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Abstract—Deep learning has been proved to be effective in
multimodal speech recognition using facial frontal images. In
this paper, we propose a new deep learning method, a trimodal
deep autoencoder, which uses not only audio signals and face
images, but also depth images of faces, as the inputs. We collected
continuous speech data from 20 speakers with Kinect 2.0 and
used them for our evaluation. The experimental results with
10dB SNR showed that our method reduced errors by 30%,
from 34.6% to 24.2% from audio-only speech recognition when
SNR was 10dB. In particular, it is effective for recognizing some
consonants including /k/, /t/.

I. INTRODUCTION

Nowadays automatic speech recognition has been used
in various environments, but its accuracy decreases under
noisy environment. Many speech enhancement methods robust
against ambient noises have been proposed. Their example
includes spectral subtraction, VTS, beamforming using multi-
microphones. In this paper, we focus on multimodal speech
recognition where we use not only audio signals (speech) but
also the images of mouths. It is expected to be effective even
when the signal-to-noise ratio (SNR) is very low, since images
are not affected by acoustic noise [1]. Its main application is
car navigation. There have been many studies on multimodal
speech recognition. There are two major problems to solve;
one is how to extract features and the other is how to fuse the
two modes [2], [3], [4].

Most studies have used only frontal face images in the image
mode. From the frontal view, the shape of mouths for some
phones are quite similar, and thus, it is difficult to discriminate
them [5]. Some methods proposed the use of depth images
of mouths. Nakamura et, al. [6] reported that it significantly
improved the accuracy of consonant recognition. But it was
not feasible in real applications since it needed special sensors
attached to users’ faces. Kumar et, al. [7] utilized images of
faces in profile, but their method needed to shoot a face at
the same time with multiple cameras, which is difficult in real
use. Recently, depth cameras such as Microsoft Kinect has
become available with a small cost. They were also used for
multimodal speech recognition [8], [9], [10]. In this study,
we aim to improve the performance of multimodal speech
recognition using depth cameras.

In these few years, deep learning has become popular
and significantly improved performance of the conventional
methods in various tasks such as image recognition and

speech recognition It has also applied to multimodal speech
recognition [11], [12], [13]. One interesting example is Deep
Autoencoder (DAE). It is a neural network trained to re-
construct inputs in the output layer, and its hidden layer
outputs are extracted as a bottle-neck feature. By using both
audio signals and images as inputs, it can not only extract
features from them but also fuse them in the same network.
However, there have been no deep learning researches using
depth images until now, to the best of our knowledge. The
conventional multimodal speech recognition research with
Kinect used multi-stream HMMs for multimodal fusion, and
did not employ deep leaning for feature extraction.

In this paper, we propose a deep learning method, Trimodal
Deep AutoEncoder (TDAE), for multimodal speech recogni-
tion using a depth camera. It compresses audio features, color
features, and depth features non-linearly to extract bottle-neck
features, which effectively represent comprehensive features
of all the modes. We collected continuous speech data from
20 speakers with Kinect 2.0 and used them for our evaluation.
The experimental results show that our method outperforms
the conventional bimodal approaches in speech recognition
accuracy.

This paper is organized as follows. Section 2 introduces
some related studies. Section 3 explains the proposed TDAE.
Section 4 shows the experimental results. Section 5 concludes
this paper.

II. RELATED WORKS

Neti et al. [1] proved that multimodal approaches are
effective in noisy conditions. Neffian et al. [2] proposed a
coupled HMM, a multimodal fusion method to replace popular
multi-stream HMMSs. Kolossa et al. [3] dealt with a problem
that even visual data are often unreliable by computing uncer-
tainties of visual features. Borde et al. [4] proposed a visual
feature extraction method based on Zernike moments with
principal component analysis (PCA). These methods using 2D
face images are effective especially in small vocabulary tasks,
but it is difficult to discriminate the mouth shapes for some
phones, which are quite similar from the frontal view.

Nakamura et, al. [6] reported that 3D coordinates in-
formation significantly improved the accuracy of consonant
recognition. But it was not feasible in real applications since
it needed special sensors attached to users’ faces. Galatas
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et al. [8] used Kinect 1.0, a depth camera, for audio-visual
speech recognition. They presented a depth feature extraction
method based on discrete cosine transform (DCT) of the region
of interest (ROI). In their method, audio and visual features
are fused by multi-stream HMMs. They improved word error
rate in digit speech recognition tasks under noisy condition.
Palecek [9] proposed depth-based active appearance model
(AAM) features and improved the accuracy over DCT. Wang et
al. [10] used the features based on 3D lip points obtained from
Kinect. These methods is more suitable for real applications.

Deep learning has recently improved the performance of
multimodal speech recognition. It has the advantage of op-
timizing not only classification, but also feature extraction.
There are two methods to apply deep learning for multimodal
speech recognition; one uses one deep learning model for
feature extraction and feature fusion [11], [12], and the other
performs feature extraction independently on each mode [13].
We assume that the first one is better because it is not
necessary to manually optimize the stream weights which
multi-stream HMMs require.

Ngiam et al. [11] applied a deep learning method to multi-
modal feature learning. Their proposed model is Bimodal Deep
Autoencoder. Autoencoder is a kind of neural networks, which
reproduce inputs at the output layer. Autoencoder has one
hidden layer, but deep autoencoder has more hidden layers.
Since deep autoencoder is trained by unsupervised manner,
unlabelled data can be used in training, unlike supervised
learning models such as Deep Neural Networks (DNN), Con-
volutional Neural Networks (CNN). They achieved significant
improvements in AVLetters dataset, alphabet speech recogni-
tion. Srivastava et al. [12] used another model, deep boltz-
mann machines (DBM) for multimodal learning. DBM is an
unsupervised model also, but it is an undirected graphical one.
Tamura et al. [13] trained independently each modal DNN, and
then extracted bottleneck features from DNN. These methods
showed that deep learning methods significantly improved the
conventional performances on multimodal speech recognition,
but they have the same problem as the methods without deep
learning for 2D images. In addition, deep learning models have
so many parameters which we have to tune.

III. TRIMODAL DEEP AUTOENCODER

To improve the performance of multimodal speech recogni-
tion with depth information, we propose a new feature learning
method, Trimodal Deep Autoenocoder, which combines audio
features, color features and depth features to extract new
comprehensive features.

Figure 1 shows our proposed network, in the case that the
number of layers is five. Features of each mode are used for
inputs, and then they are reconstructed at the output layer. The
shared hidden layer represents comprehensive features. The
network has a weight parameter Wil) at each connection for
i=1,2,3and [ = 1,2, 3,4. Here, we assume that a bias term
is included in it. The following presents the learning process
of network parameters.
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Fig. 1. Trimodal Deep Autoencoder.

Let x; be input features for audio (: = 1), color (z = 2)
and depth (¢ = 3). The proposed network is trained so that it
reproduces x; at the output layer from a corrupted input feature
X; = q(x;), where ¢ is a function for corruption. We employ
a function for corruption which randomly sets each element
of x; to zero with a probability p, in both pre-training and
fine-tuning.

In pre-training, since our proposed model is vertically
symmetric, parameters are estimated from the outside to the
inside, i.e., from the top layer to the middle hidden layer and
from the bottom layer to the middle layer. This can be viewed
as an extension of greedy layer-wise training [14], in which
parameters are estimated from the bottom to the top.

In the first step, parameters ng) and W§4) are pre-
trained for each type of features. By keeping the connections
corresponding to these parameters and by omitting the others
on the proposed network, we obtain three denoising autoen-
coders (denoising AEs) as shown in Figure 2 (a). These three
denoising AEs are trained by audio, color, and depth features,
independently and respectively, with input features X; = ¢(x;).

In the second step, parameters WEZ) and WES) are pre-
trained by using a denoising AE, which has three inputs, three
outputs, and one shared hidden layer corresponding to these
parameters, as shown in Figure 2 (d). The input layer accepts
h; = g(h;) as input, where h; is an activation vector of the
i-th denoising AE trained at the first step:

hi = o(W{"x,), (1)
where o is an activation function. The next shared hidden layer
computes

b =o(Woh; + Wh, + WPhy), )
and the output layer computes
yi = o(W;'I), 3)

fori=1,2,3.
In fine-tuning, all parameters are updated from the pre-
trained parameters with a loss function defined by the average
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Fig. 2. Pre-training process of Trimodal Deep Autoencoder with five layers. (a) is a denoising autoencoder for the first step. After (a) is trained, it is split
into two parts, a decoder part and a encoder part in (b). Next, we insert a shared hidden layer to (b), in (c). We extract middle three layers in (d), and we
train this part as a denoising autoencoder including three input layers and three output layers.

of Mean Squared Errors (MSEs) over three types of features.
MSE for the ¢-th feature type is calculated as

n

1
MEi:fE i — Tig)? 4
S n (y,J x,y) )

Jj=1

where n is the dimension of features, y; ; is the j-th element
of y;, and z; ; is the j-th element of x;.

IV. EXPERIMENTS
A. Dataset

We collected video data for evaluation of our method. It
consists of 15 hours of video with 20 speakers. The recorded
sentences are ATR 503 [15], which is often used for Japanese
speech recognition research. It has 503 sentences extracted
from newspapers, journals, and novels. They are phonetically
balanced. The audio data is recorded at 44.1 kHz sampling
rate, and downsampled to 16 kHz before feature extraction.
The recording place is a student room in a laboratory. Thus,
recorded audio data include life noise such as keyboard typing,
and coughing.

We use Microsoft Kinect 2.0 for recording video. The frame
rate is 30 Hz. The distance between a camera and a speaker is
not fixed, but it is more than 500 mm, the minimum distance
that Kinect 2.0 can detect. To extract a mouth Region of
Interest (ROI), we used Kinect for windows SDK 2.0, which
is a free software development tool provided by Microsoft.
It can track a lot of facial landmarks, and we use the points
corresponding to the left corner of the mouth, the right corner
of the mouth, the top of the upper lip and the bottom of the
lower lip. After extracting mouth regions, the size of mouth
images is normalized to 96 x 48.

B. Experimental conditions

The audio features are extracted from 40-dimensional log
mel-filter banks with 10 msec frame shift. The color fea-
tures are 32-dimensional PCA scores of RGB mouth images.
The depth features are 32-dimensional PCA scores of depth
mouth images. We adjusted the video frame rate to the

TABLE I
THE NUMBERS OF UNITS IN DEEP AUTOENCODER.
DAE Mode The number of units of each layer
DAE_audio Audio 440-200-120-80-120-200-440
DAE_audio_color | Audio 440-200-120-80-120-200-440
Color 352-200-120-80-120-200-352
DAE_audio_depth | Audio 440-200-120-80-120-200-440
Depth 352-200-120-80-120-200-352
TDAE Audio 440-200-120-120-120-200-440
Color 352-200-120-120-120-200-352
Depth 352-200-120-120-120-200-352

audio frame rate by three-dimensional spline interpolation.
The input/output of Trimodal Deep Autoencoder (TDAE) is
composed from the continuous 11 frames features.

Table I shows the number of units of the layers correspond-
ing to each mode. The center hidden layer (fourth layer) is
the shared layer of each mode, and its outputs form new
multimodal features. We use the DNN-HMM based speech
recognition frameworks [16]. The unit of the DNN-HMM is
triphone. The number of hidden units is 1024, and the number
of hidden layers is three. A language model we used is forward
3-gram from the Mainichi newspapers data. The number of
vocabulary is 63,465. We evaluate the recognition performance
by Word Error Rate (WER) in 4-fold cross validation. The
training step takes 12 hours per one fold.

The optimization method of Autoencoder is Adam [17].
The noise addition ratio on Denoising Autoencoder (p) is 0.2,
and batch size on mini-batch training is 100. The activation
function is sigmoid function. The computational time to train
Trimodal Deep Autoencoder is 48 hours by 1 CPU:Intel Xeon
X56702.93GHx and 1 GPU:NVIDIA Tesla K20X 1.31 Tflops.

For comparison, we evaluate the speech recognition per-
formance when using audio features, consisting of 12-
dimensional mel-frequency cepstral coefficients (MFCC) and
log-energy, without using Deep Autoencoder. In addition, we
conduct experiments using the features obtained from audio
only Deep Autoencoder (DAE_audio) and two bimodal Deep
Autoencoders integrating audio and color (DAE_audio_color)
and audio and depth (DAE_audio_depth). Table I also shows
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TABLE 11
WORD ERROR RATES (%) ON CONTINUOUS SPEECH RECOGNITION WITH
WHITE NOISE.

Feature SNR

clean | 20dB 10dB
MFCC 20.3 23.7 34.6
DAE_audio 21.8 24.6 35.0
DAE_audio_color 21.9 23.4 25.2
DAE_audio_depth 21.1 22.3 23.9
TDAE 20.9 22.4 24.2

the number of units in these Deep Autoencoders.

C. Results

Table II shows the results of continuous word recognition.
Our proposed method is TDAE. To evaluate robustness of our
method against acoustic noise, we conduct the experiments
when the raw audio data are contaminated with white noise at
SNRs of 10 and 20dB. The SNR condition of the training data
for Deep Autoencoder is same with that of the evaluation data.
Our method improves the accuracy by 2.2% from audio only
deep autoencoder when SNR is 20dB, and by 10.8% when
SNR is 10dB. In the noisy conditions, our method TDAE
outperforms the baseline method using the standard audio
feature MFCC. However, DAE_audio_depth yields the better
performance than TDAE.

D. Analysis

Table II shows that audio only deep autoencoder performs
worse than MFCC. We employed a random corruption func-
tion in training, which may be largely different from the noise
used in the test set.

When SNR is low, the color and depth information are
especially useful. In our experiments, depth features are more
effective than color features. We assume that depth information
is robust to differences of speakers. However, since the PCA-
based color features used in our method are primitive, the
performance can be improved by using other color features
such as DCT or HOG.

We analyzed individual recognition results on 10dB
SNR. Compared with DAE_audio results, we found that
DAE_audio_color improves recognition accuracy especially
for vowels and some consonants, such as /m/, which are
pronounced with speakers’ lips closed. In comparison of
DAE_audio_color and TDAE, we found that depth information
is effective to recognize some consonants, such as /k/ and /t/,
which are pronounced with their mouth open.

V. CONCLUSIONS

We proposed a deep learning method, Trimodal Deep
Autoencoder, for multimodal speech recognition using three-
dimensional images. We collected original audio-visual data
by depth camera (Kinect 2.0). The experimental results with
10dB SNR showed that our method reduced errors by 30%,
from 34.6% to 24.2% from audio-only speech recognition
when SNR was 10 dB.

At this stage we have only 15 hours of data for training,
which may be the main reason that our method is not effective
in some cases. In future, we need to collect more data to verify
the effectiveness of our method over the 2D autoencoders.
While our method can be used for any recognition schemes, we
also plan to compare our method with the end-to-end frame-
work where both feature extraction and speech recognition are
simultaneously optimized. We are also interested in exploring
the case where not only audio data, but also image/depth data
are contaminated by noise.
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