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Abstract

This paper considers the problem of designing a state-feedback controller with both passive base isolation (PBI) and active
structural control (ASC). In order to improve control performance, state-feedback gains are designed based on the linear quadratic
regulator (LQR) method that optimizes a new performance index containing absolute acceleration, and inter-story drifts and veloc-
ity. Simulations on a model of an eleven degree-of-freedom shear building for four earthquake accelerograms are used to verify this
method. Comparison studies show that, compared with PBI, the combination of PBI and ASC improves control performance; and
this method yields better control results than the conventional ASC, which considers relative displacement and relative velocity of
each story. The results are also discussed from the viewpoint of control system structure regarding the location of system zeros. In
addition, the effect of weights in the LQR on control performance is discussed. A method for selecting the weights is presented by
using the infinity norm of a system as a criterion to visualize their effect.

Keywords: Active structural control (ASC), Linear-quadratic regulator (LQR), Absolute acceleration, Inter-story drift, Passive
base isolation (PBI), Seismic vibration, Unstable zero, Vibration reduction.

1. Introduction

Passive base isolation (PBI) installed in buildings not only
suppresses vibrations, but also ensures safe use of the buildings
after earthquakes [1, 2]. The Kobe earthquake on January 17,
1995 triggered a demand for PBI in Japan, and the number of
passive-base-isolated high-rise buildings has been steadily in-
creasing in the last two decades [3].

A new base isolation system called a rubber-layer rolling
bearing was presented in [4, 5].

As the installation of PBI enlarges the natural period of a
building, it results in a reduction in the absolute acceleration of
buildings. However, it increases displacement of the PBI story
and may force it beyond its allowable range.

Some aluminum or steel devices were also used as passive
energy dissipating systems for a building to suppress the dis-
placement [6, 7, 8]. If a building employs these kinds of de-
vices, its stiffness increases and the natural period becomes
short. This may increases the absolute acceleration of the build-
ing.

Active structural control (ASC) is a strategy for vibration
reduction that incorporates control engineering and civil engi-
neering. The first full-scale ASC in the world was installed in
the Kyobashi Center Building in 1989 in Japan. Studies in this
field have been showing rapid progress since then, and ASC is
now widely used in civil structures all over the world [9, 10].

∗Corresponding author. Tel. & Fax:+81-45(924)5306.E-mail address:
sato.d.aa@m.titech.ac.jp (D. Sato)

The linear-quadratic regulator (LQR) is one of the most com-
monly used design methods in control theory. It designs a state-
feedback gain by minimizing a performance index that consid-
ers the weighted state and control input of a plant. This method
has been used in the design of ASC and semi-active structural
control systems. Loh at el. conducted an experiment using
a real-scale active tendon to demonstrate the validity of ASC
[11].

The selection of a performance index for the LQR is a
key to designing a satisfactory ASC system. While most
studies selected relative displacement and velocity of each
story [12, 13, 14, 15], some studies considered kinetic energy
[16, 17], inter-story drifts [18, 19], or absolute acceleration
[19, 20]. In the structural control of a building, suppressing
inter-story drifts prevents the exfoliation of exterior materials
and the plastic behavior of a building. On the other hand, sup-
pressing absolute acceleration not only protects a building by
reducing story shear-force from an earthquake, but also protects
people and property by preventing things such as furniture and
equipment inside the facility from falling. Thus, it is impor-
tant to build a performance index that considers the inter-story
drifts, the relative velocity, and the absolute acceleration of all
stories of a building for the design of a practical ASC system.
A new performance index that contains those items is presented
in this paper.

The method utilized to weights to integrate evaluation items
in a performance index is also an important issue for system de-
sign. However, only few attempts have so far been made to ac-
complish it such methods. Most studies selected weights rather
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Fig. 1: Models of structures.

subjectively and determined them by trial and error [12]. Re-
garding this issue in structural control, a study examined the ef-
fect of different weights for a single-degree-of-freedom system
[21]. However, buildings are usually multi-degree-of-freedom
(MDOF) systems. Therefore, it is of practical value to investi-
gate weight selection for an MDOF system.

PBI enlarges the natural period. This may result in a large
displacement. On the other hand, ASC generally increases the
apparent stiffness of a building by suppressing the displace-
ment. It shortens the apparent natural period, and may cause
a large absolute acceleration. Thus, a good combination of PBI
and ASC provides satisfactory structural control performance
with small control energy. Focusing on this characteristic, this
paper considers the problem of structural control using the com-
bination of PBI and ASC for high-rise buildings. A new perfor-
mance index is used to design a suitable ASC system. The supe-
riority of the method over PBI or conventional ASC is demon-
strated through simulations, and the analysis of control inputs
and the control system structure.

In this paper,I is an identity matrix with appropriate di-
mension. For simplicity, a system only with PBI is called NC
(no control); a conventional ASC system that minimizes the
displacement and velocity of each story is called a conven-
tional LQR; and an ASC system that minimizes the absolute
acceleration, and inter-story drift and velocity of each story pre-
sented in this paper is called AD-LQR for short.

2. Structures and base-isolation models

This study used three building models with heights of 250
m, 150 m, and 50 m. The floor areas of the models were all
40 m× 40 m (Fig. 1). Each was described as a 10-DOF shear
building model (Fig. 2). PBI was installed under the structure.
The ASC device was located at the PBI story. Thus, the models
have 11 DOFs (10 DOFs for the superstructure and 1 DOF for
the base isolation).

The parameters are as follows (Fig. 1):
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Fig. 2: 11-DOF model of [(a) NC and (b) LQR or AD-LQR].

Mass per unit area of base isolation:2551 kg/m2

Damping for period of PBI (ζb): 0.05

Damping of superstructure: stiffness-proportional damping
model (the damping ratio for the first mode,ζu, is assumed
to be 0.02)

Natural periods of superstructure of first mode (Tu): 1.0 s
for the 50-m-high building, 3.0 s for the 150-m-high build-
ing, and 5.0 s for the 250-m-high building

Density of superstructure (for all floors): 175 kg/m3

Height of superstructure (hu): = Tu/0.02 m

Stiffness of thei-th story of superstructure [22]:
ki =

ω2miϕi + ki+1(ϕi+1 − ϕi)
ϕi − ϕi−1

, i = 2, . . . , 9,

k1 =
ω2m1ϕ1 + k2(ϕ2 − ϕ1)

ϕ1
, k10 =

ω2m10ϕ10

ϕ10 − ϕ9
,

(1)

whereω is the first natural circular frequency; and for the
i-th story (i = 1,2, . . . , 10),ϕi is the first natural mode, and
mi is the mass.

To use the LQR method, which is a linear control strategy
[27], the laminated rubber in the PBI is modeled as a linear
spring (Fig. 3), and the viscous damper in the PBI is modeled
as a linear dashpot (Fig. 4). The stiffness,k0, and the damping
coefficient,d0, of the PBI are given by

k0 =
4π2(mu +m0)

T2
0

, d0 = 2ζb
√

(mu +m0)k0, (2)

respectively, wheremu is the total mass of the superstructure;
andm0 is given by the product of the density of the base and
the floor area.

Let T0 be the period of the PBI with the superstructure being
assumed to be a rigid body. The combinations of the parame-
ters of buildings (Table 1) are used to verify the validity of the
method presented in this paper and to perform a comparison
with other methods. In the table,T is the period of the first
mode of the building with the base isolation.
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3. Design of LQR controllers

The dynamics of an 11-DOF building with an ASC device
and the PBI are described by

Mẍ(t) + Dẋ(t) + Kx(t) = −MEẍg(t) + Euu(t), (3)

where

M =



m0 0m1

m2

0 . . .

m10


,

D =



d0 + d1 −d1 0−d1 d1 + d2 −d2

−d2 d2 + d3 −d3

. . .

0 d10


,

K =



k0 + k1 −k1 0−k1 k1 + k2 −k2

−k2 k2 + k3 −k3

. . .

0 k10


,

E =
[
1 1 1 · · · 1

]T
,

Eu =
[
1 0 0 · · · 0

]T
.

The variables are defined as follows:

x(t): relative displacement vector of stories (=
[x0(t), x1(t), . . . , x10(t)]T)

u(t): control input produced by actuator

Table 1: Combinations ofTu, T, T0, andζb for verification.

Tu [s] T0 [s] T [s] ζb

1.0
2.0 2.2
4.0 4.1

3.0
4.0 4.8

0.056.0 6.6

5.0
6.0 7.6
8.0 9.2

ẍg(t): ground acceleration

M: mass matrix

D: damping matrix

K: stiffness matrix.

Note that the dynamics of the building without PBI have the
same structure, and we just need to remove the row and column
corresponding to the base story (the parametersm0, d0, andk0).
The state-space expression of (3) is{

χ̇(t) = Aχ(t) + Buu(t) + Bd ẍg(t),
y(t) = Cχ(t),

(4)

where 

χ(t) =

[
x(t)
ẋ(t)

]
,

A =

[
0 I

−M−1K −M−1D

]
,

Bu =

[
0

−M−1Eu

]
, Bd =

[
0
−E

]
,

andA is the system matrix determining the dynamic character-
istics of the plant,Bu is the control-input matrix indicating the
placement of the ASC device,Bd is the disturbance-input ma-
trix indicating the places that the disturbance is added, andC is
the output matrix showing the placement of sensors. If all states
are available, thenC can be chosen to be an identity matrix.

The feedback control law

u(t) = Kpχ(t) (5)

is used, whereKp is the state-feedback gain that is designed us-
ing the LQR method. The block diagram of the control system
is shown in Fig. 5. Conventional ASC systems find a state-
feedback gain by minimizing the following performance index
[12]

Jc =

∫ ∞
0

{
χT(t)Qcχ(t) + uT(t)Rcu(t)

}
dt. (6)

It takes account of the relative displacement and velocity of
each story. In (6),Qc (> 0) andRc (> 0) are weights for the
state and control input, respectively. A big diagonal entry in
Qc results in a feedback gain that suppresses the corresponding
state, and increasingRc suppresses the control input.

The inter-story drift angles are

θi = arctan
xi − xi−1

hi
≈ xi − xi−1

hi
, i = 1,2, . . . , 10, (7)
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wherehi is the height of each story. Clearly, the inter-story
drift angles are the same for the inter-story drifts except for
the scaling factor 1/hi . Note that inter-story drifts and absolute
acceleration have not been considered for most ASC systems.
However, suppressing those two kinds of variables in a small
range not only reduces damage of buildings, but also protects
people from earthquakes. Thus, evaluating these two items is of
importance in ASC. This study considered a new performance
index

J =
∫ ∞

0

{[
∆xT(t) ∆ẋT(t)

]
Qd

[
∆x(t)
∆ẋ(t)

]
+
[
ẍ(t) + Eẍg(t)

]T
Qg

[
ẍ(t) + Eẍg(t)

]
+uT(t)Ruu(t)

}
dt,

(8)

whereQd (> 0), Qg (> 0), andRu (> 0). While the conven-
tional LQR considers the relative displacement and the relative
velocity of each story, the AD-LQR considers the absolute ac-
celeration, and the inter-story drifts and velocity.

In (8), the vector of the inter-story drifts is given by
∆x(t) =

[
∆x0(t) ∆x1(t) · · · ∆x10(t)

]T
,

∆xi(t) =

{
x0(t), i = 0,
xi(t) − xi−1(t), i = 1, . . . ,10,

(9)

wherei = 0 means the PBI story, andi from 1 to 10 means the
stories of the superstructure.

There exists a nonsingular matrixΥ andW that ensure

W

[
∆x(t)
∆ẋ(t)

]
=

[
Υ 0
0 Υ

] [
∆x(t)
∆ẋ(t)

]
= χ(t),

Υ =


1 01 1

. . .

1 1 · · · 1

 .
(10)

Rewriting (3) yields

ẍ(t) + Eẍg(t) = Ξχ(t) + Ψu(t) (11)

where
Ξ =
[
−M−1K −M−1

]
, Ψ = −M−1Eu.

Substituting (11) into (8) gives

J =
∫ ∞

0

{
χT(t)Qχ(t) + 2χT(t)Hu(t) + uT(t)Ru(t)

}
dt, (12)

where 
Q =W−TQdW−1 + ΞTQgΞ,
H = −ΞTQgΨ + Ψ

TQgΞ,
R= ΨT

uQgΨ + Ru.
(13)

Note that, unlike the standard performance index (6) used in
many ASC systems, the index (12) contains a cross term ofχ(t)
andu(t). Optimizing (12) yields a state-feedback gain [12]

Kp = −R−1(ST + BT
uP), (14)

whereP is a positive symmetrical solution of the following Ric-
cati equation(

A− BuR−1ST
)T

P+ P
(
A− BuR−1ST

)
+Q− PBuR−1BT

uP− S R−1ST = 0.
(15)

If the Riccati equation, (14), is solvable, then the feedback
system matrixA−BuKp is stable for the state-feedback gainKp

given by (14).

4. Numerical verification

This section uses numerical examples to demonstrate the va-
lidity of the AD-LQR, and shows its superiority over the PBI
and LQRs 1-3 method.

4.1. Earthquake waves

Two artificial earthquake waves were used in this study. They
were reproduced from real earthquake waves that minimized
the effects of natural periods of the original waves:

1. Art Hachinohe wave: the spectrum of the pseudovelocity
response,pSv, is 100 cm/s for a building with damping
ratio of 5% after a corner period of 0.64 s, and the phase
characteristic is the same as the earthquake wave of the
1968 Hachinohe EW.

2. Art Kobe wave: the spectrum of the pseudovelocity re-
sponse,pSv, is 100 cm/s for a building with damping ratio
of 5% after a corner period of 0.64 s, and the phase char-
acteristic is the same as the earthquake wave of the 1995
JMS Kobe NS.

3. El-Centro wave: El-Centro earthquake NS 1940.

4. Tokachi wave: Tokachi-oki earthquake NS 1968.

The accelerograms and the spectrums of the pseudovelocity
responses of these four waves are shown in Figs. 6-9.
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4.2. Responses for no control

Figs. 10 and 11 show that the maximum displacements of the
NC, which does not use any ASC devices, for the Art Kobe and
Art Hachinohe waves, respectively. In these figures, 0 on the
vertical axes indicates the PBI story, and g means the ground.

The allowable displacement was assumed to be 70 cm in this
study, which is the maximal clearance of a building, [24].

These results show that the longer the period of the base iso-
lation is, the larger the displacement is at the PBI story.

As shown in Table 2, the maximum displacement forTu =

5.0 s for both the Art Hachinohe and Art Kobe waves is larger
than 70 cm. Therefore, the PBI alone is not enough to suppress
the vibration and an ASC device is necessary.

The responses under the El-Centro and Tokachi waves
showed the same trend, and the results are summarized in Ap-
pendix C.

4.3. Vibration control of conventional LQR

An ASC device was installed to improve the control perfor-
mance. An ASC system was designed using the conventional
LQR method, that is, minimizing the performance index (6).

This study used three kinds of weights for the performance
index (6). The resulting controllers are named LQR 1 [11],
LQR 2 [25], and LQR 3 [12].Qc for the relative displacement
and the relative velocity, andRc for the control input were set

Table 2: Maximum displacement of NC at the PBI story for Art Hachinohe and
Art Kobe waves.

Tu [s] T0 [s]
x0 max [cm] x0 max [cm]

(Art Hachinohe) (Art Kobe)

1.0
2.0 30.9 32.3
4.0 64.8 63.0

3.0
4.0 68.4 57.3
6.0 100.8 93.9

5.0
6.0 98.4 116.6
8.0 123.9 148.9

to be

LQR 1 : Qc =

[
Qc1

Qc2

]
, Rc = 10−ρ, (16)

LQR 2 : Qc = 10ρ
[
K

M

]
, Rc = 1, (17)

and
LQR 3 : Qc = I22, Rc = 10−ρ. (18)

These parameters were selected such that the maximum dis-
placement of the base isolation was almost 50 cm, which is
smaller than the allowable range 70 cm, when the Art Hachi-
nohe wave (Fig.7) was input. They are as follows:

• For the model ofTu = 5.0 s andT0 = 8.0 s:

LQR 1 :
ρ = 8.0,
Qc1 = 0.2× diag

{
1,1,1,1,1,1,1,1,103,1,103

}
,

Qc2 = 0.2× diag
{
1,1,1,1,1,1,1,1,104,1,1

}
.

LQR 2 : ρ = 4.6,

and
LQR 3 : ρ = 9.3.

• For the model ofTu = 5.0 s andT0 = 6.0 s:

LQR 1 :
ρ = 8.0,
Qc1 = 0.2× diag

{
1,1,1,1,1,1,1,1,1,103,103

}
,

Qc2 = 0.2× diag
{
1,1,1,1,1,1,1,1,1,103,103

}
.

LQR 2 : ρ = 5.0,

and
LQR 3 : ρ = 9.6.

The story-shear coefficient of thei-th story is defined to be

qi =
|Vi(t)|
n∑
j=i

mjg

, Vi =

10∑
j=i

f j . (19)

That is, it is a quotient of the story shearVi at thei-th story and
the total weight above the story.Vi is defined as the sum of all
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Fig. 12: Comparison of time responses between NC and conventional LQR forT0 = 6.0 s for Art Kobe wave.
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Fig. 13: Comparison of time responses between NC and conventional LQR forT0 = 8.0 s for Art Kobe wave.
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Fig. 15: Comparison of time responses between NC and conventional LQR forT0 = 8.0 s for Art Hachinohe wave.

lateral force above the story, andfi is the lateral force in the
fundamental mode acting on thej-th story.

Figs. 12 and 13 show the responses for the Art Kobe wave,
and Figs. 14 and 15 show those for the Art Hachinohe wave for

differentT0.

Figs. 12 (a) and 13 (a) show that the maximum displacement
of the PBI story of LQRs 1-3 for the Art Kobe wave are 54.1
cm, 53.6 cm, and 54.1 cm forT0 = 6.0 s, respectively; and 63.3
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Fig. 19: Comparison of time responses between LQRs 1-3 and AD-LQR forT0 = 8.0 s for Art Hachinohe wave.

cm, 64.0 cm, and 63.0 cm forT0 = 8.0 s, respectively. The
maximum displacement of the PBI story are in the allowable
range. The displacement of the tenth story for the conventional

LQR is suppressed to about 50% of that for the NC forT0 =

8.0 s. This shows that LQRs 1-3 have good vibration-control
performance.
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As for the Art Hachinohe wave (Figs. 14 and 15), the max-
imum displacement of LQRs 1-3 of the PBI story are 43.0 cm,
42.8 cm, and 43.9 cm forT0 = 6.0 s, respectively; and 52.0
cm, 53.5 cm, and 51.2 cm forT0 = 8.0 s, respectively, which
are also in the allowable range. The displacement of the higher
story tended to become larger than that of the lower story. The
maximum of the inter-story drift angles and the story-shear co-
efficients for the conventional LQR forT0 = 6.0 s are almost all
suppressed to less than 50% of those for the NC. Furthermore,
for LQRs 1, 2, and 3 forT0 = 8.0 s, the maximums of the dis-
placements and the story-shear coefficients of the top story are
also suppressed to as low as approximately 40% of those for the
NC.

For each earthquake, the control performances of LQRs 1-
3 for displacement are satisfactory. However, for each earth-
quake, the inter-story drift angles of the higher stories for LQRs
1-3 are larger than those for the lower stories. Although sup-
pressing inter-story angles and absolute acceleration are impor-
tant to protect the building and people, the performance indices
of LQRs 1, 2 and 3 do not take those items into account. In con-
trast, the AD-LQR method includes those in the performance
index. A comparison of LQRs 1-3 and the AD-LQR is shown
in the next section.

4.4. Vibration control of AD-LQR

The weightsQg for the absolute acceleration,Qd for the
inter-story drift and the inter-story velocity, andRu for the con-
trol input in (8) were set to be

Qg = 10αI11, Qd = 10β ×
[
Qd1

Qd2

]
, Ru = I11. (20)

The parameters were selected as follows

• For the model withTu = 5.0 s andT0 = 8.0 s:
α = 12, β = 12.5,
Qd1 = diag

{
1, 1,1,1,1, 1,1,1,101.5,101.5,101.4

}
,

Qd2 = diag
{
1, 1,1,1,1, 1,1,1,101.5,101.5,101.4

}
.

• For the model withTu = 5.0 s andT0 = 6.0 s:
α = 12.7, β = 14
Qd1 = diag

{
100.2,1,1,1,1,1, 1,1,101.5,101.5,101.4

}
,

Qd2 = diag
{
100.2,1,1,1,1,1, 1,1,101.5,101.5,101.4

}
.

These AD-LQR controllers were designed such that the max-
imum displacement of each story is almost the same as that of
LQRs 1-3 when the Art Hachinohe wave was input.

Figs. 16(a) and 17(a) show that the maximum displacement
of the story of the AD-LQR is 50.5 cm forT0 = 6.0 s, and 57.4
cm T0 = 8.0 s. They are all in the allowable range. As for
T0 = 8.0 s, the control results of the inter-story drift angles and
the absolute acceleration are smaller for the AD-LQR than for
LQRs 1-3. The absolute acceleration for the AD-LQR is about
50% of that for each of LQRs 1-3 [Fig. 18(b)], and the inter-
story drift angle of the tenth story for the AD-LQR is also only
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Fig. 20: Time response of inter-story drift angle of tenth story for Art Hachi-
nohe wave (Tu = 5.0 s andT0 = 8.0 s).

Table 3: Maximum and minimum inter-story drift angles of the tenth story,θ10
[rad] (×10−3).

Max. Min.
AD-LQR 1.74 −1.52
LQR 1 3.53 −3.26
LQR 2 3.08 −2.97
LQR 3 3.37 −3.13

50% of that for each of LQRs 1-3 [Fig. 18(c)]. Figs. 18 and
19 show the results for the Art Hachinohe wave. The maximum
displacement of the story of the PBI for the AD-LQR is 47.8 cm
for T0 = 6.0 s and 54.6 cm forT0 = 8.0 s. They are also all in
the allowable range. They show the same trend for the Art Kobe
wave forT0 = 8.0 s. The displacement, the absolute accelera-
tion, the inter-story-drift angles, and the story-shear coefficient
of LQRs 1-3 are almost the same even though the weights are
different. However, the control performance of the AD-LQR for
these responses is better than that for each of LQRs 1-3. Thus,
the AD-LQR is more appropriate than the LQR that considers
only the relative displacement and the relative velocity.

Figs. 16-19 show that, compared to LQRs 1-3, the control
effects for AD-LQR are markedly improved for higher stories.

The time responses of the inter-story drift angle of the top
story (Fig. 20) shows that the response for the AD-LQR is
smaller than that for LQRs 1-3. Table 3 shows the detailed
data of Fig. 20. The control performance of the inter-story
drift angles for the AD-LQR is better than that for LQRs 1-3,
especially for the tenth story. For each earthquake, the maxi-
mum displacement is approximately the same for the AD-LQR
and LQRs 1-3 forT0 = 6.0 s. However, the absolute accel-
eration and the inter-story drift angles forT0 = 8.0 s for the
AD-LQR are better than those for LQRs 1-3, especially those
for the tenth story. One reason for this observation is that, com-
pared to LQRs 1-3, the AD-LQR increased the damping ratios
of the lower modes considerably.

Fig. 21 shows the control input of the AD-LQR and LQRs 1-
3 for T0 = 8.0 s for the Art Hachinohe wave. While the control
inputs are almost the same (the control input of the AD-LQR is
only 1.2 times better than that of LQRs 1-3) and the shapes are
also same, the maximum absolute acceleration, the inter-story
drift angles, and the story-shear coefficients for the AD-LQR

9
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Table 4: Maximum and minimum control inputs,u [N] (×107).

Max. Min.
AD-LQR 1.62 −2.50
LQR 1 1.56 −1.89
LQR 2 1.70 −2.03
LQR 3 1.62 −1.92

are smaller than those for LQRs 1-3. Table 4 shows the detailed
data of Fig. 21.

5. Discussion of control performance

In this section, the control results given in Section 4 are ex-
amined from the viewpoint of the pole-zero plot and the damp-
ing ratio of the control system.

5.1. Observation from system zeros

Let a transfer functionG(s) be

G(s) =
N(s)
D(s)

= Kg

nz∏
j=1

(s+ zj)

np∏
i=1

(s+ pi)

, (21)

wheres is the operator of the Laplace transform;N(s) is the
numerator polynomial ofG(s) in s with order ofnz, andD(s)
is the denominator polynomial ofG(s) in s with order ofnp.
Without loss of generality,G(s) is strictly proper, that is,np is
bigger thannz.

The roots of
D(s) = 0 (22)

and
N(s) = 0 (23)

are called the poles and zeros ofG(s), respectively. Poles de-
termine the stability of the system. If all poles have negative
real parts, the system is stable. On the other hand, zeros affect
the characteristics of the response of the system. If all zeros
have negative real parts, the system is called a minimum-phase
system, and is easy to control [28]. However, if a system has
unstable zeros, that is, those zeros have positive real parts, it
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Fig. 22: Pole-zero plot ofG10g(s) [(a) AD-LQR, (b) LQR 1, (c) LQR 2, and (d)
LQR 3] (Tu = 5.0 s andT0 = 8.0 s).
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Fig. 23: Zero plot of LQRs 1-3 and AD-LQR.

is called a non-minimum phase system. The behavior of such
a system is complicated and it is difficult to control (See Ap-
pendix A).

Fig. 22 shows the pole-zero plot of the transfer function
from the earthquake input to the displacement of the tenth story,
G10g(s), for Tu = 5.0 s andT0 = 8.0 s, in which a pole and a
zero are marked by a circle and a cross, respectively. Let the
conjugate zeros that are closest to the imaginary axis bez1 and
z2. It is clear from Fig. 22 that, while each of LQRs 1-3 have
two conjugate unstable zeros, the AD-LQR does not. This also
shows why the AD-LQR has better control performance than
LQRs 1-3.

Fig. 23 shows the real part ofG10g(s) for the control systems
designed by LQRs 1-3 and the AD-LQR. Clearly, whilez1 and
z2 designed by LQRs 1-3 are all unstable for differentT0, those
zeros designed by the AD-LQR are all stable, and have a rela-
tively big negative real part.
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Figs. 22 and 23 show that the performance index that only
considers the relative displacement and the relative velocity
may introduce unstable zeros. The control performance of the
AD-LQR for the inter-story-drift angle and the story-shear co-
efficient at the tenth story is better than that for LQRs 1-3. One
of the reasons is that the transfer functions of LQRs 1-3 have
unstable zeros.

5.2. Analysis of damping ratio and natural period

Fig. 24 shows the natural period and the damping ratio of the
i-th mode,ζi , for LQRs 1-3 and the AD-LQR forT0 = 8.0 s.
They are given by

ζi =
−Re(pi)√

Re(pi)2 + Im(pi)2
, Ti =

2π√
Re(pi)2 + Im(pi)2

, (24)

where, Re(pi) and Im(pi) are the real and the imaginary parts
of the i-th pole, respectively. It is clear from Fig. 24 that the
natural periods are almost the same for both the LQRs 1-3 and
the AD-LQR except for the first mode. However, the damping
ratios of the AD-LQR for the first to the third modes are bigger
than those for LQRs 1-3. In particular, the damping ratio of the
first mode for the AD-LQR is 1.7 times, the second mode is
14.5 times, and the third mode is 7 times larger than those for
LQRs 1-3. The AD-LQR has good damping ratio especially for
the second mode.

As a result, Fig. 20 shows that the response of the AD-LQR
is smaller than that of LQRs 1-3. Fig. 25(a) shows the damping
ratios for the first modes of LQRs 1-3 and the AD-LQR forT0 =
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Fig. 25: Damping ratio of AD-LQR and LQRs 1-3 for (a): the first mode and
(b): the second mode.

6.0 s and 8.0 s withTu = 5.0 s. It is clear from the figure that the
damping ratios for the AD-LQR are larger than those for LQRs
1-3. The damping ratio of the first mode for the AD-LQR for
T0 = 6.0 s is also more than two times larger than that for LQRs
1-3 for T0 = 6.0 s. Fig. 25(b) shows the damping ratios for the
second mode of the LQR and the AD-LQR forT0 = 6.0 s and
8.0 s withTu = 5.0 s. The damping ratio for the second mode
of each AD-LQR is almost 1.0. Thus, the control performance
of the AD-LQR for the first and second modes is better than
those for the conventional LQR. As the first and second modes
mainly influence the PBI of a building, and the second mode
mainly influences the absolute acceleration [26], the increase
in the damping ratio by the AD-LQR results in good control
performance of the absolute acceleration, the inter-story drifts,
and the story-shear coefficients (Figs. 16-19). LQRs 1-3 had
unstable zeros, which caused undesirable vibrations in the time
responses. However, the AD-LQR did not have any unstable
zeros. Moreover, the damping ratio for each mode of the AD-
LQR was larger than that of LQRs 1-3. As a result, Figs. 16-19
show that the responses of the AD-LQR at the upper story are
smaller than those of LQRs 1-3 for all the earthquake waves.
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6. Selection of weights for the AD-LQR

The performance index of the AD-LQR is formed by the
weighted sum of the absolute acceleration, the inter-story drifts,
and the inter-story velocity. The weights also have a consider-
able effect on control performance. This point is examined in
this section.

The H∞ norm of the transfer function from the earthquake
input to a variable of the building,G(s), is

∥G∥∞ = max
0≤ω≤+∞

σmax(G( jω)), (25)

whereσmax(G) is the maximum singular value ofG [29]. This
study used 1/∥G∥∞ as a criterion for the selection of weights. A
large 1/∥G∥∞ means a good control performance. In this paper,
three transfer functions are considered: the transfer function
from the earthquake input to the absolute acceleration of the
top story,Ga; to the inter-story drift angle of the top story,Gi ;
and to the displacement of the PBI story,Gd.

The factorα in the weightQg in (20) is related to the absolute
acceleration; andβ in Qd, to the inter-story drift angles. We try
to examine the relationships between the factorsα andβ, and
the maximum control input;, and the relationships between the
factorsalphaandbeta, and the function 1/∥Ga∥∞, to 1/∥Gi∥∞,
and to 1/∥Gd∥∞.

Figs. 26 and 27 show the relationship between the weight
factors,α andβ, and the maximum control input. It is clear
from the figure that the maximum control input becomes large
asα andβ become large.
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Fig. 28: Relationship betweenα, β, and control performance [(a) Absolute
acceleration, (b) Inter-story drift angle, and (c) Displacement of PBI (Tu = 5.0
s andT0 = 8.0 s)].

Fig. 28 (a)-(c) show the relationship between those factors
and 1/∥Ga∥∞, 1/∥Gi∥∞, and 1/∥Gd∥∞ for T0 = 8.0 s for the
Art Hachinohe wave. These figures show that, whenα andβ
are around 13, 1/∥Ga∥∞, 1/∥Gi∥∞, and 1/∥Gd∥∞ are all very
large. However, this is impossible for passive structural control
because there is a trade-off between the control performance
of the absolute acceleration and the displacement. It is also
worth mentioning that a further increase inα andβ may not
necessarily result in better control performance.

7. Conclusion

This paper considered the issue of carrying out structural
control for a high-rise building using a combination of the PBI
and the ASC. Unlike a conventional LQR controller, which was
represented by LQRs 1-3 in this study, the LQR controller was
designed by choosing the performance indices that contain the
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absolute acceleration, inter-story drifts and velocity of the sto-
ries. The effects of this method were examined through anal-
yses of the time-domain response, damping ratios of modes,
and locations of system zeros. Furthermore, the selection of the
weights was examined by using theH∞-norm-based criteria.
This study clarified the following points:

• This study presented a new performance index for LQRs,
which is called the AD-LQR. While a performance index
for a conventional LQR considers the relative displace-
ment and the relative velocity of a building, the AD-LQR
considers the absolute acceleration, the inter-story veloc-
ity, and the inter-story drifts. This allows us to design an
ASC system that suppresses not only relative displacement
but also the absolute acceleration. This reduces the impact
on both a building and the people inside it.

• The comparison between the damping ratios of LQRs 1-3
and the AD-LQR showed that the damping ratios of the
first to the third modes for the AD-LQR were bigger than
those of LQRs 1-3. The AD-LQR resulted in a small abso-
lute acceleration and inter-story drifts compared to LQRs
1-3.

• The comparison of the zeros of the transfer function from
the earthquake input into the displacement of the tenth
story showed that, while the transfer functions for LQRs
1-3 had unstable zeros, the transfer function for the AD-
LQR did not. Thus, the AD-LQR was easier to control
compared to LQRs 1-3.

• When the weights of the absolute acceleration, and the
inter-story drifts and velocity increased in a certain range,
the maximum control input increased. A suitable selection
of these weights provided satisfactory control performance
for the absolute acceleration and the inter-story drift angles
simultaneously.

Appendix A. Nonminimum phase system [23]

For example, consider the following system

G(s) =
ϵs2 − ηs+ 1

(s+ 5)(s2 + 2s+ 1)
, (A.1)

whereϵ andη are real constants. Ifϵ = 0, the system has one
zero given by

z=
1
η
.

The step responses of the system forη being±1 and±2 (Fig.
A.29) show that an unstable zero (η = 1,2) has a major effect on
the transient response and causes an undershoot. On the other
hand, the system has two zeros ifϵ , 0. They are given by

z1,2 =
η ±
√
η2 − 4ϵ
2ϵ

. (A.2)

The step response of the system forϵ = 0.5 andη = ±1 or±2
(Fig. A.30) shows that the outputs for unstable zeros (η = 1,2)
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Fig. A.29: Step responses for system (A.1) with one zero.
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Fig. A.30: Step responses for system (A.1) with two zeros.

are positive first, then negative, and finally positive. Thus, an
increase in the number of unstable zeros makes the transient
response complicated.

Appendix B. Responses for the Art Kobe and Art Hachi-
nohe waves

The detailed data of Figs. 16-19 are shown in Tables B.5-B.8.

Appendix C. Responses for the El-Centro and Tokachi
waves

The time responses for the El-Centro and the Tokachi waves
are shown in Figs. C.31 - C.34. The detailed data of these fig-
ures are shown in Tables C.9-C.12. The relationships between
the weight factors,α and β, and the maximum control input
for these waves are shown in Figs. C.35 and C.36. These ta-
bles show that the displacements are almost all the same for the
AD-LQR and LQRs 1-3. However, the absolute acceleration,
the inter-story drift angles, and the story-shear coefficients of
the AD-LQR are smaller than those of LQRs 1-3, especially
those of the upper stories. These results have the same trend as
the results for the Art Hachinohe and Kobe waves.
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Table B.7: Maximums of responses for Art Hachinohe wave (T0 = 6.0 s).
Story 0 1 2 3 4 5 6 7 8 9 10
NC 98.4 111.2 123.3 134.8 145.8 156.3 166.5 176.4 186.0 195.6 205.3

AD-LQR 47.8 52.1 56.0 59.7 63.7 67.7 71.6 75.4 79.2 83.1 87.0
x [cm] LQR 1 43.0 48.3 53.6 58.7 63.6 68.9 74.0 78.6 82.4 85.5 90.4

LQR 2 42.8 48.1 53.5 58.7 63.7 69.0 74.2 78.9 82.9 86.4 91.6
LQR 3 43.9 49.5 55.0 60.2 65.5 70.8 76.0 80.8 84.8 88.5 94.4

NC 88.2 88.6 90.6 95.3 102.8 111.2 119.0 124.6 128.4 138.7 182.8
ẍ+ ẍg AD-LQR 158.7 105.2 91.1 80.6 68.0 53.6 58.4 64.6 64.5 62.7 79.0

[cm/s2]
LQR 1 174.0 137.4 109.6 79.9 79.9 83.1 84.9 92.3 89.9 90.1 146.2
LQR 2 171.7 134.4 107.2 78.7 78.9 82.3 84.2 89.9 88.4 88.3 142.8
LQR 3 163.3 129.4 104.6 77.6 78.5 82.2 84.2 90.0 87.8 91.7 147.0

NC — 5.08 4.82 4.58 4.38 4.19 4.05 3.95 3.93 4.11 4.58
AD-LQR — 2.15 2.07 1.96 1.86 1.82 1.74 1.65 1.70 1.77 2.00

θ [rad] (×10−3) LQR 1 — 2.38 2.26 2.23 2.16 2.14 2.06 2.01 2.32 2.81 3.69
LQR 2 — 2.39 2.27 2.23 2.16 2.15 2.08 2.00 2.32 2.77 3.60
LQR 3 — 2.43 2.32 2.26 2.19 2.17 2.09 2.11 2.42 2.89 3.71

NC 11.1 11.3 11.7 12.1 12.4 12.8 13.1 13.6 14.3 15.8 18.7
AD-LQR 4.75 4.79 5.02 5.15 5.25 5.50 5.62 5.65 6.19 6.80 8.06

q (×10−2) LQR 1 5.27 5.29 5.48 5.84 6.10 6.48 6.65 6.90 8.41 10.8 14.9
LQR 2 5.30 5.32 5.50 5.84 6.11 6.51 6.71 6.88 8.42 10.6 14.6
LQR 3 5.37 5.41 5.61 5.94 6.19 6.56 6.73 7.23 8.78 11.1 15.0

Table B.8: Maximums of responses for Art Hachinohe wave (T0 = 8.0 s).
Story 0 1 2 3 4 5 6 7 8 9 10
NC 123.9 132.8 141.2 149.2 156.8 164.1 171.0 177.6 184.0 190.4 197.3

AD-LQR 54.7 59.0 63.0 66.8 70.6 74.6 78.5 82.3 85.9 89.8 93.5
x [cm] LQR 1 52.0 55.8 59.4 62.8 66.5 70.3 74.0 79.0 85.0 91.6 99.8

LQR 2 53.5 57.6 61.3 64.8 68.8 72.7 76.3 80.4 85.4 90.7 97.2
LQR 3 51.2 55.2 58.8 62.3 66.1 70.0 73.7 78.6 84.2 90.2 97.7

NC 95.8 87.4 85.5 84.1 85.9 90.7 93.3 92.8 89.8 101.6 128.7
ẍ+ ẍg AD-LQR 146.8 96.1 83.9 74.7 63.6 51.1 53.9 60.1 60.3 60.9 69.5

[cm/s2]
LQR 1 223.7 171.8 132.0 91.5 94.0 86.9 94.2 88.7 93.0 98.8 142.0
LQR 2 224.5 166.9 125.8 92.6 94.5 83.3 89.2 82.5 89.7 96.5 122.5
LQR 3 218.5 165.3 126.0 89.5 91.9 83.7 90.3 84.3 90.4 96.1 134.0

NC — 3.59 3.40 3.23 3.06 2.92 2.82 2.82 2.90 3.04 3.23
AD-LQR — 1.96 1.91 1.83 1.72 1.66 1.60 1.56 1.50 1.58 1.75

θ [rad] (×10−3) LQR 1 — 2.04 1.92 2.02 2.12 2.16 2.16 2.22 2.40 2.64 3.58
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LQR 3 4.54 4.64 4.63 5.16 5.74 6.19 6.52 7.09 8.17 9.32 13.7
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Fig. C.33: Comparison of time responses between LQRs 1-3 and AD-LQR forT0 = 6.0 s for El-Centro wave.
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Table C.9: Maximums of responses for Tokachi wave (T0 = 6.0 s).
Story 0 1 2 3 4 5 6 7 8 9 10
NC 12.6 14.1 15.5 16.5 17.3 18.0 19.8 22.2 24.9 27.9 31.2

AD-LQR 10.9 11.7 12.3 12.9 13.5 14.1 14.7 15.2 15.8 16.6 17.8
x [cm] LQR 1 10.2 11.5 12.5 13.3 13.8 14.0 15.5 17.1 19.4 23.2 28.6

LQR 2 9.8 11.1 12.1 12.9 13.4 14.0 15.6 17.1 19.3 22.9 28.1
LQR 3 10.6 11.9 12.9 13.6 14.1 14.2 15.5 17.3 19.7 23.8 29.6

NC 50.7 51.2 49.0 45.9 41.2 33.6 25.0 23.0 35.4 63.0 91.1
ẍ+ ẍg AD-LQR 93.8 54.9 42.9 34.5 29.3 26.2 25.7 27.4 32.9 39.8 37.7

[cm/s2]
LQR 1 106.3 69.3 57.0 50.6 45.0 44.3 34.9 33.3 41.4 59.9 89.2
LQR 2 106.0 68.5 56.1 49.8 44.2 42.5 33.8 33.4 41.4 58.2 85.5
LQR 3 100.1 66.2 57.0 52.2 46.9 44.3 34.2 32.3 40.7 64.3 95.1

NC — 0.63 0.61 0.69 0.76 0.95 1.21 1.48 1.77 2.05 2.30
AD-LQR — 0.50 0.46 0.47 0.51 0.58 0.66 0.76 0.85 0.91 0.95

θ [rad] (×10−3) LQR 1 — 0.65 0.64 0.68 0.74 0.94 1.17 1.42 1.69 1.95 2.25
LQR 2 — 0.65 0.64 0.68 0.74 0.91 1.13 1.38 1.63 1.87 2.16
LQR 3 — 0.63 0.63 0.68 0.77 1.00 1.25 1.52 1.81 2.09 2.40

NC 1.44 1.41 1.49 1.80 2.15 2.88 3.91 5.10 6.43 7.86 9.29
AD-LQR 1.09 1.15 1.15 1.26 1.46 1.77 2.15 2.61 3.10 3.49 3.85

q (×10−2) LQR 1 1.37 1.48 1.58 1.80 2.11 2.85 3.78 4.88 6.14 7.47 9.11
LQR 2 1.37 1.47 1.58 1.80 2.10 2.77 3.66 4.72 5.93 7.19 8.72
LQR 3 1.43 1.43 1.55 1.79 2.19 3.03 4.03 5.23 6.59 8.03 9.71

Sons, Inc., 2008
[13] K. Miyamoto, J. She, J. Imani, X. Xin, D. Sato, Equivalent-input-

disturbance approach to active structural control for seismically excited
buildings, Eng Struct 125 (2016) 392-399.

[14] C. Ng, Y. Xu, Semi-active control of a building complex with variable
friction dampers, Eng Struct 29 (2007) 1209-1225.

[15] A. Yanik, U. Aldemir, M. Bakioglu, A new active control performance
index for vibration control of three-dimensional structures, Eng Struct
62-63 (2014) 53-64.

[16] U. Aldemir, A. Yanik, B. Mehmet, Control of structural response under
earthquake excitation, Comput-Aid Civil Infrastruct Eng 27 (2012) 620-
638.

[17] J.P. Lynch, Y. Wang, R.A. Swartz, K.C. Lu, C.H. Loh, Implementation of
a closed-loop structural control system using wireless sensor networks,

Struct Control Health Monitor 15 (2007) 518-539.
[18] N. Miura, M. Kohiyama, Design method of a quadratic cost function for

vibration control to maintain functions of a building during an earthquake,
J Struct Constr Eng 78 (687) (2014) 923-929, in Japanese.

[19] F. Sadek and B. Mohraz, Semiactive control algorithms for structures with
variable dampers, J Eng Mech 134 (9) (1998) 981-990.

[20] Y. She, T.C. Becker, S. Furukawa, E. Sato, M. Nakashima, LQR control
with frequency-dependent scheduled gain for a semi-active floor isolation
system, Earthquake Eng Struct Dyn 43 (2014) 1256-1284.

[21] T. Fujii, H. Fujitani, Y. Mukai, Performance evaluation of semi-active op-
timal control system by MR damper, J Struct Constr Eng 689 (78) (2013)
1237-1245, in Japanese.

[22] D. Sato, K. Kasai, T. Tamura, Influence of frequency sensitivity of vis-
coelastic damper on wind-induced response, J Struct Constr Eng 635 (74)

16



Table C.10: Maximums of responses for Tokachi wave (T0 = 8.0 s).
Story 0 1 2 3 4 5 6 7 8 9 10
NC 21.8 23.3 24.8 26.1 27.2 28.2 29.1 30.3 32.0 34.0 36.3

AD-LQR 11.3 12.0 12.6 13.2 13.8 14.4 15.0 15.5 16.1 16.8 18.0
x [cm] LQR 1 12.5 13.2 14.1 14.7 14.9 14.8 14.4 16.3 19.3 23.8 29.9

LQR 2 10.3 11.3 12.3 13.1 13.6 14.0 14.2 15.9 18.2 21.3 25.5
LQR 3 11.3 12.1 13.0 13.7 14.2 14.3 14.3 16.1 18.7 22.4 27.7

NC 33.5 35.3 34.4 31.0 26.2 20.7 18.3 18.2 26.2 41.3 58.8
ẍ+ ẍg AD-LQR 79.8 48.8 38.3 30.9 26.2 23.5 22.9 24.4 29.4 35.8 34.1

[cm/s2]
LQR 1 137.0 87.8 72.2 65.1 59.1 57.2 44.3 36.3 46.9 67.5 100.9
LQR 2 139.0 85.3 68.9 62.3 56.9 50.0 42.1 37.4 44.0 55.7 79.8
LQR 3 135.1 85.7 70.2 63.3 57.4 52.8 42.2 36.5 44.3 60.1 88.9

NC — 0.63 0.60 0.62 0.70 0.77 0.87 1.01 1.15 1.32 1.49
AD-LQR — 0.43 0.40 0.41 0.45 0.51 0.59 0.68 0.76 0.81 0.86

θ [rad] (×10−3) LQR 1 — 0.77 0.74 0.76 0.84 1.04 1.30 1.56 1.87 2.16 2.54
LQR 2 — 0.76 0.72 0.72 0.76 0.82 0.94 1.13 1.33 1.51 2.01
LQR 3 — 0.76 0.73 0.74 0.79 0.92 1.14 1.37 1.63 1.87 2.24

NC 1.39 1.40 1.45 1.64 1.97 2.33 2.82 3.45 4.17 5.06 6.00
AD-LQR 0.95 0.99 1.00 1.10 1.29 1.56 1.92 2.34 2.78 3.13 3.48

q (×10−2) LQR 1 1.64 1.76 1.83 2.01 2.38 3.16 4.22 5.36 6.80 8.27 10.3
LQR 2 1.63 1.74 1.78 1.92 2.16 2.50 3.02 3.87 4.83 5.78 8.15
LQR 3 1.62 1.74 1.80 1.97 2.24 2.79 3.70 4.69 5.93 7.17 9.07

Table C.11: Maximums of responses for El-Centro wave (T0 = 6.0 s).
Story 0 1 2 3 4 5 6 7 8 9 10
NC 14.4 16.3 18.0 19.6 21.1 22.6 24.0 25.4 26.7 27.9 29.3

AD-LQR 9.8 10.8 11.8 13.1 14.5 15.6 16.4 17.5 18.7 20.3 22.1
x [cm] LQR 1 10.0 11.4 12.7 13.8 14.8 15.8 16.6 17.4 18.1 19.4 21.7

LQR 2 10.1 11.6 12.9 14.0 15.0 16.0 16.8 17.5 18.2 19.3 21.7
LQR 3 10.1 11.6 12.9 14.0 15.1 16.1 17.0 17.8 18.7 20.0 21.9

NC 62.9 49.0 42.1 45.9 45.3 38.7 31.2 27.4 32.2 38.4 74.8
ẍ+ ẍg AD-LQR 153.2 111.6 87.2 69.9 57.7 48.9 42.7 39.9 42.5 44.9 35.3

[cm/s2]
LQR 1 148.9 106.0 79.6 69.0 68.1 54.5 44.3 44.5 51.2 55.5 93.0
LQR 2 148.5 106.1 79.8 68.0 67.2 53.7 44.3 44.4 51.1 54.0 90.8
LQR 3 138.8 98.1 73.6 66.9 66.4 53.6 41.9 42.0 48.9 53.7 93.6

NC — 0.74 0.71 0.68 0.65 0.66 0.75 0.85 0.99 1.32 1.88
AD-LQR — 0.76 0.64 0.60 0.59 0.61 0.65 0.72 0.77 0.76 0.89

θ [rad] (×10−3) LQR 1 — 0.71 0.66 0.67 0.69 0.73 0.79 0.85 1.06 1.63 2.34
LQR 2 — 0.71 0.66 0.67 0.69 0.73 0.79 0.85 1.02 1.58 2.29
LQR 3 — 0.68 0.64 0.66 0.68 0.75 0.79 0.87 1.06 1.63 2.35

NC 1.63 1.65 1.71 1.78 1.84 1.99 2.42 2.92 3.60 5.06 7.63
AD-LQR 1.92 1.78 1.61 1.60 1.69 1.86 2.13 2.48 2.82 2.93 3.61

q (×10−2) LQR 1 1.69 1.63 1.61 1.76 1.96 2.23 2.57 2.94 3.86 6.26 9.49
LQR 2 1.70 1.64 1.61 1.76 1.96 2.23 2.57 2.94 3.74 6.09 9.27
LQR 3 1.61 1.57 1.57 1.73 1.94 2.28 2.58 3.01 3.85 6.26 9.55
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Fig. C.35: Relationship betweenα and β, and maximum control input for
Tokachi wave (Tu = 5.0 s andT0 = 8.0 s.
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Fig. C.36: Relationship betweenα andβ, and maximum control input for El-
Centro wave (Tu = 5.0 s andT0 = 8.0 s.
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Table C.12: Maximums of responses for El-Centro wave (T0 = 8.0 s).
Story 0 1 2 3 4 5 6 7 8 9 10
NC 26.1 28.0 29.7 31.3 32.7 34.0 35.3 36.5 37.7 38.9 40.2

AD-LQR 10.4 11.3 12.3 13.4 14.7 15.7 16.7 17.7 18.8 20.3 21.9
x [cm] LQR 1 10.0 10.8 11.7 12.7 13.7 14.5 15.3 16.1 17.9 20. 1 22.9

LQR 2 10.7 11.6 12.6 13.5 14.5 15.3 15.9 16.5 17.8 19.6 22.0
LQR 3 10.2 11.0 12.0 13.0 13.9 14.7 15.4 16.1 17.7 19.7 22.3

NC 43.6 33.6 29.2 26.1 25.8 21.8 19.3 19.2 22.3 27.0 44.0
ẍ+ ẍg AD-LQR 128.1 98.0 76.3 61.1 50.6 43.1 37.8 35.6 38.2 40.7 32.0

[cm/s2]
LQR 1 189.5 138.2 103.5 84.1 80.7 61.8 54.3 53.3 59.3 73.7 107.4
LQR 2 199.1 148.2 111.5 89.5 76.5 64.7 57.8 56.2 61.4 70.6 91.2
LQR 3 189.1 138.5 103.8 83.3 78.1 60.7 54.5 53.5 59.4 70.8 100.7

NC — 0.75 0.69 0.65 0.63 0.63 0.63 0.63 0.67 0.79 1.11
AD-LQR — 0.67 0.57 0.53 0.53 0.55 0.59 0.65 0.70 0.69 0.80

θ [rad] (×10−3) LQR 1 — 0.82 0.72 0.71 0.77 0.84 0.94 1.05 1.38 1.94 2.70
LQR 2 — 0.85 0.74 0.72 0.72 0.75 0.80 0.86 1.18 1.65 2.29
LQR 3 — 0.81 0.72 0.71 0.73 0.78 0.83 0.96 1.30 1.80 2.53

NC 1.66 1.66 1.66 1.70 1.78 1.89 2.02 2.15 2.43 3.03 4.49
AD-LQR 1.68 1.56 1.42 1.42 1.51 1.67 1.92 2.25 2.56 2.66 3.26

q (×10−2) LQR 1 2.02 1.90 1.79 1.89 2.18 2.54 3.05 3.62 5.05 7.47 11.0
LQR 2 2.14 1.99 1.85 1.91 2.07 2.30 2.61 2.95 4.32 6.36 9.31
LQR 3 2.02 1.90 1.79 1.88 2.07 2.38 2.70 3.29 4.73 6.95 10.3
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