3 Problems and Previous Approaches

Action recognition is a challenging task that has been tackled in various

forms ever since the nominal work of Johansson [44] in 1973, in which he

showed that human motion perception can be performed from limited infor-

mation, using a small set of lights attached to the human body. This section

will give a brief overview of previous approaches towards doing human ac-

tion recognition, and also mentions some existing problems.

Recently, the emergence of cheap and affordable 3D cameras has resulted

in improved methods for human action recognition [58]. By allowing the

usage of RGB-D data, several difficult in RGB video action recognition tasks

have been solved. These tasks include actor-background segmentation and

invariance to illumination. A large volume of previous research exists for

3D human action recognition. Roughly, previous method can be divided

into three different types: method based on depth maps, methods based on

skeletons, and finally, methods that make use of both.

Approaches that leverage pure depth data include the work by Li et
al. [58] in 2010, which presents a method based on projecting salient depth

map poses into 2D. In their method, they create a feature from a bag of

3D points that is sampled from the different possible 2D projections of the

depth data. Due to the lack of available 3D action recognition datasets at

the time, they created the now well-used benchmark dataset MSRAction3D

using an early prototype of the Kinect camera. The dataset contains several

action classes that are quite similar spatially. Examples are the actions “draw
x” and “draw circle”. The dataset highlighted the need for action recognition

methods that are able to handle high inter-class similarities, as well as inter-
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subject and intra-class variations. Their experimental evaluation indicated

that action recognition based on 3D data clearly performs better than previ-

ous approaches based on 2D data. Additionally, 3D methods are more robust

against occlusions.

Subsequently, the method of space-time occupancy patterns (STOP) was

introduced by Vieira et al. [99]. In their method, a 4D histogram is used for

representing the depth map 3D points. A slightly related method is HON4D,

by Oreifej and Liu [72]. They create histograms of oriented 4D normal vec-

tors, and subsequently learn a 4D space that is quantized in a non-uniform

manner. This paper also highlighted the need for understanding temporal

directionality, where they showed that unlike other approaches [101, 111]

their method is able to distinguish between actions such as “sit up” and “sit
down”, which are essentially the same action but differ only in the direction

of the motion. Yang et al. [111] create DMM-HOG, which stacks orthogo-

nally projected depth maps that are then applied to histograms of oriented

gradients. Rahmani et al. [78] develop histograms of oriented principal com-

ponents (HOPC), which capture a quantized spatio-temporal shape of the

point cloud using a 20-dimensional regular polytype. Their work also in-

troduces spatio-temporal keypoints (STKP), which represent view-invariant

spatio-temporal locations that can be used as base features for cross-view

action recognition. In another work, the same authors develop a transfer-

learning system based on deep learning for engineering a bottleneck fea-

ture that can be used for cross-view action recognition (NKTM) [76]. Al-

though their bottleneck feature is effective in the cross-view case, their sys-

tem requires generating synthetic poses from a large auxiliary motion cap-

ture dataset for learning the neural network. While methods based on the

raw 3D data are capable of describing greatly detailed shape information,

such methods are not able to capture the correspondence between different

parts on the human body.

Next, we have methods that leverage 3D skeletons. One such method is

DL-GSGC by Luo et al. [60]. DL-GSGC is a dictionary learning approach for

sparse coding using regularizers that encourage group sparsity and geome-

try constraints. They show that their regularizers help with increasing the

discriminative capability of their codes. For handling the representation of

temporal order in an action, they use max pooling on the codes, together
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with a temporal pyramid pooling scheme for creating a structure with com-

plimentary sequential representation. Another method based on sparse cod-

ing is SSS by Zhao et al. [118]. They use distance between pairwise skele-

tons joints, together with dictionary template learning and sparse coding for

learning a representation of gestures. HOJ3D is another approach by Xia et
al. [108], where they create a sequence of visual words (in fact, postures) us-

ing linear discriminant analysis. The visual words are subsequently used for

training a hidden Markov model for modeling the generating distribution of

postures. Further methods include methodology based on classifying multi-

order pose derivatives [114] (MP) using K-nearest neighbor classification,

or low-dimensional embeddings of 3D joint positions using principal com-

ponent analysis [110] (Eigenjoints). A histogram-based method is HOD by

Gowayyed et al. [34], which works by quantizing the angles between the 3D

skeleton joints. The quantized angles are then aggregated using a temporal

pyramid, which helps with capturing temporal dependencies of actions. In

the work by Ellis et al. [31], a human action recognition framework with low

latency is created. Their method works by first finding canonical skeletons

poses among the training data by leveraging multiple instance learning. Al-

though their method has low computational complexity and applies to real-

time classification situations, their scheme is unable to model actions that

exhibit temporal structure characteristics, such as “draw x”, and is limited to

more simple action types. Wang et al. [103] uses the tracked skeleton infor-

mation to learn an AND-OR graph (AOG) of base features (which is actually

a tree structure ) for cross-view action recognition that is able to capture

the compositional structure of base features among different views. While

their method is able to recognize actions using only RGB data once trained,

adding new action classes requires expensive re-tuning of the parameters of

the AOG.

Lastly, a set of previous methods leverage both the 3D skeletons and

depth data in a simultaneous manner. Wang et al. [101] develop an action-

let ensemble (AE), which selects relative joint pairs in a discriminative way

that is able to reduce inter-class ambiguity. For capturing temporal order,

they use a temporal pyramid, and multiple kernel learning is used for do-

ing the classification. Wang and Wu [100] tackle the problem of temporal

misalignment by learning a warping matrix that is used to align the input
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RGB-D human action video sequences before carrying out the classification.

For each action class, a warping template is learned, and a latent structural

SVM is used for predicting the action.

While the availability of depth maps has resulted in a recent boost in per-

formance on benchmark datasets [58, 101], most approaches to human ac-

tion recognition are however inherently view-dependent [72, 60, 100]. That

is, they depend on the camera angle from which the action was recorded.

Natural actions can not however be said to be defined by the angle from

which they are seen, but rather from what interactions occur between dif-

ferent body parts. Cross-view action recognition has been explored to some

extent for RGB-based action recognition, which includes approaches based

on geometric transformations [105, 112], view-invariant features [55, 73,

80, 104] and knowledge transfer between different views [76, 32, 57, 117,

119]. The number of approaches using only depth maps for cross-view ac-

tion recognition are, however, much fever [78, 108, 102, 77], despite the

added privacy advantage of being able to perform action recognition with-

out compromising the identity of the user. Preserving privacy is essential for

e.g. health care applications. The approach proposed in this study falls in the

first category of geometric transformations, with the added benefit of being

computable using only depth data.

2.4 Applications

Human action recognition can be applied to several tasks in our daily life. An

already well-known such task is player interaction in games, which has been

thoroughly demonstrated by several titles from the Microsoft Xbox series

game consoles [116].

While the usage of action recognition systems in game-related applica-

tions brings entertainment and joy into the lives of various humans, one

must not forget that in one sense, games are a simulation of the real world.

This brings us to the next application, which is human-robot interaction. In

order for autonomous robots to be able to successfully understand the world

around them, it is crucial to be able to automatically interpret the actions of

humans and objects in the surrounding environment.

Health care is yet another use case for action recognition systems, where
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they can be applied for analysis of rehabilitation exercises, alleviating the

busy schedule of a licensed medical professional. Autonomous understand-

ing of the surrounding environment is also important in elder care, where

tasks such as automatic fall detection can help mitigate the time until help

arrives [115].

Other tasks include surveillance and similar security applications where

an alarm could be set upon detecting a certain type of behavior. Finally,

video indexing and retrieval are also of interest in the current era, when

we have large collections of video databases. Being able to conveniently

search these for a target action would lessen the burden of finding videos of

interest.

2.5 Summary

In this chapter, we have introduced the task of human action recognition and

covered some fundamental concepts that can be used towards solving the

task. We have additionally discussed potential applications of the research

done in this study, as well as surveyed related research about human action

recognition from depth maps. Given a large body of related research, we

can conclude that the task of human action recognition is non-trivial and

challenging due to intra-class variations, noisy skeleton joints and multi-

view camera angles. Here, leveraging depth data greatly helps improving

performance and easily solves problems normally faced in RGB-based action

recognition, such as subject-background segmentation.

Specifically, we have argued that human action recognition faces sev-

eral problems. First, intra-class variation is common for human actions,

which occurs since a single action can be performed in several ways. This

requires methods for action recognition to be flexible enough to allow sev-

eral representations of the same action class. Inter-subject variation is also

naturally occurring, which is caused by varying anatomy between different

human subjects, causing the same action to be performed slightly different

depending on the person performing the action. This issue requires, again,

flexibility in the action representation.

Further, while convenient, action recognition using depth cameras face

additional problems not encountered with standard RGB cameras. Noisy
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depth maps (and skeletons) are two such problems, since unlike RGB cam-

eras, current depth cameras are subject to much larger noise. This means

that established methods for RGB action recognition cannot be trivially used

with depth cameras. Also, there is the problem of multi-view camera angles,

as any human action is not camera-centric, but human-centric. The action

should be defined from the subject’s point of view, not the camera’s. This

requires development of features or classification methods robust against

viewpoint changes. Additionally, action representations do also need to be

able to distinguish the temporal direction of actions, since many actions in

daily life are each other’s inverse (cf. “sit up” and “sit down”).

Finally, human-object interaction should be handled explicitly, which is

crucial as certain actions might have similar movements, but differ seman-

tically due to the object being used (e.g. “tennis serve” vs. “throw ball”).

Similarly, understanding of human-human interaction should be of interest,

which is important for recognition of complicated actions in the real work,

such as “dancing” or “playing basketball”, which is usually defined by the

interactions between several human subjects, rather than their individual

movements.

Systems for human action recognition cannot be fully deployed in the

real world for arbitrary tasks until the above points have been solved to a

satisfying extent. We can conclude that while the performance of action

recognition systems have progressed somewhat in the recent years, it still

remains a challenging task worth pursuing.
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Graph Signal Processing

NOWADAYS, signal processing is a well-known subject that needs no fur-

ther introduction. Classical results include the discrete Fourier trans-

form (DFT) and the discrete wavelet transform (DWT) for both 1D signals

in time and also 2D signals in images [98].

Quite recently, several classical signal processing (CSP) methods have

gained proposals for generalization to arbitrary graphs [89]. The classical

Fourier transform in CSP is represented by a graph equivalent, which allows

generalizations of common CSP operations such as convolution, translation

and filter, etc.. The structure of natural signals are in general not restricted

to a regular grid (e.g. anthropometric meshes and sensor networks). CSP is

typically limited to signals following regular grid structure, and is not always

optimal for analysis of natural signals. Graph signal processing (GSP), on the

other hand, allows modeling of signals that follow the graph structure, and is

therefore able to offer a more flexible framework for creating natural signals

directly adapted to the signal domain using their intrinsic structure. GSP

gives us the freedom to design the graph as we please, which offers more

flexibility, and allows us to extend previous approaches from CSP in order

to incorporate auxiliary information, such as propagation along weighted

graph edges. Careful graph design can therefore provide a more suitable

framework for naturally occurring signals. However, with power comes a

need for carefulness: inappropriate graph designs can conversely lead to

32
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inclusion of unwanted signal noise. For an overview of the subject, Shuman

et al. [89] provides an excellent introduction.

Signal processing on graphs is useful because the flexible representation

of various objects that a graph provides. For example, an image can be rep-

resented by a graph, where each pixel is a vertex and edges connect nearby

vertices together. If the signal associated with each vertex is the pixel in-

tensity, the GSP on such a graph is able to capture properties of the local

structure of the image, alleviating tasks such as image denoising [68] or

compression [83]. Another type of possible graph to construct is the one

mimicking the structure of the human brain [54]. Brain regions from fMRI

scans can represent vertices and edges then explain how these regions inter-

act for representing a certain brain state. In addition, using graphs for rep-

resenting the body might seen natural. As we saw in the previous chapter,

the pose of the human body can be represented by a tracked skeleton [88],

which essentially is a graph with each body joint being a vertex. Impor-

tantly, the early study by Johansson [44] showed that human actions can

be defined as a sequences of interactions between parts. The study investi-

gated perception from limited information, where a number of lights were

attached to the subject’s body. The study showed that capturing the inter-

actions between several parts of the human body is helpful for decreasing

the ambiguity between several motion categories. Graphs might therefore

provide useful for capturing the interactions of the motion between several

body parts. Following this train of thought, one could think of numerous

additional ways for using graphs for action recognition. One use case is for

using the graph to regularize the feature representation of an action. Since

the tracked skeletons are noisy, one could imagine using the information

from a graph as prior knowledge of how the feature should be structured

regardless of noise. Furthermore, graphs capture only the pair-wise interac-

tions between vertices and are able to create a representation that is invari-

ant to camera view angles. We shall discuss these ideas in more detail in the

following chapters.

In this chapter, we will describe several fundamental concepts in GSP,

including the graph Laplacian matrix and a framework for spectral graph

wavelets. In addition, the end of this chapter presents previous studies re-

lated to GSP, and discusses how these relate to the fundamental concepts
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we have presented. The reader already familiar with the theory of graph

signal processing may choose to skip this chapter without affecting the un-

derstanding of the main results in the remainder of the thesis. Consequently,

this chapter will only present results from previous work. The motivation for

leveraging graphs for the purpose of human action recognition in this study

is deferred to Chapter 4.

3.1 The Graph Laplacian Matrix

We will in this section briefly describe the graph Laplacian matrix, which is

a core part of graph signal processing theory.

Let G = (V, E ,W) denote a graph with vertex set V and edge set E with

N = |V| vertices. We let W ∈ RN×N denote the weight matrix associated

with G, where W(i, j) ∈ R+ is the weight of the edge between vertices vi
and vj , or 0 if there is no edge.

The combinatorial (or non-normalized) graph Laplacian matrix is de-

fined as Ł = D −W, where D = diag {W1} is the diagonal degree matrix

and 1 is the vector of all ones. We let {λ`,u`}`=0,...,N−1 denote the eigen-

value and eigenvector pairs of Ł. The spectrum of Ł carries a frequency

interpretation [120], making it applicable for harmonic analysis on graphs.

We consider only undirected simple graphs, which makes all eigenvalues

real and non-negative, since Ł is a real positive-semidefinite matrix [18].

For the normalized graph Laplacian matrix L = D−1/2ŁD−1/2, there is a

trivial upper bound λmax = 2 for the maximum eigenvalue, which is tight

when the graph is bipartite [18].

The results presented in the rest of this thesis hold in general for both

the combinatorial and normalized version of the graph Laplacian. Indeed,

there is not yet any consensus about in which situation either version is to

be preferred over the other [95], but we will choose the normalized graph

Laplacian due to the trivial upper bound on λmax.



35 3.2. GRAPH FOURIER TRANSFORM

3.2 Graph Fourier Transform

The classical Fourier transform [62] of a function f is defined by the complex

exponentials e−j2πξkx, which are eigenfunctions (with eigenvalue λk) of the

one-dimensional Laplacian operator

∂2

∂x2
e−j2πξkx = λke

−j2πξkx . (3.1)

The Fourier transform is then

f̂(ξ) =

∫
f(x)e−j2πξxdx . (3.2)

Similarly, the graph Fourier transform [89] (GFT) is defined in terms

of the eigenvectors of the graph Laplacian matrix Ł. A graph signal is a

function f : V → R that assigns a value to each vertex. Such a signal can

be represented as a vector f ∈ RN lying on a graph G. The graph Fourier

transform of f is then

f̂(λk) =

|V|∑
i=1

f(i)uk(i) , (3.3)

where the graph Laplacian eigenvectors {uk}k=0,...,|V|−1 are used for calcu-

lating the transform. The graph Fourier mode f̂(λk) has a frequency in-

terpretation [120], which allows a graph spectral decomposition of f that

follows the graph structure.

Due to the orthogonality of the eigenvectors, the inverse GFT (IGFT) can

be defined as

f(i) =

|V|−1∑
k=0

f̂(λk)uk(i) , (3.4)

which together with the GFT allows both analysis and synthesis to be per-

formed of a graph signal.

Like in classical signal processing, the GFT satisfies the Parseval rela-

tion [37]

〈f ,h〉 = 〈f̂ , ĥ〉 , (3.5)
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which means that filtering of a graph signal can be done by

f(i) =

|V|−1∑
k=0

h(λk)f̂(λk)uk(i) , (3.6)

where h is a spectral kernel used for filtering the signal.

While translation from a location m by an amount n in classical signal

processing is defined by the trivial change of variable f(m− n), this cannot

be directly generalized to GSP, due to the signal being discrete [89]. This

can, however, the solved by noting that classical translation is a convolution

of the signal f with a Kronecker delta δmn centered at location n:

f(m− n) = f ∗ δmn . (3.7)

Similarly, by using a delta signal

δn(m) =

1 if m = n

0 otherwise
, (3.8)

we can define the translation Tn of a graph signal to a vertex n by

Tnf(m) = (f ∗ δn) =

N−1∑
`=0

f̂(λ`)u`(n)u`(m) , (3.9)

where the graph signal convolution ∗ is defined by a multiplication in the

graph Fourier domain, and δ̂n(`) = u`(n) [89].

It can be easily verified that Łf , acting as a linear operator on a function

f ∈ RN , is a difference operator:

Łf(i) =
∑
i∼j

W(i, j) (f(i)− f(j)) . (3.10)

Therefore, it seems natural to encode graph signals in terms of the graph

Laplacian eigenvectors, which have been shown to encode a notion of smooth-

ness on a graph [7], and is an approximation of the Laplace-Beltrami oper-

ator on a manifold. [6]

Matrix form The entire chain of applying GFT, filtering, and IGFT can be

written in matrix form as

fout = UHUT f in , (3.11)
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where U is an orthogonal matrix with the eigenvectors of Ł as columns and

H is a diagonal matrix with each element as H(k, k) = h(λk), for some

spectral kernel function h. This can easily be verified by checking that each

element in fout equals the sum in (3.4). Note that the constant function

h(λk) = 1 gives the input signal back, while any other function h will cause

the input graph signal to be filtered according to h.

Why use eigenvalues for representation of frequency? At first sight, it

is perhaps not obvious why the graph Laplacian eigenspace conforms to a

frequency interpretation. In this paragraph, we will give a few arguments

for why this interpretation holds true.

When performing principal component analysis (PCA) on a data ma-

trix, the eigenvector associated with the largest eigenvalue will act as an

orthonormal basis that captures most of the variance of the data. That is,

mapping the matrix to the PCA basis will cause most of the elements to have

large variation along it.

Next, remember that the linear operator Łf is a difference operator, as

shown in (3.10). Because Łf captures the difference between neighboring

vertex signals, the eigenvector umax associated with the largest eigenvalue

λmax of Ł will capture the largest variance, or equivalently, frequency, of the

graph signal f . Similarly, eigenvectors corresponding to small eigenvalues

will capture small variance (small frequency).

Another way of understanding the frequency interpretation of the eigen-

values is through the Courant-Fischer theorem [41], which states that the

eigenvalues can be defined in an iterative fashion using the Rayleigh quo-

tient

λ0 = min
f

fTŁf

‖f‖22
(3.12)

λ` = min
f

fTŁf

‖f‖22
, ` = 1, . . . , |V| − 1 (3.13)

such that u` ⊥ span{u0, . . . ,u`−1} ,

where each subsequent eigenvector u` = f/‖f‖ corresponding to the eigen-

value λ` is constrained to be orthonormal to the preceding ones. It can then
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Graph signal Wavelet at scale 3
+1

0

−1

Figure 3.1: SGWT example. A graph signal with an abrupt discontinuity is ana-
lyzed on a 3D point cloud of 5000 points, using the SGWT. Wavelet
coefficients at scale 3 are shown. Note that the wavelet coefficients ex-
hibit a wavelike, oscillating behavior near the discontinuity. See text
for details.

be seen that the term

uT` Łu` =
1

2

∑
(i,j)∈E

W(i, j)(u`(j)− u`(i))
2 (3.14)

encodes a measure of global smoothness in the graph, which explains why

small eigenvalues have eigenvectors that encode a smoother (low-frequency)

mapping on the graph.

3.3 Spectral Graph Wavelet Transform

Hammond et al. [37] define a spectral graph wavelet transform (SGWT) for

graph signals on the eigenspectrum of Ł.1 Their wavelet transform on graphs

is defined based on the choice of a kernel function g : R+ → R+, which can

be compared to the Fourier transformed wavelet ψ̂ in the case of classical

wavelet transforms [62], and also a scaling function kernel h : R+ → R,

which captures low-frequency content.

Specifically, in classical signal processing, a wavelet operator ψt,n(x) de-

1Online source code available at http://wiki.epfl.ch/sgwt .

http://wiki.epfl.ch/sgwt
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0.0 0.2 0.4 0.6 0.8 1.0
Eigenvalue λ`

0.0

0.5

1.0

1.5

2.0 h(λ`)

g(t1λ`), t = 33.50

g(t2λ`), t = 9.79

g(t3λ`), t = 2.86

g(t4λ`), t = 0.84

Figure 3.2: SGWT kernels example with the number of wavelet scales J = 4. Best
viewed in color. Note that the scaling kernel h attenuates high eigen-
values and acts as a low-pass filter. The wavelet kernels g(tj ·), on the
other hand, isolate certain frequency bands and act as band-pass fil-
ters. The black crosses at the bottom indicate the actual locations of
the discrete set of eigenvalues of the graph in Figure 3.1, showing that
the eigenvalues do not necessarily appear with uniform density.

scribing the localized frequency at scale t around location n is defined as

ψt,n(x) =
1

t
ψ

(
x− n
t

)
, (3.15)

where ψ is a mother wavelet from an orthogonal wavelet family such as

Daubechies wavelets [25]. For an even and real-valued mother wavelet ψ,

we can rewrite (3.15) as

ψt,n(x) =
1

2π

∫
ψ̂(tω)e−jωnejωxdω , (3.16)
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since translation of a signal is equivalent to multiplication by the complex

exponential e−jωn in the Fourier domain [62].

Shuman et al. define the analogue to (3.16) in the graph Fourier domain

and write a spectral graph wavelet ψt,n ∈ RN at scale t localized around

vertex n explicitly as a vector

ψt,n(m) =
N−1∑
`=0

g(tλ`)u`(n)u`(m) . (3.17)

where the signal translation to vertex n corresponds to multiplication by the

graph Laplacian eigenvector entry u`(n).

The kernel g is analogous to the Fourier transformed mother wavelet ψ̂,

and should behave as a band-pass filter, which requires it to satisfy

g(0) = 0 , (3.18)

lim
x→∞

g(x) = 0 . (3.19)

The scaling function kernel φ in classical wavelet theory is realized by

the modulated low-pass filter h, which is required to satisfy

h(0) > 0 , (3.20)

lim
x→∞

h(x) = 0 . (3.21)

Given a graph signal f , we can extract an SGWT coefficient by performing

the inner product 〈ψt,n, f〉. The kernel g use for the transform is chosen by

Hammond et al.to acts as the following band-pass filter [37].

g(x) =


x−α1 xα for x < x1

s(x) for x1 ≤ x ≤ x2

xβ2x
−β for x > x2

. (3.22)

Here, α = β = 2, x1 = 1, x2 = 2 and s(x) is a unique cubic spline that fol-

lows the curvature of g. With this formulation, high-frequency information

around a vertex will be localized by small scale coefficients (small t), while

low-frequency information is captured by larger scale coefficients (large t).

The scaling kernel h in the transform is specified as

h(x) = γ exp

(
−
( x

0.6ε

)4
)
. (3.23)
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This creates a scaling function φn is able to represent low-frequency content

of the graph in a stable manner [37]. Note that the scaling function is nec-

essary due to the constraint g(0) = 0. Let λmax denote an upper bound on

the maximum eigenvalue of the graph Laplacian matrix. Then, the design

parameter ε = λmax/20, and γ is set so that h(0) = maxλ g(λ). We can then

define the scaling vector φn similarly to (3.17) as

φn(m) =
N−1∑
`=0

h(λ`)u`(n)u`(m) . (3.24)

Let J denote an integer such that the set of wavelet scales is {tj}j=1,...,J .

Then, the SGWT provides a transform with J + 1 scales; J wavelets and one

scaling function. The transform coefficients can be expressed compactly as a

(J+1)N -dimensional vector c by gathering the wavelet and scaling function

vectors in a transformation matrix

T = [Ψt1 , . . . ,ΨtJ ,Φ] = [ψt1,1, . . . ,ψtJ ,N ,φ1, . . . ,φN ] , (3.25)

and then setting c = TT f .

An visual example of wavelet coefficients can be seen in Figure 3.1. In

the figure, a graph G = (V, E ,W) is created on the visible set of 5000 points

{pi} in 3D space. The graph signal is set to be 1 at the red points, and zero

everywhere else. This creates an abrupt discontinuity, as best seen visually.

The edge weights are set to be binary according to

W(i, j) =

1 if exp
(
−‖pi−pj‖22

2σ2

)
< ε

0 otherwise
, ∀i 6= j , (3.26)

where σ = 0.1 and ε = 10−3.

In Figure 3.2, the scaling kernel h and a set of SGWT kernels gj with the

number of scales J = 4 can be seen. Note how h behaves as a low-pass filter

and attenuates larger eigenvalues (high frequencies), whereas the wavelet

kernels tend to isolate certain frequency bands.

Finally, we discuss a few properties of the transform. The transform

itself is overcomplete, which means that it generates more wavelet coeffi-

cients than there are vertices in the graph. Suppose a signal is representable

as a combination of a sparse set of wavelet coefficients. Then the SGWT
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can be viewed as analogous to sparse coding [109], although the sparsity

criterion is not explicitly set. Each wavelet then plays the role of an atom in

a sparse dictionary [93]. Compared to sparse coding, however, the SGWT

atoms are based on a fixed mathematical structure. This means that they

can be computed in an efficient manner. Sparse coding, on the other hand,

typically requires finding the solution to a heavy optimization problem [30].

We mention here that there exists some attempts to learn a dictionary that

depends a the graph structure [93], although this does not guarantee an

efficient implementation. Additionally, the explicit mathematical structure

of the spectral graph wavelets yields the another merit of enabling formal

analysis of the effects of each wavelet basis.

3.3.1 Fast Approximate Wavelet Transform

In order to avoid explicit computation of the eigenspectrum of L, which

takes O(|V|3) time (and is thus only feasible for graphs up to about 1000

vertices), the authors of the SGWT introduced a method based on truncated

Chebyshev polynomials for approximating the transform in O(|E|+ J |V|)
time [37]. They approximate the kernels g and h using low-dimensional

Chebyshev polynomials

g(tjλ) ≈ 1

2
cj,0 +

Mj∑
k=1

cj,kT k(λ) , (3.27)

where Mj is the degree of the approximation, typically Mj = 50. The ex-

pression T k(λ) = Tk(λ − 1) is the shifted Chebyshev polynomial of order k,

which satisfies the recurrence relation Tk(λ) = 2λTk−1(λ) − Tk−2(λ). Fur-

ther, cj,k denote the Chebyshev coefficients, which can be estimated given a

spectrum upper bound λmax [74].

The approximated transforms are given by

ΨT
tj f ≈ w̃tj ,f =

1

2
cj,0f +

Mj∑
k=1

cj,kTk(L)f , (3.28)

ΦT f ≈ s̃f =
1

2
c0,0f +

M0∑
k=1

cj,kTk(L)f , (3.29)
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Require: f : Graph signal;

Ensure: c : Approximated wavelet coefficients

1: function FASTSGWT(f)

2: τ 0 ← f

3: τ 1 ← (L− I)f

4: for j = 0, . . . , J do

5: rj ← 1
2cj,0τ 0 + cj,1τ 1

6: end for

7: for k = 2, . . . ,maxjMj do

8: τ k ← 2(L− I)τ k−1 − τ k−2

9: for j = 0, . . . , J do

10: if Mj ≥ k then

11: rj ← rj + cj,kτ k

12: end if

13: end for

14: end for

15: c← [r0; . . . ; rJ ]

16: return c

17: end function

Figure 3.3: Fast SGWT approximation algorithm [37].

with T0(L) = I and T1(L) = L − I. As the approximation accesses L
only through matrix-vector multiplication, it is fast and efficient for sparse

graphs. The SGWT approximation algorithm is shown in Fig. 3.3, where the

approximated wavelet coefficients are calculated for a graph signal f .

Why is w̃tj ,f a Valid Approximation?

Let us briefly discuss why there is a need to approximate the kernel g and

why the approximation works. First, the exact wavelet coefficient wt,f (n) at

scale t and position n is defined as

wt,f (n) = 〈ψt,n, f〉 , (3.30)

where ψt,n is defined in Eq. (3.17).
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Next, a function g : R → R can also be expressed as a matrix func-

tion [40] g : RN×N → RN×N

g(tŁ) = UT


g(tλ0)

g(tλ1)
. . .

g(tλN−1)

U , (3.31)

which follows from the eigendecomposition Ł = U∆UT . By explicitly ex-

pressing the matrix multiplication, it can be seen that we have

(g(tŁ))(n,m) = ψt,n(m) . (3.32)

Then, by (3.30) and (3.32), we have that

(g(tŁ)f)(n) = 〈ψt,n, f〉 = wt,f (n) . (3.33)

However, there is a problem. Computing g(tŁ)f requires us to know the

eigenspectrum σ(Ł), which takes O(N3) time to compute using the QR al-

gorithm. This does not scale well with large graphs, so we need a fast way

to approximate g(tŁ)f . This is solved in [37] by expressing g(tŁ) as the

Chebyshev polynomial series

g(tjŁ) ≈ ptj (Ł) =
1

2
cj,0I +

∞∑
k=1

cj,kTk
(
(aI)−1(Ł− aI)

)
, (3.34)

where a = λmax
2 in order to make each Tk defined on [−1, 1]. Expressing g

as a Chebyshev polynomial allows us to circumvent having to know the real

spectrum, since each Tk can be defined recursively as

Tk(x) =


1 k = 0

x k = 1

2xTk−1(x)− Tk−2(x) otherwise

. (3.35)

This is quite handy, as it allows us to compute Tk without knowing any actual
eigenvalue!

The reason for choosing the interval [−1, 1] is to be able to utilize the

following special case for the calculation of each Chebyshev coefficient

cj,k =
2

π

∫ π

0
cos(kθ)g(tja(cos(θ) + 1))dθ , (3.36)
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which does not hold for values outside this interval [37]. For practical com-

putation, (3.36) is approximated by replacing the integral with a sum (by

the composite Newton-Cotes formula)

cj,k ≈
2

B

B−1∑
b=0

cos

(
k
bπ

B

)
g

(
tja

(
cos

(
bπ

B

)
+ 1

))
, (3.37)

where B is the number of terms used for approximating the infinite integral.

Now, we can express approximate wavelet coefficients w̃t,f by truncating

the infinite sum in (3.34) to Mj terms and right-multiplying by f :

wt,f = g(tjŁ)f ≈ (3.38)

w̃t,f = ptj (Ł)f (3.39)

=
1

2
cj,0f +

Mj∑
k=1

cj,kTk

(
Ł− aI
aI

)
f . (3.40)

How do we know that w̃t,f is a good approximation? The authors show

in [37] that we have the bound

|wt,f (n)− w̃t,f (n)| ≤ ‖f‖ sup
x∈[0,λmax]

|g(tx)− pt(x)| , (3.41)

where pt(x) is the polynomial approximation of g(tx). So, if pt(x) is a good

approximation (which it tends to be with Mj ≥ 20), the approximation is

good if ‖f‖ is small, i.e. the signal on each vertex is close to zero.

3.3.2 Inverse Transform

While we have so far discussed only the analysis part of the transform, syn-

thesis is also possible using the inverse SGWT. The SGWT is an overcom-

plete transform, as there are more wavelets ψtj ,n than original vertices in

the graph. Representing the transform by a matrix W ∈ RNJ×N , we have

that W maps an input vector f ∈ RN to a coefficient vector c ∈ RNJ so that

Wf = c . (3.42)

We can solve for f by left-multiplying by the adjoint W∗ so that we get the

square matrix W∗W:

W∗W︸ ︷︷ ︸
A

f︸︷︷︸
x

= W∗c︸ ︷︷ ︸
b

, (3.43)
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which is a linear equation system Ax = b that can be solved by a stan-

dard conjugate gradient solver. So, by having ready expressions for W∗

and W∗W, the SGWT inverse can be computed. In the paper, they provide

Chebyshev series for both the adjoint W∗ and the composition W∗W. Con-

jugate gradient is used since calculating the explicit pseudo-inverse 2 is too

expensive for large graphs.

3.4 Problems and Previous Approaches

Graph signal processing is still a relatively young field. We have in the previ-

ous sections presented a select set of tools for carrying out analysis of signals

on graphs, but these are by no means the complete set available. In fact, sev-

eral alternative approaches towards GSP have been explored in literature.

This section will give a brief overview of previous approaches towards GSP,

and also mentions some problems left unsolved.

One problem of immediate attention in GSP is the one of computa-

tional efficiency. While classical signal processing enjoys fast processing time

thanks to the fast Fourier transform, it is still unknown whether there exists

a fast graph Fourier transform. While some approximations towards a fast

GFT have been attempted, e.g. approximately diagonalizing the graph Lapla-

cian matrix into an product of sparse matrices [53], a truly fast and exact

implementation à la classical signal processing has not yet been found.

The problem of creating wavelets on graphs have been explored previ-

ously by several authors [23, 37, 19, 67, 79]. The work by Crovella and

Kolaczyk [23] is one of the earliest, and is applied for the analysis of com-

puter traffic data that resides on unweighted graphs. Their method works in

the graph vertex domain, essentially acting as a filter around a local k-hop

neighborhood around a node, so that the wavelet value depends only on

nodes within a maximum geodesic distance k. As we have previously dis-

cussed, Hammond et al. [37] created the spectral graph wavelet transform

(SGWT). Compared to Crovella and Kolaczyk, the SGWT allows graph sig-

nal analysis on the graph Fourier spectrum, and is somewhat analogous to

sparse representations such as sparse coding [109, 93], given that a signal
2In cases where W has full column rank, i.e. the columns are linearly independent, the

pseudo-inverse can be calculated explicitly as W+ = (W∗W)−1W∗.
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can be represented using a sparse set of wavelet coefficients, while being

more efficiently computable. Furthermore, an efficient approximation of the

SGWT allows the method to scale for large graphs.

Another graph-spectral wavelet method is the work of Coifman and Mag-

gioni [19], which introduces diffusion wavelets based on applying powers

of a diffusion operator. Their wavelets are ensured to be fully orthonormal,

but their orthogonalization procedure creates a more complicated transform

than the SGWT. While orthogonality may be a desirable property for ap-

plications such as signal compression, the SGWT offers more flexibility for

selection of wavelet scales. Other methods include Narang and Ortega [67],

who develop a method for critically sampled filter banks on graphs. Ram

et al. [79] develop a generalized tree-based wavelet transform that is appli-

cable to functions defined on graphs. While the SGWT necessarily requires

the graph to be undirected, Sandryhaila and Moura [84] provide another

framework for GSP, which is based on the Jordan normal form of the graph

adjacency matrix and is applicable to directed graphs as well. The SGWT,

on the other hand, is based on the GFT, which is only applicable to undi-

rected graphs due to the graph Laplacian matrix being symmetric and pos-

itive semidefinite. Investigation of whether the SGWT can be modified to

work on directed graphs should be of vital importance, and could lead to

additional applications of the theory of GSP.

Finally, it is instructive to compare graph signal processing techniques

with other works that utilize graphs. One type of work that compares the

structure of graphs is graph kernels, which has been popular in approxi-

mately the last 15 years [45, 20, 13, 121, 39, 92, 87]. A graph kernel acts

as a similarity measure between two graphs, which can then be used for

clustering graphs or training an SVM for classifying graph types. The in-

herent difference is that while GSP aims to model the signals that lie on

the graph, where the graph structure tends to be required to be fixed in

order to retain signal-to-signal interpretability, graph kernels tend to com-

pare graphs with a differing number of vertices and structure in order to

model how similar the structure between graphs is. For example, the graph

kernel by Kashima et al. [45] compares counts of labeled random walks

on the graphs, and is used for classifying the structures of chemical com-

pounds. Related to GSP, the diffusion kernel by Kondor et al. [50] is based



CHAPTER 3. GRAPH SIGNAL PROCESSING 48

on the graph Laplacian matrix and differs from graph kernels, since it does

not compare graphs, but rather the vertices of a graph. It is a so called

structured kernel. The graph-structured relationship between the vertices

is shown to lead to increased performance for datasets having a majority

of categorical data, something which standard SVM kernels previously had

difficulties with [50]. Graph boosting is another type of work that compares

substructures on graphs [70, 69]. By representing an image as a graph, the

geometric relations between image features can be utilized by combining

graph mining and boosting algorithms. Nowozin et al. apply this method to

the tasks of web-retrieval outlier rejection [70] and later also for action clas-

sification from RGB cameras [69], where they extend their method to keep

track of the temporal order of the mined features. A difference with GSP

is that while their classifier is template-based, and compares mined graphs,

GSP focuses on the propagation of signals defined on the vertices of the

graph.

3.5 Applications

Graph signal processing has not yet enjoyed as a large amount of appli-

cations as its classical equivalent. Presumably, this is due to the relative

adolescence of the theory of GSP. Nevertheless, several applications do ex-

ist already, including edge-aware image processing [68], depth video cod-

ing [48], image compression [83], anomaly detection in wireless sensor net-

works [29], bridge structure health monitoring [16], brain functional con-

nectivity analysis [54] and mobility pattern prediction [27]. To the best of

our knowledge, at time of publication, our conference paper [46] was the

first application of GSP to human action recognition. Since then, some re-

lated work has emerged in this direction [4].

3.6 Summary

In this chapter, we have covered basic concepts concerning the theory of

graph signal processing. The tools presented allow signal analysis of graph-

shaped input, along with frequency analysis using the graph Fourier trans-
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form and the spectral graph wavelet transform. We have also argued about

why eigenvalues enjoy a frequency interpretation when using the graph

Laplacian matrix for representing a graph. Finally, we have surveyed some

recent research related to graph signal processing, and discussed some emer-

gent problems.

Graphs allow a flexible representation of a various objects using pair-

wise connections between vertices. As discovered in the early study of Jo-

hansson [44], human actions can be well-perceived from limited informa-

tion; about 10-12 interest points attached to the human body. Graphs are

able to capture the relationships between such interest points, which should

make graphs a highly suitable candidate for action representation.

The presented framework of GSP is quite flexible, and is applicable for

doing frequency analysis of signals defined on undirected graphs. Our inter-

est in exploring graph signal processing for the task of human action recog-

nition lies in the representation of human interest points as a graph, on

which frequency analysis can be applied for extracting information useful

for describing an action. We will explore this idea further in the following

chapters.



4
Representing Actions as

Graphs

IN this chapter, we will discuss about how to represent actions as graphs,

and consider two different view-invariant candidates for explicit graph

construction. The first candidate is based on tracked skeleton joints [88],

while the second variant is based on spatio-temporal keypoints [78].

Graphs based on skeleton joints capture the spatial pose of the human

body, which is suitable for representing actions that are defined by larger

general limb movements, where the semantic knowledge of body part posi-

tions is vital for recognition.

Spatio-temporal keypoints, on the other hand, capture complementary

detailed information directly from the point cloud. Each keypoint describes

the spatio-temporal shape of a point cloud, and is thus able to capture fine

intrinsic detail, while also being robust against noisy skeleton estimates,

which can be caused by complex poses.

The graph constructions in this chapter focus on the part-wise interac-

tions within a single frame; how these graphs will be used to create a feature

for action recognition will be discussed in Chapter 5.

50
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4.1 Motivation

Actions can be defined as a sequences of interactions between parts. Indeed,

an early study by Johansson [44] investigated human motion perception

from limited information. In his series of experiments, a number of lights

were attached to the subject’s body, and the 3D human motion perception is

evaluated depending on the number of activated lights. 1 The study showed

that capturing the interactions between several parts of the human body

is helpful for decreasing the ambiguity between several motion categories.

Therefore, we consider using a graph for representing the interactions in

order to jointly capture information about the different parts.

Each interactive part, or interest point, can be thought of as a vertex

vi in a graph G = (V, E ,W). An edge e = (vi, vj) ∈ E ⊆ V × V then

captures some relationship between the points using a weight W(i, j) ∈ R+.

Further, we assume we have additional information about each point using

a D-dimensional feature vector mapped to each vertex.

In the next two sections, we consider two candidate graph representa-

tions for actions based on interest points.

4.2 Skeleton-based Graphs

As shown in the study by Johansson [44], the human skeleton joints can

be used for discriminating between action categories given that we make

use of enough joint positions (the study concluded 10–12 joints to be ade-

quate). Recently, due to the nominal work of Shotton et al. [88], we have

ready access to tracked skeletons of the human body gotten directly from

depth images. Their skeleton tracking algorithm results in N = 20 tracked

joint positions. In previous action recognition research, these joint positions

have been shown to provide useful as a good base feature for building a

discriminative feature [101, 114, 60].

The i-th joint at frame t has a 3D position pt,i = [xi(t), yi(t), zi(t)]
T . As

body size differs between different human subjects, we use the limb nor-

malization procedure of Zanfir et al. [114] for normalizing skeleton limbs

to standard lengths, while still keeping limb angles and positions intact (see
1Online at e.g. https://www.youtube.com/watch?v=1F5ICP9SYLU

https://www.youtube.com/watch?v=1F5ICP9SYLU
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Depth map sequence

Skeleton joints Spatio-temporal keypoints

Skeleton graph Keypoint graph

Track skeletons Detect STKPs

Joint positions Codeword counts

Figure 4.1: Procedure for graph construction. Given a depth map sequence, we
detect interest points, such tracked skeleton joints or spatio-temporal
keypoints (STKP). The skeleton-based graph construction uses the rela-
tive position of the joints, which yields a graph that follows the human
skeleton structure. Keypoint-based graphs, on the other hand, are con-
structed from the occurrence counts of STKP codewords, and the graph
structure is defined by pair-wise similarities of the codewords based on
χ2-distance. Note that in practice, the keypoint graph is not necessar-
ily complete; dissimilar codeword pairs will get edge weights close to
zero.
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Require: P = [p1, . . . ,p20] : Skeleton joint positions in a single frame.

Require: r : Vector of standard joints lengths.

Ensure: P′ : Normalized skeleton joint positions.

1: function MPNORMALIZE(P, r)

2: Let ps be the start joint (center hip)

3: p′
s ← ps

4: for (i, j) in breadth-first search order from ps do

5: d← pi − pj

6: p′
j ← p′

i + r(i)d/‖d‖2
7: end for

8: return P′ = [p′
1, . . . ,p

′
20]

9: end function

Figure 4.2: Skeleton limb length normalization algorithm [114] for transforming
the limb lengths of a skeleton P in a single frame t.

Figure 4.2). The standard lengths {r(i)}i=1,...,20 for each joint i can be cal-

culated from training data. Previous research [101, 60] discussed the fact

that features extracted by using the relative inter-joint 3D skeleton positions

remain largely discriminative. We proceed to describe the location of joint i

by constructing the relative position vector

p̂t,i = pt,i − pt,center hip , (4.1)

since the center hip joint of the tracked 3D skeleton can be considered to be

reasonably stationary among different classes of human actions.

4.2.1 Rotation Cancellation

Since depth cameras conform to a Cartesian coordinate system, the relative

joint positions are not view-invariant by nature. Therefore, we propose a

simple approach to rotate the skeletons in order to bring them into a canon-

ical coordinate system which is independent of the camera angle.

View-invariant action recognition with 3D skeletons has been described

previously by e.g. Xia et al. [108], where spherical histograms are rotated to

a canonical view for each frame. Our approach differs in that we achieve

rotation normalization using information from the whole action sequence,
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which increases robustness against tracking errors and non-straight poses.

This approach is also taken by Wang et al. [102], where a plane is fit using

the RANSAC procedure to estimate a rotation matrix. We choose a simpler

approach that does not rely on fitting any parameters from data. To the

best of our knowledge, we are not aware of any previous work achieving

view-invariance in our proposed manner.

Our approach is as follows. We first find a vector pointing upwards (per-

pendicular to the floor). Note that since the camera view angle cannot be

assumed to be planar to the floor (e.g. slanted top-down view), the up vector

does not necessarily point along the positive y-coordinate of the Cartesian

coordinate system. Consequently, we turn to the tracked skeleton informa-

tion. Since the skeleton joints have a semantic meaning, we can define the

up vector candidate for frame t as vt,up = pt,head − pt,center hip. Assuming

the camera to be static, we then vote for an up vector vup representing the

whole action sequence by taking the marginal median

vup(d) = median
t∈{1,...,T}

{vt,up(d)} , ∀d , (4.2)

which is gotten by taking the median for each axis independently. The rea-

son for using the median instead of taking the mean is because some can-

didate up vectors can be regarded as noise due to some frames containing

poses where the head-hip vector is not pointing straight up, e.g. when bend-

ing down. We assume, however, that the majority of the frames in the action

sequence feature the subject standing straight up, which should allow the

above procedure to yield an up vector estimate close to the ground truth.

Next, we define the vector pointing to the right as vt,right = pt,right hip −
pt,left hip. Our goal is to find a rotation matrix so that we can put the skeleton

pose into a canonical view. Since vup and vt,right are not orthonormal, they

cannot directly be used for rotation. To remedy this, we employ the Gram-

Schmidt orthonormalization process [91] in order to create a rotation matrix
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Figure 4.3: Rotation cancellation using the Gram-Schmidt process for a frame of
the “stand up” action on the left. The right skeleton shows the resulting
canonical view facing the camera at (x, y, z) = (0, 0, 0). See text for
details.

R = [rx, ry, rz], where

uy = vup , (4.3)

ry = uy/‖uy‖ , (4.4)

ux = vt,right −
vTt,rightuy

〈uy,uy〉
uy , (4.5)

rx = ux/‖ux‖ , (4.6)

rz = rx × ry . (4.7)

The orthogonal matrix R satisfies R−1 = RT and thus we can cancel the

camera angle and create a view-invariant relative position vector p̂t,i =

RT (pt,i−pt,center hip) for describing the position of joint i independent of the

camera angle. An example of rotation cancellation can be seen in Fig. 4.3.

As we will see in our experiments, this rotation is crucial for achieving good

performance in recognizing actions across different views. Naturally, for

non-cross-view recognition tasks, we can choose to not apply the rotation

R−1.

4.2.2 Graph Construction

Given a set of N tracked joints, we seek to construct a graph and an associ-

ated signal that describes the subject pose at a time t. Note that each tracked



CHAPTER 4. REPRESENTING ACTIONS AS GRAPHS 56

skeleton itself can be viewed as a graph Gskel = (Vskel, Eskel) in 3D space (see

Fig. 4.1). We thus proceed and create a graph with N vertices, where each

vertex corresponds to a skeleton joint.

We assume that a signal along an edge provides relevant information

inversely proportional to the distance between a pair of joints. Edge weights

are therefore set by a radial basis function

W(i, j) = exp

(
−
‖p̂t,i − p̂t,j‖22

2σ2

)
(4.8)

for neighboring joints (vi, vj) ∈ Eskel, which gives spatially closer joints a

higher weight. We assume that σ is not equal for all connected joint pairs in

the skeleton, and therefore define a pair-specific σ = {1
3

∑
a σi,j(a)}, where

σi,j ∈ R3 is a vector describing the axis-wise standard deviation between

joints i and j.

Note that we only connect edges corresponding to neighbors in the natu-

ral human body structure. This is because due to natural physical constraints

of human limbs, any signal defined on e.g. the subject’s hand will be corre-

lated with the signal on the elbow. Using a fully connected graph is not

appropriate, as this would imply that there is strong correlation between

your hand and foot, which does not usually hold for human motions, and

would only introduce noise into any subsequent feature extracted from the

graph.

The feature vector associated with each vertex vi is set to be the relative

position vector p̂t,i, with optional rotation cancellation.

4.3 Keypoint-based Graphs

Although graphs obtained through skeleton tracking are easily constructible,

skeleton joint positions have several flaws:

• Abundant noise due to complex poses.

• Inability to capture fine intrinsic details, such as human-object interac-

tion and hand shapes.

Therefore, we consider an alternative graph construction gotten directly

from the 3D point cloud in the depth image sequence. Care must however
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be taken when considering the size of the graph to be created. Actions of

interactive nature are typically a few seconds of length, which corresponds

to a spatio-temporal point cloud containing the order of 106 points. Clearly,

using each point as a vertex will create graphs of intractable size. Further-

more, not each point is relevant for action recognition. We therefore propose

to detect a set of keypoints in locations that are of interest for describing ac-

tions.

We use the recently proposed spatio-temporal keypoint (STKP) detector

by Rahmani et al. [78] (see also Sec. 2.2.1). The reasons for using STKPs are

the following. First, the keypoints offer detection repeatability, which means

that the keypoints can be detected in different samples of the same action

sequence despite noise. Second, the keypoints have a unique coordinate

basis, which allows them to create a view-invariant description of the point

cloud. Finally, the keypoints are localized spatio-temporally, which means

that they are mainly detected at spatio-temporal locations where the actual

action is being performed, revealing information about the relevant location

of the action in the depth video.

4.3.1 Graph Construction

Given a set of detected keypoints, we seek to construct a graph and an asso-

ciated signal that describes the spatio-temporal shape of the point cloud at

a time t. We proceed to construct our graph as follows (see also Fig. 4.1). A

codebook with N codewords is created using K-means clustering of the de-

tected STKPs. Each STKP is then assigned to its closest codeword and a BoW

representation is used for representing the STKPs in each frame. We then

create a graph with N vertices, where each vertex corresponds to a code-

book vector. Edge weights are set using a χ2 kernel on a pair of vertices,

assuming the signal to be correlated amongst keypoints of approximately

similar shapes:

W(i, j) = exp

(
−
∑
d

(hi(d)− hj(d))2

hi(d) + hj(d)

)
, (4.9)

where hi is the spatio-temporal HOPC descriptor of the keypoint represented

by vertex i.
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Note that unlike the skeleton-based graph, we can assume correlation

between STKPs of close χ2 distance, as they will describe a similar spatio-

temporal shape. This means that we can use a (weighted) fully connected

graph for describing the relationships between the keypoints.

The feature vector associated with each vertex vi is set to be the code-

word occurrence count for the codeword represented by vi in the current

video frame, which does not affect the view-invariant property of the STKPs.

4.4 Summary

In this chapter, we have discussed about how to represent actions as graphs.

Our motivation stems from the pioneering study of Johansson [44], who

demonstrated that the psychological perception of human actions is possible

given the knowledge of a small number of skeleton joints. We have pro-

posed two types of graph constructions. The first one is based on tracked

skeleton joints and captures the semantic meaning of body parts and their

relationship. For rendering skeletons view-invariant, we also presented a

rotation cancellation scheme based on Gram-Schmidt orthonormalization.

Finally, the second graph type is based on spatio-temporal keypoints, and

describes the shape of the raw point cloud data, providing complementary

information to the sometimes noisy skeleton joints.



5
Spectral Graph Sequences

(SGSs)

IN this chapter, we present our proposed feature descriptor (SGS) for tem-

poral sequences of graphs based on the spectral graph wavelet transform

(SGWT) [37]. The overview of our method can be seen in Fig. 5.1. We

assume that we have a sequence of graphs created from interest points in a

depth video (gotten using e.g. the Kinect).

Our system consists of five parts. First, we design an augmented graph

by connecting together a sequence of graphs using temporal edges. Each

graph in the sequence describes the point cloud in a single frame using either

skeleton-based or keypoint-based graphs, as previously discussed in Chap-

ter. 4. Second, spectral graph wavelet coefficients are calculated using the

SGWT. The coefficients capture second order gradient information about the

graph signal along both temporal and local edge directions. Third, in order

to cope with varying action sequence length, we leverage a temporal pyra-

mid pooling scheme. The pooling operator aggregates information about

the wavelet coefficients, while the pyramid structure allows us to capture

the temporal order of the graph signal propagation. Fourth, we reduce the

dimensionality of the feature vector using PCA and apply a standard SVM

for classification. Finally, using late fusion of SVM decision functions, we

can also combine the complementary effects of several graph types.

59
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Depth map sequence

Skeleton graph sequence Keypoint graph sequence

C
Coefficient matrix

z
SGS descriptor

d
Decision function

C
Coefficient matrix

z
SGS descriptor

d
Decision function

“two hand wave” Yes

“hammer” No

“draw x” No

“draw circle” No

Prediction

Graph design

SGWT

Pyramid pooling

PCA & SVM

Late fusion

Graph design

SGWT

Pyramid pooling

PCA & SVM

Figure 5.1: Overview of the proposed action recognition system. Given an input
depth map sequence, SGS descriptors based on graphs from both skele-
tons and keypoints are calculated. An SVM is trained for each descrip-
tor and their decision functions are finally combined using late fusion.
Note that the skeleton graph in this figure is simplified for the purpose
of illustration, and thus has fewer than the 20 joints given by Shotton et
al. [88].
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In addition, the end of this chapter presents some analysis of the inter-

pretation and effects of the proposed feature descriptor.

5.1 Graph Design

We consider a temporal sequence of T graph signals f1, . . . , fT , all of which

are embedded on a common graph G = (V, E ,W) with |V| = N . Our goal

is to create a descriptor of the temporal propagation of the signals. Each

vertex v is associated with a D-dimensional feature vector.

For comparing graphs, several previous works have employed graph ker-

nels for creating an implicit vector mapping into a reproducing kernel Hilbert

space [39, 92, 13, 121, 87, 13, 45, 20]. Graph kernels compare graphs with

different structures and different number of vertices, such as chemical com-

pounds [45]. We instead assume the structure of the graph to be constant,

and look at the propagation of signals defined on the vertices of the graph.

This approach is related to the structural SVM kernel by Kondor et al. [50].

One important difference is that while they consider each vertex to be a

datum, and compare their relationships using the graph structure, we con-

sider the whole graph to be a datum, where the vertices represent interest

points and edges connect them in order to express the natural structure of

the input. We will now explain our approach in the following.

As graph signals are scalars by definition [89], we subsequently process

each axis of the D-dimensional space separately, by the graph signal f : V →
R. We proceed to create an augmented graph Gaug = (Vaug, Eaug,Waug) by

stacking T copies of G to create a sequence of graphs G1, . . . ,GT . The choice

of the graph G can be e.g. one of the two we previously discussed in Chap-

ter 4. Since we assume the signals to be embedded on a common graph

G, we let vit denote the i-th vertex in the t-th copy of the graph. The sig-

nal associated with vertex vit is therefore given by ft(i). We then connect

each vertex vit in frame t with its temporally equivalent vertices vit−1 , vit+1

corresponding to the same vertex in the previous and next frame, respec-

tively, creating temporal edges. Each graph in the sequence already has pre-

defined local edge weights, set by some distance kernel exp(−dist(vit , vjt))

(see Chapter 4). We assume strong signal correlation across the temporal

direction (exp(−dist(vit , vit+1)) ≈ 1), so we set temporal edge weights to
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unity. The augmented weight matrix Waug therefore has the following fixed

sparse block structure:

Waug =



W I

I W I
. . . . . . . . .

I W I

I W


, (5.1)

where I is the identity matrix and W is the local edge weight matrix, which

is similar for all graphs in the sequence.

We have two edge categories:

Temporal

These edges capture the propagation of the graph signal between con-

sequent graphs.

Local

These edges connect vertices within one single graph and capture pair-

wise interactions within a frame.

The structure of Gaug now allows us to analyze the temporal propagation

of the signal.

5.2 Graph Wavelet Coefficient Extraction

We seek a multi-scale decomposition of the graph signal in order to capture

information about the signal propagation with respect to the graph struc-

ture. For this, we turn to the SGWT framework of Hammond et al. [37],

which is a generalization of classical wavelet transforms onto arbitrary graphs.

We briefly describe the method here; details are covered in Sec. 3.3. Given

a kernel g : R+ → R+ acting as a band-pass filter, a spectral graph wavelet

ψt,n ∈ RN at scale t localized around vertex n can be written explicitly as a

vector [37]

ψt,n(m) =

N−1∑
`=0

g(tλ`)u`(n)u`(m) , (5.2)
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where {λ`,u`}`=0,...,N−1 denote the eigenvalue and eigenvector pairs of the

graph Laplacian, which is used for representing a graph as a matrix. Given

a graph signal f , SGWT coefficients are extracted by the matrix-vector mul-

tiplication ΨT
tj f , where Ψtj = [ψtj ,1, . . . ,ψtj ,|V|].

We proceed to create the normalized graph Laplacian matrix Laug =

I − D−1/2WaugD
−1/2, where D = diag(Waug1) and 1 is the vector of all

ones. The matrix Laug has an eigenbasis that conforms to harmonic anal-

ysis of graph signals [89], and has a maximum eigenvalue λmax = 2 [18].

Hammond et al. [37] presented a fast approximation of the SGWT based on

truncated Chebyshev polynomial series [74], which avoids expensive eigen-

decomposition of Laug. Using this approximation, we extract wavelet and

scaling coefficients from Gaug at each vertex n and scale tj . The wavelet

scales tj are chosen to be a set of J values logarithmically equispaced in

the range [0, λmax]. We acquire the transform coefficients by calculating the

approximate SGWT [37]

ΨT
tj faug ≈

1

2
cj,0faug +

Mj∑
k=1

cj,kTk(Laug)faug , (5.3)

where faug = [f1; . . . ; fT ] ∈ RNT is the vector of stacked graph signals rep-

resenting the human action sequence, and Tk(Laug), cj,k are the Chebyshev

polynomials and coefficients, respectively. The scaling vector coefficients

ΦT faug, which capture low-frequency information of the signal, are calcu-

lated in a similar way. Consequently, each vertex will result in J + 1 coef-

ficients per axis, one for each wavelet scale (including the scaling kernel).

The coefficients capture information about localized frequencies of the graph

signal that follow the graph structure. We store the coefficients in a matrix

C ∈ RT×DN(J+1), shaped so that the coefficient ψTtj ,nfaug is stored on the

t-th row.

Note that in order for the coefficients to capture similar information

across graphs created from different action sequences of the same class, we

require the graph Laplacian basis to be constant (i.e. temporal edge weights

are fixed). We assume that the only varying quantity is the graph signal.

Variable temporal edge weights are not supported by the proposed formu-

lation of the method, and investigation of this matter is left as an open

problem.
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Require: f : Graph signal; f = [f1; . . . ; fT ]

Ensure: C : Approximated wavelet coefficients

1: function FASTSGWT(f)

2: τ 0 ← f

3: Calc. v← (L− I)f using alg. in Fig. 5.3.

4: τ 1 ← v

5: for j = 0, . . . , J do

6: rj ← 1
2cj,0τ 0 + cj,1τ 1

7: end for

8: for k = 2, . . . ,maxjMj do

9: Calc. v← (L− I)τ k−1 using alg. in Fig. 5.3.

10: τ k ← 2v − τ k−2

11: for j = 0, . . . , J do

12: if Mj ≥ k then

13: rj ← rj + cj,kτ k

14: end if

15: end for

16: end for

17: R← [r0, . . . , rJ ]

18: C← R, reshaped to store ψTtj ,nf on row t.

19: return C

20: end function

Figure 5.2: Fast SGWT approximation with incorporated efficient matrix-vector
multiplication steps on lines 3 and 9. Note that we assume the graph
signal f = [f1; . . . ; fT ] to have a time series structure consisting of T
frames, unlike the standard SGWT approximation 3.3.
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Require: f : Vector to multiply with; f = [f1; . . . ; fT ]

Require: W : Weight matrix for local edges

Ensure: r = (L− I)f

1: function EFFICIENTMATVEC(f ,W)

2: Define xk : xk(i) =
√∑

j W(i, j) + k

3: Define Xk : W � (xkx
T
k )

4: Define yab : (xa � xb)

5: if T = 1 then

6: r1 ← −X0f1

7: else if T=2 then

8: r1 ← −X1f1 − f2 � y11

9: rT ← −X1fT − fT−1 � y11

10: else

11: r1 ← −X1f1 − f2 � y12

12: rT ← −X1fT − fT−1 � y12

13: if T=3 then

14: r2 ← −X2f2 − (f1 + fT )� y12

15: else

16: r2 ← −X2f2 − f1 � y12 − fT−1 � y22

17: rT−1 ← −X2fT−1 − fT−2 � y22 − fT � y12

18: end if

19: end if

20: for t = 3, . . . , T − 2 do

21: rt ← −X2f t − (f t−1 + f t+1)� y22

22: end for

23: r← [r1; . . . ; rT ]

24: return r

25: end function

Figure 5.3: Efficient matrix-vector multiplication algorithm for our graph. The op-
erators � and � denote element-wise multiplication and division, re-
spectively.
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5.2.1 Efficient Algorithm

The fast approximate SGWT accesses the graph Laplacian matrix L only

through matrix-vector multiplications, which takes O(|E|+ J |V|) time for J

scales and is fast if L is sparse [37]. Since our graph has a special spar-

sity structure (5.1), we can further optimize this step. Fig. 5.2 presents the

algorithm for calculating the transform. Calculating the matrix-vector mul-

tiplication (L − I)τ k−1 = (L − I)Tk−1(L)faug is by far the most expensive

operation in the SGWT approximation, which is done maxjMj times during

the course of the algorithm.

We propose to modify two steps of the SGWT approximation algorithm.

While the standard fast approximate SGWT requires explicit construction

of L to calculate (L − I)τ k−1 in step 3 and 9, we propose to exploit the

explicit sparsity structure of our graph to avoid unnecessary memory usage

by using the algorithm in Fig. 5.3. The algorithm can be derived by explicitly

expanding said matrix multiplication and noting that for each f t in faug,

the transform always depends at most on f t−1 and f t+1 in the neighboring

frames. Our algorithm avoids explicit construction of L by carrying out the

calculations implicitly using only the weight matrix W.

While the naïve algorithm requiresO(N2T ) memory, our efficient matrix-

vector algorithm ensures that we need only O(N2) memory for calculating

the transform, which can result in a memory usage difference crucial for

being able to carry out the transform for long action sequences. Further-

more, due to reduced requirements on memory bandwidth, we have found

the algorithm to also be computationally faster than the conventional SGWT

approximation algorithm in practice.

5.3 Pyramid Pooling

Since wavelets have zero mean, taking the average of the coefficients does

not yield any information [95]. However, by applying a non-linearity (tak-

ing the absolute value) and then taking the mean, we can retain some useful

information about the signal. In order to cope with varying action sequence

length, we leverage a vector-valued pooling function p : Rt×DN(J+1) →
RDN(J+1) to create a feature vector z = p(C), where t is equal to the in-
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put matrix row count. The pooling function can for example be chosen as to

do either absolute max or mean pooling along the temporal axis as

pmax(C) =
[
max
t
|C(t, i)|

]
i=1,...,DN(J+1)

, (5.4)

pmean(C) =

[
1

T

T∑
t=1

|C(t, i)|
]
i=1,...,DN(J+1)

. (5.5)

In the case of absolute mean pooling, the resulting feature will encode the

average second order gradient of the graph signal for each dimension and

vertex, windowed by SGWT kernels.

Similar to previous research [60, 34, 101], we create a temporal pyramid

of coefficients for capturing the temporal order of actions. Let K denote

the maximum pyramid level. Then, the pooled feature vector at pyramid

level k ≤ K is defined as zk = [p(B1)T , . . . , p(B2k−1)T ]T , where {Bi} is

a set of non-intersecting block matrices dividing C uniformly so that C =

[BT
1 , . . . ,B

T
2k−1 ]T . The final feature vector z is then a concatenation of the

pyramid level vectors {zk}k=1,...,K .

5.4 PCA & SVM

Most natural signals are sparse [30]. If our graph signal between each time

step varies only sparsely (i.e. only a subset of the vertices have changed sig-

nal value), then most elements of z will become close to zero. We therefore

reduce the (2K − 1)N(J + 1)-dimensional z using PCA. After applying PCA

to z, we `2-normalize and finally classify each action using a standard SVM.

5.5 Late Fusion

We can combine the descriptors from skeleton-based and keypoint-based

graphs. Here, we consider late fusion by averaging the output from the SVM

decision functions d for an input depth map x as

f(x) =
1

2
dskeleton(x) +

1

2
dkeypoint(x) . (5.6)

We take care to normalize each decision function so that it has unit variance,

in order to give the contributions from each feature equal weight. While a
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convex combination of the decision functions could be explored [42], we

have found simple averaging to yield good enough results.

5.6 Feature Vector

The resulting feature descriptor encodes the spectral content of a sequence

of graphs, so we name it a spectral graph sequence (SGS). As computing the

SGWT approximation [37] in O(|E|+ J |V|) time is the most costly part of

the descriptor creation process, we have that for one action sequence, the

descriptor is computable in O(TN) time, treating parameters K,J constant.

Therefore, when N is small, such as for skeleton-based graphs, our descrip-

tor becomes essentially linear in the action sequence length, and more com-

putationally efficient than approaches that rely on solving heavy optimiza-

tion problems [60, 100].

5.7 Ring Structure

We note that if we apply our method to a task where the start and end posi-

tion of the sequence tends to be the same, then we can additionally connect

the first graph in the sequence together with the first one, in order to create

a ring structure. Indeed, it has been shown that the graph Fourier transform

on the graph Laplacian of a 1D ring graph produces an eigenbasis equal to

the basis of the discrete Fourier transform on the real line [120]. In our

experiments, we have found ring structure to help on applicable datasets.

In such conditions, the ring structure will not hinder signal smoothness, and

may actually provide additional information to the graph. Consider the case

where the start and end poses are identical. The graph signal on such a

graph with a ring structure will then be blind to where the action sequence

starts and ends 1. Thus, the ring structure is able to help with localization of

the action in the graph, as the action descriptor will no longer be biased on

the action starting on any specific frame in the time sequence. Note that if

a ring structure is used, then the algorithm in Fig. 5.3 needs to be modified

accordingly to ensure that the exactness of the calculation of (L − I)τ k−1

1We never assume any explicit order on the vertices of a graph.



69 5.8. INTERPRETATION AND EFFECT OF COEFFICIENTS AND EDGES

still holds true.

5.8 Interpretation and Effect of Coefficients and Edges

Unlike methods based on e.g. sparse coding [60] or deep learning [76], our

method allows for some direct interpretation of the effects of the descriptor.

In this section, we present some insights about the information captured by

the SGWT coefficients and the edges of our graph structure.

The normalized graph Laplacian is a difference operator that satisfies [89]

(Lf)(i) =
1√
di

∑
(vj ,vi)∈E

W(i, j)

(
f(i)√
di
− f(j)√

dj

)
. (5.7)

For our graph structure (5.1), this becomes

(Lf)(it) =
1√
dit

(
2

f(it)√
dit
− f(it−1)√

dit−1

− f(it+1)√
dit+1

)
+

1√
dit

∑
(vjt ,vit )∈E

exp(−dist(vit , vjt))

(
f(it)√
dit
− f(jt)√

djt

)
, (5.8)

where dit denotes the degree of vertex vit . This is the temporal second order

gradient of the signal plus the second order gradient between neighboring

interest points within the same frame, which we can denote as

(Lf)(it) = ∆2
temporal(it) + ∆2

local(it) . (5.9)

Therefore, since the SGWT is essentially a frequency-modulated graph Lapla-

cian matrix acting as an operator on a signal [37], the SGWT coefficients

capture second order information about the propagation of the signal. An-

other property of the SGWT coefficients can be seen by noting that due

to (5.2), the coefficient ψTtj ,if at scale tj and vertex i satisfies

ψTtj ,if =
N−1∑
`=0

g(tjλ`)
∑
j

u`(i)u`(j)f(j) (5.10)

=
∑
j

f(j)
N−1∑
`=0

g(tjλ`)u`(i)u`(j) . (5.11)
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Following Shuman et al. [89], if we assume that g is an order K polynomial

g(λ) =
∑K

k=0 ckλ
k, we can simplify (5.11) to

∑
j

f(j)
K∑
k=0

ck(Lk)(i, j) . (5.12)

Inserting (5.9) then leads to

c0f(i) +
K∑
k=1

ckLk−1(∆2
temporal + ∆2

local)(i)

= ∆̂2
temporal(i) + ∆̂2

local(i) ,

(5.13)

where ∆̂2(i) = 1
2c0f(i) +

∑K
k=1 ck(L

k−1∆2)(i) denotes the second order gra-

dient modulated by the kernel g(tj ·), That is, the SGWT coefficients de-

pend on vertices j in a weighted K-hop neighborhood of vertex i, since

(Lk)(i, j) = 0 if i, j are more than K hops apart [37]. If (Lk)(i, j) 6= 0, then

there exists an s-length path vi, vp1 , vp2 , . . . , vps−1 , vj between the vertices,

weighted by the edges along the path, which can be seen by explicit expan-

sion of the matrix power [37]. Using the approximate SGWT, the wavelet

kernel g becomes exactly an order K polynomial and the coefficients ck are

gotten from the K-degree Chebyshev approximation (see Section 3.3.1).

Consequently, doing absolute mean pooling on the SGWT coefficients

captures the quantity

1

T

∑
t

|∆̂2
temporal(it) + ∆̂2

local(it)| ≤

1

T

∑
t

(
|∆̂2

temporal(it)|+ |∆̂2
local(it)|

)
.

(5.14)

This shows that our method captures the average second-order information

of the graph signal along both temporal and local edges.

Another way of thinking about the interaction between local and tempo-

ral edges is to consider a numerical example with the scenario in Fig. 5.4.

In the figure, we have graphs corresponding to a time series of T = 3 graph

signals of two interest points. First, let us have a look at graph (a). Sup-

pose the signal on v1 increases over time, similar to v2. An example of

such a graph signal is f1 = [1, 2, 4, 1, 2, 4], where the three first compo-

nents belong to the first interest point and the rest belong to the second
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a)

v11 v12 v13

v21 v22 v23

b)

v11 v12 v13

v21 v22 v23

t

Figure 5.4: Graphs corresponding to a time sequence of T = 3 graph signals. (a)
Without local edges. (b) With local edges. See text for details.

one. Applying the combinatorial graph Laplacian matrix Ł(a) of graph (a)

as an operator to this signal reveals the second-order gradient information

Ł(a)f1 = [−1,−1, 2,−1,−1, 2]. Contrast this with a graph signal where v2

is constant: f2 = [1, 2, 4, 1, 1, 1]. Applying the graph Laplacian matrix as an

operator to this signal reveals Ł(a)f2 = [−1,−1, 2, 0, 0, 0]. Indeed, the infor-

mation about the acceleration of v1 is kept intact, despite v2 not changing.

Consider instead that we would want to know how v1 and v2 are chang-

ing together in a joint fashion. In graph (b), we have local edges connecting

v1 and v2. Applying the graph Laplacian to f1 gives the same result as before,

but applying it to f2 results in Ł(b)f2 = [−1, 0, 5, 0,−1,−3], which shows that

the change in v2 has affected v1 as well. Therefore, using both local and

temporal edges captures more information than just using temporal edges.

Of course, using the normalized graph Laplacian L is possible as well, al-

though the example becomes slightly less pedagogical due to the degree

normalization [89].

5.9 Summary

In this chapter, we have presented a framework for human action recogni-

tion from depth maps using graph signal processing techniques. Our pro-
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posed method represents an action as a graph and captures the relationship

between vertices over time using both local and temporal edges. We also

presented an efficient algorithm for calculating the approximate SGWT coef-

ficients that takes advantage of our graph’s block sparsity structure. Finally,

we performed analysis of the interpretation and effects of the system, show-

ing that our system captures second order information of the input graph

signal.



6
Experimental Evaluation

IN this chapter, the proposed method is evaluated on five publicly available

datasets: MSRAction3D [58], MSRActionPairs3D [72], UCF-Kinect [31],

N-UCLA Multiview Action3D [103] and Online RGBD Action [113]. Accura-

cies of previous work are obtained from literature. In addition to the exper-

iments, the end of the chapter provides some analysis of the parameters of

the method.

MSRAction3D is a standard benchmark dataset for 3D action recognition,

which has remained a challenging dataset due to high inter-class similarities

between actions. For testing the ability of our method to capture temporal

directionality of actions, we turn to the MSRActionPairs3D dataset, which

consists of pairs of actions that differ only in the direction that the action is

performed. UCF-Kinect is a dataset that contains actions suitable for interac-

tive movements used in games. The N-UCLA Multiview Action3D dataset is

quite different from the previous three, as it was captured with three differ-

ent camera angles, which drastically changes the appearance of the actions,

requiring the usage of features that are invariant across different views. Fi-

nally, the Online RGBD Action dataset aims to evaluate human-object in-

teraction, and contains several action types that differ in the type of object

interacted with.

Experiments on these datasets using both skeleton-based and keypoint-

based graphs show the efficiency of our method. In particular, skeleton-

73



CHAPTER 6. EXPERIMENTAL EVALUATION 74

based graphs work well for interactive actions due to the semantic label-

ing of the skeleton joints to body parts, whereas keypoint-based graphs

show their strength in capturing complementary information to the skele-

ton joints, as it provides a feature that captures the spatio-temporal shape of

the depth map point cloud. The details of our experiments are described in

the sections that follow.

6.1 Experimental Settings

The PCA dimension is set so that 98% of the variance explained by the prin-

cipal components is retained. For the SVM, we use a linear or radial basis

function kernel. Both absolute max (5.4) and mean (5.5) pooling are tried.

The choice of kernel, pyramid level K, and the number of spectral graph

wavelet scales J is decided by cross-validation on the training set of each

dataset.

Due to the lack of a publicly available implementation of STKP, we care-

fully implemented the method in C++. For simplicity, we use a fixed radius r

of 10cm for the spatio-temporal support volume Ω(p), which is large enough

to capture e.g. hand shapes but still small enough to capture fine detail.

As the parameter settings of the STKP detector are not disclosed, we

here propose a set of parameter settings suitable for our purpose. For the

non-maximum suppression step in STKP detection, two points are to be

pruned if their volume intersection ratio ρ is larger than 0.5. This value

is inspired by common intersection ratios used in non-maximum suppres-

sion for bounding boxes [97]. This gives us σr = 0.7 using the relation

4 cos[(2π − arccos(ρ − 1))/3]. By a similar argument, we want temporal

overlap to be 0.5, so στ = 0.5. We detect L = 400 keypoints per action se-

quence, which we found empirically results in a good balance between the

number of keypoints detected, and a low number of noisy keypoints. For

keypoint-based graphs, we use N = 1500 codewords, which was selected by

cross-validation.
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Figure 6.1: Examples from the MSRAction3D dataset of frontal view actions “ham-
mer” (left), “draw x” (middle) and “draw circle” (right).

Table 6.1: Recognition performance on the MSRAction3D dataset.

Method Accuracy (%)

DL-GSGC [60] 96.7

MMTW [100] 92.7

MP [114] 91.7

SGS(pmean, skeleton-view-dep.) 91.4

HOD [34] 90.2

HON4D [72] 88.9

AE [101] 88.2

SGS(pmax, skeleton-view-dep.) 86.3

SGS(pmean, skeleton-view-inv.) 83.5

SSS [118] 81.7

SGS(pmax, skeleton-view-inv.) 79.4

SGS(pmean, keypoint) 73.9

Canonical poses [31] 65.7

HMM [61] 63.0

Motion Templates + DTW [65] 54.0
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Table 6.2: Recognition performance on the MSRAction3D dataset for the three different subject configurations on the three action sets as in
Li et al.. [58] Each cell shows accuracy (%). Test 1 uses the first 1/3 samples for training and the rest for testing. Test 2 uses the
first 2/3 samples for training and the rest for testing. The cross-subject test follows the same setup as in Table 6.1.

Method
Test 1 Test 2 Cross-subject test

AS1 AS2 AS3 Avg. AS1 AS2 AS3 Avg. AS1 AS2 AS3 Avg.

DL-GSGC [60] 100 98.7 100 99.6 100 98.7 100 99.6 97.2 95.5 99.1 97.3

SGS(pmax, skeleton-view-dep.) 94.5 94.8 96.6 95.3 94.6 98.7 97.3 96.9 89.3 95.0 100 94.8

SGS(pmean, skeleton-view-dep.) 96.6 90.8 98.0 95.1 98.6 96.0 98.6 97.7 88.4 91.6 100 93.3

DMM-HOG [111] 97.3 92.2 98.0 95.8 98.7 94.7 98.7 97.4 96.2 84.1 94.6 91.6

STOP [99] 98.2 94.8 97.4 96.8 99.1 97.0 98.7 98.3 84.7 81.3 88.4 84.8

Eigenjoints [110] 94.7 95.4 97.3 95.8 97.3 98.7 97.3 97.8 74.5 76.1 96.4 82.3

HOJ3D [108] 98.5 96.6 93.5 96.2 98.6 97.9 94.9 97.2 88.0 85.5 63.5 79.0

Bag of 3D points [58] 89.5 89.0 96.3 91.6 93.4 92.9 96.3 94.2 72.9 71.9 79.2 74.7
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Figure 6.2: Confusion matrix for using our method on the MSRAction3D dataset.
Each cell shows classification accuracy (%) from white (0) to black
(100) in the cross-subject setting. The average accuracy is 91.4%.

6.2 Datasets and Results

6.2.1 MSRAction3D

The MSRAction3D dataset [58] consists of 20 actions that are being per-

formed by 10 subjects. Each action is repeated by each subject 1 − 3 times,

resulting in a dataset of 557 depth videos. Further, each action repetition is

not necessarily performed in the same manner, which increases intra-class

variance of the actions. The challenge of this dataset is that some action

classes are quite spatially similar. Examples of such actions are “draw x” and

“draw circle”. Thus, a method for tackling this dataset needs to be able to
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both handle intra-class variance and inter-class similarity for successful ac-

tion recognition. Ever since the release of this dataset in 2010, this dataset

has emerged as a standard benchmark dataset for evaluating methods for 3D

human action recognition, with many results available from previous action

recognition approaches. Although this dataset contains both discriminative

depth maps and tracked 3D skeletons, the dataset has remained challeng-

ing due to both large amounts of noise in the depth maps and skeletons, as

well as due to the mixture of intra-class variance and inter-class similarity as

mentioned above. Our experiments are run similarly to previous research in

the cross-subject setting, by using samples from half of the subjects (i.e. sub-

jects 1, 2, 3, 4, 5) for training, and the rest for testing. In this dataset, there

are some frame where the skeleton tracking fails. This causes the skeleton

joints in such frames to be incorrectly placed at the origin of the 3D coor-

dinate system. We repair such invalid values by using standard inter-frame

linear interpolation. Coordinates are determined to be invalid only when the

coordinates (x, y, z) = (0, 0, 0), which is what is output by the Kinect when

the subject is either closer than 40 cm, or in case no depth value is able to

be measured (e.g. due to occlusions or specular surfaces).

The best parameters were K = 4 and J = 50. The feature dimension

was reduced by PCA from 45900 to 152. The best results were gotten us-

ing view-dependent skeleton-based graphs and can be seen in Table 6.1. The

confusion matrix is shown in Fig. 6.2. This dataset contains actions all cap-

tured from the frontal view, so view-invariance is seen to actually harm the

performance, as the rotation cancellation can remove some information vi-

tal for classification (consider “side boxing” vs. “forward punch”). From the

results, we can see that although both being effective, mean pooling is per-

forming slightly better than max pooling. Our SGS descriptor worked best

with K = 4, but we note that even with K = 1 (no temporal pyramid),

we got 83.5% recognition accuracy. Note that due to some action sequences

being too short in the dataset, we could not test our descriptor with pa-

rameter K > 4. Our method achieves perfect classification accuracy for

most actions, and is also able to clearly distinguish between actions that are

spatially similar, such as “draw x/circle” (see Fig. 6.1). Some error modes

include our method mistaking the action “hammer” for “draw x”. We believe

that the reason is both of these two classes being characterized by similar
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accelerating movement directions along the 3D space coordinate axes. The

SGS descriptor fails to distinguish these actions sometimes because while it

is able to capture different ranges of accelerations, the crude structure of the

temporal pyramid makes it difficult to capture the fine temporal order that

describes the occurrence of these accelerations. See Figures 6.3, 6.4 and 6.5

for examples of successful predictions and mistakes. We can conclude that

classes such as “high throw” and “high arm wave” are very similar spatially.

This makes discrimination between them using only skeleton information

very challenging, as we do not take into account information such as the

shape of the hand, which should differ between the two actions.

Overall, our method results in performance that is comparable to most

previous approaches for the task of frontal-view action recognition. Al-

though, we note that our method is unable to achieve the same performance

as the high-performing DL-GSGC [60] method, which is based on regular-

ized sparse coding. Still, DL-GSGC requires finding the solution to a heavy

optimization problem, while our method enjoys fast computational speed

that is linear in the sequence length. A difference between our method and

sparse coding-based methods is that while sparse coding learns the rela-

tions between the interest points from data, our approach uses the explicit

graph structure for describing this relationship. An interesting future direc-

tion would be to close this gap by learning the graph structure from data.

Indeed, there has recently been some initial work in this direction [28]. Fur-

ther, DL-GSGC is designed to handle spatially similarity in a discriminant

manner, while our method is unable to handle such similarities with the

standard SGWT kernel, as we discussed above. A possible remedy would be

to attempt learning SGWT kernels from the graph signals in a discriminant

manner [93].

Compared to MMTW [100], our method falls just short in performance.

However, our method works well with a temporal pyramid that performs a

simple uniform division along the temporal axis, while MMTW discrimina-

tively learns a non-uniform warping template for each class. Therefore, it is

reasonable to think that the warping templates learned by MMTW are com-

plementary to our method, and could be a target for exploration in future

work.

Using SGS based on spatio-temporal keypoints (J = 1) did not yield
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a competitive result on this dataset since classification of actions in this

dataset does not require the knowledge of human-object interaction. Indeed,

we found that doing late fusion of the skeleton-based and keypoints-based

graphs did not improve performance. Additionally, since MSRAction3D is a

frontal-view dataset, the view-invariant property of the STKPs can actually

hurt performance, which was shown to happen with view-invariant skeleton

graphs. We conclude that for this dataset, the information about the spatial

locations of semantically labeled body parts provides more discriminative in-

formation than the spatio-temporal shape of the point cloud. Note that while

methods such as HON4D [72] perform well using only spatio-temporal point

cloud data, they represent their feature using a spatial histogram, which im-

plicitly encodes the spatial locations.

Previous approaches to 3D human action recognition have also reported

results on a different configuration of the MSRAction3D dataset. Three ac-

tion sets were defined by Li et al. [58] so that actions that are visually similar

are grouped together. The action sets aim to test the recognition perfor-

mance when we can only train on a small set of visually similar actions.

We conducted experiments using this setup, and the results are listed in Ta-

ble 6.2. From the results, we can see that contrary to the evaluation on the

full dataset, max pooling is seen to perform a bit better than mean pool-

ing. This indicates that the choice of mean or max pooling might depend on

datasets. In the action set scenario we have fewer classes, and our method

results in performance that is closer to DL-GSGC, while enjoying faster com-

putational speed.

Ablative Analysis

In order to illustrate the effect of each part of the proposed method, we per-

form an ablative analysis. Basically, our pipeline consists of the following

parts: relative 3D joint positions, SGWT, temporal pyramid pooling, PCA,

and SVM. We illustrate the significance of each part in Table 6.3, where sev-

eral parts of the pipeline have been disabled. First, we disable PCA, and

train an SVM directly on the high-dimensional pooled SGWT coefficients.

This causes a slight decrease in performance, which supports our argument

in Sec. 5.4 for doing dimensionality reduction. We also note that an added
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Table 6.3: Ablative analysis of performance on the MSRAction3D dataset.

Method Accuracy (%)

SGS(pmean, skeleton-view-dep.) 91.4

SGS(pmean, skeleton-view-dep.), no PCA 88.3

SGS(pmean, skeleton-view-dep.), no local edges 88.0

SGS(pmean, skeleton-view-dep.), no ring graph 87.6

3D joints + DTW 77.7

3D joints + SGWT + DTW 74.9

SGS(pmean, skeleton-view-dep.), no SGWT 74.2

bonus of PCA is that the SVM training time is significantly reduced. Second,

if we set the local edges to zero, we can see that we get inferior performance,

illustrating the effect of the spatio-temporal graph structure. Third, the table

also shows that connecting the last skeleton with the first, creating a “ring

graph”, provides a slight improvement in performance, as argued in Sec. 5.7.

Fourth, we can see that if we disable the SGWT, by applying temporal pyra-

mid pooling directly to the raw 3D coordinates, we get a large decrease in

performance. This is because the SGWT captures second-order information

important for several action classes consisting of accelerating movement, as

analyzed in Sec. 5.8.

Finally, we conduct an experiment where we apply dynamic time warp-

ing (DTW) [81] to the raw relative skeleton joint 3D coordinates and per-

form classification by finding the nearest neighbor to each test sample in

terms of DTW measure. DTW has been popular with previous work in this

field, and is a standard benchmark [101, 65]. Wang et al. [101] reported

that while DTW is sensitive to noise, temporal pooling is more robust against

noise and also temporal misalignment. DTW therefore makes an interesting

baseline method for seeing the effects of temporal pooling on the SGWT co-

efficients. We note here that while stochastic variants of DTW have been

proposed [66], estimation of the parameters requires a large number of

available frames [51], and we here only evaluate the deterministic version.

The frame-to-frame distance used for comparing the sequence of graphs
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with DTW is the sum of the Euclidean distance between the corresponding

skeleton joint 3D positions (Eq. (4.1)), and the optimal warping function be-

tween the sequences is found by dynamic programming [81]. By the results

in the table, we can conclude that while this DTW-based approach is able to

capture some characteristics for action classification, it inherently becomes

a pose-based approach that will ignore higher-order characteristics such as

velocity and acceleration. Still, we can see from the table that DTW is able to

perform better than the temporal pyramid on the raw 3D coordinates. This

is is due to DTW being able to handle non-linear expansions and contrac-

tions of the action (i.e. speed variation). The temporal pyramid is unable

to do this, and will only be able to capture linear speed variations, as the

temporal bins used for pooling are stretched uniformly in a linear manner.

The proposed pipeline does however handle speed variations in a different

manner: the SGWT creates a multi-scale decomposition of the graph signal,

so different speeds will correspond to different scales of the decomposed

signal.

It is also interesting to note that the positive effect that the SGWT co-

efficients have on the temporal pyramid pooling step does not generalize

to DTW, as can be seen in the table by doing DTW on the SGWT coeffi-

cients with J = 50 scales. This is probably because DTW uses Euclidean

distance, which does not work well in the high-dimensional space created

by the SGWT [8].

Note also that the proposed pipeline has another advantage over DTW.

Since DTW can only stretch the signal, it is unable to distinguish periodic

actions when the number of periods differ [56]. One such action is waving

your hand. It does not matter how many times you wave the hand; the

action remains unchanged. Since the SGWT basis is wavelike with respect

to the graph structure [37], the SGWT coefficients will be invariant to the

exact number of repeats of the waving motion, while the DTW measure will

differ in this case.

In summary, we can conclude by the ablative analysis that each step in

the pipeline is effective and important for achieving the full performance of

the SGS descriptor, where the SGWT accounts for most of the improvement.
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hammer --> hammer

hammer --> hammer

hammer --> draw x

hammer --> draw x

hammer (train)

draw x (train)

Figure 6.3: Example skeleton sequences and predictions on the MSRAction3D
dataset for the action “hammer” (notation: ground-truth -->

prediction). Rows 1,2 show successful predictions. Rows 3,4 show
mistakes (red). The last two rows (dashed) show training examples for
the two actions. Note the spatial similarity between the actions.
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hand catch --> hand catch

hand catch --> hand catch

hand catch --> draw circle

hand catch --> draw circle

hand catch (train)

draw circle (train)

Figure 6.4: Example skeleton sequences and predictions on the MSRAction3D
dataset for the action “hand catch” (notation: ground-truth -->

prediction). Rows 1,2 show successful predictions. Rows 3,4 show
mistakes (red). The last two rows (dashed) show training examples for
the two actions. Note the spatial similarity between the actions.
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high throw --> high throw

high throw --> high throw

high throw --> high arm wave

high throw --> high arm wave

high throw (train)

high arm wave (train)

Figure 6.5: Example skeleton sequences and predictions on the MSRAction3D
dataset for the action “high throw” (notation: ground-truth -->

prediction). Rows 1,2 show successful predictions. Rows 3,4 show
mistakes (red). The last two rows (dashed) show training examples for
the two actions. Note the spatial similarity between the actions.
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Table 6.4: Recognition performance on the MSRActionPairs3D dataset.

Method Accuracy (%)

HON4D [72] 96.7

SGS(pmean, skeleton-view-dep.) 96.0

SGS(pmax, skeleton-view-dep.) 93.1

AE [101] 82.2

DMM-HOG [111] 66.1

6.2.2 MSRActionPairs3D

The MSRActionPairs3D dataset [72] was created for the special purpose of

evaluating the capability of action recognition methods to handle differenti-

ation of motion directionality. The dataset consists pairs of actions that are

visually similar in motion, but differ only in directionality. Examples of such

actions are “pick up box” and “put down box”. The actions in the dataset

were performed three times each by ten subjects. It contains six action pairs

in total. Similar to previous research, we evaluate our method in the cross-

subject setting. The first half of the subjects are used for training, and the

rest for testing. As this is a frontal-view dataset, we only evaluate SGS based

on view-dependent skeleton graphs.

The best parameters were K = 5 and J = 1 (decided by 5-fold cross-

validation). The feature dimension was reduced by PCA from 3720 to 80.

Table 6.4 lists our results on MSRActionPairs3D. Comparing to HON4D [72],

our method achieves comparable performance, despite using only skeleton

information. Moreover, our approach is able to recognize the temporal direc-

tionality of actions using only a simple temporal pyramid (uniform temporal

quantization), while HON4D divides the 4D space into a data-driven dis-

criminative non-uniform quantization. To illustrate the importance of the

temporal pyramid, we note that our proposed approach gets accuracy 56.6%

with K = 1 and 86.3% with K = 2. This confirms that for recognizing mo-

tion directionality, the effect of using the temporal pyramid pooling scheme

is important.
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Table 6.5: Recognition performance on the UCF-Kinect dataset.

Method Accuracy (%)

SGS(pmean, skeleton-view-dep.) 98.8

SGS(pmax, skeleton-view-dep.) 98.8

MP [114] 98.5

Canonical poses [31] 95.9

6.2.3 UCF-Kinect

The UCF-Kinect dataset [31] contains pre-segmented actions suitable for

games. Examples of included actions are “climb ladder”, “leap” and “twist
left”. In total, the dataset contains 1280 action sequences, which are divided

into 16 action classes. The dataset contains 16 subjects, who perform each

action five times each. Unlike the MSRAction3D and MSRActionPairs3D

datasets, UCF-Kinect contains skeletons with only 15 joints. The center hip

joint that we use for calculating relative skeleton joint positions is missing.

Therefore, we approximate the center hip joint by taking the average 3D

position of the left and right hip joints. Our experimental evaluation is run

as in the work of Ellis et al. [31], where they report the average accuracy

of 4-fold cross-validation. As this is a frontal-view dataset, we only evaluate

SGS based on view-dependent skeleton graphs.

The best parameters were K = 3 and J = 43. The feature dimension

was reduced by PCA from 18480 to 127. Table 6.5 shows our results on UCF-

Kinect. Compared to the previous approach based on canonical poses [31],

we can see that our proposed method achieves higher performance. Our

method also performs slightly better than MP [114]. The experimental re-

sults indicate that our proposed approach is capable of recognizing human

actions related to games, where all tracked skeleton joints of the body are

used for defining the action.

6.2.4 N-UCLA Multiview Action3D

The N-UCLA Multiview Action3D dataset [103] aims to capture daily actions

performed by humans from multiple camera angles, such as “throw trash”,
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View 1 View 2 View 3

Figure 6.6: Cross-view examples of the action “pick up with one hand” from three
different views in the N-UCLA Multiview Action3D dataset.

Table 6.6: Recognition performance on the N-UCLA Multiview Action3D dataset.
The plus sign indicates late fusion.

Method Accuracy (%)

SGS(pmax, skel.-view-inv.+keypoint) 90.8

SGS(pmax, skel.-view-inv.) 87.4

SGS(pmean, skel.-view-inv.) 84.4

SGS(pmean, keypoint) 77.7

SGS(pmax, keypoint) 77.3

NKTM [76] 75.8

SGS(pmax, skel.-view-dep.) 74.7

AOG [103] 73.3

nCTE [36] 68.6

SGS(pmean, skel.-view-dep.) 64.9

CVP [117] 60.6

DVV [57] 58.5

Hankelets [55] 45.2

“walk around”, “stand up” or “carry”. Ten subjects were instructed to per-

form 10 actions. The dataset was captured simultaneously by three Kinect

cameras and contains 1493 action sequences in total (see also Fig. 6.6). Fur-

ther, several actions include interaction with objects, such as “drop trash”
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Table 6.7: Ablative analysis of performance on the N-UCLA Multiview Action3D
dataset.

Method Accuracy (%)

SGS(pmean, keypoint) 77.7

SGS(pmean, keypoint), no local edges 75.4

SGS(pmean, keypoint), no SGWT 73.6

STKP + BoW vector 68.5
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Figure 6.7: Confusion matrix for using our method on the N-UCLA Multiview Ac-
tion3D dataset. Each cell shows classification accuracy (%) from white
(0) to black (100) in the cross-view setting. The average accuracy is
90.8%.
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and “carry”. This dataset is very challenging not only due to each action

being captured from different views; most actions also include walking and

some actions are very similar, such as “pick up with one hand” and “pick up
with two hands”. Another challenging action is “drop trash”, which includes

some sequences with extremely subtle motion that could be easily mistaken

for “walk around”.

For the skeleton-based graph, we apply our proposed rotation scheme

to make the feature view-invariant. The keypoint-based graph is also well-

suited for cross-view action recognition as STKPs are view-invariant, cap-

tures interaction with objects, and the BoW graph signal is largely unaf-

fected by viewpoint changes (up to occlusions). Our experiments are run

in the cross-view setting, with the first two views used for training, and the

third one for testing.

Results can be seen in Table 6.6. Accuracies of previous work are due to

results by Rahmani et al. [76]. The confusion matrix is shown in Fig. 6.7.

The best parameters were K = 4 and J = 1 for keypoint-based graphs and

K = 4 and J = 11 for skeleton-based graphs. PCA reduced the feature

dimension for keypoint-based graphs from 45000 to 863 and from 10800 to

513 for skeleton-based graphs. We achieve good results despite the dataset

containing some labeling noise (mislabeled samples) and noisy subject seg-

mentations. Our method performs better than NKTM [76], which requires

a large labeled auxiliary motion-capture dataset with about 26000 samples

for training a deep neural network. Our method, on the other hand, is able

to represent view-invariant actions using only the raw point cloud training

data.

On this dataset, even keypoint-based graphs achieve state-of-the-art re-

sults, but we achieve ever better performance with view-independent skele-

ton graphs. Finally, by combining the two graph types through late fusion,

we achieve a large increase in performance, advancing the state-of-the-art

results on this dataset by 19.8% compared to NKTM. We believe this in-

crease in accuracy is due to the view-invariant graphs used by our method

being solely depth map-based, in contrast to AOG and NKTM, which make

use of skeleton information during training, but apply their method only

on RGB images during testing. Indeed, depth-map methods do in general

outperform RGB-based methods, since they alleviate the problems caused
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by illumination variations and background clutter [38]. Figures 6.8, 6.9

and 6.10 show some examples of correct predictions and mistakes. We can

see that the actions look quite different from the different view angles, which

makes it challenging to generalize the notion of each action across the avail-

able views. Especially, note the difference between the visual appearance of

this dataset and MSRAction3D (e.g. Fig. 6.3). The actions in N-UCLA Mul-

tiview Action3D are taken from a wide range of views, while the ones in

MSRAction3D are always taken from a frontal angle. Further, the difference

between certain actions are very subtle, such as “walk around” and “drop
trash”.

To illustrate the power of our proposed framework, we perform ablative

analysis of the keypoint-based graphs, showing the performance of each part

of our system in Table 6.7. In the table, BoW vector refers to training an SVM

with a histogram intersection kernel on the BoW vector representation of the

detected STKPs (this is the same setup as in Rahmani et al. [78], but they do

not test on a public dataset, so a direct comparison is not possible). As can

be seen in the table, each part of the system gives a significant improvement

over the baseline of using just a BoW vector representation of the STKPs.

The difference in performance between the BoW vector representation and

our keypoint-based SGS representation is statistically significant (p < 3·10−5

using McNemar’s test [63]). We can also see a drop in accuracy when re-

moving the SGWT coefficients from the pipeline, and just applying a pyramid

pooling directly to the graph signal of the keypoint graph. Furthermore, the

performance deteriorates to 75.4% when setting all local edge weights to

zero, which shows that local edges capture additional information relevant

for discriminating between action classes and, in this case, achieving a better

result than NKTM.

6.2.5 Online RGBD Action

The Online RGBD Action dataset [113] aims to capture various daily life

actions, with focus on human-object interaction. It contains several actions

that are similar in motion, but only differ in object appearance, such as

“reading phone (sending SMS)” and “reading book”. In total, the dataset

contains seven action classes, and is divided into several subsets. Subset
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pick up with one hand --> pick up with one hand

pick up with one hand --> pick up with one hand

pick up with one hand --> drop trash

pick up with one hand --> drop trash

pick up with one hand (train)

drop trash (train)

Figure 6.8: Example skeleton sequences and predictions on the N-UCLA Multiview
Action3D dataset for the action “pick up with one hand” (notation:
ground-truth --> prediction). Rows 1,2 show successful predic-
tions. Rows 3,4 show mistakes (red). The last two rows (dashed) show
training examples for the two actions.
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walk around--> walk around

walk around--> walk around

walk around--> drop trash

walk around--> drop trash

walk around (train)

drop trash (train)

Figure 6.9: Example skeleton sequences and predictions on the N-UCLA Mul-
tiview Action3D dataset for the action “walk around” (notation:
ground-truth --> prediction). Rows 1,2 show successful predic-
tions. Rows 3,4 show mistakes (red). The last two rows (dashed) show
training examples for the two actions.
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carry--> carry

carry--> carry

carry--> throw

carry--> throw

carry (train)

throw (train)

Figure 6.10: Example skeleton sequences and predictions on the N-UCLA Multi-
view Action3D dataset for the action “carry” (notation: ground-truth
--> prediction). Rows 1,2 show successful predictions. Rows 3,4
show mistakes (red). The last two rows (dashed) show training ex-
amples for the two actions.
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Table 6.8: Recognition performance on the Online RGBD Action dataset in the
SameEnv setting. The plus sign indicates late fusion.

Method Accuracy (%)

SGS(pmax, skel.-view-dep.+keypoint) 72.3

Orderlet mining [113] 71.4

AE [101] 66.0

SGS(pmax, keypoint) 64.7

DSTIP+DCSF [107] 61.7

SGS(pmax, skel.-view-dep.) 59.4

HOSM [26] 49.5

Eigenjoints [110] 49.1

MP [114] 38.4

Table 6.9: Recognition performance on the Online RGBD Action dataset in the
CrossEnv setting. The plus sign indicates late fusion.

Method Accuracy (%)

Orderlet mining [113] 66.1

AE [101] 59.8

SGS(pmax, skel.-view-dep.+keypoint) 57.1

SGS(pmax, skel.-view-dep.) 46.4

HOSM [26] 50.9

SGS(pmax, keypoint) 42.0

Eigenjoints [110] 35.7

MP [114] 28.5

DSTIP+DCSF [107] 21.5

S1 contains 8 subjects performing each of the seven actions twice, yielding

112 action sequences. Subset S2 is constructed in a similar manner, but

contains 8 new subjects. Finally, subset S3 follows the same setup, with 8

new subjects, but was recorded in a different environment from S1 and S2,

which means that it can be used for a cross-environment evaluation. This
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dataset is therefore useful for evaluating the ability of an action recognition

method to distinguish between different types of human-object interaction.

We follow the two experimental configurations used by Yu et al. [113]:

SameEnv and CrossEnv. SameEnv reports the two-fold cross-validation ac-

curacy of S1 and S2, while CrossEnv trains on S1 ∪ S2 and tests on S3.

For simplicity, we evaluate only max pooling and view-dependent skeleton

graphs for this experiment. The results are shown in Tables 6.8 and 6.9.

Our proposed method achieves state-of-the-art results for human-object

interaction for the SameEnv setting, and slightly worse results for the CrossEnv

setting. This is despite that our method is designed for actions defined

largely by movement, which is not the case for actions such as “reading
phone”, where there is very little movement close to the object of inter-

est and will not be captured by the STKPs in our keypoint-based graph.

We can also see that the skeletons and keypoints capture complementary

information, where we get the best results by late fusion. While the or-

derlet mining method [113] generalizes slightly better across environments

when doing the CrossEnv evaluation, we can see that our method is also

able to retain reasonable performance. This is not true for methods such as

DSTIP+DCSF [107], which works well in the SameEnv setting, but fails to

generalize to new environments, as can be seen in Table 6.9.

We further note that Yu et al. [113], similar to us, achieve their best per-

formance of 71.4% accuracy when using both object and skeleton features.

They report that when using only their object feature, Local Occupancy Pat-

tern (LOP), they get 46.4% accuracy, while our proposed keypoint-based

graphs achieves 64.7%. This is probably due to STKPs capturing the spatio-

temporal shape of the point cloud, while LOPs only capture spatial 3D shape

information [101].

6.3 Quality of the Estimated Up Vector

For achieving cross-view action recognition for skeleton-based graphs, our

method relies on the rotation cancellation scheme presented in Sec. 4.2.1.

One concern is that the rotation cancellation is largely determined by the

estimated up vector vup in (4.2). In this section, we briefly investigate the

robustness of the up vector estimates for different action classes in the N-
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(a) “pick up with one hand”, view 1

(b) “pick up with one hand”, view 2

(c) “pick up with one hand”, view 3

(d) “pick up with two hands”, view 1

(e) “pick up with two hands”, view 2

(f) “pick up with two hands”, view 3

Figure 6.11: Visualization of estimated up vectors (blue arrow) on example frames
from the N-UCLA Multiview Action3D dataset. Best viewed in color.

UCLA Multiview Action3D dataset. Essentially, the up vector creation pro-

cess using the marginal median is based on the assumption that the subject

will stand up-right in most of the frames in the action sequence. For some

action classes, however, this might not hold true. Such examples are “pick
up with one hand” and “pick up with two hands”. Visualizations of estimated

up vectors are shown in Fig. 6.11 and 6.12. We can see that while the es-

timated up vector turns out quite sensible for most actions, there is indeed

some trouble with action classes where the subject is bending down for an
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(a) “sit down”, view 1

(b) “sit down”, view 2

(c) “sit down”, view 3

(d) “carry”, view 1

(e) “carry”, view 2

(f) “carry”, view 3

Figure 6.12: Visualization of estimated up vectors (blue arrow) on example frames
from the N-UCLA Multiview Action3D dataset (continued). Best
viewed in color.

extended amount of time. By looking at the example frames in the figure,

one might suggest that the up vector estimate should be taken from the be-

ginning or end of the action sequence, as there the subject always seems

to be standing up right. We argue, however, that such an approach is not

general enough, and is merely an exercise of overfitting on this particular

dataset. This approach would fail in a real-world scenario, where the sub-

ject might be taking any possible pose configuration at the boundaries of the
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segmented sequence.

Nevertheless, despite the sometimes faulty up vector estimates for the

action “pick up with two hands”, we can see that our method is able to still

recognize this class with 98% accuracy, as was shown in Fig. 6.7, and the up

vector is estimated in a sensible way for most other action classes.

Essentially, we can conclude that the up-vector estimation works reason-

ably well given the assumption that most of the frames contain the subject

standing straight up. Note that this also works when the subject is sitting

straight up on a chair, as seen in e.g. Fig. 6.12c. For action sequences where

this assumption does not hold, such as in Fig. 6.11b and 6.11c, the esti-

mated vector becomes of lower quality, which is an inherent weakness of

the current method, and should be investigated in future work.

6.4 Keypoint Locations

For detection of human-object interaction, it is crucial that the STKPs in our

keypoint-based graph are detected in close proximity to objects. Recall that

each STKP captures information about the spatio-temporal shape of the sur-

rounding point cloud by using a sphere with radius r that is centered at the

STKP. In this section, we investigate the number of STKPs that are overlap-

ping with the ground-truth rectangular object bounding boxes in the Online

RGBD Action dataset. The proportion of overlapping STKPs can be seen in

Fig. 6.13. Qualitative examples on aggregated point clouds are shown in

Fig. 6.14.

We can see that “drinking” has decent overlap since the motion in the

video often involves moving a water bottle between a table and the subject’s

mouth, which generates high quality STKPs close to the object (the water

bottle). Similarly, “reading book” has high overlap since most of the motion

in the video happens when turning book pages. On the contrary, “reading
phone” has slightly lower overlap since most of the motion in the video is

really fine motion, used for navigating the cellphone with the subject’s fin-

gers. This small motion causes the STKP candidate’s quality score to become

small, which causes them to be pruned as noise.

Nevertheless, we can conclude that a suitably large number of STKPs are

detected at locations relevant for human-object detection, which was also
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Figure 6.13: The percentage of detected STKPs in the subset S1 ∪ S2 of the Online
RGBD Action dataset, that overlap with ground-truth bounding boxes
for each action class. The grand mean is 44.95%.

verified by the experimental results in Table 6.8.

6.5 Parameter Analysis

This section analyses the effect of the parameters of our method. The num-

ber of wavelet scales J for the MSRAction3D dataset can be seen in Fig. 6.15,

and for the N-UCLA Multiview Action3D dataset in Fig. 6.17 and 6.19. Note

that due to the increased graph size for keypoint-based graphs, we cannot

test as many wavelet scales as for skeleton-based graphs.

Perhaps surprisingly, we can see in Fig. 6.19 that on the N-UCLA Multi-

view Action3D dataset, skipping the SGWT and doing max pooling of the

view-invariant relative joint positions works equally well as utilizing the

SGWT. We believe this is due to max pooling capturing a set of key poses

using the temporal pyramid that provide enough information for classifying
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(a) “Drinking”. 43.97% of detected STKPs are overlapping with the water
bottle.

(b) “Reading book”. 89.00% of detected STKPs are overlapping with the
book.

Figure 6.14: Visualization of detected STKP locations (red) and ground truth object
bounding boxes (blue) on aggregated point clouds from the Online
RGBD Action dataset. Best viewed in color.



CHAPTER 6. EXPERIMENTAL EVALUATION 102

0 20 40 60 80 100

Number of scales J

75

80

85

90
A

cc
ur

ac
y

Figure 6.15: Test set accuracy as a function of the number of wavelet scales J on
the MSRAction3D dataset using skeleton-based graphs. The dashed
line shows accuracy without using the SGWT.
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Figure 6.16: Test set accuracy as a function of the number of pyramid levels K on
the MSRAction3D dataset using skeleton-based graphs.
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Figure 6.17: Test set accuracy as a function of the number of wavelet scales J on
the N-UCLA Multiview Action3D dataset using keypoint-based graphs.
The dashed line shows accuracy without using the SGWT.
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Figure 6.18: Test set accuracy as a function of the number of pyramid levels K on
the N-UCLA Multiview Action3D dataset using keypoint-based graphs.
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Figure 6.19: Test set accuracy as a function of the number of wavelet scales J on
the N-UCLA Multiview Action3D dataset using skeleton-based graphs.
The dashed line shows accuracy without using the SGWT.
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Figure 6.20: Test set accuracy as a function of the number of pyramid levels K on
the N-UCLA Multiview Action3D dataset using skeleton-based graphs.
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the actions in this dataset. This does not hold for absolute mean pooling,

which gets 82.4% without the SGWT. Note that the rotation cancellation

process is very important for the max pooling performance on this dataset,

as we get 66.2% accuracy if we use view-dependent skeleton graphs with-

out the SGWT, in which case using the SGWT gives a better result. Fine-

grained knowledge of acceleration is in this dataset not as important as for

the skeletons in MSRAction3D, which can be seen by an increasing number

of wavelet scales J causing decreasing performance. We can also see that for

small J , we get degraded performance, which indicates that low-frequency

information alone cannot capture enough information, as small J attenuates

high frequencies [37]. For MSRAction3D, however, tuning J is important for

good performance, as the dataset contains many spatially similar actions.

For keypoint-based graphs, we can see that a small J is better. A low

number of wavelet scales focuses the descriptor on low-frequency informa-

tion. Since the accuracy does not change much with increasing number of

scales on N-UCLA Multiview Action3D, this indicates that high-frequency in-

formation is not important for recognizing the actions in the dataset. Indeed,

if the dataset does not contain actions that have large intra-class similarity,

then the finer distinction of second order information that higher frequen-

cies provide does not help classification. Rather, the difficulty of this dataset

is the cross-view camera angles, while the actions themselves are defined

by larger global motions. On the contrary, MSRAction3D contains actions

that are very similar spatially, such as “draw x” and “draw circle”. Recogni-

tion of these two actions requires knowledge of fine-grained second-order

information (in the case of the skeleton-based graph, acceleration), which

explains why a larger number of wavelet scales helps improving the recog-

nition performance. Indeed, for the UCF-Kinect dataset, knowledge of accel-

eration is more important for actions differing by smaller movements such

as “climb ladder” and “climb up”. On the other hand, for MSRActionPairs3D,

the knowledge of temporal directionality is more important, which explains

the choice of scales in these cases as well.

The number of pyramid levels K for the MSRAction3D dataset can be

seen in Fig. 6.16, and for N-UCLA Multiview Action3D in Fig. 6.18 and 6.20.

Accuracy is increasing steadily with increasing number of pyramid levels,

which can be explained by that a larger number of pyramid levels better
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capture the temporal order of actions, although diminishing returns can be

seen for larger values of K.

We note that when not using temporal pyramids (K = 1), the SGS fea-

ture becomes blind to the temporal order of the action. That is, it will not

know in which order the information captured by the coefficients occur. The

capability of capturing such motion directionality is very important for ac-

tions such as the ones in MSRActionPairs3D. Our results have indicated that

leveraging a temporal pyramid (setting K > 1) enables us to capture this

type of temporal order to some extent. However, mistakes are still being

made, which leads us to think that perhaps a non-uniform partition of the

temporal axis is needed for improved performance, such as for example in

HON4D [72] and MMTW [100]. This might also be important for distin-

guishing between actions that display a temporal order that is quite local

and fine-grained, such as for the MSRAction3D action classes “hammer” and

“draw x”. The downside of increasing the parameter K is however that is

doubles the size of the descriptor for each increased step. So in practice, a

decision of compromise between accuracy and computational speed might

have to be made.

6.6 Descriptor Properties

In this section, we discuss some properties of our proposed descriptor.

The classical Laplace operator captures second-order information. As

the graph Laplacian matrix L act as a graph-analog to this operator, we can

see that our proposed SGS descriptor is capable of capturing several scales

of differential second order information, for each vertex and 3D coordinate

axis. The SGWT kernel g, in turn, determines the extents of these scales. On

the contrary, the SGWT scaling function kernel h captures aggregated low-

frequency information, such as the mean 3D position of the skeleton joints.

Based on these properties, we argue that for skeleton-based graphs, the SGS

descriptor is able to capture information that discriminates action classes

that are defined by specific ranges of acceleration along each 3D skeleton

joint. On the other hand, this illustrates the weakness of SGS, which results

in difficulty separating action classes that are defined by very similar acceler-

ation properties. This weakness is supported by the experimental evaluation
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Figure 6.21: Accuracy on the MSRAction3D dataset as a function of the temporal
edge connectivity in the augmented graph.

on MSRAction3D, where we could see that “hammer/draw x/draw tick” were

often mistakenly classified. Indeed, around the same spatial location, these

actions also exhibit similar ranges of acceleration.

For keypoint-based graphs, our descriptor captures the frequency with

which the keypoints are detected on the point cloud and more specifically

second order information about their occurrence both temporally and lo-

cally.

6.7 Temporal Edge Connectivity

The augmented graph in our proposed method is structured as a sequence

of graphs, where the temporal edges connect only to the immediate previ-

ous and next frames in the action sequence. By looking at the structure of

the weight matrix Waug (Eq. (5.1)), we can see that it has a Markov-like

property, as each temporal edge is only connected to immediate neighbors

of the frame.

One might wonder if changing the temporal connectivity of the graph so

that we get a higher-order Markov structure is useful. In order to investigate

this, we conduct an experiment where the temporal connectivity is changed.
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We investigate two cases. First, instead of connecting a vertex vit at time t

with a vertex vit+1 at time t + 1, we connect vit to vit+S . Basically S = 1

gives us the standard behavior of our method, and S = 2 will create tem-

poral edges that skip every other frame. We call this scenario INDEPENDENT.

Second, we connect vit to all vertices v ∈ {vit+s : s = 1, . . . , S}, in order to

see what effect we will get with jointly having temporal edges with larger

step S. We call this scenario CUMULATIVE.

Results are shown in Fig. 6.21. We can see that adding extra edges that

skip certain frames deteriorates the performance. Essentially, with these ex-

tra edges, our analysis of the graph capturing higher-order properties, such

as acceleration, becomes invalid (see Sec. 5.8). It is not clear whether the

higher-order information induced by the extra temporal edges is meaningful

for action recognition, whereas acceleration certainly is, as was also dis-

cussed in previous work [114].

Setting S = 0 corresponds to removing all temporal edges, as self-

connecting edges are not supported by the graph Laplacian matrix. Note

that performance is vastly decreased when removing the temporal edges al-

together, which illustrates the importance of capturing temporal information

for action recognition.

6.8 Hand-crafted Higher-order Graph Signal

The SGWT captures higher-order information from the graph signal on our

augmented graph (see Sec. 5.8). In order to better understand the effect

of the graph signal on the graph, we manually create a graph signal that

captures higher-order information from the skeleton 3D joint positions, such

as velocity and acceleration. From the standard 3D joint position p̂t,i used

for the skeleton-based graphs, we approximate velocity as vt,i = p̂t+1,i −
p̂t−1,i, and acceleration as at,i = p̂t+2,i + p̂t−2,i− 2p̂t,i. Using these features,

we are interested in seeing if they are useful as graph signals for our task.

We investigate all combinations of the above three features for the skeleton-

based graphs, by concatenating the feature vectors.

Results are shown in Table. 6.10. The reduced performance is most likely

due to the graph being designed for the 3D space, based on the structure of

the skeleton joint positions. This graph is then not representative for how
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Table 6.10: Recognition performance on the MSRAction3D dataset using hand-
crafted higher-order graph signals. The plus sign denotes concatena-
tion.

Graph Signal Accuracy (%)

pos.+vel.+acc. 67.7

pos.+vel. 66.7

pos.+acc. 63.6

vel.+acc. 63.2

pos. 91.4

vel. 57.0

acc. 57.0

the intrinsic interactions between velocity and acceleration occurs between

the joints. The graph signal given by the hand-crafted velocity and accelera-

tion then induces noise into the features as it does not conform to the graph

structure. An alternative graph structure that captures a structure more suit-

able for these hand-crafted augmented features might be necessary, although

it should be noted that the SGWT already captures higher-order information

such as acceleration from the skeleton joint 3D positions, as was shown in

Sec. 5.8. From this experiment, we can conclude that it is important that the

graph structure reflects the natural interactions of the signals defined on it,

in order for our method to be effective.

6.9 Computational Time

For skeleton-based graphs, the whole feature can be calculated in about 0.3

seconds using a Python implementation on a machine with an Intel i7-3770K

3.5GHz CPU and 32GB RAM given a pre-segmented action sequence. For

a 2 second long action sequence recorded at 33 frames per second, this

corresponds to a frame rate of 220 FPS. For the keypoint-based graphs, STKP

detection takes about 1.6 seconds per frame in C++. The subsequent SGWT

calculation then takes about 2.6 seconds per action sequence in Python due
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to the larger graph size.

6.10 Summary

In this chapter, we have performed experimental evaluation of the proposed

action recognition framework. We conducted experiments for frontal-view

cross-subject action recognition using three publicly available datasets, and

also cross-view action using a standard public benchmark dataset. Addition-

ally, experiments on a public human-object interaction dataset were con-

ducted in order to illustrate the complementary effects of the keypoint-based

graphs. Our results indicate that our method is efficient for frontal-view

action recognition, where it gains performance comparable to state-of-the-

art approaches. More importantly, we demonstrated that our framework

is suited quite well for cross-view action recognition, where our method

significantly outperformed previous approaches by a 19.8% increase in ac-

curacy. By achieving state-of-the art results for human-object interaction in

the same environment setting, and getting comparable results in the cross-

environment setting, we also demonstrated that our method is useful for

capturing the shape of the spatio-temporal point cloud, for tasks where only

the skeleton information is not enough for achieving competitive results. To-

gether with measurements of computational time, showing the efficiency of

our method, we can conclude that the proposed approach is effective for rec-

ognizing various natural human actions across different subjects and views.

We have demonstrated that our proposed method solves various of the

previous problems we have discussed in action recognition (see Sec. 2.5).

Namely, our framework is able to handle inter-class variation of actions quite

well, as was demonstrated by gaining a competitive 91.4% accuracy on the

MSRAction3D dataset. The same experiments also showed that our method

is able to recognize actions regardless of subject variations and noisy skele-

ton measurements. Particularly, our method was shown to work well for

handling cross-view camera angles, due to the view-invariance of keypoint

graphs and rotation cancellation for skeletons. This merit was demonstrated

by a 90.8% accuracy on the N-UCLA Multiview Action3D dataset. Finally,

our method was shown to capture temporal directionality through exper-

iments on the MSRActionPairs3D dataset, where we got 96.0% accuracy.
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We showed that while our graph representation is undirected, the temporal

pyramid pooling approach allows our method to capture temporal direction-

ality. The method was also shown to capture some human-object interaction

information by getting 72.3% accuracy on the Online RGBD Action dataset.

While our method has proved effective for some problems in human ac-

tion recognition, there are still some issues left to tackle. One such task

is explicit human-object interaction, which can arguably prove useful for

distinguishing between actions such as “high throw” and “high arm wave”.

While our experiments on the Online RGBD Action dataset showed that our

method is able to capture some implicit human-object interaction, this does

not work for all desirable actions, as our keypoint-based graph is currently

only capturing information about the spatio-temporal point cloud at areas

where there is large movement. The shape of the hand while throwing an

object is not captured by our current system if the movement is small or slow.

Finally, we have not explored human-human interaction, which should be an

important point of future work for autonomous understanding of activities

that involve complex interactions between several entities. It would be in-

teresting to explore whether such interactions could be captured by a graph.
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Conclusions and Future Work

THIS chapter summarizes the findings of this thesis, draws conclusions,

and provides discussion regarding future prospects.

7.1 Conclusions

In this dissertation, we have presented a method for view-invariant action

recognition from depth cameras based on graph signal processing techniques.

Our framework leverages a novel graph representation of an action as a tem-

poral sequence of graphs, onto which we apply the SGWT framework [37]

for creating an overcomplete representation of an action that captures both

local and temporal variations of the signal. The graph wavelet coefficients

are applied to a temporal pyramid pooling scheme, which creates a descrip-

tor of an action sequence. For a T frames long action sequence with N

keypoints in each frame, the SGS descriptor is computable in O(TN) time.

We also presented an efficient algorithm that exploits the explicit sparsity

structure of our graph for calculating the fast approximate SGWT.

The power of our method was demonstrated by experiments on five

publicly available datasets. By the graph structure, our method captures

the temporal interaction between depth map interest points and achieved a

19.8% increase in performance compared to state-of-the-art results for cross-

view action recognition, and competing results for frontal-view action recog-
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nition and human-object interaction. Namely, our method resulted in 90.8%

accuracy on the cross-view N-UCLA Multiview Action3D dataset and 91.4%

accuracy on the challenging MSRAction3D dataset in the cross-subject set-

ting. For human-object interaction, our method achieved 72.3% accuracy

on the Online RGBD Action dataset. A 96.0% and 98.8% accuracy on the

MSRActionPairs3D and UCF-Kinect datasets was also achieved, respectively.

We can conclude that skeleton-based graphs worked well for the recog-

nition of both frontal- and cross-view actions due to them capturing second-

order information together with a semantic labeling of the skeleton joints.

Keypoint-based graphs, on the other hand, were suitable for cross-view ac-

tion recognition, where they were shown to improve over the baseline method.

Combining both methods through late fusion showed that they are com-

plementary, leading to a significant improvement in recognition accuracy

for cross-view action recognition. Similar effects for keypoint-based graphs

were also shown for capturing implicit human-object interaction, where late

fusion also showed the two graph types to be complementary.

To summarize, our main contributions in this thesis are the following:

• A framework for human action recognition using graph signal pro-

cessing. Unlike previous work based on e.g. temporal pyramids only,

our method is able to capture the interactions between interest points

throughout time thanks to the graph structure.

• A simple, but efficient skeleton rotation cancellation method based on

Gram-Schmidt orthonormalization.

• A view-invariant graph-based action representation that is shown to

significantly advance the state-of-the-art for cross-view action recogni-

tion.

• An efficient algorithm for calculating the spectral graph wavelet trans-

form that takes advantage of the explicit sparsity structure of our graph.

7.2 Future Work

In the future, we will investigate other interest point types, as well as explore

applying the proposed framework to other temporal classification tasks. For
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rotation cancellation, alternative methods for up-vector estimation robust to

a larger variety of action classes should also be explored. While this study

has focused on action recognition, the proposed framework is in general

applicable to any time series of graphs.

Although this study of using graph wavelets for action recognition has

shown some promising results, it is still in its infant stage, with several in-

teresting future directions open for exploration. The optimized selection of

the wavelet kernel g in Section 3.3 could lead to increased performance and

is therefore an important point of future work. Especially, deeper under-

standing of why a certain kernel might provide better performance should

be beneficial for accelerating the discovery of further applications of graph

signal processing in the future. Likewise, as was shown by the experimental

results, the wavelet kernel used in this work is able to handle various ac-

tion types, but is less successful at handling spatial similarity. Making our

method discriminative by learning the SGWT kernel from data could be an

interesting approach towards tackling this issue [93]. Other frameworks

for processing graph signals could also be explored, together with a more

detailed analysis of the suitability of graph signals for action recognition.

This dissertation has focused on the study of simple human actions.

While research in recent years has pushed the limits of this task, it is our

belief that the performance of approaches to this problem has not yet satu-

rated, and the future holds several major challenges facing this task. Namely,

we consider here two major obstacles for future research to overcome. First,

large scale datasets are scarce due to the relative rarity of 3D camera data.

This has hindered progress in this field compared to others, such as large-

scale image recognition, where deep learning methods have thrived in the

past years. Second, for successful deployment of action recognition systems

to the robotics or security industry, we need scalable and efficient depth

map-based methods for recognizing not only simple actions, but activities
such as human-object and human-human interaction. Quite recently, there

has been some development in this direction [86], which is bound to result

in a bright future for research in automated human behavior analysis.
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