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Abstract

In this paper, we establish an explicit description of the specialization Ewλ(q,∞)
of the nonsymmetric Macdonald polynomials Ewλ(q, t) at t = ∞ in terms of the
quantum Bruhat graph, where λ is a dominant weight and w is an element of a finite
Weyl group W . As an application of this explicit formula, we give a representation-
theoretic interpretation of the specialization Ew◦λ(q,∞) in terms of the Demazure
submodule V −w◦(λ) of the level-zero extremal weight module V (λ) over a quantum
affine algebra of untwisted type; here, w◦ denotes the longest element of the finite
Weyl group W . Also, we give a representation-theoretic proof of Cherednik-Orr’s
recursion formula of Demazure type for the specialization at t =∞ of nonsymmetric
Macdonald polynomials.
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Chapter 1

Introduction

Symmetric Macdonald polynomials with two parameters q and t were introduced
by Macdonald [M2] as a family of orthogonal symmetric polynomials, which include
as special or limiting cases almost all the classical families of orthogonal symmetric
polynomials. This family of polynomials are characterized in terms of the double
affine Hecke algebra (DAHA) introduced by Cherednik ([C1], [C2]). In fact, there
exists another family of orthogonal polynomials, called nonsymmetric Macdonald
polynomials, which are simultaneous eigenfunctions of Y -operators acting on the
polynomial representation of the DAHA; by “symmetrizing” nonsymmetric Mac-
donald polynomials, we obtain symmetric Macdonald polynomials (see [M1]).

Based on the characterization above of nonsymmetric Macdonald polynomials,
Ram-Yip [RY] obtained a combinatorial formula expressing symmetric or nonsym-
metric Macdonald polynomials associated to an arbitrary untwisted affine root sys-
tem; this formula is described in terms of alcove walks, which are certain strictly
combinatorial objects. In addition, Orr-Shimozono [OS] refined the Ram-Yip for-
mula above, and generalized it to an arbitrary affine root system (including the
twisted case); also, they specialized their formula at t = 0, t = ∞, q = 0, and
q =∞.

As for representation-theoretic interpretations of the specialization of symmetric
or nonsymmetric Macdonald polynomials at t = 0, we know the following. Ion [I]
proved that for a dominant integral weight λ and an element x of a finite Weyl
group W , the specialization Exλ(q, 0) of the nonsymmetric Macdonald polynomial
Exλ(q, t) at t = 0 is equal to the graded character of a certain Demazure sub-
module of an irreducible highest weight module over an affine Lie algebra of un-
twisted simply-laced type or twisted non-simply-laced type. As for the relation with
level-zero representations of quantum affine algebras, Lenart-Naito-Sagaki-Schilling-
Shimozono [LNSSS2] proved that for a dominant integral weight λ, the set QLS(λ)
of all quantum Lakshmibai-Seshadri (QLS) paths of shape λ provides a realization
of the crystal basis of a special quantum Weyl module over a quantum affine al-
gebra U ′v(gaff) (without degree operator) of an arbitrary untwisted type, and also
proved that its graded character equals the specialization Ew◦λ(q, 0) at t = 0, where
w◦ denotes the longest element of W . Here a QLS path is obtained from an affine
level-zero Lakshmibai-Seshadri path through the projection R ⊗Z Paff → R ⊗Z P ,
which factors the null root δ of an affine Lie algebra gaff , and is described in terms of
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(the parabolic version of) the quantum Bruhat graph, introduced by Brenti-Fomin-
Postnikov [BFP]; the set of QLS paths is endowed with an affine crystal structure
in a way similar to the one for the set of ordinary LS paths introduced by Littel-
mann [L1]. Moreover, Lenart-Naito-Sagaki-Schilling-Shimozono [LNSSS3] obtained
a formula for the specialization Exλ(q, 0), x ∈W , at t = 0 in an arbitrary untwisted
affine type, which is described in terms of QLS paths of shape λ, and also proved
that the specialization Exλ(q, 0) is just the graded character of a certain Demazure-
type submodule of the special quantum Weyl module. The crucial ingredient in the
proof of this result is a graded character formula obtained in [NS4] for the Demazure
submodule V −e (λ) of the level-zero extremal weight module V (λ) of extremal weight
λ over a quantum affine algebra Uv(gaff), where e is the identity element ofW . More
precisely, in [NS4], Naito and Sagaki proved that the graded character gchV −e (λ)

of V −e (λ) ⊂ V (λ) is identical to
(∏

i∈I
∏mi
r=1(1− q−r)

)−1
Ew◦λ(q

−1, 0), where λ is a
dominant integral weight of the from

∑
i∈I miϖi, with ϖi, i ∈ I, the fundamental

weights. The graded character gchV −e (λ) is obtained from the ordinary character
of V −e (λ) by replacing eδ by q, with δ the null root of the affine Lie algebra gaff .

The purpose of this thesis is to establish the relation between the specialization
Exλ(q,∞) for x ∈ W of the nonsymmetric Macdonald polynomial Exλ(q, t) at t =
∞ and the level-zero extremal weight module V (λ) over Uv(gaff). First, we prove
an explicit formula for the specialization Exλ(q,∞), which is described in terms
of (a specific subset QLSxλ,∞(λ) of) QLS(λ). By using this formula, we give a
representation-theoretic interpretation of the specialization Ew◦λ(q,∞) in terms of
the Demazure submodule V −w◦(λ) of V (λ). More precisely, we prove that the graded

character gchV −w◦(λ) of V −w◦(λ) is identical to
(∏

i∈I
∏mi
r=1(1− q−r)

)−1
Ew◦λ(q,∞),

where λ is a dominant integral weight of the form
∑

i∈I miϖi. Next, we define
a certain (finite-dimensional) quotient module V −w◦(λ)/X

−
w◦(λ), and prove that the

graded character gchV −w◦(λ)/X
−
w◦(λ) of V −w◦(λ)/X

−
w◦(λ) is identical to Ew◦λ(q,∞).

Also, as an application of the explicit formula above, we give a representation-
theoretic (or rather, crystal-theoretic) proof of Cherednik-Orr’s recursion formula of
Demazure type for the specialization Exλ(q,∞), x ∈ W ; in the course of the proof
of this result, we obtain a recursive relation for the subsets QLSxλ,∞(λ), x ∈ W , of
QLS(λ), which determines these subsets inductively in terms of the tilted Bruhat
order by starting with the equality QLSw◦λ,∞(λ) = QLS(λ).

This thesis is organized as follows. In Chapter 2, we fix our notation, and review
the definitions and some of the properties of nonsymmetric Macdonald polynomials
and level-zero extremal weight modules over Uv(gaff). In Chapter 3, we first prove an
explicit formula for the specialization Exλ(q,∞), x ∈W , described in terms of QLS
paths. Next, using this result, we give a representation-theoretic interpretation of
the specialization Ew◦λ(q,∞) in terms of the Demazure submodule V −w◦(λ) of V (λ).
In Chapter 4, we give a crystal-theoretic proof of Cherednik-Orr’s recursion formula
of Demazure type for the specialization Exλ(q,∞), x ∈W .
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Chapter 2

Preliminaries

2.1 Root systems of finite types

Throughout this thesis, we use the following notation.
Let g be a finite-dimensional simple Lie algebra over C, I the vertex set for

the Dynkin diagram of g, {αi}i∈I (resp., {α∨i }i∈I) the set of all simple roots (resp.,
coroots) of g, h =

⊕
i∈I Cα∨i a Cartan subalgebra of g, h∗ =

⊕
i∈I Cαi the dual

space of h, and h∗R =
⊕

i∈I Rαi the real form of h∗; the canonical pairing between h
and h∗ is denoted by ⟨·, ·⟩ : h∗ × h → C. Let Q =

∑
i∈I Zαi ⊂ h∗R denote the root

lattice of g, Q∨ =
∑

i∈I Zα∨i ⊂ hR the coroot lattice of g, and P =
∑

i∈I Zϖi ⊂ h∗R
the weight lattice of g, where the ϖi, i ∈ I, are the fundamental weights for g, i.e.,
⟨ϖi, α

∨
j ⟩ = δij for i, j ∈ I; we set P+ :=

∑
i∈I Z≥0ϖi, and call an elements λ of P+

a dominant weight. Let us denote by ∆ the set of all roots and by ∆+ (resp., ∆−)
the set of all positive (resp., negative) roots. Also, let W := ⟨si | i ∈ I⟩ be the Weyl
group of g, where si, i ∈ I, are the simple reflections acting on h∗ and on h:

siν = ν − ⟨ν, α∨i ⟩αi, ν ∈ h∗,

sih = h− ⟨αi, h⟩α∨i , h ∈ h;

we denote the identity element and the longest element of W by e and w◦, respec-
tively. If α ∈ ∆ is written as α = wαi for w ∈ W and i ∈ I, then we define α∨ to
be wα∨i ; note that sα = sα∨ = wsiw

−1. For u ∈ W , the length of u is denoted by
ℓ(u), which equals #(∆+ ∩ u−1∆−).

2.2 Nonsymmetric Macdonald polynomials

In this section, we recall the definition of nonsymmetric Macdonald polynomials
in untwisted affine types. Although nonsymmetric Macdonald polynomials have at
most six parameters (q and five t’s) in general, we consider nonsymmetric Macdonald
polynomials with two parameters q and t since we focus on the specialization at
t =∞ (see [M1] for the general case).

For µ ∈ P , we denote by v(µ) the shortest element in W such that v(µ)µ is
an antidominant weight. Then we define a partial order < on P as follows. For
µ, ν ∈W , µ ≥ ν if either of the conditions (1), (2) below holds:
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(1) 0 ̸= v(µ)µ− v(ν)ν ∈
∑

i∈I Z≤0αi.

(2) v(µ)µ = v(ν)ν, and v(ν) ≥ v(µ) with respect to the Bruhat order on W.

Let K = Q(q, t) be the rational function field in indeterminates q and t over Q.
We denote by A the group algebra of P overK, and by Â the formal completion of A.
We define an involution ·i on K by q = q−1 and t = t−1, and set f :=

∑
µ∈P fµe

−µ

for f =
∑

µ∈P fµe
µ, with fµ ∈ K. Also, for ν ∈ P and f =

∑
µ∈P fµe

µ ∈ Â, with
fµ ∈ K, we set

[f : eν ] := fν ∈ K, ct(f) := f0 ∈ K.

Now we set

∇ :=
∏
α∈∆+

∞∏
j=0

(1− eαqj)(1− e−αqj+1)

(1− eαtqj)(1− e−αtqj+1)
∈ Â,

and define a scalar product (·, ·) : A×A→ K by (f, g) := ct(fg∇)/ct(∇), f, g ∈ A.
Indeed, this scalar product is a nondegenerate, Hermitian sesquilinear form; namely,
(kf, g) = k(f, g) = (f, kg) and (f, g) = (g, f) for f, g ∈ A and k ∈ K.

It is known that there exists a (unique) basis {Eµ(q, t)}µ∈P of A overK satisfying
the conditions:

(1) [Eµ(q, t) : e
µ] = 1, and if [Eµ(q, t) : e

ν ] ̸= 0, then µ ≥ ν;

(2) for ν ∈ P such that ν < µ, (Eµ, e
ν) = 0.

The basis elements Eµ(q, t), µ ∈ P , are called the nonsymmetric Macdonald poly-
nomials. We denote by Eµ(q,∞) the specialization

lim
t→∞

Eµ(q, t) :=
∑
ν∈P

lim
t→∞

[Eµ(q, t) : e
ν ]eν ; (2.2.1)

this specialization is studied in [CO] in simply-laced types and twisted non-simply-
laced types.

2.3 Extremal weight modules over the quantum affine
algebra Uv(gaff)

In this section, we recall the definition of extremal weight vectors and extremal
weight modules over the quantum affine algebra Uv(gaff), and some of the basic
properties of extremal weight modules.

First, we fix the notation for untwisted affine root data; see §3.4.1 for more
details. Let gaff be the untwisted affine Lie algebra over C associated to the finite-
dimensional simple Lie algebra g, and haff =

(⊕
j∈Iaff Cα∨j

)
⊕ CD its Cartan sub-

algebra, where
{
α∨j
}
j∈Iaff

⊂ haff is the set of simple coroots, with Iaff = I ⊔ {0},
and D ∈ haff is the degree operator. We denote by

{
αj
}
j∈Iaff

⊂ h∗aff the set of
simple roots, and by Λj ∈ h∗aff , j ∈ Iaff , the fundamental weights. Note that
⟨αj , D⟩ = δj,0 and ⟨Λj , D⟩ = 0 for j ∈ Iaff , where ⟨· , ·⟩ : h∗aff × haff → C
denotes the canonical pairing between haff and h∗aff := HomC(haff , C). Also, let
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δ =
∑

j∈Iaff ajαj ∈ h∗aff and c =
∑

j∈Iaff a
∨
j α
∨
j ∈ haff denote the null root and the

canonical central element of gaff , respectively. We take a weight lattice Paff for gaff
as follows: Paff =

(⊕
j∈Iaff ZΛj

)
⊕ Zδ ⊂ h∗aff .

In what follows, we mainly follow the notation of [NS4, §3]. Let M be an
integrable Uv(gaff)-module. A vector u ∈M of weight λ ∈ Paff is said to be extremal
(see [Kas2, §3.1]) if there exists a family {vx}x∈Waff

of weight vectors satisfying the
following:

(1) ve = v;

(2) for every j ∈ Iaff and x ∈ Waff such that n := ⟨xλ, α∨j ⟩ ≥ 0, the equalities

Ejvx = 0 and F
(n)
j vx = vsjx hold;

(3) for every j ∈ Iaff and x ∈ Waff such that n := ⟨xλ, α∨j ⟩ ≤ 0, the equalities

Fjvx = 0 and E
(−n)
j vx = vsjx hold;

here Ej , Fj , j ∈ Iaff , are the Chevalley generators, and E
(k)
j and F

(k)
j for k ∈ Z≥0

are divided powers of Ei and Fj , respectively. We denote vx by Sxv for x ∈Waff .
For λ ∈ Paff , the extremal weight module V (λ) is the integrable Uv(gaff)-module

generated by the weight vector vλ of weight λ with the defining relations that vλ
is an extremal weight vector of weight λ. We know that if λ ∈ Paff is a dominant
(resp., antidominant) weight, then V (λ) is isomorphic to the irreducible highest
(resp., lowest) weight module of weight λ. Moreover, for w ∈ Waff , there exists an
isomorphism V (λ)→ V (wλ) of Uv(gaff)-modules given by vλ 7→ Sw−1vwλ. Therefore,

(1) if λ ∈ Paff has a positive level, i.e., ⟨λ, c⟩ > 0, then there exists x ∈ Waff such
that xλ is a dominant weight, and hence V (λ) is isomorphic to the irreducible
highest weight module of weight xλ;

(2) if λ ∈ Paff has a negative level, i.e., ⟨λ, c⟩ < 0, then there exists x ∈ Waff

such that xλ is an antidominant weight, and hence V (λ) is isomorphic to the
irreducible lowest weight module of weight xλ.

Thus, studies on extremal weight modules are mainly focused on the case when λ is
a level-zero weight, i.e., ⟨λ, c⟩ = 0; for more details about the structure of V (λ) for
a weight λ of level-zero, see §3.4.5.
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Chapter 3

Specialization of nonsymmetric
Macdonald polynomials at t =∞
and Demazure submodules of
level-zero extremal weight
modules

3.1 Introduction

Lenart-Naito-Sagaki-Schilling-Shimozono [LNSSS2] proved that for a dominant
integral weight λ, the set QLS(λ) of all quantum Lakshmibai-Seshadri (QLS) paths of
shape λ provides a realization of the crystal basis of a special quantum Weyl module
over a quantum affine algebra U ′v(gaff) (without degree operator) of an arbitrary
untwisted type, and also proved that its graded character equals the specialization
Ew◦λ(q, 0) of the nonsymmetric Macdonald polynomials Ew◦λ(q, t) at t = 0, where
w◦ denotes the longest element of W . Here a QLS path is obtained from an affine
level-zero Lakshmibai-Seshadri path through the projection R ⊗Z Paff → R ⊗Z P ,
which factors the null root δ of an affine Lie algebra gaff , and is described in terms of
(the parabolic version of) the quantum Bruhat graph, introduced by Brenti-Fomin-
Postnikov [BFP]; the set of QLS paths is endowed with an affine crystal structure in a
way similar to the one for the set of ordinary LS paths introduced by Littelmann [L1].
Moreover, Lenart-Naito-Sagaki-Schilling-Shimozono [LNSSS3] obtained a formula
for the specialization Exλ(q, 0), x ∈W , of the nonsymmetric Macdonald polynomials
Exλ(q, t) at t = 0 in an arbitrary untwisted affine type, which is described in terms
of QLS paths of shape λ, and also proved that the specialization Exλ(q, 0) is just
the graded character of a certain Demazure-type submodule of the special quantum
Weyl module. The crucial ingredient in the proof of this result is a graded character
formula obtained in [NS4] for the Demazure submodule V −e (λ) of the level-zero
extremal weight module V (λ) of extremal weight λ over a quantum affine algebra
Uv(gaff), where e is the identity element of W . More precisely, in [NS4], Naito and
Sagaki proved that the graded character gchV −e (λ) of V −e (λ) ⊂ V (λ) is identical to
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(∏
i∈I
∏mi
r=1(1− q−r)

)−1
Ew◦λ(q

−1, 0), where λ is a dominant integral weight of the
form

∑
i∈I miϖi, with ϖi, i ∈ I, the fundamental weights. The graded character

gchV −e (λ) is obtained from the ordinary character of V −e (λ) by replacing eδ by q,
with δ the null root of the affine Lie algebra gaff .

The aim of this chapter is to give a representation-theoretic interpretation of the
specialization Ew◦λ(q,∞) of the nonsymmetric Macdonald polynomial Ew◦λ(q, t) at
t = ∞ in terms of the Demazure submodule V −w◦(λ) of V (λ); here we remark that
V −w◦(λ) ⊂ V

−
e (λ). More precisely, we prove the following.

Theorem A (= Theorem 3.5.2). Let λ =
∑

i∈I miϖi be a dominant integral weight.
Then, the graded character gchV −w◦(λ) of the Demazure submodule V −w◦(λ) of V (λ)
is identical to (∏

i∈I

mi∏
r=1

(1− q−r)

)−1
Ew◦λ(q,∞).

In order to prove Theorem A, we first rewrite the Orr-Shimozono formula for the
specialization Exλ(q,∞) for x ∈W (originally described in terms of quantum alcove
walks) in terms of QLS paths by use of an explicit bijection sending quantum alcove
walks to QLS paths that preserves weights and degrees; in some ways, this bijection
generalizes a similar one in [LNSSS2]. In particular, for x = w◦, the Orr-Shimozono
formula rewritten in terms of QLS paths states that

Ew◦λ(q,∞) =
∑

ψ∈QLS(λ)

ewt(ψ)qdegw◦λ(ψ), (∗)

where QLS(λ) is the set of all QLS paths of shape λ, and for ψ ∈ QLS(λ), degw◦λ(ψ)
is a certain nonpositive integer, which is explicitly described in terms of the quantum
Bruhat graph; see §3.3.2 for details.

Next, using the explicit realization, obtained in [INS], of the crystal basis B(λ)
of V (λ) by semi-infinite LS paths of shape λ, we compute the graded character
gchV −x (λ) of the Demazure submodule V −x (λ) for x ∈W , and prove the following.

Theorem B (= Theorem 3.5.1). Let λ =
∑

i∈I miϖi be a dominant integral weight,
and x an element of the finite Weyl group W . Then, the graded character gchV −x (λ)
of V −x (λ) is identical to(∏

i∈I

mi∏
r=1

(1− q−r)

)−1 ∑
ψ∈QLS(λ)

ewt(ψ)qdegxλ(ψ).

In the proof of Theorem B, we make use of the surjective strict morphism of
crystals from the set of all semi-infinite LS paths of shape λ onto QLS(λ), which is
obtained by factoring the null root δ of gaff . By combining the special case x = w◦
of Theorem B with equation (∗) above, we obtain Theorem A.

9



Finally, for x ∈ W , we define a certain (finite-dimensional) quotient module
V −x (λ)/X−x (λ) of V

−
x (λ), and then prove that its graded character gch (V −x (λ)/X−x (λ))

is identical to
∑

ψ∈QLS(λ) e
wt(ψ)qdegxλ(ψ). Hence it follows that under the specializa-

tion eδ = q = 1, all the modules V −x (λ)/X−x (λ), x ∈ W , have the same char-
acter; in particular, they have the same dimension. Also, in the case x = w◦,
we have gch

(
V −w◦(λ)/X

−
w◦(λ)

)
= Ew◦λ(q,∞); note that in the case x = e, the

quotient module V −e (λ)/X−e (λ) is just the one in [NS4, §7.2], and hence we have
gch (V −e (λ)/X−e (λ)) = Ew◦λ(q

−1, 0) (see [LNSSS3, §3] and [NS4, §6.4]). Based on
these results together with [Kat, Theorem 5.1] for the classical limit, we can think of
the quotient modules V −x (λ)/X−x (λ), x ∈ W , as a quantum analog of “generalized
Weyl modules” introduced in [FM]; see [No] for details.

This chapter is organized as follows. In Section 3.2, we fix our notation, and
recall some basic facts about the (parabolic) quantum Bruhat graph. Also, we
briefly review the Orr-Shimozono formula for the specialization Exλ(q,∞) at t =∞
for x ∈W . In Section 3.3, we prove equation (∗) above, or more generally Theorem
3.3.19. This theorem gives the description of the specialization Exλ(q,∞) at t =∞
for x ∈ W in terms of QLS paths of shape λ. In Section 3.4, we compute the
graded character gchV −x (λ) for an arbitrary x ∈ W , and prove Theorem B. By
combining the special case x = w◦ of Theorem B with equation (∗), we obtain
Theorem A. Finally, for x ∈ W , we define a certain (finite-dimensional) quotient
module V −x (λ)/X−x (λ) of V −x (λ), and compute its graded character. In the special
case x = w◦, we obtain the equality gch

(
V −w◦(λ)/X

−
w◦(λ)

)
= Ew◦λ(q,∞).

This chapter is based on the joint work [NNS1] with Satoshi Naito and Daisuke
Sagaki.

3.2 (Parabolic) quantum Bruhat graph and the Orr-
Shimozono formula

3.2.1 (Parabolic) quantum Bruhat graph

Let g be a finite-dimensional simple Lie algebra over C. In this chapter, we follow
the notation of §2.1.

Definition 3.2.1 ([BFP, Definition 6.1]). The quantum Bruhat graph, denoted by
QBG(W ), is the directed graph with vertex set W whose directed edges are labeled

by positive roots as follows. For u, v ∈ W , and β ∈ ∆+, an arrow u
β−→ v is an edge

of QBG(W ) if the following hold:

(1) v = usβ, and

(2) either (2a): ℓ(v) = ℓ(u) + 1 or (2b): ℓ(v) = ℓ(u)− 2⟨ρ, β∨⟩+ 1,

where ρ := 1
2

∑
α∈∆+ α. An edge satisfying (2a) (resp., (2b)) is called a Bruhat

(resp., quantum) edge.

Remark 3.2.2. The quantum Bruhat graph defined above is a “right-handed” version,
while the one defined in [BFP] is a “left-handed” version. We remark that the

10



results of [BFP] used in this thesis (such as Proposition 3.2.5) are unaffected by this
difference (cf. [Po]).

Example 3.2.3. Let g be of type A2. Then, W is S3, and the quantum Bruhat graph
QBG(W ) is as follows:

e

s1

s1s2

w◦

s2

s2s1

α1 α2

α1 α2

α1 + α2 α1 + α2

α1 + α2

α1α2

Here, plain (resp., dotted) directed edges indicate Bruhat (resp., quantum) edges.

For an edge u
β−→ v of QBG(W ), we set

wt(u→ v) :=

{
0 if u

β−→ v is a Bruhat edge,

β∨ if u
β−→ v is a quantum edge.

Also, for u, v ∈W , we take a shortest directed path u = x0
γ1−→ x1

γ2−→ · · · γr−→ xr = v
in QBG(W ), and set

wt(u⇒ v) := wt(x0 → x1) + · · ·+wt(xr−1 → xr) ∈ Q∨;

we know from [Po, Lemma 1 (2), (3)] that this definition does not depend on the
choice of a shortest directed path from u to v in QBG(W ). For a dominant weight
λ ∈ P+, we set wtλ(u⇒ v) := ⟨λ, wt(u⇒ v)⟩, and call it the λ-weight of a directed
path from u to v in QBG(W ).

Lemma 3.2.4. If x
β−→ y is a Bruhat (resp., quantum) edge of QBG(W ), then

yw◦
−w◦β−−−→ xw◦ is also a Bruhat (resp., quantum) edge of QBG(W ).

Proof. This follows easily from equalities ℓ(y)−ℓ(x) = ℓ(xw◦)−ℓ(yw◦) and ⟨ρ,−w◦β∨⟩ =
⟨ρ, β∨⟩.

Let w ∈ W . We take (and fix) reduced expressions w = si1 · · · sip and w◦w
−1 =

si−q · · · si0 . Note that
w◦ = si−q · · · si0si1 · · · sip

is also a reduced expression for the longest element w◦. Now we set

βk := sip · · · sik+1
αik , −q ≤ k ≤ p; (3.2.1)

11



we have {β−q, . . . , β0, . . . , βp} = ∆+. Then we define a total order ≺ on ∆+ by

β−q ≺ β−q+1 ≺ · · · ≺ βp. (3.2.2)

Note that this total order is a weak reflection order in the sense of Definition 3.3.2
below.

Proposition 3.2.5 ([BFP, Theorem 6.4]). Let u and v be elements in W .

(1) There exists a unique directed path from u to v in QBG(W ) for which the
edge labels are strictly increasing (resp., strictly decreasing) in the total order
≺ above.

(2) The unique label-increasing (resp., label-decreasing) path

u = u0
γ1−→ u1

γ2−→ · · · γr−→ ur = v

from u to v in QBG(W ) is a shortest directed path from u to v. Moreover, it is
lexicographically minimal (resp., lexicographically maximal) among all shortest
directed paths from u to v; namely, for an arbitrary shortest directed path

u = u′0
γ′1−→ u′1

γ′2−→ · · · γ
′
r−→ u′r = v

from u to v in QBG(W ), there exists 1 ≤ j ≤ r such that γj ≺ γ′j (resp.,
γj ≻ γ′j), and γk = γ′k for 1 ≤ k ≤ j − 1.

For a subset S ⊂ I, we set WS := ⟨si | i ∈ S⟩; notice that S may be the empty
set ∅. We denote the longest element of WS by w◦(S). Also, we set ∆S := QS ∩∆,
where QS :=

∑
i∈S Zαi, and then ∆+

S := ∆S ∩ ∆+, ∆−S := ∆S ∩ ∆−. Let WS

denote the set of all minimal-length coset representatives for the cosets in W/WS .
For w ∈W , we denote the minimal-length coset representative of the coset wWS by
⌊w⌋, and for a subset U ⊂W , we set ⌊U⌋ := {⌊w⌋ | w ∈ U} ⊂WS .

Definition 3.2.6 ([LNSSS1, §4.3]). The parabolic quantum Bruhat graph, denoted
by QBG(WS), is the directed graph with vertex set WS whose directed edges are
labeled by positive roots in ∆+ \∆+

S as follows. For u, v ∈ WS , and β ∈ ∆+ \∆+
S ,

an arrow u
β−→ v is an edge of QBG(WS) if the following hold:

(1) v = ⌊usβ⌋, and

(2) either (2a): ℓ(v) = ℓ(u) + 1 or (2b): ℓ(v) = ℓ(u)− 2⟨ρ− ρS , β∨⟩+ 1,

where ρS := 1
2

∑
α∈∆+

S
α. An edge satisfying (2a) (resp., (2b)) is called a Bruhat

(resp., quantum) edge.

For an edge u
β−→ v in QBG(WS), we set

wtS(u→ v) :=

{
0 if u

β−→ v is a Bruhat edge,

β∨ if u
β−→ v is a quantum edge.

12



Also, for u, v ∈ WS , we take a shortest directed path p : u = x0
γ1−→ x1

γ2−→ · · · γr−→
xr = v in QBG(WS) (such a path always exists by [LNSSS1, Lemma 6.12]), and set

wtS(p) := wtS(x0 → x1) + · · ·+wtS(xr−1 → xr) ∈ Q∨.

We know from [LNSSS1, Proposition 8.1] that if q is another shortest directed path
from u to v in QBG(WS), then wtS(p)− wtS(q) ∈ Q∨S :=

∑
i∈S Zα∨i .

Now, we take and fix an arbitrary dominant weight λ ∈ P+, and set

S = Sλ := {i ∈ I | ⟨λ, α∨i ⟩ = 0}.

By the remark just above, for u, v ∈ WS , the value ⟨λ, wtS(p)⟩ does not depend
on the choice of a shortest directed path p from u to v in QBG(WS); this value
is called the λ-weight of a directed path from u to v in QBG(WS). Moreover, we
know from [LNSSS2, Lemma 7.2] that the value ⟨λ, wtS(p)⟩ is equal to the value
wtλ(x⇒ y) = ⟨λ, wt(x⇒ y)⟩ for all x ∈ uWS and y ∈ vWS . In view of this fact, for
u, v ∈WS , we also write wtλ(u⇒ v) for the value ⟨λ, wtS(p)⟩ by abuse of notation;
hence, in this notation, we have

wtλ(x⇒ y) = wtλ(⌊x⌋ ⇒ ⌊y⌋) (3.2.3)

for all x, y ∈W .

Definition 3.2.7 ([LNSSS2, §3.2]). Let λ ∈ P+ be a dominant weight and σ ∈
Q ∩ [0, 1], and set S = Sλ. We denote by QBGσλ(W ) (resp., QBGσλ(W

S) ) the
subgraph of QBG(W ) (resp., QBG(WS)) with the same vertex set but having only

the edges: u
β−→ v with σ⟨λ, β∨⟩ ∈ Z.

Lemma 3.2.8 ([LNSSS2, Lemma 6.2]). Let σ ∈ Q ∩ [0, 1]; notice that σ may be 1.

If u
β−→ v is an edge of QBGσλ(W ), then there exists a directed path from ⌊u⌋ to ⌊v⌋

in QBGσλ(W
S).

Also, for u, v ∈W , let ℓ(u⇒ v) denote the length of a shortest directed path in
QBG(W ) from u to v. For w ∈W , as in [BFP], we define the w-tilted Bruhat order
≤w on W as follows: for u, v ∈W ,

u ≤w v
def⇔ ℓ(w ⇒ v) = ℓ(w ⇒ u) + ℓ(u⇒ v).

We remark that the w-tilted Bruhat order on W is a partial order with the unique
minimal element w.

Lemma 3.2.9 ([LNSSS1, Theorem 7.1], [LNSSS2, Lemma 6.6]). Let u, v ∈ WS,
and w ∈WS.

(1) There exists a unique minimal element in the coset vWS in the uw-tilted Bruhat
order ≤uw. We denote it by min(vWS ,≤uw).

(2) There exists a unique directed path from uw to some x ∈ vWS in QBG(W )
whose edge labels are increasing in the total order ≺ on ∆+, defined in (3.2.2),
and lie in ∆+ \∆+

S . This path ends with min(vWS ,≤uw).

(3) Let σ ∈ Q ∩ [0, 1], and λ ∈ P a dominant weight. If there exists a directed
path from u to v in QBGσλ(W

S), then the directed path in part (2) is in
QBGσλ(W ).
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3.2.2 Orr-Shimozono formula

In this subsection, we review a formula [OS, Proposition 5.4] for the specialization
of nonsymmetric Macdonald polynomials at t =∞.

Let g̃ denote the finite-dimensional simple Lie algebra whose root datum is dual
to that of g; the set of simple roots is {α∨i }i∈I ⊂ h, and the set of simple coroots is

{αi}i∈I ⊂ h∗. We denote the set of all roots of g̃ by ∆̃ = {α∨ | α ∈ ∆}, and the
set of all positive (resp., negative) roots of g̃ by ∆̃+ (resp., ∆̃−). Also, for a subset
S ⊂ I, we set Q̃S :=

∑
i∈S Zα∨i , ∆̃S := ∆̃∩Q̃S , ∆̃+

S = ∆̃S∩∆̃+, and ∆̃−S = ∆̃S∩∆̃−.
We consider the untwisted affinization of the root datum of g̃. Let us denote by

∆̃aff the set of all real roots, and by ∆̃+
aff (resp., ∆̃−aff) the set of all positive (resp.,

negative) real roots. Then we have ∆̃aff = {α∨+ aδ̃ | α ∈ ∆, a ∈ Z}, with δ̃ the null
root. We set α∨0 := δ̃ − φ∨, where φ ∈ ∆ denotes the highest short root, and set

Iaff := I ⊔ {0}. Then, {α∨i }i∈Iaff is the set of all simple roots. Also, for β ∈ h⊕ Cδ̃,
we define deg(β) ∈ C and β ∈ h by

β = β + deg(β)δ̃. (3.2.4)

We denote the Weyl group of g̃ by W̃ ; we identify W̃ and W through the iden-
tification of the simple reflections of the same index for each i ∈ I. For ν ∈ h∗, let
t(ν) denote the translation in h∗: t(ν)γ = γ+ν for γ ∈ h∗. The corresponding affine

Weyl group and the extended affine Weyl group are defined by W̃aff := t(Q)⋊W and

W̃ext := t(P )⋊W , respectively. Also, we define s0 : h
∗ → h∗ by ν 7→ ν−(⟨ν, φ∨⟩−1)φ.

Then, W̃aff = ⟨si | i ∈ Iaff⟩; note that s0 = t(φ)sφ. The extended affine Weyl group

W̃ext acts on h⊕ Cδ̃ as linear transformations, and on h∗ as affine transformations:
for v ∈W , t(ν) ∈ t(P ),

vt(ν)(β + rδ̃) = vβ + (r − ⟨ν, β⟩)δ̃, β ∈ h, r ∈ C,
vt(ν)γ = vν + vγ, γ ∈ h∗.

An element u ∈ W̃ext can be written as

u = t(wt(u))dir(u), (3.2.5)

where wt(u) ∈ P and dir(u) ∈W , according to the decomposition W̃ext = t(P )⋊W .

For w ∈ W̃ext, we denote the length of w by ℓ(w), which equals #
(
∆̃+

aff ∩ w
−1∆̃−aff

)
.

Also, we set Ω := {w ∈ W̃ext | ℓ(w) = 0}.
For µ ∈ P , we denote the shortest element in the coset t(µ)W by mµ ∈ W̃ext.

In the following, we fix µ ∈ P , and take a reduced expression mµ = usℓ1 · · · sℓL ∈
W̃ext = Ω⋉ W̃aff , where u ∈ Ω and ℓ1, . . . , ℓL ∈ Iaff .

For each J = {j1 < j2 < j3 < · · · < jr} ⊂ {1, . . . , L}, we define an al-

cove path pOS
J =

(
mµ = zOS

0 , zOS
1 , . . . , zOS

r ;βOS
j1
, . . . , βOS

jr

)
as follows: we set βOS

k :=
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sℓL · · · sℓk+1
α∨ℓk ∈ ∆̃+

aff for 1 ≤ k ≤ L, and set

zOS
0 := mµ,

zOS
1 := mµsβOS

j1

,

zOS
2 := mµsβOS

j1

sβOS
j2

,

...

zOS
r := mµsβOS

j1

· · · sβOS
jr
.

Also, following [OS, §3.3], we set B(e;mµ) :=
{
pOS
J | J ⊂ {1, . . . , L}

}
and end(pOS

J ) :=

zOS
r ∈ W̃ext. Then we define

←−
QB(e;mµ) to be the following subset of B(e;mµ):pOS

J ∈ B(e;mµ)

∣∣∣∣∣∣ dir(zOS
i )

−βOS
ji+1

∨

←−−−−− dir(zOS
i+1)

is a directed edge of QBG(W ), 0 ≤ i ≤ r − 1

 .

Remark 3.2.10 ([M1, (2.4.7)]). If j ∈ {1, . . . , L}, then −βOS
j

∨
∈ ∆+.

For pOS
J ∈

←−
QB(e;mµ), we define qwt

∗(pOS
J ) as follows. Let J+ ⊂ J denote the set

of all indices ji ∈ J for which dir(zOS
i−1)

−βOS
ji

∨

←−−−− dir(zOS
i ) is a quantum edge. Then

we set
qwt∗(pOS

J ) :=
∑
j∈J+

βOS
j .

For µ ∈ P , we denote by Eµ(q, t) the nonsymmetric Macdonald polynomial,
and by Eµ(q,∞) the specialization limt→∞Eµ(q, t) at t = ∞; this specialization is
studied in [CO] in simply-laced types and twisted non-simply-laced types.

We know the following formula for the specialization Eµ(q,∞) at t =∞.

Proposition 3.2.11 ([OS, Proposition 5.4]). Let µ ∈ P . Then,

Eµ(q,∞) =
∑

pOS
J ∈
←−
QB(e;mµ)

q−deg(qwt∗(pOS
J ))ewt(end(pOS

J )).

3.3 Orr-Shimozono formula in terms of QLS paths

3.3.1 Weak reflection orders

Let λ ∈ P+ be a dominant weight, µ ∈Wλ, and set S := Sλ = {i ∈ I | ⟨λ, α∨i ⟩ =
0}. We denote by v(µ) ∈ WS the minimal-length coset representative for the coset
{w ∈ W | wλ = µ} in W/WS . We have ℓ(v(µ)w) = ℓ(v(µ)) + ℓ(w) for all w ∈ WS .
In particular, we have ℓ(v(µ)w◦(S)) = ℓ(v(µ)) + ℓ(w◦(S)). When µ = λ− := w◦λ, it
is clear that w◦ ∈ {w ∈ W | wλ = λ−}. Since w◦ is the longest element of W , we
have

w◦ = v(λ−)w◦(S), (3.3.1)

and ℓ(v(λ−)w◦(S)) = ℓ(v(λ−))+ℓ(w◦(S)); note that v(λ−) = w◦w◦(S) = ⌊w◦⌋. The
following lemma follows from [M1, Chap. 2].
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Lemma 3.3.1.

(1) dir(mµ) = v(µ)v(λ−)
−1 and ℓ(dir(mµ)) + ℓ(v(µ)) = ℓ(v(λ−)); hence

mµ = t(µ)v(µ)v(λ−)
−1. (3.3.2)

(2) v(µ)v(λ−)
−1w◦ = v(µ)w◦(S).

(3)
(
v(λ−)v(µ)

−1)mµ = mλ−, and ℓ(v(λ−)v(µ)
−1) + ℓ(mµ) = ℓ(mλ−).

(4) ℓ(v(λ−)v(µ)
−1) + ℓ(v(µ)) = ℓ(v(λ−)).

In this subsection, we give a particular reduced expression for mλ− (= t(λ−) by
(3.3.2)), and then study some of its properties.

First of all, we recall the notion of a weak reflection order on ∆+.

Definition 3.3.2. A total order ≺ on ∆+ is called a weak reflection order on ∆+

if it satisfies the following condition: if α, β, γ ∈ ∆+ with γ∨ = α∨ + β∨, then
α ≺ γ ≺ β or β ≺ γ ≺ α.

The following result is well-known (see [Pa, Theorem on p. 662] for example).

Proposition 3.3.3. For a total order ≺ on ∆+, the following are equivalent:

(1) the order ≺ is a weak reflection order;

(2) there exists a (unique) reduced expression w◦ = si1 · · · siN for w◦ such that
siN · · · sik+1

αik ≺ siN · · · sij+1αij for 1 ≤ k < j ≤ N .

Next, we recall from [Pa, pp. 661–662] the notion and some properties of a weak
reflection order on a finite subset of ∆̃+

aff ; we remark that arguments in [Pa] also
work in the general setting of Kac-Moody algebras.

Definition 3.3.4. Let T be a finite subset of ∆̃+
aff , and ≺

′ a total order on T . We
say that the order ≺′ is a weak reflection order on T if it satisfies the following
conditions:

(1) if θ1, θ2 ∈ T satisfy θ1 ≺′ θ2 and θ1 + θ2 ∈ ∆̃+
aff , then θ1 + θ2 ∈ T and

θ1 ≺′ θ1 + θ2 ≺′ θ2;

(2) if θ1, θ2 ∈ ∆̃+
aff satisfy θ1 + θ2 ∈ T , then θ1 ∈ T and θ1 + θ2 ≺′ θ1, or θ2 ∈ T

and θ1 + θ2 ≺′ θ2.

We remark that there does not necessarily exist a weak reflection order on an
arbitrary finite subset of ∆̃+

aff .

Proposition 3.3.5. Let T be a finite subset of ∆̃+
aff and ≺′ a weak reflection order

on T . We write T as {γ1 ≺′ γ2 ≺′ · · · ≺′ γp}. Then there exists w ∈ W̃aff such

that ∆̃+
aff ∩ w

−1∆̃−aff = T . Moreover, there exists a (unique) reduced expression
w = sℓ1 · · · sℓp for w such that sℓp · · · sℓj+1

α∨ℓj = γj for 1 ≤ j ≤ p.
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The converse of Proposition 3.3.5 also holds.

Proposition 3.3.6. Let w ∈ W̃aff , and let w = sℓ1 · · · sℓp be a reduced expression.

We set a γj := sℓp · · · sℓj+1
α∨ℓj for 1 ≤ j ≤ p, and define a total order ≺′ on ∆̃+

aff ∩

w−1∆̃−aff as follows: for 1 ≤ j, k ≤ p, γj ≺′ γk
def⇔ j < k. Then, the total order ≺′ is

a weak reflection order on ∆̃+
aff ∩ w

−1∆̃−aff .

Remark 3.3.7. Let

v(λ−) = si1 · · · siM ,
w◦(S) = siM+1 · · · siN ,

w◦ = si1 · · · siM siM+1 · · · siN

be reduced expressions for v(λ−), w◦(S), and w◦ = v(λ−)w◦(S), respectively, where
S = Sλ = {i ∈ I | ⟨λ, α∨i ⟩ = 0}; recall that w◦(S) is the longest element of WS . We
set βj := siN · · · sij+1αij , 1 ≤ j ≤ N . By Proposition 3.3.3, we have ∆+ \ ∆+

S =
{β1 ≺ β2 ≺ · · · ≺ βM} and ∆+

S = {βM+1 ≺ βM+2 ≺ · · · ≺ βN}, where ≺ is the
weak reflection order on ∆+ determined by the reduced expression above for w◦. In
particular, we have

θ1 ≺ θ2 for θ1 ∈ ∆+ \∆+
S and θ2 ∈ ∆+

S . (3.3.3)

Conversely, if a weak reflection order on ∆+ satisfies (3.3.3), then the reduced expres-
sion w◦ = sℓ1 · · · sℓN for w◦ corresponding to this weak reflection order is given by
concatenating a reduced expression for v(λ−) with a reduced expression for w◦(S).
Moreover, if we alter a reduced expression for w◦(S) with a reduced expression for
v(λ−) unchanged, then the restriction to ∆+ \ ∆+

S of the weak reflection order on
∆+ does not change. Thus, the restriction to ∆+ \∆+

S of the weak reflection order
on ∆+ satisfying (3.3.3) depends only on a reduced expression for v(λ−).

First let us take a reduced expression v(λ−) = si1 · · · siM and a weak reflection
order ≺ on ∆+ such that the restriction to ∆+ \ ∆+

S of this weak reflection order
≺ is determined by the reduced expression v(λ−) = si1 · · · siM as in Remark 3.3.7.
Also, we define an injective map Φ by:

Φ : ∆̃+
aff ∩m

−1
λ−

∆̃−aff → Q≥0 × (∆+ \∆+
S ),

β = β + deg(β)δ̃ 7→
(
⟨λ−, β⟩ − deg(β)

⟨λ−, β⟩
, w◦β

∨
)
;

note that ⟨λ−, β⟩ > 0, ⟨λ−, β⟩ − deg(β) ≥ 0, and w◦β
∨ ∈ ∆+ \∆+

S since we know
from [M1, (2.4.7) (i)] that

∆̃+
aff ∩m

−1
λ−

∆̃−aff = {α∨ + aδ̃ | α ∈ ∆−, 0 < a ≤ ⟨λ−, α∨⟩}. (3.3.4)

We now consider the lexicographic order < on Q≥0 × (∆+ \ ∆+
S ) induced by the

usual total order on Q≥0 and the restriction to ∆+ \∆+
S of the weak reflection order

≺ on ∆+; that is, for (a, α), (b, β) ∈ Q≥0 × (∆+ \∆+
S ),

(a, α) < (b, β) if and only if a < b, or a = b and α ≺ β.
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Then we denote by ≺′ the total order on ∆̃+
aff ∩ m

−1
λ−

∆̃−aff induced by the lexico-

graphic order on Q≥0 × (∆+ \∆+
S ) through the map Φ, and write ∆̃+

aff ∩m
−1
λ−

∆̃−aff
as {γ1 ≺′ · · · ≺′ γL}.

Proposition 3.3.8. Keep the notation and setting above. Then, there exists a
unique reduced expression mλ− = usℓ1 · · · sℓL for mλ−, u ∈ Ω, {ℓ1, . . . , ℓL} ⊂ Iaff ,

such that βOS
j

(
= sℓL · · · sℓj+1

α∨ℓj

)
= γj for 1 ≤ j ≤ L.

Proof. We will show that the total order ≺′ is a weak reflection order on ∆̃+
aff ∩

m−1λ−∆̃
−
aff .

We check condition (1) in Definition 3.3.4. Assume that θ1, θ2 ∈ ∆̃+
aff ∩m

−1
λ−

∆̃−aff
satisfy θ1 ≺′ θ2 and θ1 + θ2 ∈ ∆̃+

aff . Then it is clear that θ1 + θ2 ∈ ∆̃+
aff ∩m

−1
λ−

∆̃−aff .

Consider the case that the first component of Φ(θ1) is less than that of Φ(θ2)

(i.e., ⟨λ−,θ1⟩−deg(θ1)⟨λ−,θ1⟩
< ⟨λ−,θ2⟩−deg(θ2)

⟨λ−,θ2⟩
). In this case, the first component of Φ(θ1+ θ2)

is equal to ⟨λ−,θ1+θ2⟩−deg(θ1+θ2)⟨λ−,θ1+θ2⟩
, which lies between the first components of Φ(θ1)

and Φ(θ2). Hence we have Φ(θ1) < Φ(θ1 + θ2) < Φ(θ2).
Consider the case that the first component of Φ(θ1) is equal to that of Φ(θ2).

In this case, we have w◦θ1
∨ ≺ w◦θ2

∨
, where ≺ is the restriction to ∆+ \∆+

S of the
weak reflection order on ∆+. Note that the first component of Φ(θ1 + θ2) is equal

to ⟨λ−,θ1+θ2⟩−deg(θ1+θ2)⟨λ−,θ1+θ2⟩
, which is equal to both of the first components of Φ(θ1) and

Φ(θ2). Moreover, since θ1 + θ2 ∈ ∆̃+
aff ∩m

−1
λ−

∆̃−aff , we have w◦
(
θ1 + θ2

)∨ ∈ ∆+ \∆+
S .

It follows from the definition of the weak reflection order ≺ on ∆+ that w◦θ1
∨ ≺

w◦
(
θ1 + θ2

)∨ ≺ w◦θ2∨. Hence we have Φ(θ1) < Φ(θ1 + θ2) < Φ(θ2). Thus, the total
order ≺′ satisfies condition (1).

We check condition (2) in Definition 3.3.4. If θ1, θ2 ∈ ∆̃+
aff \m

−1
λ−

∆̃−aff and θ1+θ2 ∈
∆̃+

aff , then it is clear that θ1 + θ2 ∈ ∆̃+
aff \ m

−1
λ−

∆̃−aff . Hence we may assume that

θ1 ∈ ∆̃+
aff ∩m

−1
λ−

∆̃−aff and θ2 ∈ ∆̃+
aff \m

−1
λ−

∆̃−aff ; indeed, if θ1, θ2 ∈ ∆̃+
aff ∩m

−1
λ−

∆̃−aff , then

the assertion is obvious by condition (1). Since ∆̃+
aff ∩m

−1
λ−

∆̃−aff = {α∨ + aδ̃ | α ∈
∆−, 0 < a ≤ ⟨λ−, α∨⟩}, we have 0 < deg(θ1) ≤ ⟨λ−, θ1⟩ and 0 < deg(θ1 + θ2) ≤
⟨λ−, θ1 + θ2⟩. Also, since θ2 ∈ ∆̃+

aff \m
−1
λ−

∆̃−aff , we find that ⟨λ−, θ2⟩ < 0 ≤ deg(θ2),

deg(θ2) > ⟨λ−, θ2⟩ ≥ 0, or ⟨λ−, θ2⟩ = deg(θ2) = 0; if 0 > deg(θ2), then we have
θ2 ∈ ∆̃−aff , a contradiction.

In the case that ⟨λ−, θ2⟩ < 0 ≤ deg(θ2), the first component of Φ(θ1+ θ2), which

is ⟨λ−,θ1+θ2⟩−deg(θ1+θ2)⟨λ−,θ1+θ2⟩
, satisfies the inequalities

⟨λ−, θ1 + θ2⟩ − deg(θ1 + θ2)

⟨λ−, θ1 + θ2⟩
≤ ⟨λ−, θ1 + θ2⟩ − deg(θ1)

⟨λ−, θ1 + θ2⟩

= 1− deg(θ1)

⟨λ−, θ1 + θ2⟩
< 1− deg(θ1)

⟨λ−, θ1⟩
=
⟨λ−, θ1⟩ − deg(θ1)

⟨λ−, θ1⟩
.

Therefore, we deduce that the first component of Φ(θ1 + θ2) is less than that of
Φ(θ1), and hence Φ(θ1 + θ2) < Φ(θ1).
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In the case that deg(θ2) > ⟨λ−, θ2⟩ ≥ 0, the first component of Φ(θ1+θ2) satisfies
the inequalities

⟨λ−, θ1 + θ2⟩ − deg(θ1 + θ2)

⟨λ−, θ1 + θ2⟩
=

(
⟨λ−, θ1⟩ − deg(θ1)

)
+
(
⟨λ−, θ2⟩ − deg(θ2)

)
⟨λ−, θ1 + θ2⟩

<

(
⟨λ−, θ1⟩ − deg(θ1)

)
⟨λ−, θ1 + θ2⟩

≤ ⟨λ−, θ1⟩ − deg(θ1)

⟨λ−, θ1⟩
.

Therefore, we deduce that the first component of Φ(θ1 + θ2) is less than that of
Φ(θ1), and hence that Φ(θ1 + θ2) < Φ(θ1).

In the case that ⟨λ−, θ2⟩ = deg(θ2) = 0, the first component of Φ(θ1 + θ2) is

equal to that of Φ(θ1). Moreover, since ⟨λ−, θ2⟩ = ⟨λ,w◦θ2⟩ = 0, we have w◦θ2
∨ ∈

∆+
S . Therefore, by (3.3.3), we see that w◦(θ1 + θ2)

∨ ≺ w◦θ2
∨
. It follows from the

definition of the weak reflection order on ∆+ that w◦θ1
∨ ≺ w◦(θ1 + θ2)

∨ ≺ w◦θ2
∨
,

and hence that Φ(θ1 + θ2) < Φ(θ1).
Thus, we conclude that ≺′ satisfies condition (2), and the total order ≺′ is a

weak reflection order on ∆̃+
aff ∩m

−1
λ−

∆̃−aff .

Now, by Proposition 3.3.5, there exists w ∈ W̃aff such that ∆̃+
aff ∩ m

−1
λ−

∆̃−aff =

∆̃+
aff ∩w

−1∆̃−aff , and there exists a reduced expression w = sℓ1 · · · sℓL , {ℓ1, . . . , ℓL} ⊂
Iaff for w such that γj = sℓL · · · sℓj+1

α∨ℓj for 1 ≤ j ≤ L. Since ∆̃+
aff ∩ m

−1
λ−

∆̃−aff =

∆̃+
aff ∩ w

−1∆̃−aff , it follows from [M1, (2.2.6)] that there exists u ∈ Ω such that
uw = mλ− . Thus, we obtain a reduced expression mλ− = usℓ1 · · · sℓL for mλ− ,
with γj = sℓL · · · sℓj+1

α∨ℓj = βOS
j for 1 ≤ j ≤ L. This completes the proof of the

proposition.

By Remark 3.3.7, the restriction to ∆+ \∆+
S of a weak reflection order on ∆+

satisfying (3.3.3) corresponds bijectively to a reduced expression v(λ−) = si1 · · · siM
for v(λ−). Hence, by Proposition 3.3.8, we can take a reduced expression mλ− =
usℓ1 · · · sℓL for mλ− corresponding to each reduced expression v(λ−) = si1 · · · siM for
v(λ−). Conversely, as seen in Lemma 3.3.10, from the reduced expression mλ− =
usℓ1 · · · sℓL for mλ− , we obtain a reduced expression for v(λ−), which is identical to
the original reduced expression v(λ−) = si1 · · · siM (see Lemma 3.3.10 below).

In the remainder of this subsection, we fix reduced expressions v(λ−) = si1 · · · siM
and w◦(S) = siM+1 · · · siN , and use the weak reflection order ≺ on ∆+ (which satisfies
(3.3.3)) determined by these reduced expressions for v(λ−) and w◦(S). Also, we use
the total order ≺′ on ∆̃+

aff ∩m
−1
λ−

∆̃−aff defined just before Proposition 3.3.8, and take
a reduced expression mλ− = usℓ1 · · · sℓL for mλ− given by Proposition 3.3.8.

Recall that βOS
k = sℓL · · · sℓk+1

α∨ℓk for 1 ≤ k ≤ L. We set ak := deg(βOS
k ) ∈ Z>0;

since ∆̃+
aff ∩m

−1
λ−

∆̃−aff = {βOS
1 , . . . , βOS

L }, we see by (3.3.4) that 0 < ak ≤ ⟨λ−, βOS
k ⟩.

Also, for 1 ≤ j ≤ L, we set βLk := usℓ1 · · · sℓk−1
α∨ℓk and bk := deg(βLk ) ∈ Z≥0. Then

we have {βLk | 1 ≤ k ≤ L} = ∆̃+
aff∩mλ−∆̃

−
aff = {α∨+aδ̃ | α ∈ ∆+, 0 ≤ a < −⟨λ−, α∨⟩}

(see [M1, (2.4.7) (ii)]).
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Remark 3.3.9. For 1 ≤ k ≤ L, we have

−t(λ−)βOS
k = −(usℓ1 · · · sℓL)(sℓL · · · sℓk+1

α∨ℓk) = −usℓ1 · · · sℓk−1
sℓkα

∨
ℓk

= −usℓ1 · · · sℓk−1
(−α∨ℓk) = usℓ1 · · · sℓk−1

α∨ℓk = βLk = βLk + bkδ̃.

From this, together with −t(λ−)βOS
k = −βOS

k − (ak − ⟨λ−, βOS
k ⟩)δ̃, we obtain βLk =

−βOS
k and ⟨λ−, βOS

k ⟩ − ak = bk.

Lemma 3.3.10. Keep the notation and setting above. Since usℓk = si′ku for some
i′k ∈ Iaff , 1 ≤ k ≤ M , we can rewrite the reduced expression usℓ1 · · · sℓL for mλ−

as si′1 · · · si′MusℓM+1
· · · sℓL. Then, si′1 · · · si′M is a reduced expression for v(λ−), and

usℓM+1
· · · sℓL is a reduced expression for mλ. Moreover, ik = i′k for 1 ≤ k ≤M .

Proof. First we show that {βLk | 1 ≤ k ≤ M} = −w◦
(
∆̃+ \ ∆̃+

S

)
. Since {βOS

j | 1 ≤
j ≤ L} = {α∨ + aδ̃ | α ∈ ∆−, 0 < a ≤ ⟨λ−, α∨⟩}, we see that the minimum value

of the first components of Φ(βOS
k ), i.e.,

⟨λ−,βOS
k ⟩−ak

⟨λ−,βOS
k ⟩

for 1 ≤ k ≤ L, is equal to 0.

Since Φ(βOS
1 ) < Φ(βOS

2 ) < · · · < Φ(βOS
L ), where < denotes the lexicographic order

on Q≥0×(∆+ \∆+
S ), there exists a positive integerM ′ such that the first component

of Φ(βOS
k ) is equal to 0 for 1 ≤ k ≤ M ′, and greater than 0 for M ′ + 1 ≤ k ≤ L.

Since βLk = βLk + bkδ̃ and ⟨λ−, βOS
k ⟩ − ak = bk by Remark 3.3.9, we deduce that

the first component of Φ(βOS
k ) is equal to 0 if and only if βLk = βLk ∈ ∆̃+. In

this case, we have ⟨λ,−w◦βLk ⟩ = ⟨λ−,−βLk ⟩
Remark 3.3.9

= ⟨λ−, βOS
k ⟩ > 0, and hence

βLk ∈ −w◦(∆̃+ \ ∆̃+
S ). Therefore, we obtain {βLk | 1 ≤ k ≤ L} ∩ −w◦(∆̃+ \ ∆̃+

S ) =

{βLk | 1 ≤ k ≤ M ′} ⊂ −w◦(∆̃+ \ ∆̃+
S ). Also, because {βLk | 1 ≤ k ≤ L} =

∆̃+
aff ∩mλ−∆̃

−
aff = {α∨ + aδ̃ | α ∈ ∆+, 0 ≤ a < −⟨λ−, α∨⟩} ⊃ −w◦(∆̃+ \ ∆̃+

S ), we

deduce that {βLk | 1 ≤ k ≤ M ′} = −w◦(∆̃+ \ ∆̃+
S ). Since #(∆̃+ \ ∆̃+

S ) = M , it

follows that M =M ′, and hence {βLk | 1 ≤ k ≤M} = −w◦(∆̃+ \ ∆̃+
S ).

We show that i′k ∈ I for 1 ≤ k ≤M . We set ζ∨k := si′1 · · · si′k−1
α∨i′k

for 1 ≤ k ≤M .

Since uα∨ℓk = α∨i′k
, we have

βLk = usℓ1 · · · sℓk−1
α∨ℓk = si′1 · · · si′k−1

uα∨ℓk = si′1 · · · si′k−1
α∨i′k

= ζ∨k .

Hence it follows that {ζ∨k | 1 ≤ k ≤ M} = {βLk | 1 ≤ k ≤ M} = −w◦(∆̃+ \ ∆̃+
S ).

If there exists k ∈ {1, . . . ,M} such that i′k = 0, then, by choosing the minimum of

such k’s, we obtain ζ∨k = si′1 · · · si′k−1
α∨i′k

/∈ ∆̃+, contrary to the equality {ζ∨k | 1 ≤
k ≤M} = −w◦(∆̃+ \ ∆̃+

S ). Therefore, we have i′k ∈ I for 1 ≤ k ≤M .
Next, we show that si′1 · · · si′M is a reduced expression for v(λ−) and usℓM+1

· · · sℓL
is a reduced expression for mλ. Since sℓ1 · · · sℓM is a reduced expression, so is
si′1 · · · si′M . Therefore, there exist i′M+1, . . . , i

′
N ∈ I such that w◦ = si′1 · · · si′M si′M+1

· · · si′N
is a reduced expression for w◦. Because si′N · · · si′M+1

si′M · · · si′k+1
α∨i′k

= −w◦βLk ,
1 ≤ k ≤M , by using the reduced expression above for w◦, we obtain

∆̃+ = {−w◦βL1 , . . . ,−w◦βLM , si′N · · · si′M+2
α∨i′M+1

, . . . , α∨i′N
}.
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Here, {βLk | 1 ≤ k ≤ M} = −w◦(∆̃+ \ ∆̃+
S ) implies {si′N · · · si′M+2

α∨i′M+1
, . . . , α∨i′N

} =

∆̃+
S . From this by descending induction on M + 1 ≤ k ≤ N , we deduce that

i′M+1, . . . , i
′
N ∈ S, and si′M+1

· · · si′N is an element of WS ; note that the length of this

element is equal to N−M , which is the cardinality of ∆̃+
S . Therefore, si′M+1

· · · si′N is

the longest element w◦(S) ofWS , and hence si′1 · · · si′M = w◦w◦(S) = v(λ−), which is
a reduced expression for v(λ−). Moreover, because mλ− = v(λ−)mλ with ℓ(mλ−) =
ℓ(v(λ−)) + ℓ(mλ) by Lemma 3.3.1 (3) for the case µ = λ, mλ = v(λ−)

−1mλ− =
usℓM+1

· · · sℓL is a reduced expression for mλ.
Finally, we show that ik = i′k for 1 ≤ k ≤M . Since M =M ′ as shown above,

Φ(βOS
k ) =

(
⟨λ−, βOS

k ⟩ − ak
⟨λ−, βOS

k ⟩
, w◦βOS

k

∨
)

=
(
0, w◦βOS

k

∨)
for 1 ≤ k ≤M by the definition of Φ, and

w◦βOS
k

∨
= −w◦βLk

∨
= −w◦ζk = −si′N · · · si′M+1

si′M · · · si′1si′1 · · · si′k−1
αi′k

= si′N · · · si′M+1
si′M · · · si′k+1

αi′k

by Remark 3.3.9. Thus, for 1 ≤ k < j ≤ M , we have si′N · · · si′M+1
si′M · · · si′k+1

αi′k ≺
si′N · · · si′M+1

si′M · · · si′j+1
αi′j , where the order ≺ is the fixed weak reflection order on

∆+ defined just before Proposition 3.3.8. Here we recall from Remark 3.3.7 that
βk = siN · · · sik+1

αik , 1 ≤ k ≤ N . Because

{βk | 1 ≤ k ≤M} = {si′N · · · si′M+1
si′M · · · si′k+1

αi′k | 1 ≤ k ≤M} = ∆+ \∆+
S ,

it follows from the definition of the weak reflection order ≺ on ∆+ together with
(3.3.3) that

{β1 ≺ · · · ≺ βM} =
{
si′N · · · si′M+1

si′M · · · si′2αi′1 ≺ · · · ≺ si′N · · · si′M+1
αi′M

}
= ∆+\∆+

S .

Therefore, noting that βk = siN · · · sik+1
αik for 1 ≤ k ≤ N , we obtain

siN · · · sik+1
αik = si′N · · · si′M+1

si′M · · · si′k+1
αi′k , for 1 ≤ k ≤M. (3.3.5)

By substituting the equalities siM+1 · · · siN = w◦(S) = si′M+1
· · · si′N into (3.3.5), we

have siM · · · sik+1
αik = si′M · · · si′k+1

αi′k for 1 ≤ k ≤ M . In particular, when k = M ,

we have αiM = αi′M , which implies that iM = i′M . If ij = i′j for k+1 ≤ j ≤M , then
it follows from siM · · · sik+1

αik = si′M · · · si′k+1
αi′k that αik = αi′k , and hence ik= i′k.

Thus, by descending induction on k, we deduce that ik = i′k for 1 ≤ k ≤M .

Remark 3.3.11 ([LNSSS2, §6.1]). For 1 ≤ k ≤ L, we set

dk :=
⟨λ−, βOS

k ⟩ − ak
⟨λ−, βOS

k ⟩
=

bk

⟨−λ−, βLk ⟩
;

the second equality follows from Remark 3.3.9; here dk is just the first component
of Φ(βOS

k ) ∈ Q≥0 × (∆+ \∆+
S ). For 1 ≤ k, j ≤ L, Φ(βOS

k ) < Φ(βOS
j ) if and only if

k < j, and hence we have
0 ≤ d1 ≤ · · · ≤ dL ≨ 1. (3.3.6)
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Lemma 3.3.12. If 1 ≤ k < j ≤ L and dk = dj, then w◦βOS
k

∨
≺ w◦βOS

j

∨
.

Proof. By the definitions, we obtain Φ(βOS
k ) =

(
dk, w◦β

OS
k

∨)
and Φ(βOS

j ) =
(
dj , w◦βOS

j

∨)
.

Since dk = dj and Φ(βOS
k ) < Φ(βOS

j ), we have w◦βOS
k

∨
≺ w◦βOS

j

∨
.

3.3.2 Orr-Shimozono formula in terms of QLS paths

Let λ ∈ P+ be a dominant weight, and set S = Sλ = {i ∈ I | ⟨λ, α∨i ⟩ = 0}.

Definition 3.3.13 ([LNSSS2, Definition 3.1]). A pair ψ = (w1, w2, . . . , ws;σ0, σ1, . . . , σs)
of a sequence w1, . . . , ws of elements in WS such that wk ̸= wk+1 for 1 ≤ k ≤ s− 1
and an increasing sequence 0 = σ0 < · · · < σs = 1 of rational numbers is called a
quantum Lakshmibai-Seshadri (QLS) path of shape λ if

(C) for every 1 ≤ i ≤ s − 1, there exists a directed path from wi+1 to wi in
QBGσiλ(W ).

Let QLS(λ) denote the set of all QLS paths of shape λ.

Remark 3.3.14. We know from [LNSSS4, Definition 3.2.2 and Theorem 4.1.1] that
condition (C) can be replaced by

(C)’ for every 1 ≤ i ≤ s − 1, there exists a directed path from wi+1 to wi in
QBGσiλ(W

S) that is also a shortest directed path from wi+1 to wi in QBG(WS).

For ψ = (w1, w2, . . . , ws;σ0, σ1, . . . , σs) ∈ QLS(λ), we set

wt(ψ) :=
s−1∑
i=0

(σi+1 − σi)wi+1λ,

and we define a map κ : QLS(λ)→WS by κ(ψ) := ws. Also, for µ ∈Wλ, we define
the degree of ψ at µ by

degµ(ψ) := −
s∑
i=1

σiwtλ(wi+1 ⇒ wi);

here we set ws+1 := v(µ). Note that by Remark 3.3.14, σiwtλ(wi+1 ⇒ wi) ∈ Z≥0
for 1 ≤ i ≤ s − 1. Also, σs = 1 for i = s by the definition of a QLS path. Hence it
follows that degµ(ψ) ∈ Z≤0.

Now, we define a subset EQB(w) of W for each w ∈W . Let w = si1 · · · sip be a
reduced expression for w. For each J = {j1 < j2 < j3 < · · · < jr} ⊂ {1, . . . , p}, we
define

pJ := (w = z0, . . . , zr;βj1 , . . . , βjr)

as follows: we set βk := sip · · · sik+1
(αik) ∈ ∆+ for 1 ≤ k ≤ p, and set

z0 = w = si1 · · · sip ,
z1 = wsβj1 = si1 · · · sij1−1sij1+1 · · · sip = si1 · · ·

(sij1 · · · sip ,
z2 = wsβj1sβj2 = si1 · · · sij1−1sij1+1 · · · sij2−1sij2+1 · · · sip = si1 · · ·

(sij1 · · ·

(sij2 · · · sip ,
...

zr = wsβj1 · · · sβjr = si1 · · ·

(sij1 · · ·

(sijr · · · sip ,
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where the symbol (· indicates a term to be omitted; also, we set end(pJ) := zr.
Then we define B(w) := {pJ | J ⊂ {1, . . . , p}}, and

QB(w) :=

{
pJ ∈ B(w)

∣∣∣∣∣ zi
βji+1−−−→ zi+1 is a directed edge of QBG(W )

for all 0 ≤ i ≤ r − 1

}
.

We remark that J may be the empty set ∅; in this case, end(p∅) = w.

Remark 3.3.15. We identify elements in QB(w) with directed paths in QBG(W ).
More precisely, for pJ = (w = z0, . . . , zr;βj1 , . . . βjr) ∈ QB(w), we write

pJ = (w = z0, . . . , zr;βj1 , . . . βjr) =

(
w = z0

βj1−−→ · · ·
βjr−−→ zr

)
.

Remark 3.3.16. Let w = z0
βj1−−→ z1

βj2−−→ · · ·
βjr−−→ zr = z be a directed path in

QBG(W ). Then we see that

1 ≤ j1 < j2 < · · · < jr ≤ p⇔
(
w = z0

βj1−−→ z1
βj2−−→ · · ·

βjr−−→ zr = z

)
∈ QB(w).

Also, it follows from Proposition 3.2.5 (1) that the map end : QB(w) → W is
injective.

By using the map end : B(w)→W defined above, we set EQB(w) := end(QB(w)).

Proposition 3.3.17. The set EQB(w) is independent of the choice of a reduced
expression for w.

Proof. Let us take two reduced expressions for w:

I : w = si1 · · · sip and K : w = sk1 · · · skp .

In this proof, let EQB(w)I (resp., EQB(w)K) denote the set EQB(w) associated to
I (resp., K).

It suffices to show that EQB(w)I ⊂ EQB(w)K. From the two reduced expressions
above for w, we obtain the following two reduced expressions for w◦:

w◦ = si−q · · · si0si1 · · · sip , (3.3.7)

w◦ = si−q · · · si0sk1 · · · skp . (3.3.8)

Using the reduced expression (3.3.7) (resp., (3.3.8)), we define βm (resp., γm), −q ≤
m ≤ p, as in (3.2.1). Then we have

{β−q, . . . , βp} = {γ−q, . . . , γp} = ∆+, (3.3.9)

{β1, . . . , βp} = {γ1, . . . , γp} = ∆+ ∩ w−1∆−. (3.3.10)

Let z ∈ EQB(w)I, and

pJ =

(
w = z0

βj1−−→ z1
βj2−−→ · · ·

βjr−−→ zr = z

)
∈ QB(w)I; (3.3.11)
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recall from Remark 3.3.16 that 1 ≤ j1 ≤ · · · ≤ jr ≤ p. It follows from Proposition
3.2.5 (1) that there exists a unique shortest directed path in QBG(W )

w = y0
γn1−−→ y1

γn2−−→ · · · γnr−−→ yr = z, (3.3.12)

with −q ≤ n1 < n2 < · · · < nr ≤ p; this is a label-increasing directed path with
respect to the weak reflection order defined by γ−q ≺ · · · ≺ γp. To prove that
z ∈ EQB(w)K, it suffices to show that 1 ≤ n1. It follows from (3.3.9) that for
1 ≤ u ≤ r, there exists −q ≤ tu ≤ p such that βtu = γnu . Therefore, by (3.3.12),

w = y0
βt1−−→ y1

βt2−−→ · · · βtr−−→ yr = z

is a directed path in QBG(W ). We see from Proposition 3.2.5 (2) that this path is
greater than or equal to the path (3.3.11) in the lexicographic order with respect to
the edge labels. In particular, we have t1 ≥ j1 ≥ 1. Since γn1 = βt1 ∈ ∆+ ∩w−1∆−,
we deduce that n1 ≥ 1 by (3.3.10). This implies that EQB(w)I ⊂ EQB(w)K.

Let µ ∈ Wλ. Recall that v(µ) ∈ WS is the minimal-length coset representative
for the coset {w ∈W | wλ = µ}. We set

QLSµ,∞(λ) := {ψ ∈ QLS(λ) | κ(ψ) ∈ ⌊EQB(v(µ)w◦(S))⌋}.

Remark 3.3.18. If w = w◦, then we have EQB(w◦) = W by Proposition 3.2.5 (1),
since in this case, we can use all the positive roots as an edge label. If µ = λ− = w◦λ,
then v(µ)w◦(S) = w◦ by (3.3.1), and hence ⌊EQB(v(µ)w◦(S))⌋ = WS . Therefore,
we have QLSw◦λ,∞(λ) = QLS(λ).

With the notation above, we set

gchµQLSµ,∞(λ) :=
∑

ψ∈QLSµ,∞(λ)

ewt(ψ)qdegµ(ψ).

The following is the main result of this section.

Theorem 3.3.19. Let λ ∈ P+ be a dominant weight, and µ ∈Wλ. Then,

Eµ(q,∞) = gchµQLSµ,∞(λ).

3.3.3 Proof of Theorem 3.3.19

Let λ ∈ P+ be a dominant weight, µ ∈Wλ, and set S := Sλ = {i ∈ I | ⟨λ, α∨i ⟩ =
0}. In this subsection, in order to prove Theorem 3.3.19, we give a bijection

Ξ :
←−
QB(e;mµ)→ QLSµ,∞(λ)

that preserves weights and degrees.
We fix reduced expressions

v(λ−)v(µ)
−1 = si1 · · · siK ,

v(µ) = siK+1 · · · siM , (3.3.13)

w◦(S) = siM+1 · · · siN (3.3.14)
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for v(λ−)v(µ)
−1, v(µ), and w◦(S), respectively; recall that λ− = w◦λ. Then, by

Lemma 3.3.1 (4), v(λ−) = si1 · · · siM is a reduced expression for v(λ−). As in §3.3.1,
we use the weak reflection order ≺ on ∆+ introduced in Remark 3.3.7 (which satisfies
(3.3.3)) determined by the reduced expressions above for v(λ−) and w◦(S). Also,
we use the total order ≺′ on ∆̃+

aff ∩ m
−1
λ−

∆̃−aff defined just before Proposition 3.3.8
and take the reduced expression mλ− = usℓ1 · · · sℓL for mλ− given by Proposition
3.3.8; recall that usℓk = siku for 1 ≤ k ≤ M . It follows from Lemma 3.3.1 (3) that(
v(µ)v(λ−)

−1)mλ− = mµ and −ℓ(v(µ)v(λ−)−1) + ℓ(mλ−) = ℓ(mµ). Moreover, we
see that(

v(µ)v(λ−)
−1)mλ− = (siK · · · si1)usℓ1 · · · sℓL

Lemma 3.3.10
= usℓK · · · sℓ1sℓ1 · · · sℓL = usℓK+1

· · · sℓL ,

and hence mµ = usℓK+1
· · · sℓL is a reduced expression for mµ. In particular, when

µ = λ (note that v(λ) = e), mλ = usℓM+1
· · · sℓL is a reduced expression for mλ.

Also, recall from Remark 3.3.7 and the beginning of §3.3.1 that βk = siN · · · sik+1
αik ,

1 ≤ k ≤ N , and βOS
k = sℓL · · · sℓk+1

α∨ℓk , 1 ≤ k ≤ L.
Remark 3.3.20. Keep the notation above. We have

∆̃+
aff ∩m

−1
λ−

∆̃−aff = {βOS
1 , . . . , βOS

L },

∆̃+
aff ∩m

−1
µ ∆̃−aff = {βOS

K+1, . . . , β
OS
L },

∆̃+
aff ∩m

−1
λ ∆̃−aff = {βOS

M+1, . . . , β
OS
L }.

In particular, we have ∆̃+
aff ∩m

−1
λ ∆̃−aff ⊂ ∆̃+

aff ∩m
−1
µ ∆̃−aff ⊂ ∆̃+

aff ∩m
−1
λ−

∆̃−aff .

Lemma 3.3.21 ([M1, (2.4.7) (i)]). If we denote by ς the characteristic function of
∆−, i.e.,

ς(γ) :=

{
0 if γ ∈ ∆+,
1 if γ ∈ ∆−,

then

∆̃+
aff ∩m

−1
µ ∆̃−aff = {α∨ + aδ̃ | α ∈ ∆−, 0 < a < ς(v(µ)v(λ−)

−1α) + ⟨λ,w◦α∨⟩}.

Remark 3.3.22. Let γ1, γ2, . . . , γr ∈ ∆̃+
aff ∩m

−1
µ ∆̃−aff , and define a sequence

(y0, y1, . . . , yr; γ1, γ2, . . . , γr) by y0 = mµ, and yi = yi−1sγi for 1 ≤ i ≤ r. Then, the

sequence (y0, y1, . . . , yr; γ1, γ2, . . . , γr) is an element of
←−
QB(e;mµ) if and only if the

following conditions hold:

(1) γ1 ≺′ γ2 ≺′ · · · ≺′ γr, where the order ≺′ is the weak reflection order on
∆̃+

aff ∩m
−1
µ ∆̃−aff introduced at the beginning of §3.3.3;

(2) dir(yi−1)
−(γi)∨←−−−− dir(yi) is an edge of QBG(W ) for 1 ≤ i ≤ r.
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In the following, we define a map Ξ :
←−
QB(e;mµ) → QLSµ,∞(λ). Let pOS

J be an

arbitrary element of
←−
QB(e;mµ) of the form

pOS
J =

(
mµ = zOS

0 , zOS
1 , . . . , zOS

r ;βOS
j1 , β

OS
j2 , . . . , β

OS
jr

)
∈
←−
QB(e;mµ),

with J = {j1 < · · · < jr} ⊂ {K + 1, . . . , L}. We set xk := dir(zOS
k ), 0 ≤ k ≤ r.

Then, by the definition of
←−
QB(e;mµ),

v(µ)v(λ−)
−1 Lemma 3.3.1

= x0
−βOS

j1

∨

←−−−− x1
−βOS

j2

∨

←−−−− · · ·
−βOS

jr

∨

←−−−− xr (3.3.15)

is a directed path in QBG(W ). We take 0 = u0 ≤ u1 < · · · < us−1 < us = r and
0 = σ0 < σ1 < · · · < σs−1 < 1 = σs in such a way that (see (3.3.6))

0 = dj1 = · · · = dju1︸ ︷︷ ︸
=σ0

< dju1+1 = · · · = dju2︸ ︷︷ ︸
=σ1

< · · · < djus−1+1 = · · · = djr︸ ︷︷ ︸
=σs−1

< 1 = σs;

(3.3.16)
note that dj1 > 0 if and only if u1 = 0. We set w′p := xup for 0 ≤ p ≤ s − 1,
and w′s := xr. Then, by taking a subsequence of (3.3.15), we obtain the following
directed path in QBG(W ) for each 0 ≤ p ≤ s− 1:

w′p = xup

−βOS
jup+1

∨

←−−−−−− xup+1

−βOS
jup+2

∨

←−−−−−− · · ·
−βOS

jup+1

∨

←−−−−−− xup+1 = w′p+1.

Multiplying this directed path on the right by w◦, we obtain the following directed
path in QBG(W ) for each 0 ≤ p ≤ s− 1 (see Lemma 3.2.4):

wp := w′pw◦ = xupw◦
w◦βOS

jup+1

∨

−−−−−−−→ · · ·
w◦βOS

jup+1

∨

−−−−−−−→ xup+1w◦ = w′p+1w◦ =: wp+1.
(3.3.17)

Note that the edge labels of this directed path are increasing in the weak reflection
order ≺ on ∆+ introduced at the beginning of §3.3.3 (see Lemma 3.3.12), and lie in
∆+ \∆+

S ; this property will be used to give the inverse to Ξ. Because

(1− σp)⟨λ,w◦βOS
ju
⟩ = (1− dju)⟨λ,w◦βOS

ju
⟩ = − aju

⟨λ−,−βOS
ju
⟩
⟨λ−, βOS

ju
⟩ = aju ∈ Z

for up + 1 ≤ u ≤ up+1, 0 ≤ p ≤ s − 1, we find that (3.3.17) is a directed path in
QBG(1−σp)λ(W ) for 0 ≤ p ≤ s−1. Therefore, by Lemma 3.2.8, there exists a directed

path in QBG(1−σp)λ(W
S) from ⌊wp⌋ to ⌊wp+1⌋, where S = {i ∈ I | ⟨λ, α∨i ⟩ = 0}.

Also, we claim that ⌊wp⌋ ̸= ⌊wp+1⌋ for 1 ≤ p ≤ s − 1. Suppose, for a contra-
diction, that ⌊wp⌋ = ⌊wp+1⌋ for some p. Then, wpWS = wp+1WS , and hence
min(wp+1WS ,≤wp) = min(wpWS ,≤wp) = wp. Recall that the directed path (3.3.17)
is a path in QBG from wp to wp+1 whose labels are increasing and lie in ∆+ \∆+

S .
By Lemma 3.2.9 (1), (2), the directed path (3.3.17) is a shortest path in QBG from
wp to min(wp+1WS ,≤wp) = min(wpWS ,≤wp) = wp, which implies that the length
of the directed path (3.3.17) is equal to 0. Therefore, {jup+1, . . . , jup+1} = ∅, and
hence up = up+1, which contradicts the fact that up < up+1.
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Thus we obtain

ψ := (⌊ws⌋, ⌊ws−1⌋, . . . , ⌊w1⌋; 1− σs, . . . , 1− σ0) ∈ QLS(λ). (3.3.18)

We now define Ξ(pOS
J ) := ψ.

Lemma 3.3.23. Keep the notation and setting above, and let siK+1 · · · siM siM+1 · · · siN
be a reduced expression for v(µ)w◦(S) obtained by concatenating (3.3.13) and (3.3.14).

Then, ⌊w1⌋ ∈ ⌊EQB(v(µ)w◦(S))⌋. Hence we obtain a map Ξ :
←−
QB(e;mµ) →

QLSµ,∞(λ).

Proof. Since it is clear that v(µ) ∈ ⌊EQB(v(µ)w◦(S))⌋, we may assume that ⌊w1⌋ ̸=
v(µ).

Since zOS
0 = mµ, we have w′0 = x0 = dir(zOS

0 ) = v(µ)v(λ−)
−1. It follows that

w0 = w′0w◦ =
(
v(µ)v(λ−)

−1)w◦ Lemma 3.3.1 (2)
= v(µ)w◦(S). If u1 = 0, then we obtain

w1 = w0 = v(µ)w◦(S) , contrary to the assumption that ⌊w1⌋ ̸= v(µ). Hence it
follows that u1 ≥ 1. This implies that ju1 ≤ M by the definition of u1 in (3.3.16)
and the proof of Lemma 3.3.10. Thus, we obtain K + 1 ≤ j1 < j2 < · · · < ju1 ≤M .

Now, consider the directed path (3.3.17) in the case p = 0. This is a (non-
trivial) directed path in QBG(W ) from w0 = v(µ)w◦(S) to w1 whose edge labels
are increasing in the weak reflection order ≺ on ∆+ introduced at the beginning

of §3.3.3. Because these edge labels are w◦

(
βOS
jk

)∨
= βjk = siN · · · sijk+1αijk for

1 ≤ k ≤ u1 (the first equality follows from the proof of Lemma 3.3.10), it follows
from the fact that K + 1 ≤ j1 < j2 < · · · < ju1 ≤ M and Remark 3.3.16 (re-
call that we take a reduced expression for w◦ given by concatenating the reduced
expressions for v(λ−)v(µ)

−1 and v(µ)w◦(S)) that w1 ∈ EQB(v(µ)w◦(S)). Hence
⌊w1⌋ ∈ ⌊EQB(v(µ)w◦(S))⌋.

Proposition 3.3.24. The map Ξ :
←−
QB(e;mµ)→ QLSµ,∞(λ) is bijective.

Proof. Let us give the inverse to Ξ. Take an arbitrary ψ = (y1, . . . , ys; τ0, . . . , τs) ∈
QLSµ,∞(λ). By convention, we set ys+1 = v(µ) ∈ WS . We define the elements vp,
1 ≤ p ≤ s+ 1, by: vs+1 = v(µ)w◦(S), and vp = min(ypWS ,≤vp+1) for 1 ≤ p ≤ s.

Because there exists a directed path in QBGτpλ(W
S) from yp+1 to yp for 1 ≤

p ≤ s− 1, we see from Lemma 3.2.9 (2), (3) that there exists a unique directed path

vp
−w◦γp,1←−−−−− · · ·

−w◦γp,tp←−−−−−− vp+1 (3.3.19)

in QBGτpλ(W ) from vp+1 to vp whose edge labels −w◦γp,tp , . . . ,−w◦γp,1 are increas-

ing in the weak reflection order ≺ and lie in ∆+ \∆+
S for 1 ≤ p ≤ s− 1; we remark

that this is also true for p = s, since τs = 1. Multiplying the vertices in this directed
path on the right by w◦, we obtain by Lemma 3.2.4 the following directed paths:

vp,0 := vpw◦
γp,1−−→ vp,1

γp,2−−→ · · ·
γp,tp−−−→ vp+1w◦ =: vp,tp , 1 ≤ p ≤ s.

Concatenating these paths for 1 ≤ p ≤ s, we obtain the following directed path:

v1,0
γ1,1−−→ · · ·

γ1,t1−−−→ v1,t1 = v2,0
γ2,1−−→ · · ·

γs−2,ts−2−−−−−−→ vs−2,ts−2 = vs−1,0
γs−1,1−−−−→ · · ·

(3.3.20)

· · ·
γs−1,ts−1−−−−−−→ vs−1,ts−1 = vs,0

γs,1−−→ · · · γs,ts−−−→ vs,ts = vs+1,0 = v(µ)v(λ−)
−1
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in QBG(W ). Now, for 1 ≤ p ≤ s and 1 ≤ m ≤ tp, we set dp,m := 1− τp ∈ Q∩ [0, 1),
ap,m := (dp,m − 1)⟨λ−, γ∨p,m⟩, and γ̃p,m := ap,mδ̃ − γ∨p,m.

Claim 1. γ̃p,m ∈ ∆̃+
aff ∩m

−1
µ ∆̃−aff .

Proof of Claim 1. Since τp > 0, and since the path (3.3.19) is a directed path
in QBGτpλ(W ) whose edge labels are increasing and lie in ∆+ \ ∆+

S , we obtain
ap,m = −τp⟨λ−, γ∨p,m⟩ = τp⟨λ,−w◦γ∨p,m⟩ ∈ Z>0.

We will show that ap,m < ς(v(µ)v(λ−)
−1(−γp,m)) + ⟨λ,w◦

(
−γ∨p,m

)
⟩. Here we

note that the inequality ⟨λ,w◦
(
−γ∨p,m

)
⟩ = −⟨λ−, γ∨p,m⟩ ≥ −τp⟨λ−, γ∨p,m⟩ = ap,m

holds, with equality if and only if p = s. Hence it suffices to consider the case
p = s. In the case p = s, the path (3.3.19) is the unique directed path in QBG(W )
from v(µ)w◦(S) = vs+1 to vs whose edge labels are increasing and lie in ∆+ \∆+

S .
Also, since ψ ∈ QLSµ,∞(λ) and κ(ψ) = ys = ⌊vs⌋, we find that there exists v′s ∈
EQB(v(µ)w◦(S)) such that ⌊v′s⌋ = ys. By the definition of EQB(v(µ)w◦(S)), there
exists a unique directed path in QBG(W ) from v(µ)w◦(S) to v′s whose edge labels
are increasing; we see from (3.3.3) that this directed path is obtained as the concate-
nation of the following two directed paths: the one whose edge labels lie in ∆+ \∆+

S ,
and the one whose edge labels lie in ∆+

S . Therefore, by removing all the edges whose
labels lie in ∆+

S from the path above, we obtain a directed path in QBG(W ) from
v(µ)w◦(S) to some v′′s ∈ ysWS ∩ EQB(v(µ)w◦(S)) whose edge labels are increas-
ing and lie in ∆+ \ ∆+

S . Here, since ⌊vs⌋ = ⌊v′′s ⌋ and vs = min(ysWS ,≤v(µ)w◦(S)),
Lemma 3.2.9 (2) shows that vs = v′′s . Hence we have vs ∈ EQB(v(µ)w◦(S)). More-
over, by the definition of EQB(v(µ)w◦(S)), the edge labels −w◦γs,1, . . . ,−w◦γs,ts
in the given directed path in QBG(W ) from v(µ)w◦(S) = vs+1 to vs are ele-

ments of ∆+ ∩ (v(µ)w◦(S))
−1∆−, and hence v(µ)w◦(S) (−w◦γs,m)

Lemma 3.3.1 (2)
=

v(µ)v(λ−)
−1(−γs,m) ∈ ∆−. Therefore, in the case p = s, we have ς(v(µ)v(λ−)

−1(−γs,m)) =
1. Thus we have shown that as,m = ⟨λ,w◦

(
−γ∨s,m

)
⟩ < ς(v(µ)v(λ−)

−1(−γs,m)) +
⟨λ,w◦

(
−γ∨s,m

)
⟩. Hence we conclude that γ̃p,m ∈ ∆̃+

aff ∩m
−1
µ ∆̃−aff by Lemma 3.3.21.

Claim 2.

(1) We have
γ̃s,ts ≺′ · · · ≺′ γ̃s,1 ≺′ γ̃s−1,ts−1 ≺′ · · · ≺′ γ̃1,1,

where ≺′ denotes the weak reflection order on ∆̃+
aff ∩m

−1
λ−

∆̃−aff introduced at the

beginning of §3.3.3; hence we choose J ′ = {j′1, . . . , j′r′} ⊂ {K + 1, . . . , L} in
such way that(

βOS
j′1
, . . . , βOS

j′
r′

)
=
(
γ̃s,ts , . . . , γ̃s,1, γ̃s−1,ts−1 , . . . , γ̃1,1

)
.

(2) Let 1 ≤ k ≤ r′, and take 1 ≤ p ≤ s, 0 < m ≤ tp such that
(
βOS
j′1
≺′ · · · ≺′ βOS

j′k

)
=

(γ̃s,ts ≺′ · · · ≺′ γ̃p,m). Then, dir(zOS
k ) = vp,m−1. Moreover, dir(zOS

k−1)
−βOS

j′
k

∨

←−−−−
dir(zOS

k ) is an edge of QBG(W ).
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Proof of Claim 2. (1) It suffices to show the following:
(i) for 1 ≤ p ≤ s and 1 < m ≤ tp, we have γ̃p,m ≺′ γ̃p,m−1;
(ii) for 2 ≤ p ≤ s, we have γ̃p,1 ≺′ γ̃p−1,tp−1 .

(i) Because
⟨λ−,−γ∨p,m⟩−ap,m
⟨λ−,−γ∨p,m⟩

= dp,m and
⟨λ−,−γ∨p,m−1⟩−ap,m−1

⟨λ−,−γ∨p,m−1⟩
= dp,m−1, we have

Φ(γ̃p,m) = (dp,m,−w◦γp,m),
Φ(γ̃p,m−1) = (dp,m−1,−w◦γp,m−1).

Therefore, the first component of Φ(γ̃p,m) is equal to that of Φ(γ̃p,m−1) since dp,m =
1 − τp = dp,m−1. Moreover, since −w◦γp,m ≺ −w◦γp,m−1, we have Φ(γ̃p,m) <
Φ(γ̃p,m−1). This implies that γ̃p,m ≺′ γ̃p,m−1 by Proposition 3.3.8.

(ii) The proof of (ii) is similar to that of (i). The first components of Φ(γ̃p,1) and
Φ(γ̃p−1,tp−1) are dp,1 and dp−1,tp−1 , respectively. Since dp,1 = 1 − τp < 1 − τp−1 =
dp−1,tp−1 , we have Φ(γ̃p,1) < Φ(γ̃p−1,tp−1). This implies that γ̃p,1 ≺′ γ̃p−1,tp−1 .

(2) We proceed by induction on k. Since dir(zOS
0 ) = dir(mµ) = v(µ)v(λ−)

−1

and βOS
j′1

= γ̃s,ts , we have dir(zOS
1 ) = dir(zOS

0 )s−βOS
j′1

= v(µ)v(λ−)
−1sγs,ts = vs,ts−1.

Hence the assertion holds in the case k = 1.
Assume that dir(zOS

k−1) = vp,m for 0 ≨ m ≤ tp; here we remark that vp,m−1 is the
predecessor of vp,m in the directed path (3.3.20) since 0 ≤ m− 1 ≤ tp−1. Hence we

have dir(zOS
k ) = dir(zOS

k−1)s−βOS
j′
k

= vp,msγp,m
(3.3.20)
= vp,m−1. Also, since (3.3.20) is a

directed path in QBG(W ), vp,m = dir(zOS
k−1)

−βOS
j′
k

∨

←−−−− dir(zOS
k ) = vp,m−1 is an edge of

QBG(W ).

Since J ′ = {j1, . . . , j′r′} ⊂ {K + 1, . . . , L}, we can define an element pOS
J ′ to be(

mµ = zOS
0 , zOS

1 , . . . , zOS
r′ ;βOS

j′1
, βOS
j′2
, . . . , βOS

j′
r′

)
, where zOS

0 = mµ, z
OS
k = zOS

k−1sβOS
j′
k

for

1 ≤ k ≤ r′; it follows from Remark 3.3.22 and Claim 2 that pOS
J ′ ∈

←−
QB(e;mµ). Hence

we can define a map Θ : QLSµ,∞(λ)→
←−
QB(e;mµ) by Θ(ψ) := pOS

J ′ .
It remains to show that the map Θ is the inverse to the map Ξ, i.e., the following

two claims.

Claim 3. For ψ = (y1, . . . , ys; τ0, . . . , τs) ∈ QLS(λ), we have Ξ ◦Θ(ψ) = ψ.

Claim 4. For pOS
J =

(
mµ = zOS

0 , zOS
1 , . . . , zOS

r ;βOS
j1
, βOS
j2
, . . . , βOS

jr

)
∈
←−
QB(e;mµ), we

have Θ ◦ Ξ(pOS
J ) = pOS

J .

Proof of Claim 3. We set Θ(ψ) = pOS
J ′ , with J ′ = {j′1, . . . , j′r}. In the following

description of Θ(ψ) = pOS
J ′ , we employ the notation up, σp, w

′
p, and wp used in the

definition of Ξ(pOS
J ).

For 1 ≤ k ≤ r′, if we set βOS
j′k

= γ̃p,m with m > 0, then we have dj′k = 1 +

deg(βOS
j′
k
)

⟨λ−,−βOS
j′
k
⟩
= 1 +

deg(γ̃p,m)

⟨λ−,−γ̃p,m⟩
= 1 +

ap,m
⟨λ−,γ∨p,m⟩

= dp,m. Therefore, the sequence (3.3.16)
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determined by Θ(ψ) = pOS
J ′ is

0 = ds,ts = · · · = ds,1︸ ︷︷ ︸
=1−τs

< ds−1,ts−1 = · · · = ds−1,1︸ ︷︷ ︸
=1−τs−1

< · · · < d1,t1 = · · · = d1,1︸ ︷︷ ︸
=1−τ1

< 1 = 1−τ0.

(3.3.21)
Because the sequence (3.3.21) of rational numbers is just the sequence (3.3.16) for
Θ(ψ) = pOS

J ′ , we deduce that βOS
j′up

= γ̃s−p+1,1 for 1 ≤ p ≤ s, and σp = 1−τs−p for 0 ≤
p ≤ s. Therefore, we have w′p = dir(zOS

up ) = vs−p+1,0 and wp = vs−p+1,0w◦ = vs−p+1.
Since ⌊wp⌋ = ⌊vs−p+1⌋ = ys−p+1, we conclude that Ξ ◦Θ(ψ) = (⌊ws⌋, . . . , ⌊w1⌋; 1−
σs, . . . , 1− σ0) = (y1, . . . , ys; τ0, . . . , τs) = ψ.

Proof of Claim 4. We set ψ = Ξ(pOS
J ), and write it as ψ = (y1, . . . , ys; τ0, . . . , τs),

where yp = ⌊ws+1−p⌋ for 1 ≤ p ≤ s and τp = 1− σs−p for 0 ≤ p ≤ s in the notation
of (3.3.18) (and the comment preceding it). Also, in the following description of
Ξ(pOS

J ) = ψ, we employ the notation vp,m, dp,m, ap,m, γp,m, γ̃p,m, and J
′ used in the

definition of Θ(ψ).
Recall that w0 = v(µ)w◦(S) = vs+1. For 0 ≤ p ≤ s− 1,

vs−p+1

−w◦γs−p,ts−p−−−−−−−−−→ · · ·
−w◦γs−p,1−−−−−−−→ vs−p

is a directed path in QBG(W ) whose edge labels are increasing and lie in ∆+ \∆+
S

(see (3.3.19)). Now we can show by induction on p that wp = vs−p+1 for 1 ≤ p ≤ s.
Indeed, if wp = vs−p+1, then both of the path above and the path (3.3.17) start from
wp and end with some element in wp+1WS = vs−pWS (this equality follows from the
definition of vs−p), and have increasing edge labels lying in ∆+ \ ∆+

S . Therefore,
by Lemma 3.2.9 (2), we deduce that the ends of these two paths are identical, and
hence that wp+1 = vs−p. Moreover, since these two paths are identical, so are the
edge labels of them:(

w◦βOS
jup+1

∨
≺ · · · ≺ w◦βOS

jup+1

∨)
=
(
−w◦γs−p,ts−p ≺ · · · ≺ −w◦γs−p,1

)
for 0 ≤ p ≤ s − 1. From the above, we have up+1 − up = ts−p and −βOS

jup+k

∨
=

γs−p,ts−p−k+1 for 0 ≤ p ≤ s − 1, 1 ≤ k ≤ ts−p. Because σp = djup+1 = · · · = djup+1

for 0 ≤ p ≤ s−1, 1−σp = τs−p for 0 ≤ p ≤ s, and 1−τs−p = ds−p,1 = · · · = ds−p,ts−p
for 0 ≤ p ≤ s− 1, we see that for 1 ≤ k ≤ ts−p,

βOS
jup+k

= βOS
jup+k

+ ajup+k δ̃

= βOS
jup+k

− (djup+k − 1)⟨λ−, βOS
jup+k

⟩δ̃

= −γ∨s−p,ts−p−k+1 + (ds−p,ts−p−k+1 − 1)⟨λ−, γ∨s−p,ts−p−k+1⟩δ̃

= −γ∨s−p,ts−p−k+1 + as−p,ts−p−k+1δ̃

= γ̃s−p,ts−p−k+1.

Therefore, we have(
βOS
jup+1

≺′ · · · ≺′ βOS
jup+1

)
=
(
γ̃s−p,ts−p ≺′ · · · ≺′ γ̃s−p,1

)
, 0 ≤ p ≤ s− 1.
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Concatenating the sequences above for 0 ≤ p ≤ s− 1, we obtain(
βOS
j1 ≺

′ · · · ≺′ βOS
jr

)
=
(
γ̃s,ts ≺′ · · · ≺′ γ̃s,1 ≺′ γ̃s−1,ts−1 ≺′ · · · ≺′ γ̃1,1

)
=
(
βOS
j′1
≺′ · · · ≺′ βOS

j′
r′

)
.

Hence the set J ′ determined by Ξ(pOS
J ) = ψ is identical to J . Thus we conclude that

Θ ◦ Ξ(pOS
J ) = pOS

J ′ = pOS
J .

This completes the proof of Proposition 3.3.24.

We recall from (3.2.4) and (3.2.5) that deg(β) is defined by β = β + deg(β)δ̃
for β ∈ h ⊕ Cδ̃, and wt(u) ∈ P and dir(u) are defined by: u = t(wt(u))dir(u) for

u ∈ W̃ext = t(P )⋊W .

Proposition 3.3.25. The bijection Ξ :
←−
QB(e;mµ) → QLSµ,∞(λ) satisfies the fol-

lowing:

(1) wt(end(pOS
J )) = wt(Ξ(pOS

J ));

(2) deg(qwt∗(pOS
J )) = −degµ(Ξ(pOS

J )).

Proof. We proceed by induction on #J .
If J = ∅, then it is obvious that deg(qwt∗(pOS

J )) = degµ(Ξ(p
OS
J )) = 0 and

wt(end(pOS
J )) = wt(Ξ(pOS

J )) = µ, since Ξ(pOS
J ) = (v(µ)w◦(S); 0, 1).

Let J = {j1 < j2 < · · · < jr}, and set K := J \ {jr}; assume that Ξ(pOS
K ) is of

the form: Ξ(pOS
K ) = (⌊ws⌋, ⌊ws−1⌋, . . . , ⌊w1⌋; 1−σs, . . . , 1−σ0). In the following, we

employ the notation wp, 0 ≤ p ≤ s, used in the definition of the map Ξ. Note that
dir(pOS

K ) = wsw◦ and w0 = v(µ)w◦(S) by the definition of Ξ. Also, observe that if
djr = djr−1 = σs−1, then {dj1 ≤ · · · ≤ djr−1 ≤ djr} = {dj1 ≤ · · · ≤ djr−1}, and if
djr > djr−1 = σs−1, then {dj1 ≤ · · · ≤ djr−1 ≤ djr} = {dj1 ≤ · · · ≤ djr−1 < djr}.
From these, we deduce that

Ξ(pOS
J ) =



(⌊wssw◦βOS
jr

⌋, ⌊ws−1⌋, . . . , ⌊w1⌋; 1− σs, 1− σs−1, . . . , 1− σ0)

if djr = djr−1 = σs−1,

(⌊wssw◦βOS
jr

⌋, ⌊ws⌋, ⌊ws−1⌋, . . . , ⌊w1⌋; 1− σs, 1− djr , 1− σs−1 . . . , 1− σ0)

if djr > djr−1 = σs−1.

For the induction step, it suffices to show the following claims.

Claim 1.

(1) We have

wt(Ξ(pOS
J )) = wt(Ξ(pOS

K ))− ajrwsw◦βOS
jr

∨
.

(2) We have
degµ(Ξ(p

OS
J )) = degµ(Ξ(p

OS
K ))− χrajr ,

where χr := 0 (resp., χr := 1) if wssw◦βOS
jr

← ws is a Bruhat (resp., quantum)

edge.
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Claim 2.

(1) We have

wt(end(pOS
J )) = wt(end(pOS

K ))− ajrwsw◦βOS
jr

∨
.

(2) We have
deg(qwt∗(pOS

J )) = deg(qwt∗(pOS
K )) + χrajr .

P roof of Claim 1. (1) If djr = djr−1 = σs−1, then we compute:

wt(Ξ(pOS
J )) =(σs − σs−1)⌊wssw◦βOS

jr

⌋λ+
s−1∑
p=1

(σp − σp−1)⌊wp⌋λ

=(σs − σs−1)wssw◦βOS
jr

λ+

s−1∑
p=1

(σp − σp−1)wpλ

=
s∑

p=1

(σp − σp−1)wpλ+ (σs − σs−1)wssw◦βOS
jr

λ− (σs − σs−1)wsλ

djr=σs−1, σs=1
=

s∑
p=1

(σp − σp−1)wpλ+ (1− djr)wssw◦βOS
jr

λ− (1− djr)wsλ.

If djr > djr−1 = σs−1, then we compute:

wt(Ξ(pOS
J )) =(σs − djr)⌊wssw◦βOS

jr

⌋λ+ (djr − σs−1)⌊ws⌋λ+

s−1∑
p=1

(σp − σp−1)⌊wp⌋λ

=(σs − djr)wssw◦βOS
jr

λ+ (djr − σs−1)wsλ+
s−1∑
p=1

(σp − σp−1)wpλ

=

s∑
p=1

(σp − σp−1)wpλ− (σs − σs−1)wsλ

+ (σs − djr)wssw◦βOS
jr

λ+ (djr − σs−1)wsλ

=
s∑

p=1

(σp − σp−1)wpλ+ (σs − djr)wssw◦βOS
jr

λ− (σs − djr)wsλ

σs=1
=

s∑
p=1

(σp − σp−1)wpλ+ (1− djr)wssw◦βOS
jr

λ− (1− djr)wsλ.

In both cases above, since

wt(Ξ(pOS
K )) =

s∑
p=1

(σp − σp−1)⌊wp⌋λ =
s∑

p=1

(σp − σp−1)wpλ,
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and since

(1− djr)wssw◦βOS
jr

λ− (1− djr)wsλ

= −(1− djr)ws⟨λ,w◦βOS
jr
⟩w◦βOS

jr

∨

= − ajr

⟨λ−, βOS
jr
⟩
⟨λ−, βOS

jr
⟩wsw◦βOS

jr

∨
by Remark 3.3.11

= −ajrwsw◦βOS
jr

∨
,

it follows that

wt(Ξ(pOS
J )) =

s∑
p=1

(σp − σp−1)wpλ+ (1− djr)wssw◦βOS
jr

λ− (1− djr)wsλ

= wt(Ξ(pOS
K ))− ajrwsw◦βOS

jr

∨
.

(2) From the relation between pOS
J and pOS

K , and from the definition of
←−
QB(e;mµ),

we find that wsw◦s−βOS
jr

−βOS
jr

∨

−−−−→ wsw◦ is an edge of QBG(W ). Hence, by Lemma

3.2.4, wssw◦βOS
jr

w◦βOS
jr

∨

←−−−−− ws is an edge of QBG(W ).

If djr = djr−1 = σs−1, then by the definition of degµ (along with [LNSSS2,
Lemma 7.2]), we see that

degµ(Ξ(p
OS
J )) =−

s−2∑
p=0

(1− σp)wtλ(⌊wp+1⌋ ⇐ ⌊wp⌋)− (1− djr)wtλ(⌊wssw◦βOS
jr

⌋ ⇐ ⌊ws−1⌋)

(3.3.22)

=−
s−2∑
p=0

(1− σp)wtλ(wp+1 ⇐ wp)− (1− djr)wtλ(wssw◦βOS
jr

⇐ ws−1).

Here, w0 = v(µ)w◦(S) as mentioned in the proof of Lemma 3.3.23, so that ⌊w0⌋ =
v(µ). Since djr = djr−1 = σs−1, we have w◦βOS

jr−1

∨
≺ w◦βOS

jr

∨
by Lemma 3.3.12.

Because the (unique) label-increasing directed path in QBG(W ) from ws−1 to ws

has the final edge label w◦βOS
jr−1

∨
, by concatenating this directed path from ws−1 to

ws with ws
w◦βOS

jr

∨

−−−−−→ wssw◦βOS
jr

, we obtain a label-increasing (hence shortest) directed

path from ws−1 to wssw◦βOS
jr

passing through ws. Therefore, we deduce that

wtλ(wssw◦βOS
jr

⇐ ws−1) = wtλ(wssw◦βOS
jr

← ws) + wtλ(ws ⇐ ws−1). (3.3.23)

It follows from (3.3.22) and (3.3.23) that

degµ(Ξ(p
OS
J )) = −

s−1∑
p=0

(1− σp)wtλ(wp+1 ⇐ wp)− (1− djr)wtλ(wssw◦βOS
jr

← ws).
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If djr > djr−1 = σs−1, then by the definition of degµ (along with [LNSSS2,
Lemma 7.2]), we see that

degµ(Ξ(p
OS
J )) = −

s−1∑
p=0

(1− σp)wtλ(wp+1 ⇐ wp)− (1− djr)wtλ(wssw◦βOS
jr

← ws),

where w0 = v(µ)w◦(S). Also, by the definition of degµ (along with [LNSSS2, Lemma
7.2]), we have

degµ(Ξ(p
OS
K )) = −

s−1∑
p=0

(1− σp)wtλ(wp+1 ⇐ wp),

where w0 = v(µ)w◦(S).
In both cases above, we deduce that

degµ(Ξ(p
OS
J )) = degµ(Ξ(p

OS
K ))− (1− djr)wtλ(wssw◦βOS

jr

← ws).

If wssw◦βOS
jr

← ws is a Bruhat edge, then we have wtλ(wssw◦βOS
jr

← ws) = 0. If

wssw◦βOS
jr

← ws is a quantum edge, then we have wtλ(wssw◦βOS
jr

← ws) = ⟨λ,w◦βOS
jr
⟩.

Note that

(1− djr)⟨λ,w◦βOS
jr
⟩ Remark 3.3.11

=
ajr

⟨λ−, βOS
jr
⟩
⟨λ−, βOS

jr
⟩ = ajr .

Therefore, in both cases, we have degµ(Ξ(p
OS
J )) = degµ(Ξ(p

OS
K ))−χrajr , and Claim

1 (2) is proved.

Proof of Claim 2. Let us prove part (1). Note that end(pOS
J ) = end(pOS

K )sβOS
jr

, and

that

end(pOS
K ) = t(wt(end(pOS

K )))dir(end(pOS
K )) = t(wt(end(pOS

K )))wsw◦;

the second equality follows from the comment at the beginning of the proof of Propo-

sition 3.3.25. Also, we have sβOS
jr

= s
ajr δ̃+β

OS
jr

= t
(
−ajrβOS

jr

∨)
s
βOS
jr

. Combining

these, we obtain

end(pOS
J ) =

(
t(wt(end(pOS

K )))wsw◦
)(

t
(
−ajrβOS

jr

∨)
s
βOS
jr

)
= t

(
wt(end(pOS

K ))− ajrwsw◦βOS
jr

∨)
wsw◦sβOS

jr

,

and hence
wt(end(pOS

J )) = wt(end(pOS
K ))− ajrwsw◦βOS

jr

∨
.

Let us prove part (2). Since dir(end(pOS
K )) = wsw◦, we have dir(end(pOS

J )) =

wsw◦sβOS
jr

. If wssw◦βOS
jr

w◦βOS
jr

∨

←−−−−− ws is a Bruhat edge, then it follows from Lemma
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3.2.4 that wsw◦s−βOS
jr

−βOS
jr

∨

−−−−→ wsw◦ is also a Bruhat edge. Hence we obtain J+ =

K+. This implies that deg(qwt∗(pOS
J )) = deg(qwt∗(pOS

K )). If wssw◦βOS
jr

w◦βOS
jr

∨

←−−−−− ws

is a quantum edge, then it follows from Lemma 3.2.4 that wsw◦s−βOS
jr

−βOS
jr

∨

−−−−→ wsw◦

is also a quantum edge. Hence we obtain J+ = K+ ⊔ {jr}. This implies that
deg(qwt∗(pOS

J )) = deg(qwt∗(pOS
K )) + deg(βOS

jr
) = deg(qwt∗(pOS

K )) + ajr . Therefore,

in both cases, we have deg(qwt∗(pOS
J )) = deg(qwt∗(pOS

K )) + χrajr , and Claim 2 (2)
is proved.

This completes the proof of Proposition 3.3.25.

Proof of Theorem 3.3.19. We know from Proposition 3.2.11 that

Eµ(q,∞) =
∑

pOS
J ∈
←−
QB(e;mµ)

ewt(end(pOS
J ))q−deg(qwt∗(pOS

J )).

Therefore, it follows from Propositions 3.3.24 and 3.3.25 that

Eµ(q,∞) =
∑

ψ∈QLSµ,∞(λ)

ewt(ψ)qdegµ(ψ).

Hence we conclude that Eµ(q,∞) = gchµQLSµ,∞(λ), as desired.

3.4 Demazure submodules of level-zero extremal weight
modules

3.4.1 Untwisted affine root data

As in §2.3, we use the following notation.
Let gaff be the untwisted affine Lie algebra over C associated to the finite-

dimensional simple Lie algebra g, and haff =
(⊕

j∈Iaff Cα∨j
)
⊕ CD its Cartan subal-

gebra, where
{
α∨j
}
j∈Iaff

⊂ haff is the set of simple coroots, with Iaff = I ⊔ {0}, and
D ∈ haff is the degree operator. We denote by

{
αj
}
j∈Iaff

⊂ h∗aff the set of simple

roots, and by Λj ∈ h∗aff , j ∈ Iaff , the fundamental weights. Note that ⟨αj , D⟩ = δj,0
and ⟨Λj , D⟩ = 0 for j ∈ Iaff , where ⟨· , ·⟩ : h∗aff × haff → C denotes the canonical
pairing between haff and h∗aff := HomC(haff , C). Also, let δ =

∑
j∈Iaff ajαj ∈ h∗aff and

c =
∑

j∈Iaff a
∨
j α
∨
j ∈ haff denote the null root and the canonical central element of gaff ,

respectively. Here we note that haff = h⊕Cc⊕CD; if we regard an element λ ∈ h∗

as an element of h∗aff by: ⟨λ, c⟩ = ⟨λ, D⟩ = 0, then we have ϖi = Λi−a∨i Λ0 for i ∈ I.
We take a weight lattice Paff for gaff as follows: Paff =

(⊕
j∈Iaff ZΛj

)
⊕ Zδ ⊂ h∗aff ,

and set Qaff :=
⊕

j∈Iaff Zαj .
Remark 3.4.1. We should warn the reader that the root datum of the affine Lie alge-
bra gaff is not necessarily dual to that of the untwisted affine Lie algebra associated
to g̃ in §3.2.2, though the root datum of g̃ is dual to that of g. In particular, for the
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index 0 ∈ Iaff , the simple coroot α∨0 = c − θ∨, with θ ∈ ∆+ the highest root of g,

does not agree with the simple root δ̃ − φ∨ in §3.2.2, which is denoted by α∨0 there.

The Weyl group Waff of gaff is defined to be the subgroup ⟨sj | j ∈ Iaff⟩ ⊂
GL(h∗aff) generated by the simple reflections sj associated to αj for j ∈ Iaff , with
length function ℓ : Waff → Z≥0 and identity element e ∈ Waff . For ξ ∈ Q∨ =⊕

i∈I Zα∨i , let t(ξ) ∈Waff denote the translation in h∗aff by ξ (see [Kac, §6.5]). Then
we know from [Kac, Proposition 6.5] that

{
t(ξ) | ξ ∈ Q∨

}
forms an abelian normal

subgroup ofWaff such that t(ξ)t(ζ) = t(ξ+ζ), ξ, ζ ∈ Q∨, andWaff =W⋉
{
t(ξ) | ξ ∈

Q∨
}
. We denote by ∆aff the set of real roots, i.e., ∆aff :=

{
xαj | x ∈Waff , j ∈ Iaff

}
,

and by ∆+
aff ⊂ ∆aff the set of positive real roots; we know from [Kac, Proposition

6.3] that

∆aff =
{
α+ nδ | α ∈ ∆, n ∈ Z

}
,

∆+
aff = ∆+ ⊔

{
α+ nδ | α ∈ ∆, n ∈ Z>0

}
.

For β ∈ ∆aff , we denote by β∨ ∈ haff the dual root of β, and by sβ ∈ Waff the
reflection with respect to β. Note that if β ∈ ∆aff is of the form β = α + nδ with
α ∈ ∆ and n ∈ Z, then sβ = sαt(nα

∨).

3.4.2 Peterson’s coset representatives

Let S be a subset of I. Following [Pe] (see also [LS, §10]), we set:

Q∨S :=
∑
i∈S

Zα∨i , (3.4.1)

(∆S)aff :=
{
α+ nδ | α ∈ ∆S , n ∈ Z

}
⊂ ∆aff , (3.4.2)

(∆S)
+
aff := (∆S)aff ∩∆+

aff = ∆+
S ⊔

{
α+ nδ | α ∈ ∆S , n ∈ Z>0

}
, (3.4.3)

(WS)aff :=WS ⋉
{
t(ξ) | ξ ∈ Q∨S

}
= ⟨sβ | β ∈ (∆S)

+
aff⟩, (3.4.4)

(WS)aff :=
{
x ∈Waff | xβ ∈ ∆+

aff for all β ∈ (∆S)
+
aff

}
. (3.4.5)

Then we know the following from [Pe] (see also [LS, Lemma 10.6]).

Proposition 3.4.2. For each x ∈ Waff , there exist a unique x1 ∈ (WS)aff and a
unique x2 ∈ (WS)aff such that x = x1x2.

We define a (surjective) map ΠS : Waff → (WS)aff by ΠS(x) := x1 if x = x1x2
with x1 ∈ (WS)aff and x2 ∈ (WS)aff .

Lemma 3.4.3 ([Pe]; see also [LS, Proposition 10.10]).

(1) ΠS(w) = ⌊w⌋ for every w ∈W .

(2) ΠS(xt(ξ)) = ΠS(x)ΠS(t(ξ)) for every x ∈Waff and ξ ∈ Q∨.

An element ξ ∈ Q∨ is said to be S-adjusted if ⟨γ, ξ⟩ ∈
{
−1, 0

}
for all γ ∈ ∆+

S

(see [LNSSS1, Lemma 3.8]). Let Q∨, S-ad denote the set of S-adjusted elements.

Lemma 3.4.4 ([INS, Lemma 2.3.5]).
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(1) For each ξ ∈ Q∨, there exists a unique ϕS(ξ) ∈ Q∨S such that ξ + ϕS(ξ) ∈
Q∨, S-ad. In particular, ξ ∈ Q∨, S-ad if and only if ϕS(ξ) = 0.

(2) For each ξ ∈ Q∨, the element ΠS(t(ξ)) ∈ (WS)aff is of the form ΠS(t(ξ)) =
zξt(ξ + ϕS(ξ)) for a specific element zξ ∈ WS. Also, ΠS(wt(ξ)) = ⌊w⌋zξt(ξ +
ϕS(ξ)) for every w ∈W and ξ ∈ Q∨.

(3) We have
(WS)aff =

{
wzξt(ξ) | w ∈WS , ξ ∈ Q∨, S-ad

}
. (3.4.6)

Remark 3.4.5. (1) Let ξ, ζ ∈ Q∨. If ξ ≡ ζ mod Q∨S , i.e., ξ−ζ ∈ Q∨S , then ΠS(t(ξ)) =
ΠS(t(ζ)) since t(ξ−ζ) ∈ (WS)aff . Hence we see by Lemma 3.4.4 (2) that ξ+ϕS(ξ) =
ζ + ϕS(ζ) and zξ = zζ . In particular, zξ+ϕS(ξ) = zξ for every ξ ∈ Q∨.

(2) Let x = wzξt(ξ) ∈ (WS)aff , with w ∈ WS and ξ ∈ Q∨, S-ad; note that
ΠS(x) = x. Then it follows from Lemma 3.4.3 (2) that for every ζ ∈ Q∨,

xΠS(t(ζ)) = ΠS(x)ΠS(t(ζ)) = ΠS(xt(ζ)) ∈ (WS)aff . (3.4.7)

3.4.3 Parabolic semi-infinite Bruhat graph

In this subsection, we prove some technical lemmas, which we use later.

Definition 3.4.6 ([Pe]). Let x ∈Waff , and write it as x = wt(ξ) for w ∈W and ξ ∈
Q∨. Then we define the semi-infinite length ℓ

∞
2 (x) of x by ℓ

∞
2 (x) := ℓ(w) + 2⟨ρ, ξ⟩,

where ρ = (1/2)
∑

α∈∆+ α.

Let us fix a subset S of I.

Definition 3.4.7. (1) We define the (parabolic) semi-infinite Bruhat graph SiBGS

to be the ∆+
aff -labeled, directed graph with vertex set (WS)aff and ∆+

aff -labeled,

directed edges of the following form: x
β−−→ sβx for x ∈ (WS)aff and β ∈ ∆+

aff , where

sβx ∈ (WS)aff and ℓ
∞
2 (sβx) = ℓ

∞
2 (x) + 1.

(2) The semi-infinite Bruhat order is a partial order ⪯ on (WS)aff defined as
follows: for x, y ∈ (WS)aff , we write x ⪯ y if there exists a directed path from x to
y in SiBGS ; also, we write x ≺ y if x ⪯ y and x ̸= y.

Let [ · ] = [ · ]I\S : Q∨ ↠ Q∨I\S denote the projection from Q∨ onto Q∨I\S with

kernel Q∨S . Also, for ξ, ζ ∈ Q∨, we write

ξ ≥ ζ if ξ − ζ ∈ Q∨,+ :=
∑
i∈I

Z≥0α∨i . (3.4.8)

The next lemma follows from [NS4, Remark 2.3.3].

Lemma 3.4.8. Let u, v ∈WS, ξ, ζ ∈ Q∨, S-ad, and β ∈ ∆+
aff . If uzζt(ζ)

β−−→ vzξt(ξ)
in SiBGS, then [ξ] ≥ [ζ].

Lemma 3.4.9. Let x ∈ WS, and ξ, ζ ∈ Q∨, S-ad. Then, xzξt(ξ) ⪰ xzζt(ζ) if and
only if [ξ] ≥ [ζ].
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Proof. The “only if” part is obvious by Lemma 3.4.8. We show the “if” part by
induction on ℓ(x). If ℓ(x) = 0, i.e., x = e, then the assertion zξt(ξ) ⪰ zζt(ζ) follows
from [INS, Lemma 6.2.1] (with a = 1, and J replaced by S). Assume now that
ℓ(x) > 0, and take i ∈ I such that ℓ(six) = ℓ(x) − 1; note that six ∈ WS and
−x−1αi ∈ ∆+ \∆+

S . By induction hypothesis, we have sixzξt(ξ) ⪰ sixzζt(ζ). If we
take a dominant weight λ ∈ P+ such that Sλ =

{
i ∈ I | ⟨λ, α∨i ⟩ = 0

}
= S, then we

see that
⟨sixzξt(ξ)λ, α∨i ⟩ = ⟨sixzζt(ζ)λ, α∨i ⟩ = ⟨sixλ, α∨i ⟩ > 0.

Therefore, we deduce from [NS4, Lemma 2.3.6 (3)] that xzξt(ξ) ⪰ xzζt(ζ), as desired.

Lemma 3.4.10. Let x, y ∈ (WS)aff and β ∈ ∆+
aff be such that x

β−−→ y in SiBGS.

Then, ΠS(xt(ξ))
β−−→ ΠS(yt(ξ)) in SiBGS for every ξ ∈ Q∨. Therefore, if x, y ∈

(WS)aff satisfy x ⪯ y, then ΠS(xt(ξ)) ⪯ ΠS(yt(ξ)).

Proof. We see (3.4.7) that ΠS(xt(ξ)) = xΠS(t(ξ)) and ΠS(yt(ξ)) = yΠS(t(ξ)). Since
y = sβx by the assumption, we obtain ΠS(yt(ξ)) = sβΠ

S(xt(ξ)). Hence it suffices
to show that

ℓ
∞
2 (ΠS(yt(ξ))) = ℓ

∞
2 (ΠS(xt(ξ))) + 1. (3.4.9)

We write x ∈ (WS)aff as x = wzζt(ζ), with w ∈ WS and ζ ∈ Q∨, S-ad (see (3.4.6)).
Then we see from [INS, Lemma A.2.1 and (A.2.1)] that

ℓ
∞
2 (ΠS(xt(ξ))) = ℓ(w) + 2⟨ρ− ρS , ζ + ξ⟩

= ℓ(w) + 2⟨ρ− ρS , ζ⟩+ 2⟨ρ− ρS , ξ⟩
= ℓ

∞
2 (ΠS(x)) + 2⟨ρ− ρS , ξ⟩

= ℓ
∞
2 (x) + 2⟨ρ− ρS , ξ⟩.

Similarly, we see that ℓ
∞
2 (ΠS(yt(ξ))) = ℓ

∞
2 (y)+2⟨ρ−ρS , ξ⟩. Since ℓ

∞
2 (y) = ℓ

∞
2 (x)+1

by the assumption, we obtain (3.4.9), as desired.

Let x, y ∈WS , and take a shortest directed path

p : x = x0
γ1−−→ x1

γ2−−→ x2
γ3−−→ · · · γp−−→ xp = y

from x to y in QBG(WS). Recall from §3.2.1 that the weight wtS(p) of this directed
path is defined to be

wtS(p) =
∑

1≤k≤p

xk−1
γk−−−→ xk is

a quantum edge

γ∨k ∈ Q∨,+.

We set
ξx,y := wtS(p) + ϕS(wt

S(p)) ∈ Q∨, S-ad (3.4.10)

in the notation of Lemma 3.4.4 (1). We now claim that ξx,y does not depend on
the choice of a shortest directed path p from x to y in QBG(WS). Indeed, let
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p′ be another directed path from x to y in QBG(WS). We know from [LNSSS1,
Proposition 8.1] that wtS(p) = wtS(p′) mod Q∨S . Therefore, by Remark 3.4.5 (1),
we obtain wtS(p) + ϕS(wt

S(p)) = wtS(p′) + ϕS(wt
S(p′)). This proves the claim.

Lemma 3.4.11. Let x, y ∈WS. Then we have yzξx,y t(ξx,y) ⪰ x.
Proof. We proceed by induction on the length p of a shortest directed path from
x to y in QBG(WS). If p = 0, i.e., x = y, then ξx,y = ξx,x = 0, and hence
zξx,y = t(ξx,y) = e. Thus the assertion of the lemma is obvious. Assume now that
p > 0, and let

p : x = x0
γ1−−→ x1

γ2−−→ · · · γp−−→ xp = y

be a shortest directed path from x to y in QBG(WS). Then we deduce from [INS,

Proposition A.1.2] that x
β−−→ sβx in SiBGS (in particular, sβx ⪰ x), where

β :=

x0γ1 if x = x0
γ1−−→ x1 is a Bruhat edge,

x0γ1 + δ if x = x0
γ1−−→ x1 is a quantum edge;

note that

sβx = sβx0 =

x1 if x = x0
γ1−−→ x1 is a Bruhat edge,

x1t(γ
∨
1 ) if x = x0

γ1−−→ x1 is a quantum edge.

In the case that x = x0
γ1−−→ x1 is a quantum edge, we have x1t(γ

∨
1 ) = sβx ∈ (WS)aff ,

which implies, by (3.4.6) and the fact that x1 ∈WS , that

γ∨1 ∈ Q∨, S-ad and zγ∨1 = e. (3.4.11)

Assume first that x = x0
γ1−−→ x1 is a Bruhat edge. Note that p′ : x1

γ2−−→
· · · γp−−→ xp = y is a shortest directed path from x1 to y in QBG(WS). Since
wtS(p) = wtS(p′) by the definition, we deduce that ξx,y = ξx1,y. Also, by the
induction hypothesis, we have yzξx1,y t(ξx1,y) ⪰ x1. Combining these, we obtain
yzξx,y t(ξx,y) = yzξx1,y t(ξx1,y) ⪰ x1 = sβx ⪰ x, as desired.

Next, assume that x = x0
γ1−−→ x1 is a quantum edge; we have wtS(p) =

wtS(p′) + γ∨1 , which implies that ξx,y ≡ ξx1,y + γ∨1 mod Q∨S . We compute

yzξx,y t(ξx,y) = yΠS(t(ξx,y)) by Lemma 3.4.4 (2)

= yΠS(t(ξx1,y)t(ξx,y − ξx1,y))
= yΠS(t(ξx1,y))Π

S(t(ξx,y − ξx1,y)) by Lemma 3.4.3 (2)

= yzξx1,y t(ξx1,y)Π
S(t(ξx,y − ξx1,y)).

Since ξx,y ≡ ξx1,y + γ∨1 mod Q∨S , we see from Remark 3.4.5 (1) and (3.4.11) that
ΠS(t(ξx,y−ξx1,y)) = t(γ∨1 ). Therefore, using the induction hypothesis yzξx1,y t(ξx1,y) ⪰
x1 and Lemma 3.4.10, we deduce that

yzξx,y t(ξx,y)︸ ︷︷ ︸
∈(WS)aff

=
(
yzξx1,y t(ξx1,y)

)
t(γ∨1 ) = ΠS

((
yzξx1,y t(ξx1,y)

)
t(γ∨1 )

)
⪰ ΠS(x1t(γ

∨
1 ))

= ΠS(sβx) = sβx ⪰ x.

This proves the lemma.
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Lemma 3.4.12. Let x, y ∈WS, and ζ ∈ Q∨, S-ad. If yzζt(ζ) ⪰ x, then [ζ] ≥ [ξx,y].

Proof. We set

s̃j :=

{
sj if j ̸= 0,

sθ if j = 0,
and α̃j :=

{
αj if j ̸= 0,

−θ if j = 0.

We know from [LNSSS1, Lemma 6.12] that there exist a sequence x = x0, x1, . . . ,
xn = e of elements of WS and a sequence i1, . . . , in ∈ Iaff = I ⊔ {0} such that

x = x0
x−1
0 α̃i1−−−−−→ x1

x−1
1 α̃i2−−−−−→ · · ·

x−1
n−1α̃in−−−−−−→ xn = e in QBG(WS);

note that x−1k−1α̃ik ∈ ∆+\∆+
S for all 1 ≤ k ≤ n. We prove the assertion of the lemma

by induction on n.
Assume first that n = 0, i.e., x = e. Because y ∈ WS is greater than or equal

to e in the (ordinary) Bruhat order, there exists a directed path p from e to y in
QBG(WS) whose edges are all Bruhat edges (see, e.g., [BB, Theorem 2.5.5]); since
wtS(p) = 0, we obtain ξe,y = wtS(p) + ϕS(wt

S(p)) = 0. Also, if yzζt(ζ) ⪰ x = e =
ez0t(0), then it follows from Lemma 3.4.8 that [ζ] ≥ [0] = [ξe,y], which proves the
assertion in the case n = 0.

Assume next that n > 0; we set i := i1 for simplicity of notation. Then, x−1α̃i =
x−10 α̃i ∈ ∆+ \∆+

S , and the assertion of the lemma holds for x1 = s̃ix0 = s̃ix by the
induction hypothesis.

Case (i). Assume that y−1α̃i ∈ (−∆+)∪∆+
S . We deduce by [LNSSS1, Lemma 7.7 (3)]

that
ξs̃ix,y ≡ ξx,y − δi,0x

−1α̃∨i mod Q∨S . (3.4.12)

Assume first that i ̸= 0. Let ζ ∈ Q∨, S-ad be such that yzζt(ζ) ⪰ x. Because
x−1αi ∈ ∆+ \ ∆+

S and y−1αi ∈ (−∆+) ∪ ∆+
S , we see from [INS, Lemma 4.1.6 (2)]

that yzζt(ζ) ⪰ six = s̃ix. Therefore, by the induction hypothesis, we obtain [ζ] ≥
[ξs̃ix,y]

(3.4.12)
= [ξx,y].

Assume next that i = 0. Let ζ ∈ Q∨ be such that yzζt(ζ) ⪰ x. Because

x−1α̃0 = −x−1θ (= the finite part x−1α0 of x−1α0) ∈ ∆+ \∆+
S , and y

−1α̃0 = −y−1θ
(= the finite part y−1α0 of y

−1α0) ∈ (−∆+)∪∆+
S , we see from [INS, Lemma 4.1.6 (2)]

that
yzζt(ζ) ⪰ s0x = sθxt(−x−1θ∨) = s̃0x︸︷︷︸

=x1

t(x−1α̃∨0 )

Therefore, by Lemma 3.4.10,

ΠS(yzζt(ζ − x−1α̃∨0 )) = ΠS
(
(yzζt(ζ))t(−x−1α̃∨0 )

)
⪰ ΠS(s̃0xt(x

−1α̃∨0 )t(−x−1α̃∨0 )) = ΠS(s̃0x)

= ΠS(x1) = x1 = s̃0x.

If we write the left-hand side of this inequality as ΠS(yzζt(ζ − x−1α̃∨0 )) = yzζ′t(ζ
′)

for some ζ ′ ∈ Q∨, S-ad (see Lemma 3.4.4 (2)), then we have ζ ′ ≡ ζ − x−1α̃∨0 mod
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Q∨S . Also, by the induction hypothesis, we have [ζ ′] ≥ [ξs̃0x,y]. Combining these, we
obtain

[ζ] = [ζ ′ + x−1α̃∨0 ] ≥ [ξs̃0x,y + x−1α̃∨0 ]
(3.4.12)
= [ξx,y],

as desired.
Case (ii). Assume that y−1α̃i ∈ ∆+ \∆+

S . By [LNSSS1, Lemma 7.7 (4)], we have

ξs̃ix,⌊s̃iy⌋ ≡ ξx,y − δi,0x
−1α̃∨i + δi,0y

−1α̃∨i mod Q∨S . (3.4.13)

Assume first that i ̸= 0; note that s̃iy = siy ∈ WS (see, e.g., [LNSSS1, Proposi-
tion 5.10]). Let ζ ∈ Q∨ be such that yzζt(ζ) ⪰ x. Because x−1αi ∈ ∆+ \∆+

S and
y−1αi ∈ ∆+ \∆+

S , we see that

s̃iyzζt(ζ) = siyzζt(ζ) ⪰ six = s̃ix by [NS4, Lemma 2.3.6 (3)].

Therefore, by the induction hypothesis, we obtain [ζ] ≥ [ξs̃ix,s̃iy]
(3.4.13)
= [ξx,y].

Assume next that i = 0. Let ζ ∈ Q∨ be such that yzζt(ζ) ⪰ x. Because

x−1α̃0 = −x−1θ (= the finite part x−1α0 of x−1α0) ∈ ∆+ \∆+
S and y−1α̃0 = −y−1θ

(= the finite part y−1α0 of y−1α0) ∈ ∆+ \∆+
S , we see from [NS4, Lemma 2.3.6 (3)]

that s0yzζt(ζ) ⪰ s0x. Therefore, by Lemma 3.4.10, we have

ΠS
(
(s0yzζt(ζ))t(−x−1α̃∨0 )

)
⪰ ΠS

(
(s0x)t(−x−1α̃∨0 )

)
.

Here we have

ΠS
(
(s0x)t(−x−1α̃∨0 )

)
= ΠS

(
(s̃0xt(x

−1α̃∨0 ))t(−x−1α̃∨0 )
)
= s̃0x = x1.

Also, using Lemma 3.4.4 (2), we compute

ΠS
(
(s0yzζt(ζ))t(−x−1α̃∨0 )

)
= ΠS(s0yzζt(ζ − x−1α̃∨0 ))

= ΠS(s0yzζ)Π
S(t(ζ − x−1α̃∨0 )) = ΠS(s0y)Π

S(t(ζ − x−1α̃∨0 ))
= ΠS(s̃0yt(y

−1α̃∨0 ))Π
S(t(ζ − x−1α̃∨0 )) = ΠS(s̃0yt(y

−1α̃∨0 )t(ζ − x−1α̃∨0 ))
= ΠS(s̃0yt(ζ + y−1α̃∨0 − x−1α̃∨0 )).

If we write this element as ΠS
(
(s0yzζt(ζ))t(−x−1α̃∨0 )

)
= ⌊s0y⌋zζ′′t(ζ ′′) for some

ζ ′′ ∈ Q∨, S-ad (see Lemma 3.4.4 (2)), we see that ζ ′′ ≡ ζ + y−1α̃∨0 − x−1α̃∨0 mod Q∨S .
In addition, by the induction hypothesis, we have [ζ ′′] ≥ [ξs̃0x,⌊s̃0y⌋]. Combining
these, we obtain

[ζ] = [ζ ′′ − y−1α̃∨0 + x−1α̃∨0 ]

≥ [ξs̃0x,⌊s̃0y⌋ − y
−1α̃∨0 + x−1α̃∨0 ]

(3.4.13)
= [ξx,y],

as desired. This completes the proof of the lemma.

41



3.4.4 Semi-infinite Lakshmibai-Seshadri paths

Let λ ∈ P+ be a dominant weight; we set S := Sλ =
{
i ∈ I | ⟨λ, α∨i ⟩ = 0

}
⊂ I.

Definition 3.4.13. For a rational number 0 < σ ≤ 1, define SiBG(λ ; σ) to be the
subgraph of SiBGS with the same vertex set but having only the edges of the form:

x
β−−→ y with σ⟨xλ, β∨⟩ ∈ Z; note that SiBG(λ ; 1) = SiBGS .

Definition 3.4.14. A semi-infinite Lakshmibai-Seshadri (SiLS for short) path of
shape λ is, by definition, a pair η = (x1 ≻ · · · ≻ xs ; 0 = σ0 < σ1 < · · · < σs = 1)
of a (strictly) decreasing sequence x1 ≻ · · · ≻ xs of elements in (WS)aff and an
increasing sequence 0 = σ0 < σ1 < · · · < σs = 1 of rational numbers such that there
exists a directed path from xu+1 to xu in SiBG(λ ; σu) for all u = 1, 2, . . . , s − 1.
We denote by B

∞
2 (λ) the set of all SiLS paths of shape λ.

Following [INS, §3.1] (see also [NS4, §2.4]), we endow the set B
∞
2 (λ) with a

crystal structure with weights in Paff by the root operators ei, fi, i ∈ Iaff , and the
map wt : B

∞
2 (λ)→ Paff defined by

wt(η) :=

s∑
u=1

(σu − σu−1)xuλ ∈ Paff

for η = (x1, . . . , xs ; σ0, σ1, . . . , σs) ∈ B
∞
2 (λ).

(3.4.14)

Let Conn(B
∞
2 (λ)) denote the set of all connected components of B

∞
2 (λ), and let

B
∞
2
0 (λ) ∈ Conn(B

∞
2 (λ)) denote the connected component of B

∞
2 (λ) containing ηe :=

(e ; 0, 1) ∈ B
∞
2 (λ).

Also, we define a surjective map cl : (WS)aff ↠WS by

cl(x) = w if x = wzξt(ξ), with w ∈WS and ξ ∈ Q∨, S-ad,

and for η = (x1, . . . , xs ; σ0, σ1, . . . , σs) ∈ B
∞
2 (λ), we set

cl(η) := (cl(x1), . . . , cl(xs) ; σ0, σ1, . . . , σs);

where, for each 1 ≤ p < q ≤ s such that cl(xp) = · · · = cl(xq), we drop cl(xp), . . . , cl(xq−1)
and σp, . . . , σq−1. We know from [NS4, §6.2] that cl(η) ∈ QLS(λ). Thus we obtain
a map cl : B

∞
2 (λ)→ QLS(λ).

Remark 3.4.15. Recall that ψe := (e ; 0, 1) ∈ QLS(λ). We see from the definition
that an element in cl−1(ψe) is of the form:

(zξ1t(ξ1), zξ2t(ξ2), . . . , zξs−1t(ξs−1), zξst(ξs) ; σ0, σ1, . . . , σs−1, σs) (3.4.15)

for some s ≥ 1 and ξ1, ξ2, . . . , ξs ∈ Q∨, S-ad.
The final direction of η ∈ B

∞
2 (λ) is defined to be

κ(η) := xs ∈ (WS)aff if η = (x1, . . . , xs ; σ0, σ1, . . . , σs). (3.4.16)

Then, for x ∈ (WS)aff , we set

B
∞
2
⪰x(λ) :=

{
η ∈ B

∞
2 (λ) | κ(η) ⪰ x

}
. (3.4.17)

The next lemma follows from [INS, Lemma 7.1.4].
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Lemma 3.4.16. Let η ∈ B
∞
2
0 (λ), and let X be a monomial in root operators such

that η = Xηe. Assume that η0 ∈ B
∞
2 (λ) is of the form (3.4.15). Then, κ(Xη0) =

κ(η)κ(η0).

Now, we recall from §3.3.2 the degree function degλ : QLS(λ)→ Z≤0 for the case
µ = λ. We know the following lemma from [NS4, Lemma 6.2.3].

Lemma 3.4.17. For each ψ ∈ QLS(λ), there exists a unique ηψ ∈ B
∞
2
0 (λ) such that

cl(ηψ) = ψ and κ(ηψ) ∈WS.

Let ψ ∈ QLS(λ). We know from [NS4, (6.2.5)] that wt(ηψ) is of the form:

wt(ηψ) = λ− γ︸ ︷︷ ︸
=wt(ψ)

+Kδ for some γ ∈ Q+ and K ∈ Z≤0. (3.4.18)

Also, we know from [LNSSS2, Corollary 4.8] (see also the comment after [NS4,
(6.2.5)]) that

K = −
s−1∑
u=1

σuwtλ(wu+1 ⇒ wu) = degλ(ψ) (3.4.19)

for ψ = (w1, . . . , ws ; σ0, σ1, . . . , σs) ∈ QLS(λ). Here we should note that in the
definition of degλ(ψ), ws+1 = v(λ) = e, and hence that wtλ(ws+1 ⇒ ws) = wtλ(e⇒
ws) = 0.

Let us write a dominant weight λ ∈ P+ as λ =
∑

i∈I miϖi with mi ∈ Z≥0 for

i ∈ I, and define Par(λ) (resp., Par(λ)) to be the set of I-tuples ρ = (ρ(i))i∈I of
partitions such that ρ(i) is a partition of length less than or equal tomi (resp., strictly
less than mi) for each i ∈ I. A partition of length less than 0 is understood to be
the empty partition ∅; note that Par(λ) ⊂ Par(λ). Also, for ρ = (ρ(i))i∈I ∈ Par(λ),
we set |ρ| :=

∑
i∈I |ρ(i)|, where for a partition χ = (χ1 ≥ χ2 ≥ · · · ≥ χm), we set

|χ| := χ1+ · · ·+χm. Following [INS, (3.2.2)], we endow the set Par(λ) with a crystal
structure with weights in Paff ; note that wt(ρ) = −|ρ|δ.

Proposition 3.4.18. Keep the notation above.

(1) Each connected component C ∈ Conn(B
∞
2 (λ)) of B

∞
2 (λ) contains a unique

element of the form:

ηC = (zξ1t(ξ1), zξ2t(ξ2), . . . , zξs−1t(ξs−1), e ; σ0, σ1, . . . , σs−1, σs) (3.4.20)

for some s ≥ 1 and ξ1, ξ2, . . . , ξs−1 ∈ Q∨, S-ad (see [INS, Proposition 7.1.2]).

(2) There exists a bijection Θ : Conn(B
∞
2 (λ)) → Par(λ) such that wt(ηC) =

λ− |Θ(C)|δ (see [INS, Proposition 7.2.1 and its proof]).

(3) Let C ∈ Conn(B
∞
2 (λ)). Then, there exists an isomorphism C

∼→
{
Θ(C)

}
⊗

B
∞
2
0 (λ) of crystals that maps ηC to Θ(C) ⊗ ηe. Consequently, B

∞
2 (λ) is iso-

morphic as a crystal to Par(λ) ⊗ B
∞
2
0 (λ) (see [INS, Proposition 3.2.4 and its

proof]).
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3.4.5 Extremal weight modules

In this and the next subsection, we mainly follow the notation of [NS4, §4 and
§5]; we use the symbol “v” for the quantum parameter in order to distinguish it
from q = eδ. Let λ ∈ P+ be a dominant weight. We denote by V (λ) the extremal
weight module of extremal weight λ over a quantum affine algebra Uv(gaff). This
is the integrable Uv(gaff)-module generated by a single element vλ with the defining
relation that vλ is an “extremal weight vector” of weight λ (for details, see [Kas1,
§8] and [Kas2, §3]). We know from [Kas1, Proposition 8.2.2] that V (λ) has a crystal
basis (L(λ), B(λ)) with global basis

{
G(b) | b ∈ B(λ)

}
. Denote by uλ the element

of B(λ) such that G(uλ) = vλ ∈ V (λ), and by B0(λ) the connected component of
B(λ) containing uλ.

Let U ′v(gaff) ⊂ Uv(gaff) denote the a quantum affine algebra without the degree
operator. We know the following from [Kas2] (see also [NS4, §5.2]):

(i) for each i ∈ I, there exists a U ′v(gaff)-module automorphism zi : V (ϖi) →
V (ϖi) that maps vϖi to v

[1]
ϖi := G(u

[1]
ϖi), where u

[1]
ϖi ∈ B(ϖi) is a (unique)

element of weight ϖi + δ;

(ii) the map zi : V (ϖi) → V (ϖi) induces a bijection zi : B(ϖi) → B(ϖi) that

maps uϖi to u
[1]
ϖi ; this map commutes with the Kashiwara operators ej , fj ,

j ∈ Iaff , on B(ϖi).

Let us write a dominant weight λ ∈ P+ as λ =
∑

i∈I miϖi, with mi ∈ Z≥0 for

i ∈ I. We fix an arbitrary total ordering on I, and then set Ṽ (λ) :=
⊗

i∈I V (ϖi)
⊗mi .

By [BN, eq. (4.8) and Corollary 4.15], there exists a Uv(gaff)-module embedding
Φλ : V (λ) ↪→ Ṽ (λ) that maps vλ to ṽλ :=

⊗
i∈I v

⊗mi
ϖi . Also, for each i ∈ I and

1 ≤ k ≤ mi, we define zi,k to be the U ′v(gaff)-module automorphism of Ṽ (λ) that

acts as zi only on the k-th factor of V (ϖi)
⊗mi in Ṽ (λ), and as the identity map on

the other factors of Ṽ (λ); these zi,k’s, i ∈ I, 1 ≤ k ≤ mi, commute with each other.

Now, for ρ = (ρ(i))i∈I ∈ Par(λ), we set

sρ(z
−1) :=

∏
i∈I

sρ(i)(z
−1
i,1 , . . . , z

−1
i,mi

). (3.4.21)

Here, for a partition ρ = (ρ1 ≥ · · · ≥ ρm−1 ≥ 0) of length less thanm ∈ Z≥1, sρ(x) =
sρ(x1, . . . , xm) denotes the Schur polynomial in the variables x1, . . . , xm corre-
sponding to the partition ρ. We can easily show (see [NS4, §7.3]) that sρ(z−1)(ImgΦλ) ⊂
ImgΦλ for each ρ = (ρ(i))i∈I ∈ Par(λ). Hence we can define a U ′v(gaff)-module ho-
momorphism zρ : V (λ)→ V (λ) in such a way that the following diagram commutes:

V (λ)
Φλ−−−−→ Ṽ (λ)

zρ

y ysρ(z−1)

V (λ)
Φλ−−−−→ Ṽ (λ);

(3.4.22)

note that zρvλ = S−ρ vλ in the notation of [BN] (and [NS4]). The map zρ : V (λ) →
V (λ) induces a C-linear map zρ : L(λ)/vL(λ) → L(λ)/vL(λ); this map commutes
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with Kashiwara operators. It follows from [BN, p. 371] that

B(λ) =
{
zρb | ρ ∈ Par(λ), b ∈ B0(λ)

}
; (3.4.23)

for ρ ∈ Par(λ), we set
uρ := zρuλ ∈ B(λ). (3.4.24)

Remark 3.4.19. We see from [BN, Theorem 4.16 (ii)] (see also the argument after
[NS4, (7.3.8)]) that zρG(b) = G(zρb) for b ∈ B0(λ) and ρ ∈ Par(λ).

3.4.6 Demazure submodules

Let λ ∈ P+ be a dominant weight. For each x ∈Waff , we set

V −x (λ) := U−v (gaff)S
norm
x vλ ⊂ V (λ), (3.4.25)

where Snorm
x vλ denotes the extremal weight vector of weight xλ (see, e.g., [NS4,

(3.2.1)]), and U−v (gaff) is the negative part of Uv(gaff). Since V
−
x (λ) = V −

ΠS(x)
(λ) for

x ∈ Waff by [NS4, Lemma 4.1.2], we consider Demazure submodules V −x (λ) only
for x ∈ (WS)aff in what follows. We know from [Kas3, §2.8] and [NS4, §4.1] that
V −x (λ) is “compatible” with the global basis of V (λ); namely, there exists a subset
B−x (λ) ⊂ B(λ) such that

V −x (λ) =
⊕

b∈B−x (λ)

C(v)G(b) ⊂ V (λ) =
⊕
b∈B(λ)

C(v)G(b). (3.4.26)

We know the following theorem from [INS, Theorem 3.2.1] and [NS4, Theo-
rem 4.2.1].

Theorem 3.4.20. Let λ ∈ P+ be a dominant weight. There exists an isomorphism
Ψλ : B(λ) ∼→ B

∞
2 (λ) of crystals such that

(a) Ψλ(u
ρ) = ηΘ

−1(ρ) for all ρ ∈ Par(λ) (in particular, Ψλ(uλ) = ηe);

(b) Ψλ(B−x (λ)) = B
∞
2
⪰x(λ) for all x ∈ (WS)aff .

3.4.7 Affine Weyl group action

Let B be a regular crystal for Uv(gaff) in the sense of [Kas2, §2.2] (or [Kas1,
p. 389]); in particular, as a crystal for Uv(g) ⊂ Uv(gaff), it decomposes into a disjoint
union of ordinary highest weight crystals. By [Kas1, §7], the Weyl group Waff acts
on B by

sj · b :=

f
n
j b if n := ⟨wtb, α∨j ⟩ ≥ 0,

e−nj b if n := ⟨wtb, α∨j ⟩ ≤ 0
(3.4.27)

for b ∈ B and j ∈ Iaff . Here we note that B
∞
2 (λ) is a regular crystal for Uv(gaff) for

a dominant weight λ ∈ P+.

45



Remark 3.4.21 ([NS4, Remark 3.5.2]). Recall from Remark 3.4.15 that every element
η ∈ cl−1(ψe) is of the form (3.4.15). Then, for each x ∈Waff ,

x · η =
(
ΠS(xzξ1t(ξ1)), . . . , Π

S(xzξst(ξs)) ; σ0, σ1, . . . , σs
)
, (3.4.28)

where S = Sλ = {i ∈ I | ⟨λ, α∨i ⟩ = 0}. In particular, we see by (3.4.28) and the
uniqueness of ηC that η = (zξst(ξs)) · ηC , with C ∈ Conn(B

∞
2 (λ)) the connected

component containing the η.

Remark 3.4.22. Let ρ = (ρ(i))i∈I ∈ Par(λ). Denote by ci ∈ Z≥0, i ∈ I, the number
of columns of length mi in the Young diagram corresponding to the partition ρ(i),
and set ξ :=

∑
i∈I ciα

∨
i ∈ Q∨,+; note that ci = 0 for all i ∈ S. Also, for i ∈ I, let

ϱ(i) denote the partition corresponding to the Young diagram obtained from that
of ρ(i) by removing all columns of length mi (i.e., the first ci columns), and set
ϱ := (ϱ(i))i∈I ; note that ϱ ∈ Par(λ). Then we deduce from [BN, Lemma 4.14 and
its proof] that

zρuλ = t(ξ) · (zϱuλ) = t(ξ) · uϱ. (3.4.29)

3.5 Graded character formulas for Demazure submod-
ules
and their certain quotients

3.5.1 Graded character formula for Demazure submodules

Fix a dominant weight λ ∈ P+; recall that S = Sλ =
{
i ∈ I | ⟨λ, α∨i ⟩ = 0

}
.

Because every weight space of the Demazure submodule V −x (λ) corresponding to
x ∈WS =W ∩ (WS)aff is finite-dimensional, we can define the (ordinary) character
chV −x (λ) of V −x (λ) by

chV −x (λ) :=
∑
β∈Qaff

dimV −x (λ)λ−β e
λ−β,

where V −x (λ)λ−β denotes the (λ− β)-weight space of V −x (λ). Here we recall that an
element β ∈ Qaff can be written uniquely in the form: β = γ + kδ for γ ∈ Q and
k ∈ Z. If we set q := eδ, then eλ−β = eλ−γq−k. Now we define the graded character
gchV −x (λ) of V −x (λ) to be

gchV −x (λ) :=
∑

γ∈Q, k∈Z
dimV −x (λ)λ−γ−kδ e

λ−γq−k,

which is obtained from the ordinary character chV −x (λ) by replacing eδ with q.

Theorem 3.5.1. Keep the notation and setting above. Let λ =
∑

i∈I miϖi ∈ P+,
and x ∈WS. The graded character gchV −x (λ) of V −x (λ) can be expressed as

gchV −x (λ) =

(∏
i∈I

mi∏
r=1

(1− q−r)−1
) ∑
ψ∈QLS(λ)

ewt(ψ)qdegxλ(ψ). (3.5.1)
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By combining the special case x = ⌊w◦⌋ ∈WS of Theorem 3.5.1 with the special
case µ = w◦λ of Theorem 3.3.19, we obtain the following theorem; recall from
Remark 3.3.18 that QLSw◦λ,∞(λ) = QLS(λ).

Theorem 3.5.2. Let λ ∈ P+ be a dominant weight of the from λ =
∑

i∈I miϖi,
with mi ∈ Z≥0, i ∈ I. Then, the graded character gchV −w◦(λ) is equal to(∏

i∈I

mi∏
r=1

(1− q−r)−1
)
Ew◦λ(q,∞).

Remark 3.5.3 ([NS4, Theorem 6.1.1]). We know from [LNSSS2, Theorem 7.9] that

Pλ(q
−1, 0) =

∑
ψ∈QLS(λ)

ewt(ψ)qdegλ(ψ),

where Pλ(q
−1, 0) is the specialization of the symmetric Macdonald polynomial Pλ(q

−1, t)
at t = 0. Also, by [LNSSS2, Lemma 7.7], we have Ew◦λ(q

−1, 0) = Pλ(q
−1, 0). There-

fore, it follows from the special case x = e of Theorem 3.5.1 that the graded
character gchV −e (λ) is equal to(∏

i∈I

mi∏
r=1

(1− q−r)−1
)
Ew◦λ(q

−1, 0).

Note that we have V −w◦(λ) ⊂ V
−
e (λ) by [NS4, Corollary 5.2.5].

3.5.2 Proof of Theorem 3.5.1

We see from Theorem 3.4.20 that

chV −x (λ) =
∑

η∈B
∞
2

⪰x(λ)

ewt(η);

since
B

∞
2
⪰x(λ) =

⊔
ψ∈QLS(λ)

(
cl−1(ψ) ∩ B

∞
2
⪰x(λ)

)
,

we deduce that

chV −x (λ) =
∑

ψ∈QLS(λ)

( ∑
η∈cl−1(ψ)∩B

∞
2

⪰x(λ)

ewt(η)

︸ ︷︷ ︸
(∗)

)
. (3.5.2)

In order to obtain the graded character formula (3.5.1) for V −x (λ), we will compute

the sum (∗) of the terms ewt(η) over all η ∈ cl−1(ψ) ∩ B
∞
2
⪰x(λ) for each ψ ∈ QLS(λ).

Let ψ ∈ QLS(λ), and take ηψ ∈ B
∞
2
0 (λ) as in Lemma 3.4.17. Let X be a monomial
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in root operators such that ηψ = Xηe, where ηe = (e ; 0, 1). We see by [NS4,
Lemma 6.2.2] that

cl−1(ψ) =
{
X(t(ζ) · ηC) | C ∈ Conn(B

∞
2 (λ)), ζ ∈ Q∨

}
; (3.5.3)

for the definition of ηC , see (3.4.20). We claim that

cl−1(ψ) ∩ B
∞
2
⪰x(λ) =

{
X(t(ζ) · ηC)

∣∣∣∣∣ C ∈ Conn(B
∞
2 (λ)),

ζ ∈ Q∨, [ζ] ≥ [ξx,κ(ψ)]

}
. (3.5.4)

We first show the inclusion ⊂. Let η ∈ cl−1(ψ) ∩ B
∞
2
⪰x(λ), and write it as η =

X(t(ζ) · ηC) for some C ∈ Conn(B
∞
2 (λ)) and some ζ ∈ Q∨ (see (3.5.3)). Also, we

set y := κ(ψ) = κ(ηψ) ∈ WS . We see by (3.4.28) that t(ζ) · ηC is of the form
(3.4.15), with κ(t(ζ) · ηC) = ΠS(t(ζ)) = zζt(ζ + ϕS(ζ)). Therefore, we deduce from
Lemma 3.4.16 that κ(X(t(ζ) · ηC)) = κ(ηψ)κ(t(ζ) · ηC) = yzζt(ζ + ϕS(ζ)). Since

η = X(t(ζ) · ηC) ∈ B
∞
2
⪰x(λ) by the assumption, we have yzζt(ζ + ϕS(ζ)) ⪰ x. Hence

it follows from Lemma 3.4.12 that [ζ] = [ζ + ϕS(ζ)] ≥ [ξx,y] = [ξx,κ(ψ)]. Thus, η is
contained in the set on the right-hand side of (3.5.4).

For the opposite inclusion ⊃, let C ∈ Conn(B
∞
2 (λ)), and let ζ ∈ Q∨ be such

that [ζ] ≥ [ξx,κ(ψ)]. It is obvious by (3.5.3) that X(t(ζ) · ηC) ∈ cl−1(ψ). Hence it

suffices to show that X(t(ζ) · ηC) ∈ B
∞
2
⪰x(λ). The same argument as above shows

that κ(X(t(ζ) · ηC)) = yzζt(ζ + ϕS(ζ)), with y := κ(ψ) ∈ WS . Therefore, we see
that

κ(X(t(ζ) · ηC)) = yzζt(ζ + ϕS(ζ)) ⪰ yzξx,y t(ξx,y) by Lemma 3.4.9

⪰ x by Lemma 3.4.11,

which implies that X(t(ζ) · ηC) ∈ B
∞
2
⪰x(λ). This proves (3.5.4).

Let C ∈ Conn(B
∞
2 (λ)), and write Θ(C) ∈ Par(λ) as Θ(C) = (ρ(i))i∈I , with

ρ(i) = (ρ
(i)
1 ≥ · · · ≥ ρ

(i)
mi−1) for each i ∈ I. Also, let ζ ∈ Q∨ be such that [ζ] ≥

[ξx,κ(ψ)], and write the difference [ζ]− [ξx,κ(ψ)] ∈ Q∨,+ as

[ζ]− [ξx,κ(ψ)] =
∑
i∈I

ciα
∨
i ;

note that ci = 0 for all i ∈ S. Now, for each i ∈ I, we set ci + ρ(i) := (ci + ρ
(i)
1 ≥

· · · ≥ ci + ρ
(i)
mi−1 ≥ ci), which is a partition of length less than or equal to mi, and

then set
(ci)i∈I +Θ(C) := (ci + ρ(i))i∈I ∈ Par(λ). (3.5.5)
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Noting that ⟨λ, Q∨S⟩ = {0}, we compute:

wt(t(ζ) · ηC) = t(ζ)(wt(ηC))

= t(ζ)
(
λ− |(ρ(i))i∈I |δ

)
by Proposition 3.4.18 (2)

= λ− ⟨λ, ζ⟩δ − |(ρ(i))i∈I |δ

= λ− ⟨λ, ξx,κ(ψ)⟩δ −

⟨
λ,
∑
i∈I

ciα
∨
i

⟩
δ − |(ρ(i))i∈I |δ

= λ− wtλ
(
x⇒ κ(ψ)

)
δ −

(∑
i∈I

mici

)
δ − |(ρ(i))i∈I |δ

= wt(ηe)− wtλ
(
x⇒ κ(ψ)

)
δ − |(ci + ρ(i))i∈I |δ.

From this computation, together with (3.4.18), we deduce that

wt(X(t(ζ) · ηC)) = wt(Xηe)− wtλ
(
x⇒ κ(ψ)

)
δ − |(ci + ρ(i))i∈I |δ

= wt(ηψ)− wtλ
(
x⇒ κ(ψ)

)
δ − |(ci + ρ(i))i∈I |δ

= wt(ψ) +
(
degλ(ψ)− wtλ

(
x⇒ κ(ψ)

))
δ − |(ci + ρ(i))i∈I |δ.

(3.5.6)

Because degλ(ψ) − wtλ
(
x ⇒ κ(ψ)

)
= degxλ(ψ) by the definitions of degxλ(ψ) and

degλ(ψ) , we obtain

wt(X(t(ζ) · ηC)) = wt(ψ) +
(
degxλ(ψ)− |(ci + ρ(i))i∈I |

)
δ.

Summarizing, we find that for each ψ ∈ QLS(λ),∑
η∈cl−1(ψ)∩B

∞
2

⪰x(λ)

ewt(η) (3.5.4)
=

∑
C∈Conn(B

∞
2 (λ))

ζ∈Q∨, [ζ]≥[ξx,κ(ψ)]

ewt(X(t(ζ)·ηC))

= ewt(ψ)edegxλ(ψ)δ
∑

ρ∈Par(λ)

x−|ρ|δ
eδ=q
= ewt(ψ)qdegxλ(ψ)

∑
ρ∈Par(λ)

q−|ρ|

= ewt(ψ)qdegxλ(ψ)
∏
i∈I

mi∏
r=1

(1− q−r)−1.

Substituting this into (3.5.2), we finally obtain (3.5.1). This completes the proof of
Theorem 3.5.1.

3.5.3 Graded character formula for certain quotients of Demazure
submodules

Let λ ∈ P+ be a dominant weight; recall that S = Sλ =
{
i ∈ I | ⟨λ, α∨i ⟩ = 0

}
.
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For each x ∈WS =W ∩ (WS)aff , we set

X−x (λ) :=
∑

ρ∈Par(λ)
ρ ̸=(∅)i∈I

U−v (gaff)S
norm
x zρvλ =

∑
ρ∈Par(λ)
ρ ̸=(∅)i∈I

zρ

(
V −x (λ)

)
; (3.5.7)

for the definition of zρ : V (λ)→ V (λ), see (3.4.22).
For ψ ∈ QLS(λ), we take and fix a monomial Xψ in root operators such that

Xψηe = ηψ, and set

ηψ · t(ξ) := Xψ(t(ξ) · ηe) for ξ ∈ Q∨.

Remark 3.5.4. Note that t(ξ) · ηe = (ΠS(t(ξ)) ; 0, 1) (see (3.4.28)). We deduce from
[INS, Lemma 7.1.4] that if ηψ = Xψηe is of the form ηψ = (x1, . . . , xs ; σ0, σ1, . . . , σs),
then

ηψ · t(ξ) = Xψ(t(ξ) · ηe) = (x1Π
S(t(ξ)), . . . , xsΠ

S(t(ξ)) ; σ0, σ1, . . . , σs).

In particular, the element ηψ · t(ξ) does not depend on the choice of Xψ. Also, since
xuΠ

S(t(ξ))λ = xuλ− ⟨λ, ξ⟩δ for all 1 ≤ u ≤ s, we see by (3.4.14) that

wt(ηψ · t(ξ)) = wt(ηψ)− ⟨λ, ξ⟩δ
(3.4.18)
= wt(ψ) +

(
degλ(ψ)− ⟨λ, ξ⟩

)
δ,

(3.5.8)

and that
cl(ηψ · t(ξ)) = ψ. (3.5.9)

Theorem 3.5.5. Keep the notation and setting above. For each x ∈ WS, there
exists a subset B(X−x (λ)) of B(λ) such that

X−x (λ) =
⊕

b∈B(X−
x (λ))

C(v)G(b). (3.5.10)

Moreover, under the isomorphism Ψλ : B(λ) ∼→ B
∞
2 (λ) of crystals in Theorem 3.4.20,

the subset B(X−x (λ)) ⊂ B(λ) is mapped to the following subset of B
∞
2 (λ):

B
∞
2
⪰x(λ) \

{
ηψ · t(ξx,κ(ψ)) | ψ ∈ QLS(λ)

}
. (3.5.11)

From Theorem 3.5.5, we immediately obtain the following corollary; cf. [NS4,
Theorem 6.1.1 combined with Proposition 6.2.4] for the case x = e.

Corollary 3.5.6. For each x ∈WS, there holds the equality

gch(V −x (λ)/X−x (λ)) =
∑

ψ∈QLS(λ)

ewt(ψ)qdegxλ(ψ). (3.5.12)

By combing the special case x = ⌊w◦⌋ ∈ WS of Corollary 3.5.6 with the special
case µ = w◦λ of Theorem 3.3.19, we obtain the equality

gch(V −w◦(λ)/X
−
w◦(λ)) = Ew◦λ(q,∞).
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Remark 3.5.7. We recall from Remark 3.5.3 that

Ew◦λ(q
−1, 0) =

∑
ψ∈QLS(λ)

ewt(ψ)qdegλ(ψ).

Hence it follows from the special case x = e of Corollary 3.5.6 that

gch(V −e (λ)/X−e (λ)) = Ew◦λ(q
−1, 0);

cf. [LNSSS3, Theorem 35]. Here we have V −w◦(λ) ⊂ V −e (λ), as mentioned in Re-
mark 3.5.3. However, we can easily show that X−e (λ) ∩ V −w◦(λ) ' X−w◦(λ) (except
for some trivial cases). Therefore, there is no inclusion relation between the quo-
tient modules V −w◦(λ)/X

−
w◦(λ) and V

−
e (λ)/X−e (λ); this can be also observed from the

comparison of some explicit computations of Ew◦λ(q
−1, 0) and Ew◦λ(q,∞).

3.5.4 Proof of Theorem 3.5.5

Lemma 3.5.8 (cf. (3.4.23)). Let x ∈WS. Then, we have

B−x (λ) =
{
zρb | ρ ∈ Par(λ), b ∈ B−x (λ) ∩ B0(λ)

}
. (3.5.13)

Moreover, for every ρ ∈ Par(λ) and b ∈ B−x (λ)∩B0(λ), the element zρb is contained
in B−x (λ).

Proof. We first prove the inclusion ⊃. Let b ∈ B−x (λ) ∩ B0(λ), and write it as
b = Xuλ for a monomial X in Kashiwara operators. For ρ ∈ Par(λ), we have
zρb = Xzρuλ = Xuρ since zρ commutes with Kashiwara operators (see §3.4.5). Now
we set η := Ψλ(b) and η

′ := Ψλ(zρb), where Ψλ : B(λ) ∼→ B
∞
2 (λ) is the isomorphism

of crystals in Theorem 3.4.20. Then, we have η = Xηe and η′ = XΨλ(u
ρ) = XηC ,

with C := Θ−1(ρ) ∈ Conn(B
∞
2 (λ)). Therefore, noting that κ(ηC) = e, we deduce

from Lemma 3.4.16 that κ(η′) = κ(η)κ(ηC) = κ(η). Also, since b ∈ B−x (λ), it follows
that κ(η) ⪰ x, and hence κ(η′) = κ(η) ⪰ x. Hence we obtain η′ ∈ B

∞
2
⪰x(λ), which

implies that zρb ∈ B−x (λ).
Next we prove the opposite inclusion ⊂. Let b′ ∈ B−x (λ), and write it as b′ = zρb

for some ρ ∈ Par(λ) and b ∈ B0(λ) (see (3.4.23)); we need to show that b ∈ B−x (λ).
We set η := Ψλ(b) ∈ B

∞
2 (λ) and η′ := Ψλ(b

′) ∈ B
∞
2 (λ). Then, the same argument

as above shows that κ(η) = κ(η′) ⪰ x. Hence we obtain η ∈ B
∞
2
⪰x(λ), which implies

that b ∈ B−x (λ).
For the second assertion, let ρ = (ρ(i))i∈I ∈ Par(λ) and b ∈ B−x (λ) ∩ B0(λ);

remark that

zρb ∈ B−x (λ) ⇐⇒ Ψλ(zρb) ∈ B
∞
2
⪰x(λ) ⇐⇒ κ(Ψλ(zρb)) ⪰ x.

We write b as b = Xuλ for a monomial X in Kashiwara operators. Also, define
ϱ := (ϱ(i))i∈I ∈ Par(λ) and ξ :=

∑
i∈I ciα

∨
i ∈ Q∨,+ as in Remark 3.4.22. Then it

follows that zρb = zρXuλ = Xzρuλ
(3.4.29)
= X(t(ξ) · uϱ). If we set C := Θ−1(ϱ) ∈

Conn(B
∞
2 (λ)), then we have

Ψλ(zρb) = Ψλ

(
X(t(ξ) · uϱ)

)
= X

(
t(ξ) ·Ψλ(u

ϱ)
)
= X

(
t(ξ) · ηC

)
;

51



note that t(ξ)·ηC is of the form (3.4.15) with κ(t(ξ)·ηC) = ΠS(t(ξ)) by Remark 3.4.21
and the fact that κ(ηC) = e. Therefore, we see from Lemma 3.4.16 that

κ(Ψλ(zρb)) = κ(X(t(ξ) · ηC)) = κ(Xηe)Π
S(t(ξ)). (3.5.14)

Here we recall that κ(Xηe) ⪰ x since b ∈ B−x (λ)∩B0(λ). Also, recall that ξ ∈ Q∨,+.
From these, we deduce that

κ(Ψλ(zρb)) = κ(Xηe)Π
S(t(ξ)) ⪰ κ(Xηe) by Lemma 3.4.9

⪰ x.

This proves the lemma.

Proof of Theorem 3.5.5. We will prove that if we set

B :=
{
zρb | ρ ∈ Par(λ) \ (∅)i∈I , b ∈ B−x (λ) ∩ B0(λ)

}
⊂ B(λ), (3.5.15)

then
X−x (λ) =

⊕
b∈B

C(v)G(b). (3.5.16)

We first show the inclusion ⊃ in (3.5.16). Let ρ ∈ Par(λ) \ (∅)i∈I and b ∈ B−x (λ) ∩
B0(λ). We see from Remark 3.4.19 that G(zρb) = zρG(b). Since G(b) ∈ V −x (λ) and

X−x (λ) =
∑

ρ∈Par(λ)
ρ̸=(∅)i∈I

zρ

(
V −x (λ)

)

by the definition, we have G(zρb) = zρG(b) ∈ X−x (λ). Thus we have shown the
inclusion ⊃ in (3.5.16). Next we show the opposite inclusion ⊂ in (3.5.16). Since{
G(b) | b ∈ B−x (λ)

}
is a C(v)-basis of V −x (λ), we deduce from (3.5.7) that

X−x (λ) = SpanC(v)
{
zρG(b) | ρ ∈ Par(λ) \ (∅)i∈I , b ∈ B−x (λ)

}
. (3.5.17)

Let ρ ∈ Par(λ) \ (∅)i∈I and b ∈ B−x (λ). By Lemma 3.5.8, we can write the b as
b = zρ′b′ for some ρ′ ∈ Par(λ) and b′ ∈ B−x (λ)∩B0(λ). It follows that zρb = zρzρ′b′.
Because zρ and zρ′ are defined to be a certain product of Schur polynomials (see
(3.4.21)), the element zρzρ′ can be expressed as:

zρzρ′ =
∑

ρ′′∈Par(λ)
|ρ′′|=|ρ|+|ρ′|

nρ′′zρ′′ , with nρ′′ ∈ Z;

here we remark that |ρ|+ |ρ′| ≥ 1 since ρ ̸= (∅)i∈I . Therefore, we deduce that

zρG(b) = zρG(zρ′b′) = zρzρ′G(b′)

=
∑

ρ′′∈Par(λ)
|ρ′′|=|ρ|+|ρ′|

nρ′′G(zρ′′b′) ∈
⊕
b∈B

C(v)G(b).
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From this, together with (3.5.17), we obtain the inclusion X−x (λ) ⊂
⊕

b∈B C(v)G(b)
in (3.5.16). Thus, we obtain (3.5.16), as desired. In what follows, we write B(X−x (λ))
for the subset B ⊂ B(λ) in (3.5.15).

Furthermore, we will prove that

Ψλ

(
B(X−x (λ))

)
= B

∞
2
⪰x(λ) \

{
ηψ · t(ξx,κ(ψ)) | ψ ∈ QLS(λ)

}
.

For this purpose, it suffices to show that for each ψ ∈ QLS(λ),

cl−1(ψ) ∩Ψλ

(
B(X−x (λ))

)
=
(
cl−1(ψ) ∩ B

∞
2
⪰x(λ)

)
\
{
ηψ · t(ξx,κ(ψ))

}
. (3.5.18)

Let ψ ∈ QLS(λ); recall that Xψ is a monomial in root operators such that ηψ =
Xψηe. Then we know from (3.5.4) that

cl−1(ψ) ∩ B
∞
2
⪰x(λ)

=
{
Xψ(t(ζ) · ηC) | C ∈ Conn(B

∞
2 (λ)), ζ ∈ Q∨, [ζ] ≥ [ξx,κ(ψ)]

}
.

We first show the inclusion ⊃ in (3.5.18). Let η be an element in the set on the right-
hand side of (3.5.18), and write it as η = Xψ(t(ζ) · ηC) for some C ∈ Conn(B

∞
2 (λ))

and ζ ∈ Q∨ such that [ζ] ≥ [ξx,κ(ψ)]. We write the difference [ζ] − [ξx,κ(ψ)] ∈ Q∨,+
as [ζ]− [ξx,κ(ψ)] =

∑
i∈I ciα

∨
i with ci ∈ Z≥0 for i ∈ I (note that ci = 0 for all i ∈ S),

and define ρ := (ci)i∈I + Θ(C) ∈ Par(λ) as in (3.5.5). We claim that ρ ̸= (∅)i∈I .
Suppose, for a contradiction, that ρ = (∅)i∈I . Then we have Θ(C) = (∅)i∈I and
ci = 0 for all i ∈ I, and hence

η = Xψ(t(ζ) · ηC) = Xψ(t(ζ) · ηe) = Xψ(Π
S(t(ζ)) ; 0, 1)

= Xψ(Π
S(t(ξx,κ(ψ))) ; 0, 1) since [ζ] = [ξx,κ(ψ)]

= Xψ(t(ξx,κ(ψ)) · ηe) = ηψ · t(ξx,κ(ψ)),

which contradicts the assumption that η is an element in the set on the right-hand
side of (3.5.18). Thus we obtain ρ ̸= (∅)i∈I . Now, we set

b := Ψ−1λ (ηψ · t(ξx,κ(ψ))) = Ψ−1λ
(
Xψ(t(ξx,κ(ψ)) · ηe)

)
∈ B−x (λ) ∩ B0(λ);

note that ηψ · t(ξx,κ(ψ)) ∈ B
∞
2
⪰x(λ) by (3.5.4), and that b = Xψ(t(ξx,κ(ψ)) · uλ). Then

we see by (3.5.15) that zρb ∈ B(X−x (λ)). Also, we have

zρb = zρ
(
Xψ(t(ξx,κ(ψ)) · uλ)

)
= Xψ

(
t(ξx,κ(ψ)) · (zρuλ)

)
= Xψ

(
t(ξx,κ(ψ)) · t([ζ]− [ξx,κ(ψ)]) · uΘ(C)

)
by Remark 3.4.22

= Xψ(t(ζ + γ) · uΘ(C)) for some γ ∈ Q∨S
= Xψ(t(ζ) · uΘ(C)).

Therefore, Ψλ(zρb) = Xψ(t(ζ) · ηC) = η, which implies that η is contained in
Ψλ(B(X−x (λ))). Thus we have shown the inclusion ⊃ in (3.5.18).

Next we show the opposite inclusion ⊂ in (3.5.18). Since B(X−x (λ)) ⊂ B−x (λ), it
follows that

cl−1(ψ) ∩Ψλ

(
B(X−x (λ))

)
⊂ cl−1(ψ) ∩ B

∞
2
⪰x(λ).
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Hence it suffices to show that ηψ · t(ξx,κ(ψ)) ̸∈ Ψλ

(
B(X−x (λ))

)
. Suppose, for a

contradiction, that there exists b′ ∈ B(X−x (λ)) such that Ψλ(b
′) = ηψ · t(ξx,κ(ψ)).

By (3.5.15), we can write it as b′ = zρb for some ρ ∈ Par(λ) \ (∅)i∈I and b ∈
B−x (λ) ∩ B0(λ). We set η := Ψ−1λ (b) ∈ B

∞
2
⪰x(λ) ∩ B

∞
2
0 (λ) and write κ(η) ∈ (WS)aff as

κ(η) = yzξt(ξ) for some y ∈ WS and ξ ∈ Q∨, S-ad. Then, κ(η) = yzξt(ξ) ⪰ x since

η ∈ B
∞
2
⪰x(λ), and hence

[ξ] ≥ [ξx,y] by Lemma 3.4.12. (3.5.19)

Let us write b as b = Y uλ for some monomial Y in Kashiwara operators (note that
η = Y ηe), and define ζ =

∑
i∈I ciα

∨
i ∈ Q∨,+ and ϱ = (ϱ(i))i∈I ∈ Par(λ) in such a

way that ρ = (ci)i∈I + ϱ (see Remark 3.4.22 and (3.5.5)); note that ci = 0 for all
i ∈ S. Then, by (3.4.29), we have

b′ = zρb = zρY uλ = Y zρuλ = Y (t(ζ) · uϱ).

Therefore, we see that

ηψ · t(ξx,κ(ψ)) = Ψλ(b
′) = Ψλ

(
Y (t(ζ) · uϱ)

)
= Y (t(ζ) · ηC),

with C := Θ−1(ϱ) ∈ Conn(B
∞
2 (λ)).

(3.5.20)

Since ηψ · t(ξx,κ(ψ)) = Xψ(t(ξx,κ(ψ)) · ηe) ∈ B
∞
2
0 (λ), it follows that ηC = ηe, and

hence ϱ = (∅)i∈I . Hence we obtain ηψ · t(ξx,κ(ψ)) = Y (t(ζ) · ηe). Since t(ζ) · ηe =

(ΠS(t(ζ)) ; 0, 1), we see from Lemma 3.4.16 that κ(Y (t(ζ) · ηe)) = κ(η)κ(t(ζ) · ηe) =
yzξt(ξ)Π

S(t(ζ)). Similarly, we see that κ(ηψ · t(ξx,κ(ψ))) = κ(ψ)ΠS(t(ξx,κ(ψ))). Com-

bining these equalities, we obtain κ(ψ)ΠS(t(ξx,κ(ψ))) = yzξt(ξ)Π
S(t(ζ)), and hence

(y = κ(ψ) and) [ζ + ξ] = [ξx,κ(ψ)]. Since [ξ] ≥ [ξx,y] by (3.5.19) and ζ ∈ Q∨,+, it
follows that ([ξ] = [ξx,y] and) [ζ] = 0, which implies that ci = 0 for all i ∈ I \ S;
recall that ci = 0 for all i ∈ S by the definition. Therefore, we conclude that
ρ = (ci)i∈I + ϱ = (∅)i∈I ; this contradicts our assumption that ρ ∈ Par(λ) \ (∅)i∈I .
Thus we have shown the inclusion ⊂ in (3.5.18). This completes the proof of Theo-
rem 3.5.5.
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Chapter 4

Representation-theoretic
interpretation of
Cherednik-Orr’s recursion
formula for the specialization of
nonsymmetric Macdonald
polynomials at t =∞

4.1 Introduction

In Chapter 3, we proved that for a dominant weight λ and µ ∈ Wλ, the spe-
cialization Eµ(q,∞) of the nonsymmetric Macdonald polynomial Eµ(q, t) at t =∞
is identical to a certain graded character of a specific subset QLSµ,∞(λ) of the
set QLS(λ) of quantum Lakshmibai-Seshadri (QLS for short) paths of shape λ;
here, we recall that the subset QLSµ,∞(λ) is determined by the subset EQB(v(µ))
of W , where v(µ) denotes the maximal-length coset representative for the coset
{w ∈W | wλ = µ}. We remark that the set QLS(λ) provides an explicit realization
of the crystal basis of a special quantum Weyl module Wv(λ) over the quantum
affine algebra U ′v(gaff), where gaff is the untwisted affine Lie algebra associated to g
(for details, see [NS1], [NS2], [NS3], [LNSSS1], [LNSSS2], and [Na]). However, the
description of the subset EQB(v(µ)) ⊂W is not very explicit.

The aim of this chapter is to give a representation-theoretic (or rather, crystal-
theoretic) proof of Cherednik-Orr’s recursion formula for the specialization Eµ(q,∞)

at t =∞, which is described in terms of Demazure type operators T †i := 1
1−e−αi (si−

1), i ∈ I. More precisely, we prove the following.

Theorem C (= Theorem 4.4.2; see also [CO, Proposition 3.5 (iii)]). Let λ be a
dominant weight, µ ∈Wλ, and i ∈ I be such that ⟨µ, α∨i ⟩ < 0.
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(a) If −v(µ)−1αi is not a simple root, then

T †i Eµ(q,∞) = Esiµ(q,∞).

(b) If −v(µ)−1αi is a simple root, then

T †i Eµ(q,∞) =
(
1− q⟨λ, v(µ)−1α∨

i ⟩
)
Esiµ(q,∞).

We give a proof of this theorem by using a canonical U ′v(gaff)-crystal structure on
QLS(λ), that is, by means of the root operators ei, fi, for i ∈ I; in contrast to the
proof of the recursion formula of Demazure type for the specialization Eµ(q, 0) at
t = 0, given in the appendix of [LNSSS3], our proof is much more difficult because
of the appearance of the factor 1− q⟨λ, v(µ)−1α∨

i ⟩ in case (b). Moreover, in the course
of our proof, we obtain a recursive relation for the subsets EQB(w), w ∈ W , which
determines these subsets inductively in terms of the tilted Bruhat order (see §4.3.2
for details) by starting with the equality EQB(w◦) =W .

We should mention that in [Kat], Kato gave an algebro-geometric interpretation
of the specialization Eµ(q,∞) at t =∞ in terms of Schubert varieties of semi-infinite
flag manifolds.

This chapter is organized as follows. In Section 4.2, we fix our notation, and
review Theorem 3.3.19 in Chapter 3. In Section 4.3, we prove the recursive relation
for the subsets EQB(w), w ∈ W . In Section 4.4, we recall a canonical U ′v(gaff)-
crystal structure on QLS(λ), and prove a variation of the string property of the
subset QLSµ,∞(λ) ⊂ QLS(λ) for µ ∈ Wλ. Also, we study the behavior of the
quantity degµ(ψ) for ψ ∈ QLSµ,∞(λ) under root operators. Finally, by combining
these results with Theorem 3.3.19, we establish Theorem C.

This chapter is based on the joint work [NNS2] with Satoshi Naito and Daisuke
Sagaki.

4.2 Specialization of nonsymmetric Macdonald polyno-
mials at t =∞ in terms of QLS paths

In this chapter, we follow the notation of §2.1 and §3.2.1 for the root system of
finite types and the (parabolic) quantum Bruhat graphs and use some properties in
§3.2.1 such as Proposition 3.2.5.

4.2.1 Subsets EQB(w) of W

As in §3.3.2, for each w ∈W , we define a subset EQB(w) ofW . Let w = si1 · · · sip
be a reduced expression for w. For each J = {j1 < j2 < j3 < · · · < jr} ⊂ {1, . . . , p},
we define

pJ := (w = z0, . . . , zr;βj1 , . . . , βjr)
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as follows: we set βk := sip · · · sik+1
αik ∈ ∆+ for 1 ≤ k ≤ p, and set

z0 = w = si1 · · · sip ,
z1 = wsβj1 = si1 · · · sij1−1sij1+1 · · · sip = si1 · · ·

(sij1 · · · sip ,
z2 = wsβj1sβj2 = si1 · · · sij1−1sij1+1 · · · sij2−1sij2+1 · · · sip = si1 · · ·

(sij1 · · ·

(sij2 · · · sip ,
...

zr = wsβj1 · · · sβjr = si1 · · ·

(sij1 · · ·

(sijr · · · sip ,

where the symbol (· indicates a term to be omitted; also, we set end(pJ) := zr.
Then we define B(w) := {pJ | J ⊂ {1, . . . , p}}, and

QB(w)

:= {pJ ∈ B(w) | zi
βji+1−−−→ zi+1 is a directed edge of QBG(W ) for all 0 ≤ i ≤ r − 1}.

We remark that J may be the empty set; in this case, end(p∅) = w. Finally, we set
EQB(w) := {end(pJ) | pJ ∈ QB(w)}.
Remark 4.2.1 (= Remark 3.3.15). We identify elements in QB(w) with directed
paths in QBG(W ). More precisely, for pJ = (w = z0, . . . , zr;βj1 , . . . βjr) ∈ QB(w),
we write

pJ = (w = z0, . . . , zr;βj1 , . . . βjr) =

(
w = z0

βj1−−→ · · ·
βjr−−→ zr

)
.

Remark 4.2.2 (= Remark 3.3.16). We take and fix a reduced expression w◦w
−1 =

si−q · · · si0 for w◦w
−1, and set βk := sip · · · sik+1

αik , −q ≤ k ≤ p. Let w = z0
βj1−−→

z1
βj2−−→ · · ·

βjr−−→ zr = z, −q ≤ jk ≤ p, 1 ≤ k ≤ r, be a directed path in QBG(W ).
Then

1 ≤ j1 < j2 < · · · < jr ≤ p⇔
(
w = z0

βj1−−→ z1
βj2−−→ · · ·

βjr−−→ zr = z

)
∈ QB(w).

Also, it follows from Proposition 3.2.5 (1) that the map end : QB(w) → W , pJ 7→
end(pJ), is injective.

Remark 4.2.3. (1) If w = w◦, then we have EQB(w◦) =W by Proposition 3.2.5 (1),
since in this case, we can use all the positive roots as edge labels.

(2) The set EQB(w) does not depend on the choice of a reduced expression for
w (see Proposition 3.3.17).

Example 4.2.4. Let g be of type A2. Then, EQB(w◦) = W by Remark 4.2.3 (1).
Also, the elements pJ of QB(s1s2) are as follows (see Example 3.2.3):

J pJ end(pJ)

∅ (s1s2) s1s2

{2} (s1s2
α2−→ s1) s1

From this, we have EQB(s1s2) = {s1s2, s1}. Similarly, we have EQB(s2) = {s2, e}.
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4.2.2 Nonsymmetric Macdonald polynomials at t = ∞ in terms of
QLS paths

In this subsection, we briefly recall Theorem 3.3.19. We follow the notation of
§3.3.2 for QLS paths as follows.

Definition 4.2.5 (= Theorem 3.3.13; [LNSSS2, Definition 3.1]). Let λ ∈ P+ be
a dominant weight, and set S = Sλ = {i ∈ I | ⟨λ, α∨i ⟩ = 0}. A pair ψ =
(w1, w2, . . . , ws; τ0, τ1, . . . , τs) of a sequence w1, . . . , ws of elements in WS such that
wk ̸= wk+1 for 1 ≤ k ≤ s − 1 and an increasing sequence 0 = τ0 < · · · < τs = 1 of
rational numbers, is called a quantum Lakshmibai-Seshadri (QLS) path of shape λ
if

(C) for every 1 ≤ i ≤ s − 1, there exists a directed path from wi+1 to wi in
QBGτiλ(W

S).

Let QLS(λ) denote the set of all QLS paths of shape λ.

Remark 4.2.6. We know from [LNSSS4, Definition 3.2.2 and Theorem 4.1.1] that
condition (C) can be replaced by the condition:

(C)’ for every 1 ≤ i ≤ s− 1, there exists a shortest directed path in QBG(WS)
from wi+1 to wi that is also a directed path in QBGτiλ(W

S).

For ψ = (w1, w2, . . . , ws; τ0, τ1, . . . , τs) ∈ QLS(λ), we set

wt(ψ) :=
s−1∑
i=0

(τi+1 − τi)wi+1λ ∈ P,

and κ(ψ) := ws ∈WS ; we call the element κ(ψ) the final direction of ψ.
Let λ ∈ P+ be a dominant weight, and µ ∈ Wλ. We denote by v(µ) ∈ W the

maximal-length coset representative for the coset {w ∈W | wλ = µ} in W/WS . We
set

QLSµ,∞(λ) := {ψ ∈ QLS(λ) | κ(ψ) ∈ ⌊EQB(v(µ))⌋}.

Remark 4.2.7 (= Remark 3.3.18). If w = w◦, then we have EQB(w◦) = W by
Remark 4.2.3 (1). If µ = w◦λ, then v(µ) = w◦ since w◦ is the maximal-length coset
representative for the coset {w ∈ W | wλ = w◦λ}. Therefore, we deduce that
⌊EQB(v(µ))⌋ =WS , and hence QLSw◦λ,∞(λ) = QLS(λ).

For ψ = (w1, . . . , ws; τ0, . . . , τs) ∈ QLS(λ), we define the degree of ψ at µ ∈ Wλ
to be

degµ(ψ) := −
s∑
i=1

τiwtλ(wi+1 ⇒ wi);

here we set ws+1 := ⌊v(µ)⌋, which is the minimal-length coset representative for
the coset {w ∈ W | wλ = µ} in W/WS . Note that by Remark 4.2.6, it holds that
τiwtλ(wi+1 ⇒ wi) ∈ Z≥0 for 1 ≤ i ≤ s − 1. Also, τs = 1 by the definition of QLS
paths. Hence it follows that degµ(ψ) ∈ Z≤0. Now, for a subset Y of QLSµ,∞(λ), we
define the graded character of Y at µ ∈Wλ to be

gchµY :=
∑
ψ∈Y

qdegµ(ψ)ewt(ψ). (4.2.1)
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Now, for µ ∈ P , let Eµ(q, t) denote the nonsymmetric Macdonald polynomial,
and set Eµ(q,∞) := limt→∞Eµ(q, t), which is the specialization at t =∞.

We know the following formula for the specialization Eµ(q,∞) at t =∞.

Theorem 4.2.8 (= Theorem 3.3.19). Let λ ∈ P+ be a dominant weight, and µ ∈
Wλ. Then, we have the equality

Eµ(q,∞) = gchµQLSµ,∞(λ).

Example 4.2.9. Let g be of type A2, and let λ = ϖ1 +ϖ2. Then, the elements ψ of
QLS(λ), together with their weights and degrees, are as follows (see Example 3.2.3):
Since QLSw◦λ,∞(λ) = QLS(λ) by Remark 4.2.7, we have

ψ wt(ψ) degw◦λ(ψ) degs1s2λ(ψ) degs2λ(ψ)

(e; 0, 1) λ −2 −2 −1
(s1; 0, 1) s1λ −2 −1 −1
(s2; 0, 1) s2λ −2 −2 0

(s1s2; 0, 1) s1s2λ −1 0 0

(s2s1; 0, 1) s2s1λ −1 −1 0

(w◦; 0, 1) w◦λ 0 0 0

(s2s1, s1; 0, 1/2, 1) 0 −2 −1 −1
(s1s2, s2; 0, 1/2, 1) 0 −2 −2 0

(e, w◦; 0, 1/2, 1) 0 −1 −1 −1

Ew◦λ(q,∞) = ew◦λ+q−1es1s2λ+q−1es2s1λ+q−2es2λ+q−2es1λ+q−2eλ+(q−1+2q−2)e0.

Also, recall from Example 4.2.4 that EQB(s1s2) = {s1s2, s1} and EQB(s2) = {s2, e}.
Therefore, we have

QLSs1s2λ,∞(λ) = {(s1s2; 0, 1), (s1; 0, 1), (s2s1, s1; 0, 1/2, 1)},
QLSs2λ,∞(λ) = {(s2; 0, 1), (e; 0, 1), (s1s2, s2; 0, 1/2, 1)},

and hence

Es1s2λ(q,∞) = es1s2λ + q−1es1λ + q−1e0,

Es2λ(q,∞) = es2λ + q−1eλ + e0.

4.3 Properties of subsets EQB(w)

In order to establish Theorem C, we prove a recursive relation for the subsets
EQB(w), w ∈ W . This relation enable us to determine the subset EQB(w) for an
arbitrary w ∈W by descending induction on the left weak Bruhat order; recall that
EQB(w◦) =W (see Remark 4.2.3 (1)).
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4.3.1 Some technical lemmas

For each w ∈ W , we set Iw := {j ∈ I | wsj < w}, where we denote by < the
Bruhat order on W .

Lemma 4.3.1. Let w ∈W and i ∈ I be such that siw < w; note that −w−1αi ∈ ∆+.

(a) siw /∈ wWIw if and only if −w−1αi is not a simple root. Moreover, in this
case, Isiw = Iw.

(b) siw ∈ wWIw if and only if −w−1αi is a simple root. Moreover, in this case,
Isiw = Iw \ {j} for a unique j ∈ Iw such that αj = −w−1αi.

Proof. Suppose that −w−1αi is a simple root, say αk. Then, since w > siw = wsk,
we have k ∈ Iw. Hence siw ∈ wWIw .

Conversely, suppose that siw ∈ wWIw , and that β := −w−1αi ∈ ∆+ is not a
simple root. Since siw = wsβ ∈ wWIw , we have sβ ∈ WIw . Therefore, β can be
written in the form β =

∑
j∈Iw njαj with nj ∈ Z≥0. Hence we have

αi = w(w−1αi) = −
∑
j∈Iw

njwαj ; (4.3.1)

here, #{j ∈ Iw | nj ̸= 0} ≥ 2 since β is not a simple root. If j ∈ Iw, then wsj < w,
and hence wαj ∈ ∆−. It follows from equation (4.3.1) that αi can be written as
a sum of two or more positive roots, which is impossible. This proves the first
assertions of (a) and (b).

Let us prove the second assertions of (a) and (b). Let j ∈ Isiw. Then we
have siwsj < siw. Therefore, we have ℓ(w) − ℓ(wsj) ≥ ℓ(w) − ℓ(siwsj) − 1 =
ℓ(w) − ℓ(siw) = 1 > 0, and hence wsj < w, which implies that j ∈ Iw. Thus we
obtain Isiw ⊂ Iw. Let j ∈ Iw \ Isiw. Since siwsj > siw and wsj < w, we see that

siwαj ∈ ∆+ and wαj ∈ ∆−.

Therefore, we deduce that wαj = −αi, and hence αj = −w−1αi. In case (a), there
does not exist such a j, and hence Isiw = Iw. In case (b), there exists a unique j
such that αj = −w−1αi, and hence Isiw = Iw \ {j}. This proves the lemma.

Remark 4.3.2. Let w ∈ W and i ∈ I be such that siw < w. Since siw = ws−w−1αi

and ℓ(w)− ℓ(siw) = 1, we see that siw
−w−1αi−−−−−→ w is a Bruhat edge. Also, we claim

that

w
−w−1αi−−−−−→ siw is a (quantum) edge if and only if siw ∈ wWIw .

This is shown as follows.
(a) Assume that siw /∈ wWIw . Since −w−1αi is not a simple root, we have

2⟨ρ,−w−1α∨i ⟩ − 1 > 1, so that −1 = ℓ(siw) − ℓ(w) ̸= −2⟨ρ,−w−1α∨i ⟩ + 1 < −1.
Hence w

−w−1αi−−−−−→ siw is not a quantum edge; it is clear that this is not a Bruhat
edge from the assumption that siw < w.

(b) Assume that siw ∈ wWIw . Since−w−1αi is a simple root, we have 2⟨ρ,−w−1α∨i ⟩−
1 = 1. Hence w

−w−1αi−−−−−→ siw is a quantum edge.
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Lemma 4.3.3. Let w ∈ W , γ ∈ ∆+, and i ∈ I. Assume that w
w−1αi−−−−→ siw and

siwsγ
−sγw−1αi−−−−−−→ wsγ are Bruhat edges, and that w

γ−→ wsγ is a quantum or Bruhat

edge. Then, w
γ−→ wsγ is a Bruhat edge, and w = siwsγ.

Proof. Suppose, for a contradiction, that w
γ−→ wsγ is a quantum edge. Then,

since w
w−1αi−−−−→ siw is a Bruhat edge, it follows from [LNSSS1, Lemma 5.14 (2);

the left diagram] that wsγ
sγw−1αi−−−−−→ siwsγ is a Bruhat edge, which contradicts the

assumption that siwsγ
−sγw−1αi−−−−−−→ wsγ is a Bruhat edge. Hence w

γ−→ wsγ is a Bruhat
edge.

Also, suppose, for a contradiction, that w
γ−→ wsγ is a Bruhat edge and siwsγ ̸=

w. Then, since w
w−1αi−−−−→ siw and w

γ−→ wsγ are Bruhat edges, it follows from

[LNSSS1, Lemma 5.14 (1); the left diagram] that wsγ
sγw−1αi−−−−−→ siwsγ is a Bruhat

edge, which contradicts the assumption that siwsγ
−sγw−1αi−−−−−−→ wsγ is a Bruhat edge.

Hence siwsγ = w. This proves the lemma.

Lemma 4.3.4. Let w ∈ W , γ ∈ ∆+, and i ∈ I. Assume that w
w−1αi−−−−→ siw and

wsγ
sγw−1αi−−−−−→ siwsγ are Bruhat edges. Then, the following conditions are equivalent:

(1) w
γ−→ wsγ is a Bruhat (resp., quantum) edge;

(2) siw
γ−→ siwsγ is a Bruhat (resp., quantum) edge.

Proof. From the assumptions, we easily deduce that ℓ(w) − ℓ(wsγ) = ℓ(siw) −
ℓ(siwsγ). The desired equivalence follows from this equality.

For u, v ∈ W , let ℓ(u ⇒ v) denote the length of a shortest directed path in
QBG(W ) from u to v.

Lemma 4.3.5. Let u = u0
βj1−−→ u1

βj2−−→ · · ·
βjr−−→ ur = v be a directed path in

QBG(W ) from u to v. Then, we have ℓ(u⇒ v) ≡ r modulo 2.

Proof. From the decomposition h∗ = Cα ⊕ {µ ∈ h∗ | ⟨µ, α∨⟩ = 0}, we see that
det(sα) = −1 for α ∈ ∆, since sαα = −α, and sαµ = µ if µ ∈ {µ ∈ h∗ | ⟨µ, α∨⟩ = 0}.
Therefore, if there exists a directed path u = u0

βj1−−→ u1
βj2−−→ · · ·

βjr−−→ ur = v in
QBG(W ) from u to v, then det(u−1v) = det(sβj1 · · · sβjr ) = (−1)r. Similarly, we

have det(u−1v) = (−1)ℓ(u⇒v) since ℓ(u⇒ v) denotes the length of a shortest directed
path in QBG(W ) from u to v. From these, we deduce that (−1)r = (−1)ℓ(u⇒v), and
hence that ℓ(u⇒ v) ≡ r modulo 2.
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4.3.2 Recursive relation for subsets EQB(w)

In this subsection, we assume that siw < w. Under this assumption, we study a
relation between EQB(w) and EQB(siw). Let w = si1 · · · sip be a reduced expression
for w. By Remark 4.2.3 (2), we can (and do) assume that i1 = i, and siw = si2 · · · sip
is a reduced expression for siw; in this subsection, we fix such a reduced expression
for w. Also, we take and fix a reduced expression w◦w

−1 = si−q · · · si0 for w◦w
−1,

and set βk = sip · · · sik+1
αik for −q ≤ k ≤ p.

Remark 4.3.6. By Remark 4.2.2, if siw = z0
βj1−−→ z1

βj2−−→ · · ·
βjr−−→ zr = z is a directed

path in QBG(W ), then(
siw = z0

βj1−−→ z1
βj2−−→ · · ·

βjr−−→ zr = z

)
∈ QB(siw) ⇔ 2 ≤ j1 < j2 < · · · < jr ≤ p.

Lemma 4.3.7. Let w ∈ W and i ∈ I be such that siw < w. Let z ∈ EQB(w), and
let

pJ =

(
w = z0

βj1−−→ z1
βj2−−→ · · ·

βjr−−→ zr = z

)
∈ QB(w), (4.3.2)

where J = {1 ≤ j1 < · · · < jr ≤ p}.

(1) Assume that siz < z:

(1a) if siza < za for all 0 ≤ a ≤ r, then siz ∈ EQB(siw);

(1b) if there exists 1 ≤ b ≤ r − 1 such that{
sizb > zb,
siza < za for b+ 1 ≤ a ≤ r,

then siz ∈ EQB(w).

(2) If siz > z, then siz ∈ EQB(w). In particular, siz ∈ EQB(w) ∪ EQB(siw).

Proof. (1) Assume that siz < z.
(1a) Suppose that j1 = 1. Then, z1 = si1w = siw, and hence siz1 = si(siw) >

siw = z1, contrary to the assumption of (1a). Hence we obtain j1 > 1, so that
jk ≥ j1 > 1 for all 1 ≤ k ≤ r. Note that βjk ̸= β1 = −w−1αi for 1 ≤ k ≤ r.
Therefore, we can apply Lemma 4.3.4 to the path pJ in (4.3.2), and hence obtain a
directed path in QBG(W ):

siw = siz0
βj1−−→ · · ·

βjr−−→ sizr = siz;

note that the edge labels of this path are identical to those of the path pJ in (4.3.2).
Since 1 < j1 < j2 < · · · < jr ≤ p, we deduce that siz ∈ EQB(siw).

(1b) We see easily that zb
z−1
b αi−−−−→ sizb and sizbsβjb+1

= sizb+1

−sβjb+1
z−1
b αi

−−−−−−−−−→

zbsβjb+1
= zb+1 are Bruhat edges, and that zb

βjb+1−−−→ zb+1 is a directed edge of
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QBG(W ). Hence it follows from Lemma 4.3.3 that zb = sizb+1. Also, applying
Lemma 4.3.4 to the directed path

zb+1

βjb+2−−−→ · · ·
βjr−−→ zr = z

in QBG(W ), we obtain a directed path in QBG(W ):

sizb+1

βjb+2−−−→ · · ·
βjr−−→ sizr = siz.

Concatenating pJ with this path, we obtain a label-increasing directed path in
QBG(W ):

w = z0
βj1−−→ · · ·

βjb−−→ zb = sizb+1

βjb+2−−−→ · · ·
βjr−−→ sizr = siz.

From this, we deduce that siz ∈ EQB(w) by Remark 4.2.2.
(2) Assume that siz > z. By Proposition 3.2.5 (1), there exists a unique label-

increasing directed path of the form

w = y0
βk1−−→ y1

βk2−−→ · · ·
βku−−→ yu = siz

from w to siz in QBG(W ); here, −q ≤ k1 < · · · < ku ≤ p. By Remark 4.2.2, in
order to prove that siz ∈ EQB(w), it suffices to show that 1 ≤ k1.

Case (i). Suppose that there exists 1 ≤ b ≤ u− 1 such that{
siyb > yb,
siya < ya for b+ 1 ≤ a ≤ u.

Then, as in the proof of (1b), by Lemma 4.3.3 and Lemma 4.3.4, we obtain a label-
increasing directed path of the form

w = y0
βk1−−→ · · ·

βkb−−→ yb = siyb+1

βkb+2−−−→ · · ·
βku−−→ siyu = z

from w to z in QBG(W ). By the uniqueness of a label-increasing directed path from
w to z in QBG(W ), we deduce that k1 = j1 ≥ 1.

Case (ii). Suppose that siya < ya for all 1 ≤ a ≤ u. By Lemma 4.3.4, we obtain
a label-increasing directed path of the form

siw = siy0
βk1−−→ · · ·

βku−−→ siyu = z

from siw to z in QBG(W ). If j1 = 1, then z1 = si1w = siw. In this case, by
removing the first directed edge from the path pJ in (4.3.2), we obtain a label-
increasing directed path of the form

siw = siz0
βj2−−→ · · ·

βjr−−→ zr = z

from siw to z in QBG(W ). By the uniqueness of a label-increasing directed path
from siw to z in QBG(W ), we find that k1 = j2 ≥ 1. If j1 > 1, then by concatenating
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the directed edge siw
β1−→ w with the path pJ in (4.3.2), we obtain a label-increasing

directed path of the form

siw
β1−→ w = z0

βj1−−→ · · ·
βjr−−→ zr = z

from siw to z in QBG(W ). As in the case j1 = 1, we find that k1 = 1. This proves
the lemma.

Now, following [BFP], for each w ∈ W , we define the w-tilted Bruhat order <w
on W by:

x <w y if ℓ(w ⇒ y) = ℓ(w ⇒ x) + ℓ(x⇒ y) for x, y ∈W ;

recall that ℓ(x ⇒ y) denotes the length of a shortest directed path from x to y in
QBG(W ).

The following proposition shows how the subset EQB(w) determines the subset
EQB(siw) for w ∈ W and i ∈ I such that siw < w. Therefore, starting with the
equality EQB(w◦) = W (see Lemma 4.2.3 (1)), we can determine all the subsets
EQB(w), w ∈W , inductively.

Proposition 4.3.8. Let w ∈W and i ∈ I be such that siw < w.

(1) If siw /∈ wWIw , then

(1a) EQB(w) ∩ EQB(siw) = ∅,
(1b) EQB(w) ∪ siEQB(w) = EQB(w) ⊔ EQB(siw).

(2) If siw ∈ wWIw , then

(2a) EQB(siw) = {z ∈ EQB(w) | siw≤w z},
(2b) siEQB(w) = EQB(w).

Proof. Recall that w = si1si2 · · · sip is the fixed reduced expression for w with i1 = i
(fixed at the beginning of Section 4.3.2). Note that β1 = −w−1αi.

(1) Assume that siw /∈ wWIw .
(1a) Suppose, for a contradiction, that EQB(w) ∩ EQB(siw) ̸= ∅, and take

z ∈ EQB(w) ∩ EQB(siw). Let

pJ =

(
w = z0

βj1−−→ z1
βj2−−→ · · ·

βjr−−→ zr = z

)
∈ QB(w),

pK =

(
siw = y0

βn1−−→ y1
βn2−−→ · · · βnu−−→ yu = z

)
∈ QB(siw),

with 1 ≤ j1 < j2 < · · · < jr ≤ p and 2 ≤ n1 < n2 < · · · < nu ≤ p. Since
siw /∈ wWIw , it follows from Remark 4.3.2 that there does not exist a directed edge
of QBG(W ) from w to siw = wsβ1 , and hence that j1 ̸= 1. Also, since siw < w, it
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follows that siw
β1−→ w is a Bruhat edge by Remark 4.3.2. Concatenating this edge

with pJ , we obtain a directed path

siw
β1−→ w = z0

βj1−−→ z1
βj2−−→ · · ·

βjr−−→ zr = z

in QBG(W ) from siw to z, which is a label-increasing one since j1 ̸= 1. Here we
note that pK is a label-increasing directed path in QBG(W ) from siw to z. Since
n1 ̸= 1, we have two different label-increasing directed paths in QBG(W ) from siw
to z, contrary to Proposition 3.2.5 (1). This proves (1a).

(1b) It is easy to verify that EQB(w) ∪ siEQB(w) ⊂ EQB(w) ⊔ EQB(siw) by
part (1a) and Lemma 4.3.7. Hence it suffices to prove that EQB(w) ∪ siEQB(w) ⊃
EQB(w) ⊔ EQB(siw). Since it is clear that EQB(w) ∪ siEQB(w) ⊃ EQB(w), we
need only prove that siEQB(w) ⊃ EQB(siw).

Claim. Let z ∈ EQB(siw), and let

pK =

(
siw = y0

βn1−−→ y1
βn2−−→ · · · βnu−−→ yu = z

)
∈ QB(siw),

with 2 ≤ n1 < n2 < · · · < nu ≤ p. Then, siya > ya for all 0 ≤ a ≤ u. In particular,
for a = u, we have siz > z.

Proof of Claim. Suppose, for a contradiction, that there exists 1 ≤ b ≤ u such that{
siyb < yb,
siya > ya for 0 ≤ a ≤ b− 1.

Then, yb−1
y−1
b−1αi−−−−→ siyb−1 and siyb−1sβnb = siyb

−y−1
b αi−−−−−→ yb = yb−1sβnb are both

Bruhat edges, and yb−1
βjb−−→ yb is a directed edge of QBG(W ). Therefore, by Lemma

4.3.3 and Lemma 4.3.4, we obtain a directed path

w = siy0
βn1−−→ · · ·

βnb−1−−−−→ siyb−1 = yb
βnb+1−−−−→ · · · βnu−−→ yu = z

in QBG(W ) whose edge labels are increasing. Since the edge labels of this path are
increasing, we have z ∈ EQB(w). Also, by the assumption of the claim, we have
z ∈ EQB(siw). Thus, z ∈ EQB(w) ∩ EQB(siw), contrary to Proposition 4.3.8 (1a).

Now we take a directed path pK in the claim above. By Lemma 4.3.4, we obtain

w = siy0
βn1−−→ · · · βnu−−→ siyu = siz,

which is a label-increasing directed path such that n1 ≥ 2. It follows that siz ∈
EQB(w), and hence z ∈ siEQB(w). Thus we have siEQB(w) ⊃ EQB(siw), as
desired.

(2) Assume that siw ∈ wWIw .
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(2a) First we prove that EQB(siw) ⊂ {z ∈ EQB(w) | siw≤w z}. Let z ∈
EQB(siw), and let

pK =

(
siw = y0

βn1−−→ y1
βn2−−→ · · · βnu−−→ yu = z

)
∈ QB(siw).

Note that n1 ≥ 2 by Remark 4.3.6. Since siw ∈ wWIw , we see that w
β1−→ siw is a

quantum edge by Remark 4.3.2. Hence we obtain a label-increasing directed path

w
β1−→ siw = y0

βn1−−→ y1
βn2−−→ · · · βnu−−→ yu = z

in QBG(W ). This implies that z ∈ EQB(w). Moreover, by Proposition 3.2.5 (2),
this path is a shortest directed path in QBG(W ) from w to z. It follows that
siw ≤w z.

Next we prove that EQB(siw) ⊃ {z ∈ EQB(w) | siw≤w z}. Let z ∈ EQB(w)
be such that siw≤wz. By the definition of the tilted Bruhat order, there exists a
shortest directed path in QBG(W ) from w to z passing through siw:

w
βk1−−→ · · ·

βka−−→ siw
βka+1−−−−→ · · ·

βkb−−→ z.

Here we recall that w
β1−→ siw is a quantum edge. Since w

βk1−−→ · · ·
βka−−→ siw is a

shortest directed path in QBG(W ) from w to siw, it follows that a = 1 and k1 = 1.
Hence this path can be written as:

w
β1−→ siw

βk2−−→ · · ·
βkb−−→ z. (4.3.3)

Since z ∈ EQB(w), there exists a label-increasing directed path

pJ =

(
w = z0

βj1−−→ · · ·
βjr−−→ zr = z

)
∈ QB(w)

from w to z in QBG(W ); it follows from the definition of pJ ∈ QB(w) that j1 ≥ 1.
Also, since pJ is a label-increasing directed path, it follows from Proposition 3.2.5 (2)
that pJ is less than or equal to the directed path (4.3.3) in the lexicographic order
(with respect to the edge labels), which implies that j1 ≤ 1. Therefore, j1 = 1, and
hence

pJ =

(
w = z0

β1−→ z1 = siw
βj2−−→ · · ·

βjr−−→ zr = z

)
.

From this, it follows that

(
z1 = siw

βj2−−→ · · ·
βjr−−→ zr = z

)
∈ QB(siw), and hence

z ∈ EQB(siw). Thus we have proved that EQB(siw) ⊃ {z ∈ EQB(w) | siw ≤w z},
and hence (2a).

Finally, we prove (2b). Recall that siEQB(w) ⊂ EQB(siw)∪EQB(w) by Lemma
4.3.7. Also, by part (2a), we have EQB(siw) ⊂ EQB(w), and hence siEQB(w) ⊂
EQB(w). From this, we obtain EQB(w) ⊂ siEQB(w), since s2i = 1. This completes
the proof of the proposition.
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Example 4.3.9. (1) Let g be of type A2, and let w = s1s2 and i = 1; in this case, the
root −w−1α1 = α1 + α2 is not a simple root, and hence s1w = s2 /∈ wWIw . Recall
from Example 4.2.4 that EQB(s1s2) = {s1s2, s1} and EQB(s2) = {s2, e}. Hence we
have EQB(s1s2) ∪ s1EQB(s1s2) = {s1s2, s1, s2, e} = EQB(s1s2) ⊔ EQB(s2).

(2) Let g be of type A2, and let w = w◦ and i = 2; in this case, the root
−w−1α2 = α1 is a simple root, and hence s2w = s1s2 ∈ wWIw . Recall from Example
4.2.4 that EQB(w◦) = W and EQB(s1s2) = {s1s2, s1} ⊂ EQB(w◦). Moreover, it is
easy to check that for z ∈ W , ℓ(w◦ ⇒ z) = ℓ(w◦ ⇒ s1s2) + ℓ(s1s2 ⇒ z) if and only
if z ∈ EQB(s1s2).

(3) Let g be of type A3. We take w = s2w◦ ∈ W , and fix a reduced expression
w = s1s2s3s2s1 for w. Then, the elements pJ of QB(w) are as follows:

J pJ end(pJ)

∅ (w) s1s2s3s2s1

{2} (w
α3−→ s1s3s2s1) s1s3s2s1

{3} (w
α1+α2+α3−−−−−−−→ e) e

{5} (w
α1−→ s1s2s3s2) s1s2s3s2

{2, 4} (w
α3−→ s1s3s2s1

α1+α2−−−−→ s3) s3

{2, 5} (w
α3−→ s1s3s2s1

α1−→ s1s3s2) s1s3s2

{3, 5} (w
α1+α2+α3−−−−−−−→ e

α1−→ s1) s1

{2, 4, 5} (w
α3−→ s1s3s2s1

α1+α2−−−−→ s3
α1−→ s3s1) s3s1

From this, we have

EQB(w) = {s1s2s3s2s1, s1s3s2s1, s1s2s3s2, s1s3s2, s1s3, s1, s3, e},
s1EQB(w) = {s2s3s2s1, s3s2s1, s2s3s2, s3s2, s1s3, s1, s3, e}.

Also, let i = 1 and fix a reduced expression s1w = s2s3s2s1 for s1w; in this case,
the root −w−1α1 = α2 +α3 is not a simple root, and hence s1w /∈ wWIw . Then the
elements pJ of QB(s1w) are as follows:

J pJ end(pJ)

∅ (s1w) s2s3s2s1

{1} (s1w
α3−→ s3s2s1) s3s2s1

{4} (s1w
α1−→ s2s3s2) s2s3s2

{1, 4} (s1w
α3−→ s3s2s1

α1−→ s3s2) s3s2

Hence we have EQB(s1w) = {s2s3s2s1, s3s2s1, s2s3s2, s3s2}. Thus, we see that for
w = s2w◦ and i = 1,

EQB(w) ∪ s1EQB(w) =

{s1s2s3s2s1, s1s3s2s1,s1s2s3s2, s1s3s2, s2s3s2s1, s2s3s2, s3s2s1, s3s2, s1s3, s1, s3, e}
= EQB(w) ⊔ EQB(s1w).

67



Lemma 4.3.10. Let w ∈ W and i ∈ I be such that siw < w. If z ∈ EQB(siw),
then siz > z.

Proof. If siw /∈ wWIw , then the assertion of the lemma follows from the claim in the
proof of Proposition 4.3.8.

Suppose now that siw ∈ wWIw . Let z ∈ EQB(siw), and let

pK =

(
siw = y0

βn1−−→ y1
βn2−−→ · · · βnu−−→ yu = z

)
∈ QB(siw);

note that n1 > 1. Concatenating the directed edge w
β1−→ siw of QBG(W ) with this

path, we obtain a label-increasing directed path

w
β1−→ siw = y0

βn1−−→ y1
βn2−−→ · · · βnu−−→ yu = z (4.3.4)

in QBG(W ). By Proposition 3.2.5 (2), this path is a shortest directed path in
QBG(W ) from w to z of length u + 1. If siz < z, then there exists 1 ≤ b ≤ u
such that {

siyb < yb,
siya > ya for 0 ≤ a ≤ b− 1,

since siw < si(siw) = w. Now, applying Lemma 4.3.3 and Lemma 4.3.4 to pK , we
obtain a directed path

w = siy0
βn1−−→ · · ·

βnb−1−−−−→ siyb−1 = yb
βnb+1−−−−→ · · · βnu−−→ yu = z

in QBG(W ) from w to z of length u− 1. This contradicts the fact that the directed
path (4.3.4) is shortest. This proves the lemma.

Proposition 4.3.11. Let w ∈ W , z ∈ EQB(w), and i ∈ I be such that siw < w
and siz > z. Let λ ∈ P+ be a dominant weight.

(1) We have
wtλ(w ⇒ siz) = wtλ(siw ⇒ z).

(2) If z /∈ EQB(siw), then

wtλ(w ⇒ siz) = wtλ(w ⇒ z).

(3) If z ∈ EQB(siw), then

wtλ(w ⇒ siz) + ⟨λ,−w−1α∨i ⟩ = wtλ(w ⇒ z).

Proof. (1) This is proved by [LNSSS2, Corollary 4.2]; see also equation (3.2.3).
(2) Assume that z /∈ EQB(siw).
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Case (a). Suppose that siw /∈ wWIw . Since z ∈ EQB(w), there exists a label-
increasing directed path

pJ =

(
w = z0

βj1−−→ z1
βj2−−→ · · ·

βjr−−→ zr = z

)
∈ QB(w)

in QBG(W ) from w to z. Recall that in this case, there does not exist a directed

edge of the form w
β1−→ siw, β1 = −w−1αi, in QBG(W ) by Remark 4.3.2. Hence

we see that j1 > 1. Since siw
β1−→ w is a Bruhat edge, we obtain a label-increasing

(hence shortest) directed path

siw
β1−→ w = z0

βj1−−→ z1
βj2−−→ · · ·

βjr−−→ zr = z

from siw to z in QBG(W ). Since wtλ(siw
β1−→ w) = 0, we deduce that

wtλ(siw ⇒ z) = wtλ(w ⇒ z).

Combining this and the equality in part (1), we obtain

wtλ(w ⇒ siz) = wtλ(siw ⇒ z) = wtλ(w ⇒ z),

as desired.
Case (b). Suppose that siw ∈ wWIw . Let

siw
βk1−−→ · · ·

βka−−→ za = z

be a label-increasing directed path in QBG(W ), with −q ≤ k1 < · · · < ka ≤ p. Since
z /∈ EQB(siw) by the assumption, it follows from Remark 4.2.2 that k1 < 2. Since

w
β1−→ siw, β1 = −w−1αi, is a quantum edge by Remark 4.3.2 (b),

w
β1−→ siw

βk1−−→ · · ·
βka−−→ za = z (4.3.5)

is a directed path in QBG(W ).

Claim. The directed path (4.3.5) is not a shortest directed path in QBG(W ) from
w to z.

Proof of Claim. Suppose, for a contradiction, that the directed path (4.3.5) is
shortest. Since z ∈ EQB(w), there exists a (unique) label-increasing directed path

w
βj1−−→ · · ·

βja+1−−−→ z (4.3.6)

in QBG(W ) from w to z such that 1 ≤ j1 < · · · < ja+1 ≤ p. Because the directed
path (4.3.6) is lexicographically minimal (with respect to the edge labels) among the
shortest directed paths from w to z by Proposition 3.2.5 (2), we deduce that j1 = 1 by
comparing the first edges of directed paths (4.3.5) and (4.3.6). Also, by comparing
the second edges of directed paths (4.3.5) and (4.3.6), we deduce that j2 ≤ k1.
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However, since k1 < 2 as stated before this claim, we obtain 1 = j1 < j2 ≤ k1 < 2,
a contradiction.

We note that ℓ(w ⇒ z) = a − 1 or a + 1 by Lemma 4.3.5, since w
β1−→ siw and

siw
β1−→ w are directed edges of QBG(W ). Since ℓ(w ⇒ z) ̸= a + 1 by the claim

above, it follows from Lemma 4.3.5 that ℓ(w ⇒ z) = a− 1. Now, let

w
βj1−−→ · · ·

βja−1−−−→ z (4.3.7)

be a label-increasing directed path, with 1 ≤ j1 < · · · < ja−1 ≤ p. Concatenating

the directed edge siw
β1−→ w of QBG(W ) with the directed path (4.3.7), we obtain a

directed path

siw
β1−→ w

βj1−−→ · · ·
βja−1−−−→ z (4.3.8)

in QBG(W ); since the length of this path is a, this is a shortest directed path in

QBG(W ) from siw to z. Since siw
β1−→ w is a Bruhat edge, wtλ(siw

β1−→ w) = 0.
Therefore, by comparing the λ-weights of directed paths (4.3.7) and (4.3.8), we find
that

wtλ(siw ⇒ z) = wtλ(w ⇒ z).

Combining this and the equality in part (1), we obtain

wtλ(w ⇒ siz) = wtλ(siw ⇒ z) = wtλ(w ⇒ z),

as desired.
(3) By Proposition 4.3.8 (1a), we deduce that siw ∈ wWIw . Since siw≤w z by

Proposition 4.3.8 (2a), we have

wtλ(w ⇒ z) = wtλ(w ⇒ siw) + wtλ(siw ⇒ z).

Also, since w
−w−1αi−−−−−→ siw is a quantum edge by Remark 4.3.2 (b), wtλ(w ⇒ siw) =

⟨λ,−w−1α∨i ⟩. Therefore,

wtλ(w ⇒ z) = ⟨λ,−w−1α∨i ⟩+wtλ(siw ⇒ z).

Combining this and the equality in part (1), we obtain

wtλ(w ⇒ z) = ⟨λ,−w−1α∨i ⟩+wtλ(siw ⇒ z) = ⟨λ,−w−1α∨i ⟩+wtλ(w ⇒ siz),

as desired. This completes the proof of the proposition.

4.3.3 Some additional properties of subsets EQB(w)

In this subsection, we show some additional properties of the subsets EQB(w),
w ∈ W . In addition, by using Proposition 4.3.8, we obtain a recursive relation for
the subsets ⌊EQB(w)⌋, w ∈W .
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Lemma 4.3.12. For each w ∈ W , the subset EQB(w) decomposes into a disjoint
union of some cosets in W/WIw .

Proof. Let z ∈ EQB(w). It suffices to show that zsj ∈ EQB(w) for all j ∈ Iw. Let
j ∈ Iw. Since wsj < w, we can take a reduced expression for w as:

w = si1 · · · sip , with ip = j.

Since z ∈ EQB(w), there exists J ⊂ {1, . . . , p} such that

pJ =

(
w = z0

βj1−−→ · · ·
βjr−−→ zr = z

)
∈ QB(w).

If jr = p, then we set K = J \ {p}; otherwise, we set K = J ⊔ {p}. In both
cases, we have end(pK) = zsip = zsj . Also, in the case K = J \ {p}, it is clear that
pK ∈ QB(w). In the case K = J ⊔ {p}, βp = αip = αj is a simple root. Therefore,

z
βp−→ zsj is a directed edge of QBG(W ), and hence pK ∈ QB(w). Thus we obtain

end(pK) ∈ EQB(w), and hence zsj ∈ EQB(w). This proves the lemma.

The next lemma follows from [M1, Chap. 2].

Lemma 4.3.13. Let λ ∈ P+ be a dominant weight. Let µ ∈ Wλ and i ∈ I be such
that ⟨µ, α∨i ⟩ ̸= 0. Then siv(µ) = v(siµ). Moreover, the following conditions are
equivalent:

(1) ⟨µ, α∨i ⟩ < 0;

(2) siv(µ) < v(µ).

In what follows, we take and fix a dominant weight λ ∈ P+, and set S = Sλ =
{i ∈ I | ⟨λ, α∨i ⟩ = 0}. Then, for µ ∈ Wλ, we have S ⊂ Iv(µ). Therefore, by Lemma
4.3.12, we deduce that

⌊EQB(v(µ))⌋ ⊂ EQB(v(µ)), (4.3.9)

where ⌊ ⌋ denotes the surjection ⌊ ⌋ :W →WS , w 7→ ⌊w⌋.
The following is a generalization of Proposition 4.3.8; we use this proposition in

Section 4.4.4.

Proposition 4.3.14. Let µ ∈Wλ and i ∈ I be such that ⟨µ, α∨i ⟩ < 0.

(1) Assume that siv(µ) /∈ v(µ)WIv(µ). Then,

⌊EQB(v(µ))⌋ ∪ ⌊siEQB(v(µ))⌋ = ⌊EQB(v(µ))⌋ ⊔ ⌊EQB(v(siµ))⌋.

(2) Assume that siv(µ) ∈ v(µ)WIv(µ). Then,

(2a)
⌊EQB(v(siµ))⌋ = {z ∈ ⌊EQB(v(µ))⌋ | v(siµ) ≤v(µ) z},
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(2b)
⌊siEQB(v(µ))⌋ = ⌊EQB(v(µ))⌋.

Proof. First of all, by Lemma 4.3.13, we have v(siµ) = siv(µ) < v(µ).
Let us prove part (1). By Lemma 4.3.8 (1b), we have

EQB(v(µ)) ∪ siEQB(v(µ)) = EQB(v(µ)) ⊔ EQB(v(siµ)).

By Lemma 4.3.12, both sides of this equation can be written as a disjoint union
of some cosets in W/WIv(µ) . Also, since S ⊂ Iv(µ), we find that both sides of this
equation can be written as a disjoint union of some cosets in W/WS . Therefore, by
applying the surjection ⌊ ⌋ :W →WS , w 7→ ⌊w⌋, to the equation above, we obtain
the assertion of part (1).

Part (2) is an immediate consequence of Proposition 4.3.8 (2); indeed, using
Lemma 4.3.12, we can easily verify that

⌊{z ∈ EQB(v(µ)) | v(siµ) ≤v(µ) z}⌋ = {z ∈ ⌊EQB(v(µ))⌋ | v(siµ) ≤v(µ) z}.

This proves the proposition.

The following is a generalization of Lemma 4.3.10; we use this lemma in Sections
4.4.4 and 4.4.5.

Lemma 4.3.15. Let µ ∈Wλ and i ∈ I be such that ⟨µ, α∨i ⟩ < 0. If z ∈ ⌊EQB(v(siµ))⌋,
then ⌊siz⌋ > z. Moreover, siz ∈ EQB(v(µ)) \ EQB(v(siµ)).

Proof. By Lemma 4.3.10 together with the inclusion (4.3.9), we have siz > z, and
hence ⌊siz⌋ ≥ z; here we note that siv(µ) < v(µ) by Lemma 4.3.13. Suppose,
for a contradiction, that ⌊siz⌋ = z. Then, we see that siz ∈ zWS ⊂ zWIv(siµ)

⊂
EQB(v(siµ)) by Lemma 4.3.12 and the inclusion (4.3.9). Therefore, by Lemma
4.3.10, we have z = si(siz) > siz, which contradicts the fact that siz > z. Thus, we
deduce that ⌊siz⌋ > z, and siz /∈ EQB(v(siµ)). In addition, by Proposition 4.3.8,
we obtain siz ∈ EQB(v(µ)) whether siv(µ) ∈ v(µ)WIv(µ) or not. This proves the
lemma.

Remark 4.3.16. We can show that if w ∈W and z ∈ EQB(w), then z is less than or
equal to w in the right weak Bruhat order on W ; we omit its proof since we do not
use this fact in this chapter.

4.4 Recursion formula for Eµ(q,∞)

Cherednik and Orr gave a recursion formula ([CO, Proposition 3.5 (iii)]) for
the specialization Eµ(q,∞) of the nonsymmetric Macdonald polynomial Eµ(q, t) at
t = ∞ in terms of Demazure-type operators, for the affine root systems of dual
untwisted type. In this section, we give a crystal-theoretic (hence representation-
theoretic) proof of this recursion formula for the affine root systems of untwisted

72



type. For this purpose, in view of Theorem 4.2.8, it suffices to prove that for a
dominant weight λ ∈ P+, the graded characters chµQLSµ,∞(λ), µ ∈Wλ, satisfy the
same recursion formula as the one above with Eµ(q,∞) replaced by chµQLSµ,∞(λ);
namely, we prove Theorem 4.4.1 below, by making use of a canonical U ′v(gaff)-crystal
structure on QLS(λ).

Throughout this section, we take and fix a dominant weight λ ∈ P+, and set
S = Sλ = {i ∈ I | ⟨λ, α∨i ⟩ = 0}.

4.4.1 Demazure-type operators

For i ∈ I, we define a C(q)-linear operator T †i on C(q)[P ] by T †i := 1
1−e−αi (si−1);

note that for µ ∈ P ,

T †i e
µ =


eµ+αi + eµ+2αi + · · ·+ esiµ if ⟨µ, α∨i ⟩ < 0,
0 if ⟨µ, α∨i ⟩ = 0,
−eµ − eµ−αi − · · · − esiµ+αi if ⟨µ, α∨i ⟩ > 0.

We will prove Theorem 4.4.1 in Sections 4.4.4 and 4.4.5; recall that −v(µ)−1αi is a
simple root if and only if siv(µ) ∈ v(µ)WIv(µ) (see Proposition 4.3.1).

Theorem 4.4.1. Let µ ∈Wλ and i ∈ I be such that ⟨µ, α∨i ⟩ < 0.

(a) If −v(µ)−1αi is not a simple root, or equivalently, if siv(µ) /∈ v(µ)WIv(µ), then

T †i chµQLSµ,∞(λ) = chsiµQLSsiµ,∞(λ).

(b) If −v(µ)−1αi is a simple root, or equivalently, if siv(µ) ∈ v(µ)WIv(µ), then

T †i chµQLSµ,∞(λ) =
(
1− q⟨λ,v(µ)−1α∨

i ⟩
)
chsiµQLSsiµ,∞(λ).

By combining this theorem with Theorem 4.2.8, we obtain Cherednik-Orr’s re-
cursion formula for Eµ(q,∞), µ ∈ Wλ; cf. [CO, Proposition 3.5 (iii)] for the affine
root systems of dual untwisted type.

Theorem 4.4.2. Let λ ∈ P+ be a dominant weight. Let µ ∈Wλ and i ∈ I be such
that ⟨µ, α∨i ⟩ < 0.

(a) If −v(µ)−1αi is not a simple root, then

T †i Eµ(q,∞) = Esiµ(q,∞).

(b) If −v(µ)−1αi is a simple root, then

T †i Eµ(q,∞) =
(
1− q⟨λ,v(µ)−1α∨

i ⟩
)
Esiµ(q,∞).

Now, we set D†i := T †i +1, which is a C(q)-linear operator on C(q)[P ]. The next

lemma follows easily from the definition of D†i .
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Lemma 4.4.3. Let i ∈ I.

(1) D†i e
µ = eµ−esiµ+αi

1−eαi for µ ∈ P .

(2) If µ ∈ P satisfies ⟨µ, α∨i ⟩ ≤ 0, then

D†i e
µ = eµ + eµ+αi + · · ·+ esiµ.

(3) (D†i )
2 = D†i .

Proof. Because (1) and (3) are immediate from the definition of the operator D†i ,
we omit their proofs.

(2) By (1), we have

D†i e
µ =

eµ
(
1− e(1−⟨µ, α∨

i ⟩)αi
)

1− eαi
= eµ + eµ+αi + · · ·+ eµ−⟨µ,α

∨
i ⟩αi ,

where, for the last equality, we have used the assumption that ⟨µ, α∨i ⟩ ≤ 0. This
proves the lemma.

4.4.2 Crystal structure on QLS(λ)

In this subsection, following [LNSSS4], we endow the set QLS(λ) with a canon-
ical U ′v(gaff)-crystal structure, where U ′v(gaff) denotes the quantum affine algebra
associated to the untwisted affine Lie algebra gaff associated to g.

We follow the notation of §3.4.1 (or §2.3). In this subsection, as in §3.4.1, we
regard an element λ ∈ h∗ as an element of h∗aff by: ⟨λ, c⟩ = ⟨λ, D⟩ = 0, and then we
have ϖi = Λi − a∨i Λ0 for i ∈ I. Also, as in the proof of Lemma 3.4.12, we set

s̃j :=

{
sj if j ̸= 0,

sθ if j = 0,
and α̃j :=

{
αj if j ̸= 0,

−θ if j = 0.

Remark 4.4.4. We identify an element ψ = (v1, . . . , vs;σ0, σ1, . . . , σs) ∈ QLS(λ) with
the following piecewise-linear, continuous map ψ : [0, 1]→ h∗R =

⊕
i∈I Rαi:

ψ(t) =

p−1∑
k=1

(σk − σk−1)vkλ+ (t− σp−1)vpλ for σp−1 ≤ t ≤ σp, 1 ≤ p ≤ s.

Let i ∈ Iaff . We define the root operators ei, fi : QLS(λ) → QLS(λ) ⊔ {0} as
follows.

First, we define a function H(t) on [0, 1] by

H(t) = Hψ
i (t) := ⟨ψ(t), α

∨
i ⟩, t ∈ [0, 1],

and set
m = mψ

i := min{Hψ
i (t) | t ∈ [0, 1]}.
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It follows from [LNSSS4, Proposition 4.1.12] that m ∈ Z≤0. If m = 0, then we set
eiψ := 0. If m ≤ −1, then we set

t1 := min{t ∈ [0, 1] | H(t) = m},
t0 := max{t ∈ [0, t1] | H(t) = m+ 1},

and define eiψ by

eiψ(t) :=


ψ(t) for t ∈ [0, t0],
ψ(t0) + s̃i(ψ(t)− ψ(t0)) for t ∈ [t0, t1],
ψ(t) + α̃i for t ∈ [t1, 1].

Similarly, we define fi as follows. If H(1) − m = 0, then we set fiψ := 0.
Otherwise, we set

t′0 := max{t ∈ [0, 1] | H(t) = m},
t′1 := min{t ∈ [t′0, 1] | H(t) = m+ 1},

and define fiψ by

fiψ(t) :=


ψ(t) for t ∈ [0, t′0],
ψ(t′0) + s̃i(ψ(t)− ψ(t′0)) for t ∈ [t′0, t

′
1],

ψ(t)− α̃i for t ∈ [t′1, 1].

Then, it follows from [LNSSS4, Proposition 4.2.1] that eiψ ∈ QLS(λ) ⊔ {0} and
fiψ ∈ QLS(λ) ⊔ {0} for ψ ∈ QLS(λ).

Also, for i ∈ Iaff , we define εi, φi : QLS(λ)→ Z by εi(ψ) := max{k ∈ Z≥0 | eki ψ ̸=
0}, φi(ψ) := max{k ∈ Z≥0 | fki ψ ̸= 0}.

As for the representation theoretic meaning of the set QLS(λ), we know the
following; for details, see [NS1], [NS2], [NS3], [LNSSS1], [LNSSS2], [LNSSS4], and
[Na].

Proposition 4.4.5 ([LNSSS4, Theorem 4.1.1], [NS3, Theorem 3.2], [Na, Remark
2.15]). The set QLS(λ), equipped with the maps wt, ei, fi, εi, φi, i ∈ Iaff , is a U ′v(gaff)-
crystal. Moreover, it provides a realization of the crystal basis of a particular quan-
tum Weyl module Wv(λ) over a quantum affine algebra U ′v(gaff).

Example 4.4.6. Let g be of type A2, and let λ = ϖ1 +ϖ2. Then the crystal graph
of QLS(λ) is as follows:
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f1 f2

f2f1

f2

f2

f0 f0

f0

f0

f1

f1

ηe

ηs1 ηs2

ηs2s1 ηs1s2

ηw◦

η1 η2 η3

Here, ψv = (v; 0, 1) for v ∈W , and

ψ1 := (s2s1, s1; 0, 1/2, 1), ψ2 := (s1s2, s2; 0, 1/2, 1), ψ3 := (e, w◦; 0, 1/2, 1).

The next lemma follows from the definition of root operators.

Lemma 4.4.7. Let i ∈ I and ψ ∈ QLS(λ) be such that fiψ = 0. Then, ⌊siκ(ψ)⌋ ≤
κ(ψ). Moreover, if eiψ ̸= 0, then the following hold:

(1) if κ(eiψ) = κ(ψ), then for every p > 0 such that epiψ ̸= 0, we have

κ(epiψ) = κ(ψ);

(2) if κ(eiψ) = ⌊siκ(ψ)⌋ < κ(ψ), then for every p > 0 such that epiψ ̸= 0, we have

κ(epiψ) = ⌊siκ(ψ)⌋.

Proof. Since fiψ = 0 by the assumption, it follows from the definition of the root
operator fi that max{t ∈ [0, 1] | Hψ

i (t) = mψ
i } = 1, and hence that the function

Hψ
i (t) is weakly decreasing in a sufficiently small neighborhood of the point t = 1.

Therefore, we must have ⟨κ(ψ)λ, α∨i ⟩ ≤ 0, and hence ⌊siκ(ψ)⌋ ≤ κ(ψ).
Now, suppose that there exists p ∈ Z>0 such that epiψ ̸= 0 and κ(epiψ) ̸=

κ(ep−1i ψ); note that if κ(epiψ) ̸= κ(ep−1i ψ), then κ(epiψ) = ⌊siκ(ep−1i ψ)⌋ by the
definition of ei (or, by the definition of fi). Therefore, if we set t′′0 := max{t ∈
[0, 1] | Hepi ψ

i (t) = m
epi ψ
i }, then from the definition of fi, we deduce that t

′′
1 := min{t ∈

[t′′0, 1] | H
epi ψ
i (t) = m

epi ψ
i + 1} = 1. Hence, by noting that m

ep−1
i ψ
i = m

epi ψ
i − 1, we

obtain max{t ∈ [0, 1] | Hep−1
i ψ
i (t) = m

ep−1
i ψ
i } = 1. This implies that fi(e

p−1
i ψ) = 0,

and hence p = 1. This proves the lemma.
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Remark 4.4.8. For ψ ∈ QLS(λ) such that fiψ ̸= 0, we obtain

κ(emax
i ψ) = · · · = κ(ψ) = · · · = κ(eif

max
i ψ) ≤ κ(fmax

i ψ)

by applying Lemma 4.4.7 to fmax
i ψ = ψ′, where fmax

i ψ := fφi(ψ)(ψ) and emax
i ψ :=

eεi(ψ)(ψ). Moreover, if κ(ψ) < ⌊siκ(ψ)⌋, then κ(fmax
i ψ) = ⌊siκ(ψ)⌋; otherwise,

κ(fmax
i ψ) = κ(ψ).

4.4.3 String property

Lemma 4.4.9. Let µ ∈ Wλ and i ∈ I be such that ⟨µ, α∨i ⟩ < 0, or equivalently,
siv(µ) = v(siµ) < v(µ) (see Lemma 4.3.13). If ψ ∈ QLSµ,∞(λ), then fmax

i ψ ∈
QLSµ,∞(λ).

Proof. If κ(fmax
i ψ) = κ(ψ), then the assertion is obvious. Hence we assume that

κ(fmax
i ψ) ̸= κ(ψ); in this case, κ(ψ) < ⌊siκ(ψ)⌋(≤ siκ(ψ)) and κ(fmax

i ψ) = ⌊siκ(ψ)⌋
by Remark 4.4.8. Since κ(ψ) ∈ ⌊EQB(v(µ))⌋ ⊂ EQB(v(µ)) by the assumption, it
follows from Lemma 4.3.7 (2) that siκ(ψ) ∈ EQB(v(µ)), and hence κ(fmax

i ψ) =
⌊siκ(ψ)⌋ ∈ ⌊EQB(v(µ))⌋. Hence it follows that fmax

i ψ ∈ QLSµ,∞(λ). This proves
the lemma.

Proposition 4.4.10. Let µ ∈ Wλ and i ∈ I be such that ⟨µ, α∨i ⟩ < 0. Let ψ ∈
QLS(λ), and let S(ψ) denote the i-string containing ψ, i.e.,

S(ψ) :=

∪
p≥0
{epiψ} ∪

∪
q≥0
{f qi ψ}

 \ {0}.
(a) If siv(µ) /∈ v(µ)WIv(µ), then

QLSµ,∞(λ) ∩ S(ψ) = ∅, S(ψ), or {fmax
i ψ}.

(b) If siv(µ) ∈ v(µ)WIv(µ), then

QLSµ,∞(λ) ∩ S(ψ) = ∅ or S(ψ).

Proof. Assume that QLSµ,∞(λ)∩S(ψ) ̸= ∅, and take ψ′ ∈ QLSµ,∞(λ)∩S(ψ). Since
fmax
i ψ′ ∈ QLSµ,∞(λ) ∩ S(ψ) by Lemma 4.4.9, we may assume that ψ′ is the lowest
element fmax

i ψ of the i-string S(ψ). If κ(eiψ
′) = κ(ψ′), then κ(epiψ

′) = κ(ψ′) ∈
⌊EQB(v(µ))⌋ for all p > 0 such that epiψ

′ ̸= 0 by Lemma 4.4.7 (1). Hence we obtain
S(ψ) ⊂ QLSµ,∞(λ).

Now we consider the case that κ(eiψ
′) = ⌊siκ(ψ′)⌋ < κ(ψ′); in this case, by

Lemma 4.4.7 (2), κ(epiψ
′) = κ(eiψ) = ⌊siκ(ψ′)⌋ for all p > 0 such that epiψ

′ ̸= 0.
Case (i). If siκ(ψ

′) ∈ EQB(v(µ)), then κ(epiψ
′) ∈ ⌊EQB(v(µ))⌋ for all p > 0

such that epiψ
′ ̸= 0, and hence S(ψ) \ {ψ′} ⊂ QLSµ,∞(λ). Thus, we obtain S(ψ) ⊂

QLSµ,∞(λ).
Case (ii). If siκ(ψ

′) /∈ EQB(v(µ)), then κ(epiψ
′) /∈ ⌊EQB(v(µ))⌋ for any p > 0

such that epiψ
′ ̸= 0, and hence (S(ψ) \ {ψ′})∩QLSµ,∞(λ) = ∅. Therefore, we obtain
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S(ψ) ∩QLSµ,∞(λ) = {ψ′} = {fmax
i ψ}.

Also, if siκ(ψ
′) /∈ EQB(v(µ)), then we have siv(µ) /∈ v(µ)WIv(µ) by Proposition

4.3.8 (2b). Hence we need the extra case that QLSµ,∞(λ)∩ S(ψ) = {fmax
i ψ} only if

siv(µ) /∈ v(µ)WIv(µ) . This proves the proposition.

Proposition 4.4.11. Let µ1, µ2 ∈ Wλ. Let ψ ∈ QLS(λ) and i ∈ I be such that
eiψ ̸= 0. Then,

degµ1(ψ)− degµ2(eiψ) = −wtλ(⌊v(µ1)⌋ ⇒ κ(ψ)) + wtλ(⌊v(µ2)⌋ ⇒ κ(eiψ)).

In particular, if κ(ψ) = κ(eiψ), then degµ(ψ) = degµ(eiψ) for all µ ∈Wλ.

Proof. If we set Deg(ψ) := degν(ψ) + wtλ(⌊v(ν)⌋ ⇒ κ(ψ)) for ν ∈ Wλ, then it
follows from the definition of degν(ψ) that Deg(ψ) does not depend on the choice of
ν ∈ Wλ, and that it is identical to the right-hand side of the equation in [LNSSS2,
Corollary 4.8]. Therefore, by [LNSSS2, Remark 4.4], we have

Deg(eiψ) = Deg(ψ),

and hence

degµ1(ψ) + wtλ(⌊v(µ1)⌋ ⇒ κ(ψ)) = degµ2(eiψ) + wtλ(⌊v(µ2)⌋ ⇒ κ(eiψ)).

This proves the first assertion of Proposition 4.4.11. The second assertion follows
from the first one.

4.4.4 Proof of the recursion formula in the case siv(µ) /∈ v(µ)WIv(µ)

Throughout this subsection, we take and fix µ ∈ Wλ and i ∈ I such that
⟨µ, α∨i ⟩ < 0 and siv(µ) /∈ v(µ)WIv(µ) . We set Eµ(λ) :=

∪
p≥0 e

p
iQLSµ,∞(λ) \ {0}.

Lemma 4.4.12. We have

Eµ(λ) = QLSµ,∞(λ) ⊔QLSsiµ,∞(λ).

Proof. First, we note that κ(epiψ) = κ(ψ) or ⌊siκ(ψ)⌋ for ψ ∈ QLS(λ) and p ∈ Z≥0
such that epiψ ̸= 0. It follows from Proposition 4.3.14 (1) that the inclusion ⊂ holds,
and that QLSµ,∞(λ) ∩ QLSsiµ,∞(λ) = ∅. Hence it remains to prove the opposite
inclusion ⊃. It is obvious that Eµ(λ) ⊃ QLSµ,∞(λ). Let ψ ∈ QLSsiµ,∞(λ). Then,
since κ(ψ) ∈ ⌊EQB(v(siµ))⌋, it follows from Lemma 4.3.15 that ⌊siκ(ψ)⌋ > κ(ψ),
and siκ(ψ) ∈ EQB(v(µ)). Also, by Remark 4.4.8, we have κ(fmax

i ψ) = ⌊siκ(ψ)⌋, and
hence fmax

i ψ ∈ QLSµ,∞(λ). Since there exists p ∈ Z≥0 such that epi (f
max
i ψ) = ψ, we

deduce that ψ = epi (f
max
i ψ) ∈ epiQLSµ,∞(λ) \ {0} ⊂ Eµ(λ), as desired. This proves

the lemma.

Lemma 4.4.13. Let ψ ∈ QLSµ,∞(λ) be such that fiψ = 0, and let k ∈ Z>0 be such
that eki ψ ̸= 0. Then
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(1) if eki ψ ∈ QLSsiµ,∞(λ), then degsiµ(e
k
i ψ) = degµ(ψ);

(2) if eki ψ ∈ QLSµ,∞(λ), then degµ(e
k
i ψ) = degµ(ψ).

Proof. First, we note that eki ψ ∈ QLSµ,∞(λ) (resp., ∈ QLSsiµ,∞(λ)) if and only if
eiψ ∈ QLSµ,∞(λ) (resp., ∈ QLSsiµ,∞(λ)), since κ(eiψ) = · · · = κ(eki ψ) by Lemma
4.4.7.

(1) Since eki ψ ∈ QLSsiµ,∞(λ) by the assumption, we have eiψ ∈ QLSsiµ,∞(λ).
In this case, since ⌊EQB(v(µ))⌋ ∩ ⌊EQB(siv(µ))⌋ = ∅ by Proposition 4.3.14 (1), it
follows that κ(eiψ) ̸= κ(ψ), and hence κ(eiψ) = ⌊siκ(ψ)⌋ < κ(ψ) by Lemma 4.4.7;
notice that siκ(ψ) < κ(ψ). Therefore, we see that

degµ(ψ)− degsiµ(eiψ)

= −wtλ(⌊v(µ)⌋ ⇒ κ(ψ)) + wtλ(⌊siv(µ)⌋ ⇒ ⌊siκ(ψ)⌋) by Proposition 4.4.11

= −wtλ(v(µ)⇒ κ(ψ)) + wtλ(siv(µ)⇒ siκ(ψ)) by equation (3.2.3)

= 0 by Proposition 4.3.11 (1);

the last equality follows since siv(µ) < v(µ) and siκ(ψ) < κ(ψ) by our assump-
tion. Since κ(eiψ) = κ(e2iψ) = · · · = κ(eki ψ) by Lemma 4.4.7 (2), we deduce that
degsiµ(eiψ) = · · · = degsiµ(e

k
i ψ) by Proposition 4.4.11. This proves the desired

equality degsiµ(e
k
i ψ) = degµ(ψ).

(2) Since eki ψ ∈ QLSµ,∞(λ) by the assumption, we have eiψ ∈ QLSµ,∞(λ).
If κ(eiψ) = κ(ψ), then degµ(eiψ) = degµ(ψ) by Proposition 4.4.11. If κ(eiψ) =
⌊siκ(ψ)⌋ < κ(ψ), then κ(eiψ) = ⌊siκ(ψ)⌋ ∈ ⌊EQB(v(µ))⌋, and hence siκ(ψ) ∈
EQB(v(µ)) by Lemma 4.3.12. In this case, it follows from Proposition 4.3.8 (1a)
that siκ(ψ) /∈ EQB(siv(µ)). Therefore, we see that

degµ(ψ)− degµ(eiψ)

= −wtλ(⌊v(µ)⌋ ⇒ κ(ψ)) + wtλ(⌊v(µ)⌋ ⇒ ⌊siκ(ψ)⌋) by Proposition 4.4.11

= −wtλ(v(µ)⇒ κ(ψ)) + wtλ(v(µ)⇒ siκ(ψ)) by equation (3.2.3)

= 0 by Proposition 4.3.11 (2).

Thus, in both cases, we have degµ(eiψ) = degµ(ψ). Since κ(eiψ) = κ(e2iψ) =

· · · = κ(eki ψ) by Lemma 4.4.7 (2), we deduce that degµ(eiψ) = · · · = degµ(e
k
i ψ) by

Proposition 4.4.11. This proves the desired equality degµ(e
k
i ψ) = degµ(ψ).

Lemma 4.4.14. We have

chµQLSµ,∞(λ) + chsiµQLSsiµ,∞(λ) = D†i chµQLSµ,∞(λ).

Proof. Let S1, . . . , St be all of the distinct i-strings Sj such that QLSµ,∞(λ)∩Sj ̸= ∅.
Then, QLSµ,∞(λ) decomposes into a disjoint union of i-strings as follows:

QLSµ,∞(λ) = (QLSµ,∞(λ) ∩ S1) ⊔ · · · ⊔ (QLSµ,∞(λ) ∩ St) .

From this, we deduce that

chµQLSµ,∞(λ) = chµ (QLSµ,∞(λ) ∩ S1) + · · ·+ chµ (QLSµ,∞(λ) ∩ St) , (4.4.1)
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where we use the notation (4.2.1). Applying D†i to equation (4.4.1), we obtain

D†i chµQLSµ,∞(λ) = D†i chµ (QLSµ,∞(λ) ∩ S1) + · · ·+D†i chµ (QLSµ,∞(λ) ∩ St) .

Here, because QLSµ,∞(λ) ∩ Sj = Sj or {fmax
i ψ} for some ψ ∈ QLSµ,∞(λ) ∩ Sj for

each 1 ≤ j ≤ t by Proposition 4.4.10 (a), we see from the definition of Eµ(λ) that

Eµ(λ) ∩ Sj = Sj for all 1 ≤ j ≤ t,

and hence
Eµ(λ) = S1 ⊔ · · · ⊔ St.

Also, since Eµ(λ) = QLSµ,∞(λ) ⊔QLSsiµ,∞(λ) by Lemma 4.4.12, we deduce that

chµQLSµ,∞(λ) + chsiµQLSsiµ,∞(λ)

=
t∑

j=1

(chµ(QLSµ,∞(λ) ∩ Sj) + chsiµ(QLSsiµ,∞(λ) ∩ Sj)) .

Therefore, in order to prove the lemma, it suffices to show that for each 1 ≤ j ≤ t,

D†i chµ (QLSµ,∞(λ) ∩ Sj) = chµ(QLSµ,∞(λ)∩Sj)+chsiµ(QLSsiµ,∞(λ)∩Sj), (4.4.2)

where we use the notation (4.2.1).
Now, let 1 ≤ j ≤ t, and write Sj = {ψ, eiψ, . . . , eki ψ} for some k ≥ 0 (depending

on j), where ψ is the lowest element of the i-string Sj . Since fiψ = 0, we have k =
−⟨wt(ψ), α∨i ⟩. Hence wt(eki ψ) = wt(ψ) + kαi = wt(ψ) − ⟨wt(ψ), α∨i ⟩αi = siwt(ψ).
In view of Proposition 4.4.10 (a), we need to consider the following two cases.

Case (i). Assume that QLSµ,∞(λ)∩Sj = Sj . In this case, we have QLSsiµ,∞(λ)∩
Sj = ∅ by Lemma 4.4.12, and degµ(ψ) = · · · = degµ(e

k
i ψ) by Lemma 4.4.13 (2).

From these, we see that

chµ(QLSµ,∞(λ) ∩ Sj) + chsiµ(QLSsiµ,∞(λ) ∩ Sj) = chµ(QLSµ,∞(λ) ∩ Sj)

= qdegµ(ψ)ewt(ψ) + · · ·+ qdegµ(e
k
i ψ)esiwt(ψ)

= qdegµ(ψ)(ewt(ψ) + · · ·+ esiwt(ψ))

= D†i q
degµ(ψ)ewt(ψ) by Lemma 4.4.3 (2),

and hence

D†i chµ(QLSµ,∞(λ) ∩ Sj) = (D†i )
2qdegµ(ψ)ewt(ψ)

= D†i q
degµ(ψ)ewt(ψ) by Lemma 4.4.3 (3)

= chµ(QLSµ,∞(λ) ∩ Sj) + chsiµ(QLSsiµ,∞(λ) ∩ Sj).

Case (ii). Assume that QLSµ,∞(λ)∩Sj = {ψ}. In this case, we have QLSsiµ,∞(λ)∩
Sj = {eiψ, . . . , eki ψ} by Lemma 4.4.12, and degµ(ψ) = degsiµ(eiψ) = · · · = degsiµ(e

k
i ψ)

by Lemma 4.4.13 (1). From these, we see that chµ(QLSµ,∞(λ)∩Sj) = qdegµ(ψ)ewt(ψ),
and that

chsiµ(QLSsiµ,∞(λ) ∩ Sj) = qdegsiµ(eiψ)ewt(eiψ) + · · ·+ qdegsiµ(e
k
i ψ)ewt(eki ψ)

= qdegµ(ψ)(ewt(ψ)+αi + · · ·+ esiwt(ψ)).
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Hence we deduce that

D†i chµ (QLSµ,∞(λ) ∩ Sj) = D†i q
degµ(ψ)ewt(ψ)

= qdegµ(ψ)(ewt(ψ) + · · ·+ esiwt(ψ)) by Lemma 4.4.3 (2)

= chµ(QLSµ,∞(λ) ∩ Sj) + chsiµ(QLSsiµ,∞(λ) ∩ Sj).

Thus, in both cases, we obtain equation (4.4.2), as desired. This proves the lemma.

Proof of Theorem 4.4.1 (a). By Lemma 4.4.14, we have

D†i chµQLSµ,∞(λ) = chµQLSµ,∞(λ) + chsiµQLSsiµ,∞(λ).

Since D†i = T †i + 1, we conclude from this equation that T †i chµQLSµ,∞(λ) =
chsiµQLSsiµ,∞(λ). This proves Theorem 4.4.1 (a).

Example 4.4.15. Let g be of type A2, and let λ = ϖ1 + ϖ2, w = s1s2, i = 1; by
Example 4.3.9, we have s1w = s2 /∈ wWIw . Let ψv, v ∈ W , and ψk, k = 1, 2, 3, be
as in Example 4.4.6. Recall from Example 4.2.9 that

QLSs1s2λ,∞(λ) = {ψs1s2 , ψs1 , ψ1},
QLSs2λ,∞(λ) = {ψs2 , ψe, ψ2}.

Since e1ψs1s2 = ψ2, e
2
1ψs1s2 = ψs2 , e1ψ1 = 0, and e1ψs1 = ψe by Example 4.4.6, we

see that ∪
p≥0

ep1QLSs1s2λ,∞(λ) \ {0} = {ψs1s2 , ψs1 , ψ1, ψs2 , ψe, ψ2}

= QLSs1s2λ,∞(λ) ⊔QLSs2λ,∞(λ).

Also, by Example 4.2.9, we have

degs1s2λ(ψs1s2) = degs2λ(ψ2) = degs2λ(ψs2) = 0,

degs1s2λ(ψs1) = degs2λ(ψe) = −1, (4.4.3)

degs1s2λ(ψ1) = −1.
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Therefore, by using the data in Example 4.2.9, we compute:

D†1Es1s2λ(q,∞)

= D†1

 ∑
ψ∈QLSs1s2λ,∞(λ)

qdegs1s2λ(ψ)ewt(ψ)


= D†1q

degs1s2λ(ψs1s2 )ewt(ψs1s2 ) +D†1q
degs1s2λ(ψs1 )ewt(ψs1 ) +D†1q

degs1s2λ(ψ1)ewt(ψ1)

= D†1q
degs1s2λ(ψs1s2 )es1s2λ +D†1q

degs1s2λ(ψs1 )es1λ +D†1q
degs1s2λ(ψ1)e0

= qdegs1s2λ(ψs1s2 )
(
es1s2λ + e0 + es2λ

)
+ qdegs1s2λ(ψs1 )

(
es1λ + eλ

)
+ qdegs1s2λ(ψ1)e0

(by Lemma 4.4.3 (2))

= qdegs1s2λ(ψs1s2 )
(
ewt(ψs1s2 ) + ewt(ψ1) + ewt(ψs2 )

)
+ qdegs1s2λ(ψs1 )

(
ewt(ψs1 ) + ewt(ψe)

)
+ qdegs1s2λ(ψ1)ewt(ψ1)

=
∑

ψ∈QLSs1s2λ,∞(λ)

qdegs1s2λ(ψ)ewt(ψ) +
∑

ψ∈QLSs2λ,∞(λ)

qdegs2λ(ψ)ewt(ψ) by (4.4.3)

= Es1s2λ(q,∞) + Es2λ(q,∞).

4.4.5 Proof of the recursion formula in the case siv(µ) ∈ v(µ)WIv(µ)

Throughout this subsection, we take and fix µ ∈ Wλ and i ∈ I such that
⟨µ, α∨i ⟩ < 0 and siv(µ) ∈ v(µ)WIv(µ) .

Lemma 4.4.16. There exist i-strings S1, . . . , St ⊂ QLSµ,∞(λ) such that

QLSµ,∞(λ) = QLSsiµ,∞(λ) ⊔ fmax
i QLSsiµ,∞(λ) ⊔ S1 ⊔ · · · ⊔ St,

where fmax
i QLSsiµ,∞(λ) := {fmax

i ψ | ψ ∈ QLSsiµ,∞(λ)}. In particular,

chµQLSµ,∞(λ)
= chµQLSsiµ,∞(λ) + chµ(f

max
i QLSsiµ,∞(λ)) + chµ(S1 ⊔ · · · ⊔ St),

(4.4.4)

where we use the notation (4.2.1).

Proof. Let ψ ∈ QLSsiµ,∞(λ). Since κ(ψ) ∈ ⌊EQB(siv(µ))⌋, it follows from Lemma
4.3.15 that ⌊siκ(ψ)⌋ > κ(ψ), and siκ(ψ) ∈ EQB(v(µ)) \ EQB(v(siµ)). If we set
ψ′ := fmax

i ψ ∈ fmax
i QLSsiµ,∞(λ), then we have S(ψ) = S(ψ′) = {ψ′, eiψ′, . . . , eki ψ′}

for some k ∈ Z≥0. Here, by Lemma 4.3.12 and Remark 4.4.8, we have κ(ψ′) =
⌊siκ(ψ)⌋ ∈ ⌊EQB(v(µ))⌋ \ ⌊EQB(siv(µ))⌋ and κ(eiψ

′) = · · · = κ(eki ψ
′) = κ(ψ) ∈

⌊EQB(v(siµ))⌋ ⊂ ⌊EQB(v(µ))⌋; notice that ψ′ ̸= ψ, and hence k > 0. Thus, we
have {eiψ′, . . . , eki ψ′} = QLSsiµ,∞(λ) ∩ S(ψ). Also, since ψ′ = fmax

i ψ, we see that
ψ′ ∈ fmax

i QLSsiµ,∞(λ) ∩ S(ψ). Therefore, it follows that

S(ψ) = {ψ′, eiψ′, . . . , eki ψ′} = (QLSsiµ,∞(λ) ⊔ fmax
i QLSsiµ,∞(λ)) ∩ S(ψ).

The argument above shows that QLSsiµ,∞(λ)⊔fmax
i QLSsiµ,∞(λ) decomposes into a

disjoint union of i-strings. In addition, by Proposition 4.4.10 (b), so does QLSµ,∞(λ).
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Hence the same is true for

QLSµ,∞(λ) \ (QLSsiµ,∞(λ) ⊔ fmax
i QLSsiµ,∞(λ)) ;

here, we remark that QLSµ,∞(λ) ⊃ QLSsiµ,∞(λ)⊔ fmax
i QLSsiµ,∞(λ) since κ(epiψ

′) ∈
⌊EQB(v(µ))⌋ for all 1 ≤ p ≤ k if ψ ∈ QLSsiµ,∞(λ), as seen in the argument above.
This proves the first assertion.

The second assertion follows from the first one.

Lemma 4.4.17.

(1) Let ψ ∈ fmax
i QLSsiµ,∞(λ). Then, for every k ∈ Z>0 such that eki ψ ̸= 0, we

have
degsiµ(e

k
i ψ) = degµ(ψ) = degµ(e

k
i ψ) + ⟨λ,−v(µ)−1α∨i ⟩.

(2) Let Sj, 1 ≤ j ≤ t, be as in Lemma 4.4.16, and let ψ ∈ Sj. Then, for every
k, ℓ ∈ Z>0 such that eki ψ ̸= 0, and f ℓi ψ ̸= 0, we have

degµ(e
k
i ψ) = degµ(f

ℓ
i ψ) = degµ(ψ).

Proof. (1) Let ψ ∈ fmax
i QLSsiµ,∞(λ). It follows from the proof of Lemma 4.4.16

that κ(eiψ) = ⌊siκ(ψ)⌋ < κ(ψ), and κ(eiψ) ∈ ⌊EQB(siv(µ))⌋; hence siκ(ψ) < κ(ψ).
Therefore, we have

degµ(ψ)− degsiµ(eiψ)

= −wtλ(⌊v(µ)⌋ ⇒ κ(ψ)) + wtλ(⌊siv(µ)⌋ ⇒ ⌊siκ(ψ)⌋) by Proposition 4.4.11

= −wtλ(v(µ)⇒ κ(ψ)) + wtλ(siv(µ)⇒ siκ(ψ)) by equation (3.2.3)

= 0 by Proposition 4.3.11 (1).

Also, since κ(eiψ) = κ(e2iψ) = · · · = κ(eki ψ) by Lemma 4.4.7 (2), we see that
degsiµ(eiψ) = · · · = degsiµ(e

k
i ψ) by Proposition 4.4.11. Hence we obtain degsiµ(e

k
i ψ) =

degµ(ψ).
Now, since ⌊siκ(ψ)⌋ = κ(eiψ) ∈ ⌊EQB(siv(µ))⌋, we have siκ(ψ) ∈ EQB(siv(µ))

by Lemma 4.3.12. Hence we see that

degµ(ψ)− degµ(eiψ)

= −wtλ(⌊v(µ)⌋ ⇒ κ(ψ)) + wtλ(⌊v(µ)⌋ ⇒ ⌊siκ(ψ)⌋) by Proposition 4.4.11

= −wtλ(v(µ)⇒ κ(ψ)) + wtλ(v(µ)⇒ siκ(ψ)) by equation (3.2.3)

= ⟨λ,−v(µ)−1α∨i ⟩ by Proposition 4.3.11 (3).

Since κ(eiψ) = κ(e2iψ) = · · · = κ(eki ψ) as mentioned above, we have degµ(eiψ) =

· · · = degµ(e
k
i ψ) by repeated application of Proposition 4.4.11. Combining these, we

obtain degµ(ψ) = degµ(e
k
i ψ) + ⟨λ,−v(µ)−1α∨i ⟩, as desired.

(2) By Lemma 4.4.9, it suffices to show that degµ(e
k
i ψ) = degµ(ψ) for ψ ∈ Sj

such that ψ is the lowest element of the i-string Sj .
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If κ(eiψ) = κ(ψ), then κ(eki ψ) = κ(ψ) by Lemma 4.4.7 (1). In this case, applying
Proposition 4.4.11 repeatedly, we obtain degµ(e

k
i ψ) = degµ(ψ).

If κ(eiψ) = ⌊siκ(ψ)⌋ < κ(ψ) (notice that in this case, we have siκ(ψ) <
κ(ψ)), then siκ(ψ) /∈ EQB(siv(µ)); indeed, since Sj is an i-string such that Sj ∩
QLSsiµ,∞(λ) = ∅, we have eiψ ∈ Sj\QLSsiµ,∞(λ), and hence κ(eiψ) /∈ ⌊EQB(siv(µ))⌋.
Therefore, we have

degµ(ψ)− degµ(eiψ)

= −wtλ(⌊v(µ)⌋ ⇒ κ(ψ)) + wtλ(⌊v(µ)⌋ ⇒ ⌊siκ(ψ)⌋) by Proposition 4.4.11

= −wtλ(v(µ)⇒ κ(ψ)) + wtλ(v(µ)⇒ siκ(ψ)) by equation (3.2.3)

= 0 by Proposition 4.3.11 (2).

Also, applying Proposition 4.4.11 repeatedly, we have degµ(eiψ) = · · · = degµ(e
k
i ψ).

Combining these, we obtain degµ(e
k
i ψ) = degµ(ψ), as desired. This proves the

lemma.

Lemma 4.4.18.

(1) D†i chµ(f
max
i QLSsiµ,∞(λ)) = chµ(f

max
i QLSsiµ,∞(λ)) + chsiµQLSsiµ,∞(λ).

(2) chµQLSsiµ,∞(λ) = q⟨λ,v(µ)
−1α∨

i ⟩ chsiµQLSsiµ,∞(λ).

(3) D†i chµQLSsiµ,∞(λ) = 0.

(4) Let Sj, 1 ≤ j ≤ t, be as in Lemma 4.4.16. Then, D†i chµ Sj = chµ Sj.

Proof. By the proof of Lemma 4.4.16, there exists i-strings S′1, . . . , S
′
u such that

QLSsiµ,∞(λ) ⊔ fmax
i QLSsiµ,∞(λ) = S′1 ⊔ · · · ⊔ S′u.

To prove parts (1), (2), and (3), it suffices to show the following claim.

Claim. For each 1 ≤ j ≤ u, the following hold:

(i) D†i chµ(S
′
j ∩ fmax

i QLSsiµ,∞(λ)) = chµ(S
′
j ∩ fmax

i QLSsiµ,∞(λ)) + chsiµ(S
′
j ∩

QLSsiµ,∞(λ)).

(ii) chµ(S
′
j ∩QLSsiµ,∞(λ)) = q⟨λ,v(µ)

−1α∨
i ⟩ chsiµ(S

′
j ∩QLSsiµ,∞(λ)).

(iii) D†i chµ(S
′
j ∩QLSsiµ,∞(λ)) = 0.

Proof of Claim. Let 1 ≤ j ≤ u, and write S′j = {ψ, eiψ, . . . , eki ψ} for some k ∈ Z≥0
(depending on j), where ψ is the lowest element of the i-string Sj ; note that k > 0
by the proof of Lemma 4.4.16. Then it follows that S′j ∩ fmax

i QLSsiµ,∞(λ) = {ψ}
and S′j ∩QLSsiµ,∞(λ) = {eiψ, . . . , eki ψ}.
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(i) We have chµ(S
′
j ∩ fmax

i QLSsiµ,∞(λ)) = qdegµ(ψ)ewt(ψ). Hence it follows from

Lemma 4.4.3 (2) (note that ⟨wt(ψ), α∨i ⟩ ≤ 0), together with the equality wt(eki ψ) =
siwt(ψ), that

D†i chµ(S
′
j ∩ fmax

i QLSsiµ,∞(λ)) = qdegµ(ψ)(ewt(ψ) + · · ·+ esiwt(ψ))

= qdegµ(ψ)(ewt(ψ) + · · ·+ ewt(eki ψ)).

Also, we see that

chµ(S
′
j ∩ fmax

i QLSsiµ,∞(λ)) + chsiµ(S
′
j ∩QLSsiµ,∞(λ)) =

qdegµ(ψ)ewt(ψ) + qdegsiµ(eiψ)ewt(eiψ) + · · ·+ qdegsiµ(e
k
i ψ)ewt(eki ψ).

Because degµ(ψ) = degsiµ(eiψ) = · · · = degsiµ(e
k
i ψ) by Lemma 4.4.17 (1), we

conclude that

D†i chµ(S
′
j ∩ fmax

i QLSsiµ,∞(λ))

= chµ(S
′
j ∩ fmax

i QLSsiµ,∞(λ)) + chsiµ(S
′
j ∩QLSsiµ,∞(λ)),

as desired.
(ii) We deduce that

chµ(S
′
j ∩QLSsiµ,∞(λ))

= qdegµ(eiψ)ewt(eiψ) + · · ·+ qdegµ(e
k
i ψ)ewt(eki ψ)

= q⟨λ,v(µ)
−1α∨

i ⟩+degµ(ψ)(ewt(eiψ) + · · ·+ ewt(eki ψ)) by Lemma 4.4.17 (1)

= q⟨λ,v(µ)
−1α∨

i ⟩
(
qdegsiµ(eiψ)ewt(eiψ) + · · ·+ qdegsiµ(e

k
i ψ)ewt(eki ψ)

)
by Lemma 4.4.17 (1)

= q⟨λ,v(µ)
−1α∨

i ⟩ chsiµ(S
′
j ∩QLSsiµ,∞(λ)),

as desired.
(iii) As in the proof of (ii), we compute:

chµ(S
′
j ∩QLSsiµ,∞(λ))

= q−⟨λ,−v(µ)
−1α∨

i ⟩+degµ(ψ)(ewt(eiψ) + · · ·+ ewt(eki ψ)) by Lemma 4.4.17 (1)

= q−⟨λ,−v(µ)
−1α∨

i ⟩+degµ(ψ)
((
ewt(ψ) + ewt(eiψ) + · · ·+ ewt(eki ψ)

)
− ewt(ψ)

)
= q−⟨λ,−v(µ)

−1α∨
i ⟩+degµ(ψ)

(
D†i − 1

)
(ewt(ψ)) by Lemma 4.4.3 (2).

From this, we deduce that

D†i chµ(S
′
j ∩QLSsiµ,∞(λ)) = q−⟨λ,−v(µ)

−1α∨
i ⟩+degµ(ψ)

(
(D†i )

2 −D†i
)
ewt(ψ)

= 0 by Lemma 4.4.3 (3),

as desired.
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(4) Let 1 ≤ j ≤ u, and write Sj = {ψ, eiψ, . . . , eki ψ} for some k ≥ 0 (depending
on j), where ψ is the lowest element of the i-string Sj . From Lemma 4.4.17 (2) and
the equality wt(eki ψ) = siwt(ψ), we deduce that

chµ Sj = qdegµ(ψ)(ewt(ψ) + · · ·+ ewt(eki ψ)) = qdegµ(ψ)(ewt(ψ) + · · ·+ esiwt(ψ))

= D†i q
degµ(ψ)ewt(ψ).

From this, we see that

D†i chµ Sj = (D†i )
2 chµ{ψ} = D†i chµ{ψ} = chµ Sj by Lemma 4.4.3 (3),

which proves part (4).

Proof of Theorem 4.4.1 (b). Applying D†i to both sides of equation (4.4.4) in Lemma
4.4.16, we deduce that

D†i chµQLSµ,∞(λ)

= D†i chµQLSsiµ,∞(λ) +D†i chµ(f
max
i QLSsiµ,∞(λ)) +D†i chµ(S1 ⊔ · · · ⊔ St)

(4.4.5)

= chµ(f
max
i QLSsiµ,∞(λ)) + chsiµQLSsiµ,∞(λ) + chµ(S1 ⊔ · · · ⊔ St)

by Lemma 4.4.18 (1), (3), (4).

By subtracting equation (4.4.4) in Lemma 4.4.16 from equation (4.4.5), we see that

T †i chµQLSµ,∞(λ) = chsiµQLSsiµ,∞(λ)− chµQLSsiµ,∞(λ)

= (1− q⟨λ,v(µ)−1α∨
i ⟩) chsiµQLSsiµ,∞(λ) by Lemma 4.4.18 (2),

which proves Theorem 4.4.1 (b).

Example 4.4.19. Let g be of type A2, and let λ = ϖ1 +ϖ2, w = w◦, and i = 2; by
Example 4.3.9, we have s2w = s1s2 ∈ wWIw . Let ψv, v ∈W , and ψk, k = 1, 2, 3, be
as in Example 4.4.6. Recall from Example 4.2.9 that

QLSw◦λ,∞(λ) = QLS(λ) = {ψv | v ∈W} ⊔ {ψk | k = 1, 2, 3},
QLSs1s2λ,∞(λ) = {ψs1s2 , ψs1 , ψ1}.

Since e2ψw◦ = ψs1s2 , e2ψs2s1 = ψ1, e
2
2ψs2s1 = ψs1 , e2ψs2 = ψe, and e2ψs1s2 = e2ψ2 =

e2ψs1 = e2ψe = e2ψ3 = 0 by Example 4.4.6, we have

fmax
2 QLSs1s2λ,∞(λ) = {ψw◦ , ψs2s1}.

Hence we see that

QLSw◦λ,∞(λ) = QLSs1s2λ,∞(λ) ⊔ fmax
2 QLSs1s2λ,∞(λ) ⊔ {ψs2 , ψe} ⊔ {ψ2} ⊔ {ψ3};

remark that {ψs2 , ψe}, {ψ2}, and {ψ3} are 2-strings. We set

S1 := {ψw◦ , ψs1s2}, S2 := {ψs2s1 , ψ1, ψs1}, S3 := {ψs2 , ψe}, S4 := {ψ2}, S5 := {ψ3}.
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Then we have

QLSw◦λ,∞(λ) = S1 ⊔ S2 ⊔ S3 ⊔ S4 ⊔ S5,
QLSs1s2λ,∞(λ) ⊔ fmax

2 QLSs1s2λ,∞(λ) = S1 ⊔ S2.

In addition, by Example 4.2.9, we have

degw◦λ(ψw◦) = degs1s2λ(ψs1s2) = degw◦λ(ψs1s2) + 1,

degw◦λ(ψs2s1) = degs1s2λ(ψ1) = degs1s2λ(ψs1)

= degw◦λ(ψ1) + 1 = degw◦λ(ψs1) + 1,

degw◦λ(ψs2) = degw◦λ(ψe);

(4.4.6)

note that ⟨λ, −w−1◦ α∨2 ⟩ = 1. Therefore, we compute:

D†2 chw◦λ S1 = D†2

(
qdegw◦λ(ψw◦ )ewt(ψw◦ ) + qdegw◦λ(ψs1s2 )ewt(ψs1s2 )

)
= D†2

(
qdegw◦λ(ψw◦ )ew◦λ + qdegw◦λ(ψs1s2 )es1s2λ

)
= qdegw◦λ(ψw◦ )D†2e

w◦λ since D†2e
s1s2λ = 0

= qdegw◦λ(ψw◦ )
(
ew◦λ + es1s2λ

)
by Lemma 4.4.3 (2)

= qdegw◦λ(ψw◦ )ew◦λ + qdegs1s2λ(ψs1s2 )es1s2λ by (4.4.6)

= qdegw◦λ(ψw◦ )ewt(ψw◦ ) + qdegs1s2λ(ψs1s2 )ewt(ψs1s2 )

= chw◦λ(S1 ∩ fmax
2 QLSs1s2λ,∞(λ)) + chs1s2λ(S1 ∩QLSs1s2λ,∞(λ)),

where, for the second and sixth equalities, we have used equalities wt(ψw◦) = w◦λ
and wt(ψs1s2) = s1s2λ in Example 4.2.9. Similarly, we deduce that

D†2 chw◦λ S2 = chw◦λ(S2 ∩ fmax
2 QLSs1s2λ,∞(λ)) + chs1s2λ(S2 ∩QLSs1s2λ,∞(λ)).

Also, it is easy to check that

D†2 chw◦λ Sk = chw◦λ Sk for k = 3, 4, 5;

note that we use (4.4.6) for k = 3. Thus, we obtain

D†2 chw◦λQLSw◦λ,∞(λ)

= chw◦λ(f
max
2 QLSs1s2λ,∞(λ)) + chs1s2λQLSs1s2λ,∞(λ) + chw◦λ(S3 ⊔ S4 ⊔ S5).
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