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Abstract It is common in forest tree breeding that selection of populations must
consider conservation of genetic diversity, while at the same time attempting to max-
imize response to selection. To optimize selection in these situations, the constraint
on genetic diversity can be mathematically described with the numerator relationship
matrix as a quadratic constraint. Pong-Wong and Woolliams formulated the optimal
selection problem using semidefinite programming (SDP). Their SDP approach gave
an accurate optimal value, but required rather long computation time. In this paper,
we propose an second-order cone programming (SOCP) approach to reduce the heavy
computation cost. First, we demonstrate that a simple SOCP formulation achieves the
same numerical solution as the SDP approach. A simple SOCP formulation is, how-
ever, not much more efficient compared to the SDP approach, so we focused on the
sparsity structure of the numerator relationship matrix, and we develop a more effi-
cient SOCP formulation usingHenderson’s algorithm. Numerical results show that the
proposed formulation, which we call a compact SOCP, greatly reduced computation
time. In a case study, an optimal selection problem that demanded 39,200s under the
SDP approach was solved in less than 2s by the compact SOCP formulation. The
proposed approach is now available as a part of the software package OPSEL.
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1 Introduction

Breeders of forest trees must often consider conservation of genetic diversity, while
at the same time maximizing response to selection. The selection of new breed-
ing parents must make rapid progress in terms of genetic gain, while maintaining
genetic diversity for future genetic improvement. Buyers of planting stock produced by
selected parental genotypes managed in seed orchards want maximum performance,
while satisfying a restriction, sometimes legislated, on the diversity deployed to the
forest.

The use of mathematical optimization approaches has been applied increasingly by
breeders to the optimum selection problem [1,15,22,25]. Meuwissen [15] expressed
this selection of optimal contributions as an optimization problem of the form:

max : gT x
subject to : eT x = 1

l ≤ x ≤ u
xT Ax ≤ 2θ.

(1)

Through this paper, we use m to denote the number of the candidate members.
We use the vector e ∈ R

m to denote a vector of ones, and the superscript T to
denote the transpose of a vector or a matrix. The variable vector x ∈ R

m corre-
sponds to the contributions (or the proportions) of the candidates, hence the first
constraint eT x = 1 requires that the total contribution of candidate members be unity.
In the second constraint, l ∈ R

m and u ∈ R
m are element-wise lower and upper

bounds.
The estimated breeding values (EBVs) [13] are often used as the coefficient vector

g ∈ R
m in the objective function, since the maximization of the weighted EBVs is

expected to produce the best genetic performance. From the viewpoint of numerical
optimization, we can assume that g is given.

The most interesting property in (1) is the last constraint xT Ax ≤ 2θ . This
constraint was originally introduced to consider relatedness or coancestry among
candidates due to common ancestors in their pedigree. These effects accumulate
over cycles of breeding as the pedigree becomes more complex. Cockerham [4]
extended the definition of coancestry coefficients to describe group coancestry. The

group coancestry of the contributions x is calculated with the formula xT Ax
2 , where

A ∈ R
m×m is the numerator relationship matrix of Wright [29] (we will review a

formula for the numerator relationship matrix in Sect. 2). The constraint xT Ax ≤ 2θ

is therefore employed to keep group coancestry xT Ax
2 under an appropriate level

θ ∈ R.
To solve the optimal selection problem (1) efficiently, Meuwissen [15] developed

an iterative method based on Lagrangian multipliers and his method has been widely
used in breeding, for example, [7,10,28]. It is a characteristic of this method that some
variables xi may be fixed to their lower or upper bounds (li or ui ) forcibly, and it was
further demonstrated by [22] that the output solution of Meuwissen’s method is not
always truly optimal.
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Pong-Wong andWoolliams [22] utilized semidefinite programming (SDP) to derive
a formula equivalent to (1). An SDP is a convex optimization problem that maximizes
a linear objective function over the constraints described as linear matrix inequalities.
Many studies in the 1990s extended interior-point methods from linear program-
ming problems to SDP problems (e.g., [8,11]). Based on primal-dual interior-point
methods, several software solver packages have been developed, such as SDPA [30],
SDPARA [31], SDPA-C [32], SDPT3 [27], and SeDuMi [26]. Utilizing the SDP for-
mulation, Pong-Wong and Woolliams [22] obtained the exact optimal value of (1).

An important obstacle encountered in the SDP approach is the heavy computation
cost. The number of candidate members discussed in [22] was thus limited, m ≤ 10.
Ahlinder et al. reported in [1] that the SDP approach required 5h of computation
time for a problem of the size m = 12,000. This computation time is rather long
for operational application and may require significant truncation of the candidate list
prior to solving the SDP.

The objective of this paper is to propose an efficient approach based on second-
order cone programming (SOCP). SOCP is a convex optimization that maximizes a
linear objective function over linear constraints and second-order cone constraints.
Lobo et al. [12] discussed a wide range of SOCP applications, for example, filter
design and truss design, and Sasakawa and Tsuchiya [24] applied SOCP to magnetic
shield design. Alizadeh and Goldfarb [2] surveyed theoretical and algorithmic aspects
of SOCP. The software packages SDPT3 [27] and SeDuMi [26] can solve not only
SDP but also SOCP using primal-dual interior-point methods. In addition, ECOS [5]
was implemented recently to solve SOCP problems.

We first show that an SOCP formulation can attain the exact optimal solution of (1),
in the same way as SDP. From the fact that SOCP is a special case of SDP, we might
expect that a simple SOCP formulation would be sufficient to reduce the computation
time, but preliminary numerical tests revealed that the simple SOCP formulation was
no better than the SDP approach.

We thus focus on exploiting the sparsity embedded in the numerator relationship
matrix A and establish a sparse SOCP formulation. Furthermore, we integrate Hen-
derson’s algorithm [9] to resolve a bottleneck in the sparse formulation and propose
a compact SOCP formulation. This compact formulation allows us to remove dense
matrices from the computation steps of the SOCP solution.

Numerical tests with data from a sample of Scots pine (Pinus sylvestrisL.) selection
candidates showed that the compact SOCP formulation greatly reduced computation
time. For the case of m = 10,100, we attained a computation speed improvement of
20,000-times compared to the SDP approach. In addition, the compact SOCP formu-
lation is more efficient from the viewpoint of memory utilization.

The remainder of this paper is organized as follows: Sect. 2 describes the SDP
approach of Pong-Wong and Woolliams and discusses a simple SOCP formulation;
in Sect. 3, we propose SOCP formulations and derive an efficient method; Sect. 4
presents numerical results to verify the reduction in computation time for problems of
various sizes; and finally, Sect. 5 gives conclusions and discusses future directions.
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1686 M. Yamashita et al.

2 SDP formulation and simple SOCP formulation

Since a principal characteristic of the optimal selection problem (1) is determined by
the numerator relationship matrix A, we first review an algorithm to evaluate A. We
then describe the SDP formulation of Pong-Wong and Woolliams [22], and compare
the performance of the SDP formulation and a simple SOCP formulation.

To evaluate A, we separate the set of pedigree candidate members P :=
{1, 2, . . . ,m} into the three disjoint groups:

P = P0 ∪ P1 ∪ P2,

where

⎧
⎨

⎩

P0 = {i ∈ P : both parents p(i) and q(i) are unknown}
P1 = {i ∈ P : one parent p(i) is known and the other parent q(i) is unknown}
P2 = {i ∈ P : both parents p(i) and q(i) are known}.

Figure 1 gives an example of a pedigree having m = 9 members and illustrates its
genealogical chart. In this example, P0 = {1, 2},P1 = {5},P2 = {3, 4, 6, 7, 8, 9},
and the parents of the 8th member are p(8) = 7 and q(8) = 6. If parent p(i) or
q(i) is unknown, we assign p(i) = 0 or q(i) = 0, respectively, and we can assume
i > p(i) ≥ q(i) for all i ∈ P without loss of generality.

The numerator relationship matrix Awas defined byWright [29], and its simplified
formula was presented in [9]. The formula in [9] gives the elements A11, . . . , Ann in
a recursive style as follows:

{
Ai j = A ji = A j,p(i)+A j,q(i)

2 for i = 1, . . . ,m, j = 1, . . . , i − 1

Aii = 1 + Ap(i),q(i)
2 for i = 1, . . . ,m,

where Apq = 0 if p = 0 or q = 0. When we apply this recursion to the example of
Fig. 1, we obtain the corresponding matrix A as follows:

Fig. 1 An example of a coded pedigree and its diagram
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A = 1

32

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

32 0 16 16 0 16 16 16 8
0 32 16 16 16 16 8 12 12
16 16 32 16 8 24 12 18 10
16 16 16 32 8 24 12 18 10
0 16 8 8 32 8 16 12 24
16 16 24 24 8 40 12 26 10
16 8 12 12 16 12 32 22 24
16 12 18 18 12 26 22 38 17
8 12 10 10 24 10 24 17 48

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (2)

Pong-Wong and Woolliams [22] devised an SDP formulation to solve the prob-
lem (1). They observed that the matrix A is always positive definite, and they used
the Schur complement to replace the group-coancestry constraint xT Ax ≤ 2θ with

an equivalent condition

(
2θ xT

x A−1

)

∈ S
1+m+ , where S

1+m+ is the space of positive

semidefinite matrices of dimension 1 + m. Consequently, they solved the following
SDP problem that is equivalent to the optimal selection problem (1):

max : gT x
subject to : eT x = 1

l ≤ x ≤ u(
2θ xT

x A−1

)

∈ S
1+m+ .

(3)

Detailed conversions of this problem into a standard SDP format that can be passed to
SDP solvers are described in [1,22]. Version 1 of the software package OPSEL [18]
automatically performs the conversion and passes the problem to SDPA [30] for solv-
ing.

Table 1 displays the computed optimal values and the computation times for
Meuwissen’s implementation (GENCONT) [16] and the SDP formulation (3). We
executed numerical tests using Matlab R2015a on a Windows 8.1 PC with Xeon CPU
E3-1231 (3.40GHz, 4 cores) and 8GB of RAM.We usedWindows, since GENCONT
can run on only Windows. To solve the SDP (3), we employed SDPA [30] with four-
core parallel processing.

Table 1 Optimal values and
computation times for
GENCONT and SDP
formulations (time in seconds)

m (size of pedigree) 2045 10,100

GENCONT

Optimal value 438.56 OOM∗
Time 67.43

SDP formulation (3)

Optimal value 439.12 47.76

Time 70.21 39,200.78
*OOM out of memory
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We observe from Table 1 that the SDP formulation (3) attained a better optimal
value than GENCONT. Actually, as shown in [22], the optimal value obtained from
(3) was the exact optimal value, while the Lagrangian multiplier method implemented
in GENCONT cannot guarantee optimality. Furthermore, for the large problem (m =
10,100), GENCONT gave up on the computation, while the SDP formulation again
obtained the exact value. On the other hand, the disadvantage of the SDP formulation
is its computation time. Even using parallel processing implemented in SDPA, the
SDP formulation was slower than GENCONT when m = 2045. Furthermore, the
computation time for the large problem exceeded 10h.

To reduce the heavy computation time of the SDP formulation, we express the
group-coancestry constraint xT Ax ≤ 2θ as a second-order cone (SOC) constraint.
The SOC constraint for v ∈ R

n and v0 ∈ R is the inequality constraint ||v|| ≤ v0,

where ||v|| := √
vT v =

√∑n
k=1 v2k is the Euclidean norm of v. Since the matrix

A is positive definite, the Cholesky factorization gives an upper triangular matrix
U such that A = UTU . Due to the relation xT Ax = xTUTUx = ||Ux||2,
the group-coancenstry constraint xT Ax ≤ 2θ can be substituted by an SOC
constraint ||Ux|| ≤ √

2θ . Consequently, we can convert (1) into an SOCP prob-
lem, which will be referred to as a simple SOCP formulation or more concisely
simple SOCP:

max : gT x
subject to : eT x = 1

l ≤ x ≤ u
||Ux|| ≤ √

2θ.

(4)

From the equivalence, it is clear that this simple SOCP formulation also gives the
exact optimal value of the optimal-selection problem (1).

It is well known that SOC constraints are a special case of positive semidefinite
constraints. We thus expected that the simple SOCP (4) could be solved more quickly
than SDP (3). Table 2 reports the results of a preliminary numerical experiment for
the SDP and simple SOCP formulations. We used ECOS [5] as the SOCP solver for
solving (4). For the small problem (m = 2045), simple SOCP successfully reduced
the computation time from 70.21 to 0.28 s, a speed improvement of 250-times. For
the large problem (m = 10,100), however, the speed improvement was only 7-times.
When we consider the computational complexity, simple SOCP would be even slower
than SDP for still larger problems. Despite that SOCP is a special case of SDP, this
result suggests that a simple SOCP is not so promising.

Table 2 Computation time on
SDP and simple SOCP
formulations (time in seconds)

m (size of pedigree) 2045 10,100

SDP (3) 70.21 39,200.78

Simple SOCP (4) 0.28 5604.25
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Fig. 2 The positions of non-zero elements of A (left) and A−1 (right) for the problem of sizem = 10,100

3 Efficient formulation based on second-order cone programming

Toobtain amore efficient formulation based onSOCP,we investigate properties hidden
in the simple SOCP (4). In particular, noting that SDP (3) relies on only A−1, we focus
on the sparsity of A and its inverse A−1. Taking the inverse of A in (2) reveals that
A−1 contains many more zero-elements than A;

A−1 = 1

42

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

105 42 − 42 − 42 21 0 − 42 0 0
42 98 − 42 − 42 − 28 0 0 0 0

− 42 − 42 105 21 0 − 42 0 0 0
− 42 − 42 21 105 0 − 42 0 0 0
21 − 28 0 0 98 0 − 21 0 − 42
0 0 − 42 − 42 0 108 24 − 48 0

− 42 0 0 0 − 21 24 129 − 48 − 42
0 0 0 0 0 − 48 − 48 96 0
0 0 0 0 − 42 0 − 42 0 84

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Figure 2 illustrates the positions of the non-zero elements of A and A−1 for the problem
of size m = 10,100. The dimensions of A and A−1 correspond to size m.

Figure 2 again indicates that A−1 is much sparser than A. The numbers of non-zero
elements in A and A−1 are 56,754,980 and 56,092, respectively, hence their density
against the fully-dense matrix (m2 non-zero elements) are 55.6 and 0.0549%, respec-
tively. When we apply the Cholesky factorization to A, the upper triangular matrix U
inherits the dense property. The number of non-zero elements in U is 23,171,296, and
its density against the fully-dense upper triangular matrix is still 45.4%.

3.1 Sparse SOCP formulation

We can exploit the property that A−1 is remarkably sparse compared to A and U . The
first key step in our approach is to replace x with A−1 y, where y is a new variable
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defined by y := Ax. We can transform xT Ax ≤ 2θ into another quadratic constraint
yT A−1 y ≤ 2θ . This new constraint yT A−1 y ≤ 2θ is composed of the sparse matrix
A−1 and does not involve the densematrix A. The second step is to utilize theCholesky
factor of A−1. It is given by U−T (the transposed matrix of U−1) from the relation
A−1 = (U−T )TU−T , so yT A−1 y ≤ 2θ is now transformed into an SOC constraint
||U−T y|| ≤ √

2θ . Using these two steps, we derive another SOCP problem which
will be referred to as a sparse SOCP formulation or more concisely sparse SOCP:

max : (A−1g)T y
subject to : (A−1e)T y = 1

l ≤ A−1 y ≤ u
||U−T y|| ≤ √

2θ.

(5)

We should emphasize that when y∗ is obtained as the optimal solution of (5), the
optimal solution x∗ of the original problem (1) can be computed through the relation
x∗ = A−1 y∗ without depending on the dense matrix A.

In Table 3, we compare the performance of SDP (3), simple SOCP (4), sparse
SOCP (5), and compact SOCP (6) formulations. (We will discuss the compact SOCP
formulation later in Sect. 3.2). The first column ‘nnz’ is the total number of non-zero
elements that appear in a standard format that are acceptable by SDP/SOCP solvers
(Technically speaking, we utilized the SeDuMi format [26] to count the non-zero
elements). The second column is the computation time to convert a pedigree like
Fig. 1 and EBVs (estimated breeding values) into the SDP or SOCP formulations, and
the third column is the computation time of the solvers. We applied SDPA with four-
core parallel processing to the SDP formulation and ECOS to the SOCP formulations.
The fourth (last) column is the total computation time.

Table 3 indicates that for the large problem (m = 10,100), the computation time of
sparse SOCP was much shorter than that of simple SOCP. The sparse SOCP seems to
have more complex structure than the simple SOCP, as it contained A−1 three times in
the input data. Nevertheless, the total number of non-zero elements was reduced from

Table 3 Performance comparison of the SDP and SOCP formulations (time in seconds)

Formulation nnz Time (conversion) Time (solver) Time (total)

m (size of pedigree) = 2045

SDP (3) 24,300 0.52 69.55 70.21

Simple SOCP (4) 18,201 0.10 0.04 0.28

Sparse SOCP (5) 30,348 0.37 0.05 0.55

Compact SOCP (6) 30,249 0.01 0.05 0.19

m (size of pedigree) = 10,100

SDP (3) 121,703 26.97 39,173.03 39,200.78

Simple SOCP (4) 23,231,801 15.95 5587.53 5604.25

Sparse SOCP (5) 159,570 24.14 0.68 25.60

Compact SOCP (6) 153,001 0.37 0.62 1.76
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23,231,801 in the simple SOCP to 159,570 in the sparse SOCP, due to the change
from U (which contains 23,171,296 non-zero elements) to U−T (36,607 non-zero
elements). This led to a reduction in computation time by the SOCP solver.

3.2 Compact SOCP formulation

To reduce the total time further, we consider the computation time required to prepare
the SOCP formulations. In the case of m = 10,100 in Table 3, the conversion com-
prised 94% of the total time. In particular, the construction of dense matrix A and its
inversion are the principal bottlenecks. We evaluate A to formulate the sparse SOCP,
but A will be no longer required when we solve the resultant SOCP problem with
interior-point methods.

It is thus highly desirable to generate directly the sparse matrix A−1 without the
densematrix A, and this leads us to a compact algorithm proposed byHenderson [9] to
construct A−1. InHenderson’s original algorithm, the vector of inbreeding coefficients
defined by h := diag(A)− e appears in the computation process. Here, diag(A) is a
vector composed of the diagonal elements of A, soHenderson’s algorithm still depends
on A. Quaas [23] devised an efficient short-cut to compute h without constructing the
matrix A itself, and Masuda et al. [14] utilized this method to implement their YAMS
package. The compact algorithm of [9] with the enhancement [23] is shown in Table 4.
In the algorithm, the indicator function δ(p) stands for δ(0) = 1 and δ(p) = 0 for
p �= 0, and A−1

i j denotes the (i, j)th element of A−1.

By using the values bi computed in Table 4, the mathematical formula for A−1 can
be given as follows:

A−1 =
∑

i∈P0

bi ei eTi +
∑

i∈P1

bi

(

ei − 1

2
ep(i)

) (

ei − 1

2
ep(i)

)T

+
∑

i∈P2

bi

(

ei − 1

2
ep(i) − 1

2
eq(i)

)(

ei − 1

2
ep(i) − 1

2
eq(i)

)T

,

where ei is a vector whose components are all zero except the i th component being
one.

It is known that bi > 0 for any i = 1, 2, . . . ,m from properties of the inbreeding
coefficients, therefore, the group-coancestry constraint can be transformed into another
SOC constraint:

xT Ax ≤ 2θ ⇔ yT A−1 y ≤ 2θ

⇔
∑

i∈P0

bi y
2
i +

∑

i∈P1

bi

(

yi − 1

2
yp(i)

)2

+
∑

i∈P2

bi

(

yi − 1

2
yp(i) − 1

2
yq(i)

)2

≤ 2θ

⇔ ||B y|| ≤ √
2θ,
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Table 4 A compact algorithm to obtain the inverse of the numerator relationship matrix A−1 based on [9]

A−1 ← O.

for i = 1, 2, . . . ,m

bi ← 4
(1+δ(p(i))(1−h p(i))+(1+δ(q(i))(1−hq(i))

if i ∈ P0 then

add bi to A−1
i i

elseif i ∈ P1 then

add bi to A−1
i i

add − bi
2 to A−1

i,p(i), and A−1
p(i),i

add bi
4 to A−1

p(i),p(i)

elseif i ∈ P2 then

add bi to A−1
i i

add − bi
2 to A−1

i,p(i), A
−1
p(i),i , A

−1
i,q(i), and A−1

q(i),i

add bi
4 to A−1

p(i),p(i), A
−1
p(i),q(i), A

−1
q(i),p(i), and A−1

q(i),q(i)

endif

endfor

where B is the matrix whose i th row vector is determined by

Bi∗ =

⎧
⎪⎨

⎪⎩

√
bi eTi for i ∈ P0√
bi

(
ei − 1

2 ep(i)
)T

for i ∈ P1√
bi

(
ei − 1

2 ep(i) − 1
2 eq(i)

)T
for i ∈ P2.

Using the new SOC constraint ||B y|| ≤ √
2θ , we develop another SOCP which

will be referred to as a compact SOCP formulation or concisely compact SOCP:

max : (A−1g)T y
subject to : (A−1e)T y = 1

l ≤ A−1 y ≤ u
||B y|| ≤ √

2θ.

(6)

The combination of the compact algorithm in Table 4 and the SOC con-
straint ||B y|| ≤ √

2θ gives us a formulation that does not depend on any dense
matrices. Indeed, the number of non-zero elements of the matrix B is just 30,100 for
the problem of size m = 10,100, much smaller than that of U (23,171,296) for the
simple SOCP and comparable to that of U−T (36,607) for the sparse SOCP formula-
tion.

From Table 3, we observe that the solver time for the compact SOCP was slightly
less than for the sparse SOCP. Further reduction in computation time was achieved
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during the formulation of the SOCP from the pedigree. In the case m = 10,100, the
conversion was reduced from 24.14 s to 0.37 s.

4 Numerical tests

We conducted numerical evaluations of the SDP and SOCP formulations on several
datasets. The datasets are problems of sizes 2045, 5050, 15,100, 15,222, 50,100,
100,100 and 300,100. The datasets with sizes 2045 and 15,222 were derived from
actual data for Scots pine and loblolly pine ((Pinus taeda L.), respectively (available
at the Dryad Digital Repository http://dx.doi.org/10.5061/dryad.9pn5m). The other
data were produced by simulation of five cycles of breeding in a closed population
using the approach of [20,21].

The computation environment for the small problems (i.e.,m ≤ 10,100)wasMatlab
R2015a on a Windows 8.1 PC with Xeon E3-1231 (3.40GHz) and 8GB RAM. For
the larger problems (m ≥ 15,100), we used Matlab R2014b on a Debian Linux server
with Opteron 4386 (3.10GHz) and 128GB RAM, since 8 GB was insufficient for the
SDP formulation. We utilized SDPA [30] with four-core parallel processing as the
SDP solver and ECOS [5] as the SOCP solver. For the compact SOCP (6), we also
conducted the numerical experiment on CVX [6] using SDPT3 [27] andMOSEK [17]
as the SOCP solvers. The use of CVX makes it much easier to write SOCP problems
in theMatlab environment, and SDPT3 is the default SOCP/SDP solver in CVXwhile
MOSEK is one of state-of-the-art commercial solvers for SDP/SOCP.

Although we mainly used Matlab for the comparison, we also implemented com-
pact SOCP with C++. We can directly know the positions of non-zero elements that
appear in the matrix B from the pedigree list, therefore, a specified data structure can
accelerate the computation time to build B. If we implement simple or sparse SOCP
with C++, wewould need to embed certain numerical routines for the Cholesky factor-
ization to compute U or U−T . In addition, the sparse Cholesky factorization requires
a preprocessing by, for example, AMD [3] to derive better performance. One of the
advantages in compact SOCP is that we can manage the computation without numer-
ical routines for the Cholesky factorization for obtaining B. Our C++ implementation
for compact SOCP internally calls ECOS as the SOCP solver.

Table 5 shows the numerical results for the SDP and SOCP formulations. We can
see that compact SOCP (6) solved the problems much faster than other formulations.
In particular, for the problemm = 15,222, the compact SOCPwith C++ required only
2.21 s, compared with 22,566s for the SDP formulation, an improvement in speed by
a factor of 10 210.

Another significant advantage of compact SOCP is memory consumption. The
SDP formulation consumed 31GB RAM to solve the problem m = 15,222, and it
was unable to handlem ≥ 50,100, despite having 128 GB available. A rough estimate
suggests that the memory required for the largest problem m = 300,100 would be
12,000 GB. Simple SOCP also suffered from a large memory requirement to store the
dense matrix U . The sparse SOCP did not require the dense matrix A in the resultant
SOCP problem, but it still utilized A for computing A−1, and thus required a long
conversion time in the same way as the SDP formulation. In contrast, the compact
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Table 5 Numerical results on SDP and SOCP formulations (time in seconds)

Formulation nnz∗ Time (conversion) Time (solver) Time (total)

m (size of pedigree) = 2045

SDP (3) 24,300 0.52 69.55 70.21

Simple SOCP (4) 18,201 0.10 0.04 0.28

Sparse SOCP (5) 30,348 0.37 0.05 0.55

Compact SOCP (6) 30,249 0.01 0.05 0.20

Compact SOCP with SDPT3 30,249 0.03 3.23 3.37

Compact SOCP with MOSEK 30,249 0.02 0.73 0.76

Compact SOCP with C++ 30,249 0.01 0.06 0.09

m (size of pedigree) = 5050

SDP (3) 60,853 4.63 887.32 892.30

Simple SOCP (4) 6,812,127 1.60 696.10 698.15

Sparse SOCP (5) 78,405 3.67 0.19 4.21

Compact SOCP (6) 76,533 0.04 0.19 0.58

Compact SOCP with SDPT3 76,533 0.01 6.61 6.89

Compact SOCP with MOSEK 76,533 0.03 0.77 0.81

Compact SOCP with C++ 76,533 0.01 0.21 0.28

m (size of pedigree) = 15,100

SDP (3) 181,703 157.41 21,836.63 21,994.87

Simple SOCP (4) 54,063,065 26.17 38,733.01 38,760.00

Sparse SOCP (5) 234,760 145.53 2.13 148.49

Compact SOCP (6) 227,989 0.04 2.06 2.92

Compact SOCP with SDPT3 227,989 0.04 28.08 28.95

Compact SOCP with MOSEK 227,989 0.04 2.32 3.27

Compact SOCP with C++ 227,989 0.02 1.95 1.99

m (size of pedigree) = 15,222

SDP (3) 181,947 161.99 22,403.30 22,566.11

Simple SOCP (4) 7,889,551 17.96 618.18 636.95

Sparse SOCP (5) 227,758 150.07 2.13 153.01

Compact SOCP (6) 227,203 0.04 2.20 3.05

Compact SOCP with SDPT3 227,203 0.04 177.97 178.84

Compact SOCP with MOSEK 227,203 0.04 1.98 2.88

Compact SOCP with C++ 227,203 0.02 2.16 2.21

m (size of pedigree) = 50,100

SDP (3) OOM∗∗
Simple SOCP (4) OOM

Sparse SOCP (5) 759,294 4989.55 7.58 4999.90

Compact SOCP (6) 753,023 0.15 7.71 10.63

Compact SOCP with SDPT3 753,023 0.14 273.69 276.66

Compact SOCP with MOSEK 753,023 0.12 16.15 19.14

Compact SOCP with C++ 753,023 0.08 7.48 7.69
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Table 5 continued

Formulation nnz∗ Time (conversion) Time (solver) Time (total)

m (size of pedigrees) = 100,100

SDP (3) OOM

Simple SOCP (4) OOM

Sparse SOCP (5) > 24h∗∗∗
Compact SOCP (6) 1,502,983 0.35 18.44 24.76

Compact SOCP with SDPT3 1,502,983 0.25 902.60 908.63

Compact SOCP with MOSEK 1,502,983 0.24 11.06 17.23

Compact SOCP with C++ 1,502,983 0.16 17.57 17.92

m (size of pedigrees) = 300,100

SDP (3) OOM

Simple SOCP (4) OOM

Sparse SOCP (5) OOM

Compact SOCP (6) 4,503,065 1.10 82.41 99.65

Compact SOCP with SDPT3 4,503,065 0.84 10,023.77 10,040.02

Compact SOCP with MOSEK 4,503,065 0.78 37.14 56.15

Compact SOCP with C++ 4,503,065 0.51 78.54 79.62

*nnz = the total number of non-zero elements that appear in input data
**OOM out of memory
***>24h = the computation failed to complete within 24h

SOCP required less than 766MBRAM to solve even the huge problemm = 300,100,
due mainly to the compact SOCP not having to process any dense matrices.

From the numerical results, we also observe that the C++ implementation of com-
pact SOCP is faster than the implementation in Matlab. The discrepancy between
Matlab (99.65 s) and C++ (79.62 s) in the largest problem was due to a specified data
structure written in C++. In particular, the structure was useful when we arranged the
pedigree information before building the SOCP problems.

As for the performance of CVX using SDPT3 and MOSEK, the latter was much
faster, thus we focus on the comparison between CVX using MOSEK and the C++
implementation. Up to the relatively large problems (m ≤ 100,100), the total time
for CVX using MOSEK was not so different from that of the C++ implementation.
For the largest problem (m = 300,100), CVX using MOSEK was faster than the
C++ implementation, mainly because the commercial solver MOSEK [17] was more
efficient than ECOS [5] for large problems in the compact SOCP. ECOS is, however, a
free software package and the problem sizem = 300,100 is huge even for operational
use in breeding. Thus, the C++ implementation using ECOS is certainly attractive
from a practical standpoint.

5 Conclusions and future directions

We examined the SOCP formulations for the optimal selection problem arising from
tree breeding. We employed the transformation x = A−1 y based on the sparsity
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of A−1 and the efficient method for building A−1 by Henderson’s algorithm with the
Quaas enhancement. As a result, the compact SOCP formulation removed the require-
ment for processing of large dense matrices from the computations. The numerical
results demonstrated that the compact SOCP formulation obtained the optimal solution
significantly faster than the SDP formulation available previously to breeders.

While the SOCP formulations proposed in this papermay look simple to researchers
in thefield ofmathematical optimization, the reduction in computation time to solve the
optimal selection problem will help improve operational application in tree breeding.
We expect that this paper will be one of bridges to introduce efficient approaches
cultivated in mathematical optimization to breeding. The proposed approach is now
available as a part of Version 2 of the software package OPSEL [19], available free at
http://www.skogforsk.se/opsel.

In this paper, we discussed optimizing unequal contributions of parental geno-
types deployed in mating designs and seed orchards. In some situations it might be
preferable to optimize selection of populations for equal contributions deployment.
This would require a method to solve a mixed-integer SOCP problem, i.e., an SOCP
problem in which some variables are constrained to be integers. The structure of the
SOCP formulation developed in this paper will be a basis for an efficient method now
under development to consider themixed-integer SOCPproblem for equal-deployment
problems.
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