TERE | ﬁi_ﬁ]ﬁ%ﬁﬁuﬁ-_} TR R U |

Tokyo Tech =

esearch Repository

Od/dodn
Article / Book Information

oo(@o)

Citation(English)

Type(English)

UO0D0O0O=ee DOODODOOOOOOOOOODOO

Specialization of nonsymmetric Macdonald polynomials att =« and
level-zero representations of quantum affine algebras

0o:00@O),

oooooo:0o0o0ooo,

0000:00107110,

00 000:20180 30 26001,

ooooo:oooo,

000:000,00 00,00 000,00 O00,KALMAN TAMAS

Degree:Doctor (Science),

Conferring organization: Tokyo Institute of Technology,
Report number:J 0 107110,

Conferred date:2018/3/26,

Degree Type:Course doctor,

Examiner:,,,,

Doctoral Thesis

Powered by T2R2 (Tokyo Institute Research Repository)



http://t2r2.star.titech.ac.jp/

Specialization of nonsymmetric
Macdonald polynomials at ¢ = oo and
level-zero representations of quantum

affine algebras

HRIEAF

Tokyo Institute of Technology

Fumihiko Nomoto
Tokyo Institute of Technology

A thesis submitted for the degree of
Doctor of Science

February 2018



Abstract

In this paper, we establish an explicit description of the specialization E, (g, c0)
of the nonsymmetric Macdonald polynomials Fy)(q,t) at t = oo in terms of the
quantum Bruhat graph, where A is a dominant weight and w is an element of a finite
Weyl group W. As an application of this explicit formula, we give a representation-
theoretic interpretation of the specialization F,, (g, c0) in terms of the Demazure
submodule V,;_ (A) of the level-zero extremal weight module V() over a quantum
affine algebra of untwisted type; here, w, denotes the longest element of the finite
Weyl group W. Also, we give a representation-theoretic proof of Cherednik-Orr’s
recursion formula of Demazure type for the specialization at ¢t = oo of nonsymmetric
Macdonald polynomials.
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Chapter 1

Introduction

Symmetric Macdonald polynomials with two parameters ¢ and ¢ were introduced
by Macdonald [M2] as a family of orthogonal symmetric polynomials, which include
as special or limiting cases almost all the classical families of orthogonal symmetric
polynomials. This family of polynomials are characterized in terms of the double
affine Hecke algebra (DAHA) introduced by Cherednik ([C1], [C2]). In fact, there
exists another family of orthogonal polynomials, called nonsymmetric Macdonald
polynomials, which are simultaneous eigenfunctions of Y-operators acting on the
polynomial representation of the DAHA; by “symmetrizing” nonsymmetric Mac-
donald polynomials, we obtain symmetric Macdonald polynomials (see [M1]).

Based on the characterization above of nonsymmetric Macdonald polynomials,
Ram-Yip [RY] obtained a combinatorial formula expressing symmetric or nonsym-
metric Macdonald polynomials associated to an arbitrary untwisted affine root sys-
tem; this formula is described in terms of alcove walks, which are certain strictly
combinatorial objects. In addition, Orr-Shimozono [OS] refined the Ram-Yip for-
mula above, and generalized it to an arbitrary affine root system (including the
twisted case); also, they specialized their formula at ¢ = 0, t = oo, ¢ = 0, and
q = oo.

As for representation-theoretic interpretations of the specialization of symmetric
or nonsymmetric Macdonald polynomials at ¢ = 0, we know the following. Ion [I]
proved that for a dominant integral weight A and an element x of a finite Weyl
group W, the specialization E,(q,0) of the nonsymmetric Macdonald polynomial
E.\(q,t) at t = 0 is equal to the graded character of a certain Demazure sub-
module of an irreducible highest weight module over an affine Lie algebra of un-
twisted simply-laced type or twisted non-simply-laced type. As for the relation with
level-zero representations of quantum affine algebras, Lenart-Naito-Sagaki-Schilling-
Shimozono [LNSSS2] proved that for a dominant integral weight A, the set QLS())
of all quantum Lakshmibai-Seshadri (QLS) paths of shape A provides a realization
of the crystal basis of a special quantum Weyl module over a quantum affine al-
gebra U)(gag) (without degree operator) of an arbitrary untwisted type, and also
proved that its graded character equals the specialization E,, x(g,0) at t = 0, where
w, denotes the longest element of W. Here a QLS path is obtained from an affine
level-zero Lakshmibai-Seshadri path through the projection R ®z P.g — R ®z P,
which factors the null root § of an affine Lie algebra g.g, and is described in terms of



(the parabolic version of) the quantum Bruhat graph, introduced by Brenti-Fomin-
Postnikov [BFP]; the set of QLS paths is endowed with an affine crystal structure
in a way similar to the one for the set of ordinary LS paths introduced by Littel-
mann [L1]. Moreover, Lenart-Naito-Sagaki-Schilling-Shimozono [LNSSS3] obtained
a formula for the specialization E,)(q,0), x € W, at t = 0 in an arbitrary untwisted
affine type, which is described in terms of QLS paths of shape A, and also proved
that the specialization E,(q,0) is just the graded character of a certain Demazure-
type submodule of the special quantum Weyl module. The crucial ingredient in the
proof of this result is a graded character formula obtained in [NS4] for the Demazure
submodule V.~ () of the level-zero extremal weight module V() of extremal weight
A over a quantum affine algebra U, (g.g), where e is the identity element of W. More
precisely, in [NS4], Naito and Sagaki proved that the graded character gch V.~ (\)
of V,7(A) C V(A) is identical to ([T, [T (1 — q_T))_1 Eu,2(q71,0), where ) is a
dominant integral weight of the from ), ; m;w;, with w;, i € I, the fundamental
weights. The graded character gch V7 () is obtained from the ordinary character
of V.7 (\) by replacing e® by ¢, with § the null root of the affine Lie algebra gag.

The purpose of this thesis is to establish the relation between the specialization
E.x\(q,00) for x € W of the nonsymmetric Macdonald polynomial E,)(q,t) at t =
oo and the level-zero extremal weight module V() over U, (gag). First, we prove
an explicit formula for the specialization F,(g,00), which is described in terms
of (a specific subset QLS™>(\) of) QLS()\). By using this formula, we give a
representation-theoretic interpretation of the specialization E,,_ (g, 00) in terms of
the Demazure submodule V,;_ () of V(\). More precisely, we prove that the graded
character gch V-~ (\) of V- (}) is identical to (J[;c; [T (1 — q_r))_1 Eoa(g, 00),
where A is a dominant integral weight of the form ), ;m;w;. Next, we define
a certain (finite-dimensional) quotient module V, (X)/X, ()), and prove that the
graded character gch V,,~ (\)/ X, (M) of Vi (X)/ Xy, (M) is identical to Ey x (g, 00).
Also, as an application of the explicit formula above, we give a representation-
theoretic (or rather, crystal-theoretic) proof of Cherednik-Orr’s recursion formula of
Demazure type for the specialization E,(g,00), € W; in the course of the proof
of this result, we obtain a recursive relation for the subsets QLS*™*°()), 2 € W, of
QLS()\), which determines these subsets inductively in terms of the tilted Bruhat
order by starting with the equality QLS®**°()\) = QLS()).

This thesis is organized as follows. In Chapter 2, we fix our notation, and review
the definitions and some of the properties of nonsymmetric Macdonald polynomials
and level-zero extremal weight modules over U, (g.g). In Chapter 3, we first prove an
explicit formula for the specialization F,(g,00), z € W, described in terms of QLS
paths. Next, using this result, we give a representation-theoretic interpretation of
the specialization E,, (g, 00) in terms of the Demazure submodule V,;_ () of V/(\).
In Chapter 4, we give a crystal-theoretic proof of Cherednik-Orr’s recursion formula
of Demazure type for the specialization F,)(q,o0), z € W.



Chapter 2

Preliminaries

2.1 Root systems of finite types

Throughout this thesis, we use the following notation.

Let g be a finite-dimensional simple Lie algebra over C, I the vertex set for
the Dynkin diagram of g, {a; }icr (resp., {a) }ier) the set of all simple roots (resp.,
coroots) of g, b = @,c; Ca; a Cartan subalgebra of g, h* = @,.; Ca; the dual
space of b, and by = @, ; Ray; the real form of h*; the canonical pairing between b
and h* is denoted by (-,-) : b* x b — C. Let Q = ) ,.; Za; C by denote the root
lattice of g, @ = 3,c; Za C bg the coroot lattice of g, and P = )", ; Zw; C bj
the weight lattice of g, where the w;, i € I, are the fundamental weights for g, i.e.,
(@i, o) = d;5 for i, j € I; we set Pt =3 Z>ow;, and call an elements X of P
a dominant weight. Let us denote by A the set of all roots and by AT (resp., A7)
the set of all positive (resp., negative) roots. Also, let W := (s; | i € I) be the Weyl
group of g, where s;, i € I, are the simple reflections acting on h* and on bh:

SV =V — (V,aiv>oz7;, v € b*,

sih =h— (a;,h)a;, h € b;

we denote the identity element and the longest element of W by e and w,, respec-
tively. If @ € A is written as o = wa; for w € W and i € I, then we define " to
be way’; note that sq = sov = ws;w™ . For uw € W, the length of u is denoted by
¢(u), which equals #(AT Nu~tA7).

2.2 Nonsymmetric Macdonald polynomials

In this section, we recall the definition of nonsymmetric Macdonald polynomials
in untwisted affine types. Although nonsymmetric Macdonald polynomials have at
most six parameters (¢ and five t’s) in general, we consider nonsymmetric Macdonald
polynomials with two parameters ¢ and ¢ since we focus on the specialization at
t = 0o (see [M1] for the general case).

For p € P, we denote by v(u) the shortest element in W such that v(u)p is
an antidominant weight. Then we define a partial order < on P as follows. For
w,v € W, u > v if either of the conditions (1), (2) below holds:



(1) 0# v(pp —v(W)v € 3o Z<ou
(2) v(p)p =v(¥)v, and v(v) > v(p) with respect to the Bruhat order on W.

Let K = Q(q,t) be the rational function field in indeterminates ¢ and ¢ over Q.
We denote by A the group algebra of P over K, and by A the formal completion of A
We define an involution - on K by g =¢ ! and f =t~!, and set f := ZueP fu
for f = ZueP fuet, with f, € K. Also, for v € P and f = ZueP fuet € j’ with
fu € K, we set

[f:e]:=f,eK, ct(f):=foeK.

Now we set

o .
(1 —e¥¢?)(1 — e ¥gI ! ~
H H (1-— eatgﬂ 1-— e_"‘:f]qﬁz) €4,
acAt j= 0
and define a scalar product (-,-) : Ax A — K by (f,g) :==ct(fgV)/ct(V), f,g € A.
Indeed, this scalar product is a nondegenerate, Hermitian sesquilinear form; namely,

(kf.g) = k(f,9) = (f,kg) and (f,9) = (g, f) for f,g € Aand k € K.
It is known that there exists a (unique) basis {£,,(q,t) },ep of A over K satisfying

the conditions:

(1) [Eu(q,t) - et] =1, and if [E,(q,t) : €’] # 0, then p > v;
(2) for v € P such that v < pu, (E,,e”) = 0.

The basis elements F,,(q,t), p € P, are called the nonsymmetric Macdonald poly-
nomials. We denote by E,(q,00) the specialization

lim E,( Z lim [E s e’]e”; (2.2.1)
~>oo

t—o00
veP

this specialization is studied in [CO] in simply-laced types and twisted non-simply-
laced types.

2.3 Extremal weight modules over the quantum affine
algebra U, (g.x)

In this section, we recall the definition of extremal weight vectors and extremal
weight modules over the quantum affine algebra U, (gag), and some of the basic
properties of extremal weight modules.

First, we fix the notation for untwisted affine root data; see §3.4.1 for more
details. Let g.g be the untwisted affine Lie algebra over C associated to the finite-
dimensional simple Lie algebra g, and h,g = (@je Lg Cajv) @ CD its Cartan sub-

algebra, where {a]V} C Bag is the set of simple coroots, with Ig = I L {0},

je[aff
and D € b.g is the degree operator. We denote by {aj}jel C blg the set of
simple roots, and by A; € bls, 7 € IL.,g, the fundamental Welghts Note that
(aj, D) = 050 and (Aj, D) = 0 for j € I, where (-,-) : big x bag — C

denotes the canonical pairing between h,g and b’z := Homc(hag, C). Also, let



0 =D ier, @y € bigand ¢ = 3., alal € hug denote the null root and the
canonical central element of g.g, respectively. We take a weight lattice P,g for g.g
as follows: P,g = (®je[aff ZAj) DZ0 C blg.

In what follows, we mainly follow the notation of [NS4, §3]. Let M be an
integrable U, (ga.g)-module. A vector u € M of weight \ € P,g is said to be extremal
(see [Kas2, §3.1]) if there exists a family {v;}zew,, of weight vectors satisfying the
following:

(1) Ve = V;

(2) for every j € Lg and x € W such that n := (z),af) > 0, the equalities
Ejv; =0 and Fj(n)vx = VUs; hold;

(3) for every j € Lg and x € W such that n := (zA,af) < 0, the equalities
Fjv; =0 and Ej(-fn)vx = Vs, hold;

here E;, F;, j € I, are the Chevalley generators, and EJ(.k) and F](k) for k € Z>o
are divided powers of E; and F}, respectively. We denote v, by S;v for x € Wag.
For )\ € P,g, the extremal weight module V() is the integrable U, (gag)-module
generated by the weight vector vy of weight A with the defining relations that v
is an extremal weight vector of weight \. We know that if A € P,g is a dominant
(resp., antidominant) weight, then V(\) is isomorphic to the irreducible highest
(resp., lowest) weight module of weight A. Moreover, for w € Wog, there exists an
isomorphism V(A) — V(wA) of U, (gag)-modules given by vy +— S,,—1vy,). Therefore,

(1) if X € P,g has a positive level, i.e., (A, ¢) > 0, then there exists x € W,g such
that z) is a dominant weight, and hence V() is isomorphic to the irreducible
highest weight module of weight xA;

(2) if A € P,z has a negative level, i.e., (\,¢) < 0, then there exists x € Wg
such that z\ is an antidominant weight, and hence V() is isomorphic to the
irreducible lowest weight module of weight xA.

Thus, studies on extremal weight modules are mainly focused on the case when X is
a level-zero weight, i.e., (A, ¢) = 0; for more details about the structure of V' (\) for
a weight A of level-zero, see §3.4.5.



Chapter 3

Specialization of nonsymmetric
Macdonald polynomials at ¢t = oo
and Demazure submodules of
level-zero extremal weight
modules

3.1 Introduction

Lenart-Naito-Sagaki-Schilling-Shimozono [LNSSS2] proved that for a dominant
integral weight A, the set QLS(\) of all quantum Lakshmibai-Seshadri (QLS) paths of
shape X provides a realization of the crystal basis of a special quantum Weyl module
over a quantum affine algebra U] (g.g) (without degree operator) of an arbitrary
untwisted type, and also proved that its graded character equals the specialization
Ew.2(q,0) of the nonsymmetric Macdonald polynomials E,, x(g,t) at t = 0, where
w, denotes the longest element of W. Here a QLS path is obtained from an affine
level-zero Lakshmibai-Seshadri path through the projection R ®z P.g — R ®z P,
which factors the null root § of an affine Lie algebra g.g, and is described in terms of
(the parabolic version of) the quantum Bruhat graph, introduced by Brenti-Fomin-
Postnikov [BFP]; the set of QLS paths is endowed with an affine crystal structure in a
way similar to the one for the set of ordinary LS paths introduced by Littelmann [L1].
Moreover, Lenart-Naito-Sagaki-Schilling-Shimozono [LNSSS3| obtained a formula
for the specialization F,(q,0), x € W, of the nonsymmetric Macdonald polynomials
E.x(q,t) at t = 0 in an arbitrary untwisted affine type, which is described in terms
of QLS paths of shape A, and also proved that the specialization E,»(g,0) is just
the graded character of a certain Demazure-type submodule of the special quantum
Weyl module. The crucial ingredient in the proof of this result is a graded character
formula obtained in [NS4] for the Demazure submodule V. (\) of the level-zero
extremal weight module V() of extremal weight A over a quantum affine algebra
Uy (gasr), where e is the identity element of WW. More precisely, in [NS4], Naito and
Sagaki proved that the graded character gch V.7 () of V.7 (A) C V() is identical to



(ITie, TT, (1 = q_7"))_1 Eu,2(q71,0), where \ is a dominant integral weight of the
form ). ;m;w;, with @;, i € I, the fundamental weights. The graded character
gch V.7 () is obtained from the ordinary character of V,~()\) by replacing e’ by ¢,
with ¢ the null root of the affine Lie algebra ga.g.

The aim of this chapter is to give a representation-theoretic interpretation of the
specialization Fy, (g, 00) of the nonsymmetric Macdonald polynomial E,, »(q,t) at
t = oo in terms of the Demazure submodule V,_(\) of V()); here we remark that
Vo (A) € V.7 (X). More precisely, we prove the following.

Theorem A (= Theorem 3.5.2). Let A = ) .., m;w; be a dominant integral weight.
Then, the graded character gchV,~ (X) of the Demazure submodule V., (X) of V(X)

1s identical to .
<H H(l - qr)> Eyor(g,00).

i€l r=1

In order to prove Theorem A, we first rewrite the Orr-Shimozono formula for the
specialization E,) (g, 00) for x € W (originally described in terms of quantum alcove
walks) in terms of QLS paths by use of an explicit bijection sending quantum alcove
walks to QLS paths that preserves weights and degrees; in some ways, this bijection
generalizes a similar one in [LNSSS2]. In particular, for z = w,, the Orr-Shimozono
formula rewritten in terms of QLS paths states that

E'wo)\(q7 oo) = Z ew‘c(d’)qdegwo,\(w)7 (*)
EQLS(N)

where QLS()) is the set of all QLS paths of shape A, and for ¢» € QLS()), deg,, \(¢)
is a certain nonpositive integer, which is explicitly described in terms of the quantum
Bruhat graph; see §3.3.2 for details.

Next, using the explicit realization, obtained in [INS], of the crystal basis B(\)
of V(A\) by semi-infinite LS paths of shape A, we compute the graded character
gch V.7 (\) of the Demazure submodule V7 (X\) for x € W, and prove the following.

Theorem B (= Theorem 3.5.1). Let A = ), m;w; be a dominant integral weight,
and x an element of the finite Weyl group W. Then, the graded character gch V. (\)
of V.7 (A) is identical to

m; -1
(H H(l — q—r)> Z eVH () gdegan (V)

iel r=1 PEQLS(A)

In the proof of Theorem B, we make use of the surjective strict morphism of
crystals from the set of all semi-infinite LS paths of shape A onto QLS(\), which is
obtained by factoring the null root § of g.g. By combining the special case x = w,
of Theorem B with equation (*) above, we obtain Theorem A.



Finally, for z € W, we define a certain (finite-dimensional) quotient module
Vi (N)/ X5 (A) of V7 (A), and then prove that its graded character gch (V7 (\)/ X5 (A))
is identical to E%QLS () € wt(1) gdeg,n(¥) | Hence it follows that under the specializa-
tion e/ = ¢ = 1, all the modules V,"(\)/X;()\), £ € W, have the same char-
acter; in particular, they have the same dimension. Also, in the case x = wo,
we have gch (Vi (A)/ Xy, (X)) = Euwr(g,00); note that in the case z = e, the
quotient module V N/ X (M) is just the one in [NS4, §7.2], and hence we have
gch (V- (N)/X_ () = Ewo)\(qfl,O) (see [LNSSS3, §3] and [NS4, §6.4]). Based on
these resultb together with [Kat, Theorem 5.1] for the classical limit, we can think of
the quotient modules V7 (X)/ X (\), z € W, as a quantum analog of “generalized
Weyl modules” introduced in [FM]; see [No] for details.

This chapter is organized as follows. In Section 3.2, we fix our notation, and
recall some basic facts about the (parabolic) quantum Bruhat graph. Also, we
briefly review the Orr-Shimozono formula for the specialization E,(q,00) at t = 0o
for € W. In Section 3.3, we prove equation (x) above, or more generally Theorem
3.3.19. This theorem gives the description of the specialization F,)(q,o0) at t = 0o
for x € W in terms of QLS paths of shape A. In Section 3.4, we compute the
graded character gch V7 (\) for an arbitrary x € W, and prove Theorem B. By
combining the special case © = w, of Theorem B with equation (%), we obtain
Theorem A. Finally, for z € W, we define a certain (finite-dimensional) quotient
module V7 (A\)/X; (N\) of V7 (\), and compute its graded character. In the special
case & = w,, we obtain the equality gch (Vy,, (A)/ Xy, (A)) = Eu,a(g, 00).

This chapter is based on the joint work [NNSl] w1th Satoshi Naito and Daisuke
Sagaki.

3.2 (Parabolic) quantum Bruhat graph and the Orr-
Shimozono formula
3.2.1 (Parabolic) quantum Bruhat graph

Let g be a finite-dimensional simple Lie algebra over C. In this chapter, we follow
the notation of §2.1.

Definition 3.2.1 ([BFP, Definition 6.1]). The quantum Bruhat graph, denoted by
QBG(W), is the directed graph with vertex set W whose directed edges are labeled

by positive roots as follows. For u,v € W, and 8 € AT, an arrow u i v is an edge
of QBG(W) if the following hold:

(1) v =usg, and
(2) either (2a): £(v) = £(u) + 1 or (2b): £(v) = L(u) — 2(p,BY) + 1

where p := 13 A+ a. An edge satisfying (2a) (resp., (2b)) is called a Bruhat
(resp., quantum) edge.

Remark 3.2.2. The quantum Bruhat graph defined above is a “right-handed” version,
while the one defined in [BFP] is a “left-handed” version. We remark that the

10



results of [BFP] used in this thesis (such as Proposition 3.2.5) are unaffected by this
difference (cf. [Po]).

Ezxample 3.2.3. Let g be of type Aa. Then, W is &3, and the quantum Bruhat graph

QBG(W) is as follows:

061+062 Oé1+()z2“

Qg o

s182% o + 55251

T

Here, plain (resp., dotted) directed edges indicate Bruhat (resp., quantum) edges.

For an edge u By of QBG(WW), we set

. B .
Wt(u — v) = { 0 if u — v is a Bruhat edge,

BY ifu B visa quantum edge.

Also, for u,v € W, we take a shortest directed path u = g g B g =

in QBG(WW), and set
wt(u = v) :=wt(zg — x1) + - + wt(x,_1 = 2,) € QY5

we know from [Po, Lemma 1 (2), (3)] that this definition does not depend on the
choice of a shortest directed path from u to v in QBG(W). For a dominant weight
A € PT, we set wty(u = v) := (\, wt(u = v)), and call it the A-weight of a directed
path from u to v in QBG(W).

Lemma 3.2.4. If z EN y is a Bruhat (resp., quantum) edge of QBG(W), then
YWo %o, ws is also a Bruhat (resp., quantum) edge of QBG(W).

Proof. This follows easily from equalities £(y)—¢(x) = ¢(zws)—£(yw,) and {p, —woBY) =

(p,BY). O
Let w € W. We take (and fix) reduced expressions w = s;, - - - s;, and wow ™! =
Si_, "+ Sip- Note that
wo — Sifq .. 'Siosil ...Sip
is also a reduced expression for the longest element w,. Now we set
ﬁk =S, Sip Oy, —( <k< P; (3.2.1)
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we have {8_q,...,B0,...,08p} = AT. Then we define a total order < on A™ by

Bog < Bogir1 <+ =< Pp. (3.2.2)

Note that this total order is a weak reflection order in the sense of Definition 3.3.2
below.

Proposition 3.2.5 ([BFP, Theorem 6.4]). Let u and v be elements in W.

(1) There exists a unique directed path from w to v in QBG(W) for which the
edge labels are strictly increasing (resp., strictly decreasing) in the total order
=< above.

(2) The unique label-increasing (resp., label-decreasing) path

7 Y2 v
U=1U) == U] — -+ = Up =V

from u tov in QBG(W) is a shortest directed path from u to v. Moreover, it is
lexicographically minimal (resp., lezicographically maximal) among all shortest
directed paths from u to v; namely, for an arbitrary shortest directed path

/ / /
r g 2 g /
U=uUy— U —> > U =V

from u to v in QBG(W), there exists 1 < j < r such that v; < 'yg- (resp.,
Vi =), and =, for 1 <k <j-—1

For a subset S C I, we set Wg := (s; | i € S); notice that S may be the empty
set ). We denote the longest element of Wg by w.(5). Also, we set Ag := Qg N A,
where Qg := Y_,cqZoy, and then AL = AgnN AT, Ay := AgnNA~. Let W?
denote the set of all minimal-length coset representatives for the cosets in W/Wjg.
For w € W, we denote the minimal-length coset representative of the coset wWg by
|w], and for a subset U € W, we set |U| := {|w] |we U} c W?.

Definition 3.2.6 ([LNSSS1, §4.3]). The parabolic quantum Bruhat graph, denoted
by QBG(W®), is the directed graph with vertex set W* whose directed edges are
labeled by positive roots in A1\ A; as follows. For u,v € W9, and f € AT\ Ag,

an arrow u 2 v is an edge of QBG(W?) if the following hold:
(1) v = |usg], and
(2) either (2a): £(v) = £(u) + 1 or (2b): £(v) = L(u) — 2(p — pg, BY) + 1,

where pg = %ZaeAg a. An edge satisfying (2a) (resp., (2b)) is called a Bruhat
(resp., quantum) edge.

For an edge u 5 v QBG(W?), we set

. B .
Wts(u — V) = { 0 if u — v is a Bruhat edge,

BY ifu A ovisa quantum edge.

12



Also, for u,v € W¥, we take a shortest directed path p : u = x Do B Iy
x, = v in QBG(W?) (such a path always exists by [LNSSS1, Lemma 6.12]), and set

th(P) = Wts(xo — :C1) + -+ WtS(ZUT_l — xr) c QV,
We know from [LNSSS1, Proposition 8.1] that if q is another shortest directed path

from u to v in QBG(W?), then wt¥(p) — wt®(q) € Q¥ =Y, ¢ Za.
Now, we take and fix an arbitrary dominant weight A\ € P™, and set

S=8y={iel|{\a)=0}.

By the remark just above, for u,v € W9, the value (\, wt°(p)) does not depend
on the choice of a shortest directed path p from u to v in QBG(W?); this value
is called the A-weight of a directed path from u to v in QBG(W*). Moreover, we
know from [LNSSS2, Lemma 7.2] that the value (\, wt®(p)) is equal to the value
wtr(z = y) = (A, wt(z = y)) for all 2 € uWg and y € vWg. In view of this fact, for
u,v € W, we also write wty(u = v) for the value (\, wt®(p)) by abuse of notation;
hence, in this notation, we have

wta(z = y) = wtr([z] = |y]) (3.2.3)
for all z,y € W.

Definition 3.2.7 ([LNSSS2, §3.2]). Let A € PT be a dominant weight and o €
QN [0,1], and set S = Sy. We denote by QBG, (W) (resp., QBG,,(W?) ) the
subgraph of QBG(W) (resp., QBG(W*®)) with the same vertex set but having only
the edges: u By v with a(\,BY) € Z.

Lemma 3.2.8 ([LNSSS2, Lemma 6.2]). Let 0 € QN [0, 1]; notice that o may be 1.
Ifu 5y v is an edge of QBG, (W), then there exists a directed path from |u] to |v]
in QBG,,(W9).

Also, for u,v € W, let {(u = v) denote the length of a shortest directed path in
QBG(W) from u to v. For w € W, as in [BFP], we define the w-tilted Bruhat order
<w on W as follows: for u,v € W,

unggﬁ(wév) =l(w=u)+Ll(u=v).
We remark that the w-tilted Bruhat order on W is a partial order with the unique
minimal element w.
Lemma 3.2.9 ([LNSSS1, Theorem 7.1], [LNSSS2, Lemma 6.6]). Let u,v € W9,
and w € Wg.

(1) There exists a unique minimal element in the coset vWyg in the uvw-tilted Bruhat
order <,.,. We denote it by min(vWg, <yw).

(2) There exists a unique directed path from uw to some x € vWs in QBG(W)
whose edge labels are increasing in the total order < on AT, defined in (3.2.2),
and lie in AT\ A;. This path ends with min(vWg, <y ).

(3) Let 0 € QN [0,1], and A € P a dominant weight. If there exists a directed
path from u to v in QBG,,(W?®), then the directed path in part (2) is in
QBGU)\(W)'
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3.2.2 Orr-Shimozono formula

In this subsection, we review a formula [OS, Proposition 5.4] for the specialization
of nonsymmetric Macdonald polynomials at t = oo

Let g denote the finite-dimensional simple Lie algebra whose root datum is dual
to that of g; the set of simple roots is { }ie;r C b, and the set of simple coroots is
{ai}ier C b*. We denote the set of all roots of g by A = {a¥ | o € A}, and the
set of all positive (resp., negative) roots of g by . A+ (resp., A™). Also, for a subset
S C I, weset Qs := Y52y, Ag := ANQs, AL = AgNA*, and Ag = AgNA~.

We consider the untwisted affinization of the root datum of g. Let us denote by
Aaﬁ the set of all real roots, and by A+ (resp., ﬁ_ ) the set of all positive (resp.,
negative) real roots. Then we have Aug = {a¥ 4+ ad | a € A,a € Z}, with 4 the null
root. We set o := 5 — Y, where ¢ € A denotes the highest short root, and set
L := I U {0}. Then, {o} }icr,, is the set of all simple roots. Also, for 8 € h @ (Cg,
we define deg(8) € C and 3 € h by

B =B + deg(B)s. (3.2.4)

We denote the Weyl group of g by W; we identify W and W through the iden-
tification of the simple reflections of the same index for each ¢ € I. For v € bh*, let
t(v) denote the translation in h*: ¢(v)y = v+ v for v € h*. The corresponding affine
Weyl group and the extended affine Weyl group are defined by Waﬂr =t(Q)x W and
Wext := t(P)xW, respectively. Also, we define s : §* — b* by v — v—((v, V) —1)¢.
Then, Waﬁ‘ = (s; | i € Ig); note that so = t(y)s,. The extended affine Weyl group

Wext acts on h @ Co as linear transformations, and on h* as affine transformations:
for ve W, t(v) € t(P),

vt(v)(B +18) = vB + (r — (n.5)s, Bebh.reC,
vt(v)y = vv + vy, v € b*.

An element u € Wext can be written as
u = t(wt(u))dir(u), (3.2.5)

where wt(u) € P and dir(u) € W, according to the decomposition Wext = t(P) x W.
For w € Wey, we denote the length of w by ¢(w), which equals # (ﬁ;ﬁr N wilﬁgff).

Also, we set € := {w € Wey | £(w) = 0}.
For ;1 € P, we denote the shortest element in the coset t(u)W by m, € Wex.
In the following, we fix p € P, and take a reduced expression m, = usy, -5, €

Wext = € X Wog, where u € Q and £1,...,0 € Lg.
For each J = {j1 < j2 < j3 < .-+ < jr} C {1,...,L}, we define an al-
cove path p(J)S = (m = z(?s, 298 .., 20 ,B "”7@98) as follows: we set 5,?8 =
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e, 8£k+1a2/k € ﬁ;"ﬂ for 1 <k < L, and set

0S
20

= my,
Zlos = musﬁﬁs,
oS ._
Z9 = m#SBjCiSngC;S,
0s ._ .
Z,. = m'uS’BjOIS SﬁjOTS .

Also, following [0S, §3.3], we set B(e;my,) :== {p9° | J C {1,..., L} } and end(p$®) :
298 € Wexe. Then we define B(e;m,,) to be the following subset of B(e;m,,):

4

_4§§7
pS)S € B(e;my) dir(zios) PR . dir(zgsl)

is a directed edge of QBG(W), 0 <i<r—1

—==V
Remark 3.2.10 (M1, (24.7)]). If j € {1,..., L}, then =395 € A™.
For p9° € Q—B(e; m,), we define qwt* (p$®) as follows. Let J* C .J denote the set
s
of all indices j; € J for which dir(z0%) «—2— dir(z

we set
OS OS
qwt*(py~) = Z B
jeJt

08

»°) is a quantum edge. Then

For p € P, we denote by E,(q,t) the nonsymmetric Macdonald polynomial,
and by E,(g,00) the specialization lim;_,oc E,(q,t) at t = oo; this specialization is
studied in [CO] in simply-laced types and twisted non-simply-laced types.

We know the following formula for the specialization E,(q,00) at t = oc.

Proposition 3.2.11 ([OS, Proposition 5.4]). Let u € P. Then,

Bu(go0)= > g deslat @i)entlendwi),

P9S€QB(eim,.)

3.3 Orr-Shimozono formula in terms of QLS paths

3.3.1 Weak reflection orders

Let A € P be a dominant weight, 4 € WA, and set S:= Sy ={i € [ | (\, o)) =
0}. We denote by v(r) € W9 the minimal-length coset representative for the coset
{we W | wA = p} in W/Wg. We have £(v(p)w) = £(v(p)) + £(w) for all w € Wg.
In particular, we have ¢(v(u)wo(S)) = €(v(p)) + €(wo(S)). When = A_ := woA, it
is clear that w, € {w € W | wA = A_}. Since w, is the longest element of W, we
have

wo = v(A_)wo(9), (3.3.1)

and £(v(A_)wos(S)) = L(v(A2)) +£(wos(S)); note that v(A_) = wows(S) = |ws|. The
following lemma follows from [M1, Chap. 2].
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Lemma 3.3.1.
(1) dir(my) = v(p)v(A-)~! and €(dir(m,)) + £(v(n)) = L(v(A2)); hence

my, = t(p)o(po(A-) (3.3.2)

(2) (A=) s = v()uwe(S).
(3) (v(A)o() ™) myy = ma_, and E(p(A)o() ") + £m,) = E(m_).
(4) €O Yo(r) ™) + Eo() = o(r2).

In this subsection, we give a particular reduced expression for my_ (= t(A_) by
(3.3.2)), and then study some of its properties.
First of all, we recall the notion of a weak reflection order on A™.

Definition 3.3.2. A total order < on A7 is called a weak reflection order on At
if it satisfies the following condition: if o, 3,7 € AT with vV = oV + 8V, then
a<y=<porf<vy=<a.

The following result is well-known (see [Pa, Theorem on p. 662] for example).
Proposition 3.3.3. For a total order < on A", the following are equivalent:
(1) the order < is a weak reflection order;

(2) there exists a (unique) reduced expression wo = S;, - - - Siy, for we such that
Sin "t Sigyq Oy, = Siy o Sij a4 for 1<k <j<N.

Next, we recall from [Pa, pp. 66176532] the notion and some properties of a weak
reflection order on a finite subset of A:ﬁ; we remark that arguments in [Pa] also
work in the general setting of Kac-Moody algebras.

Definition 3.3.4. Let T be a finite subset of E;fﬁf, and <’ a total order on 7. We
say that the order <’ is a weak reflection order on T if it satisfies the following
conditions:

(1) if 61,00 € T satisfy 6; <’ 65 and 61 + 6 € K:, then 6; + 62 € T and
91 <! 91 + 92 <! 92;

2) if 61,0, € AT, satisfy 01 + 0o € T, then 6, € T and 01 + 0 <’ 01, or 03 € T
aff
and 0 + 69 <! 0.

We remark that there does not necessarily exist a weak reflection order on an
arbitrary finite subset of A;ff'

Proposition 3.3.5. Let T be a finite subset of ﬁgﬁ and <’ a weak reflection order
onT. We write T as {y1 <" 72 <" --- <" }. Then there exists w € Wyg such

that ﬁ;ﬁ N w‘lﬁgﬂ = T. Moreover, there exists a (unique) reduced exrpression
w = 8y, -+ 8¢, for w such that Sgp---ngHa}/j = for 1 <5 <p.
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The converse of Proposition 3.3.5 also holds.

Proposition 3.3.6. Let w € Waff, and let w = sy, -+ sg, be a reduced expression.

We set a v; := sq, -+ 54 a}/j for 1 < j < p, and define a total order <" on A:ﬁ N

i1
w_lﬁgﬂ as follows: for 1 < j.k <p,; <"k C<1e:)£j < k. Then, the total order <’ is
a weak reflection order on A:ﬂc N w_lA;H.

Remark 3.3.7. Let

U()‘*) = Siy Sy
wO(S) = Sip41 " Sin

Wo = Sil .o 'SiMSi]\/[+1 .o 'SiN

be reduced expressions for v(A_), wo(S), and w, = v(A_)ws(S), respectively, where
S=58y={iel|(\a))=0}; recall that w(S) is the longest element of Wg. We
set Bj := Siy -+ Si; iy, 1 < j < N. By Proposition 3.3.3, we have AT\ A;C =
{1 < P2 < -+ < PBa} and AJSF = {frm+1 < Bumy2 < -+ < BN}, where < is the
weak reflection order on A™ determined by the reduced expression above for w,. In
particular, we have

61 < 6y for 6, € AT\ A; and 05 € Ag. (3.3.3)

Conversely, if a weak reflection order on AT satisfies (3.3.3), then the reduced expres-
sion we = S¢, - -+ 8¢, for w, corresponding to this weak reflection order is given by
concatenating a reduced expression for v(A_) with a reduced expression for wo(.S).
Moreover, if we alter a reduced expression for w,(S) with a reduced expression for
v(A_) unchanged, then the restriction to AT\ A{ of the weak reflection order on
A™ does not change. Thus, the restriction to AT\ A of the weak reflection order
on AT satisfying (3.3.3) depends only on a reduced expression for v(A_).

First let us take a reduced expression v(A_) = s;, - - - s;,, and a weak reflection
order < on A" such that the restriction to AT\ A% of this weak reflection order
< is determined by the reduced expression v(A\_) = s;, ---8;,, as in Remark 3.3.7.
Also, we define an injective map ® by:

D &;’H N m;}&;ff — Q>0 x (A+ \ qu_)y
<)‘—>B> _Eleg(ﬁ) , woﬁv) :
(A=, B)

note that (A_,3) > 0, (\_, B) — deg(B) > 0, and woB’ € A* \ A since we know
from [M1, (2.4.7) (i)] that

B=PB+deg(B)s <

Afenmi'A ={a"+ad |ac AT,0<a< (A, a¥)}. (3.3.4)

We now consider the lexicographic order < on Q> x (A" \ A{) induced by the
usual total order on Q¢ and the restriction to AT\ A; of the weak reflection order

< on A™; that is, for (a,a), (b, 8) € Qs x (AT \ AY),

(a,a) < (b,B) if and only if a < b, or a =b and o < 3.
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Then we denote by <’ the total order on £+ N m;lﬁ_ﬁ induced by the lexico-
graphic order on Q>o x (AT A+ ) through the map ®, and write A+ N m/\lA_
as {y1 <" <"}

Proposition 3.3.8. Keep the notation and setting above. Then, there exists a
unique reduced expression my_ = usy, --- ¢, for mx_, w € Q, {{1,..., 01} C Lg,

such that BJQS (z eyt S0, O ) =; for1<j < L.
Proof. We will show that the total order <’ is a weak reflection order on A:ff N
—1 A —
my A .
We check condition (1) in Definition 3.3.4. Assume that 6;,0; € A g N m/\ 1A*
satisfy 01 <’ 05 and 6, + 65 € A+ Then it is clear that 61 + 05 € A+ nmy -~ A*
Consider the case that the ﬁrst component of ®(6;) is less than that of @(6’2)

(A_01)—deg(61) _ (A_.02)—deg(62) :
D) < ) ). In this case, the first component of (61 + 62)

. )\,,01+02)—deg(91+92)
is equal to {
q (A=,01+62)

and ®(62). Hence we have ®(01) < ®(01 + 62) < ®(62).
Consider the case that the first component of ®(6;) is equal to that of ®(62).
In this case, we have woav =< w@v, where < is the restriction to AT\ A;C of the

weak reflection order on A™. Note that the first component of ®(6; + 62) is equal
to <A7,01+92)—deg(91+02)

<)‘—791+92> - - v
®(0y). Moreover, since 61 + 6 € A;“H N m;_lA;ﬁp, we have w, (91 + 92) e AT\ AJSF.

(i.e.,

, which lies between the first components of ®(6;)

, which is equal to both of the first components of ®(#;) and

It follows from the definition of the weak reflection order < on AT that woa\/ <
Wo (91 + 92)\/ =< w0972v. Hence we have ®(0;) < ®(61 + 02) < ®(02). Thus, the total
order <’ satisfies condition (1).

We check condition (2) in Definition 3.3.4. If 61,605 € EJF \mxlﬁ_ﬁ and 01 +6, €

Aaf‘f’ then it is clear that 6; + 03 € A \m;lA 4. Hence we may assume that
0, € A:ﬁfﬁmLA g and 6o € A \m)\ A i indeed, if 01,05 € A FNmy A= > then
the assertion is obvious by condition (1). Since ﬁ;‘ N mAlA s =1{aV+ad|ac
A7,0 < a < (A_,a")}, we have 0 < deg(f1) < (A_,01) and 0 < deg(f + 03) <
(A_,01 + 63). Also, since 0y € A:H \ m;_lA;H, we find that (A_,6;) < 0 < deg(6s),
deg(62) > (A_,02) > 0, or (A_,0) = deg(fz) = 0; if 0 > deg(f), then we have
o € A4, a contradiction.

In the case that (A_,03) < 0 < deg(f2), the first component of ®(6; + ), which
()\_,01+92>—deg(91+92)

is , satisfies the inequalities

<)\_,91+92>
(A= b1+ 02) —deg(bs +02) _ (A, 01 +0) — deg(61)
<)\_,91 +92> B (/\_,01 +92>
B deg(61) c1— deg(61) _ (A_,01) — deg(6y)
<)\_,91 + 92> </\_,01> <)\_,91>

Therefore, we deduce that the first component of ®(0; + 03) is less than that of
®(6;), and hence ®(61 + 62) < @(61).
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In the case that deg(f2) > (A_,f2) > 0, the first component of ®(; +02) satisfies
the inequalities

O T 0) — deg(0 +62)  ((A,87) — des(61)) + ((A_,72) — deg(0))
(A=, 01 + O2) N (A—,01 + 02)

(A1) —deg(61)) _ (A~ 01) — deg(01)

N A1)

Therefore, we deduce that the first component of ®(0; + 03) is less than that of
®(61), and hence that (61 + 02) < (6;).

In the case that (A_,f;) = deg(f2) = 0, the first component of ®(6; + 6s) is
equal to that of ®(f;). Moreover, since (A_,f2) = (\,w.f2) = 0, we have woby €
AY. Therefore, by (3.3.3), we see that wo(f1 +62)Y < webz . Tt follows from the
definition of the weak reflection order on AT that w.f;  — wo (0 + 02)Y < w@v,
and hence that ®(6; + 02) < ®(61).

Thus, we conclude that <’ satisfies condition (2), and the total order <’ is a
weak reflection order on ﬁ;ﬁc N m;_l ﬁ;ﬁf

Now, by Proposition 3.3.5, there exists w € Waﬂr such that K;FH N m;}&;ff =

A:H N w_lA;H, and there exists a reduced expression w = sy, - - 8015 {l1,.... 0} C

Lg for w such that v; = s, - -szﬁlalyj for 1 < 57 < L. Since A:ﬂ N mfﬁgﬁc =
Aiﬁ‘ N w_lﬁ;ﬂc, it follows from [M1, (2.2.6)] that there exists u € € such that
uw = my_. Thus, we obtain a reduced expression my = usy, ---sp, for my_,
with v; = sg, - "5€j+1a2/j = B]-OS for 1 < j < L. This completes the proof of the
proposition. O

By Remark 3.3.7, the restriction to A™\ A; of a weak reflection order on A™*
satisfying (3.3.3) corresponds bijectively to a reduced expression v(A_) = s;, - - - Siy,
for v(A_). Hence, by Proposition 3.3.8, we can take a reduced expression my_ =
usy, - -~ s¢, for my_ corresponding to each reduced expression v(A_) = s;, - - s;,, for
v(A-). Conversely, as seen in Lemma 3.3.10, from the reduced expression my_ =
usy, - - - sg, for my_, we obtain a reduced expression for v(A_), which is identical to
the original reduced expression v(A_) = s;, - - - s;,, (see Lemma 3.3.10 below).

In the remainder of this subsection, we fix reduced expressions v(A_) = s;, - - - Siy,
and wo(S) = Siy,,, - - Siy» and use the weak reflection order < on A+ (which satisfies
(3.3.3)) determined by these reduced expressions for v(A_) and w,(S). Also, we use
the total order <’ on A;ﬁ N m;} A;H defined just before Proposition 3.3.8, and take
a reduced expression my_ = usy, ---sp, for my_ given by Proposition 3.3.8.

Recall that B,?S =S¢, - 8@k+1a2/k for 1 <k < L. We set ai := deg(ﬂ,?s) € Z~o;

since ﬁ:ﬂ? N miﬁgﬁ = {BYS,..., B85}, we see by (3.3.4) that 0 < ai < (A_, BY).
Also, for 1 < j < L, we set B := usy, ~--8gk_1alyk and by, := deg(BF) € Z>o. Then
we have {BL |1 <k <L} = Afznmy Az = {aV+ad|ac AT, 0<a< —(A_,aY)}
(see [M1, (2.4.7) (ii)]).
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Remark 3.3.9. For 1 < k < L, we have

_t(/\—) I?S = _(usfl T SZL)(SeL T 3€k+1a2/k) = —US¢; - - kaflsekaz/k

v v L _ 2L N
= —usy, ---sek_l(fozgk) = usp, - S0y, = B = ﬁ,% + bi0.

From this, together with —t(A_)B05 = —@ — (a — <)\_,@>)5, we obtain /BTI; =
— ]?S and <)\,,ﬁ,(€)s> — Qp = bk.

Lemma 3.3.10. Keep the notation and setting above. Since usy, = AL for some
i, € Lg, 1 < k < M, we can rewrite the reduced expression usg, --- Sg, for my_
as Sy v+ Sy USLyyy Sy Then, sy -+ s is a reduced expression for v(A-), and
USgy, .y, Sy 18 a reduced expression for my. Moreover, iy = z;C for1 <k <M.

Proof. First we show that {8F | 1 <k < M} = —w, <£+ \ A;C) Since {5305 | 1<
j<Ly={a"+ad|aeA™,0<a< (A ,a¥)}, we see that the minimum value

OSy_

of the first components of &( ]?S), ie., % for 1 < k < L, is equal to 0.
_,BC

Since ®(BP%) < ®(B9%) < -+ < &(BYS), where < denotes the lexicographic order

on Q> x (AT\ AY), there exists a positive integer M’ such that the first component

of ®( ,?S) isgual to 0 for 1 SLS M', and greater than 0 for M/ +1 < k < L.
Since ﬂ,I; = B,I; + bo and (/\_,ﬁ,?S) — a = by by Remark 3.3.9, we deduce that

the first component of @(ﬁ,?s) is equal to 0 if and only if gf = @ e At. In

this case, we have (\, —woBr) = (A_, —3F) Remark 3.3.9 <>\,,?> > 0, and hence

BE e —wo(AT\ ﬁ;) Therefore, we obtain {8 | 1 < k < L} N —wo (AT &;) =
B |1 <k< M}C —wo(ﬁJr\ﬁg). Also, because {fF | 1 < k < L} =
Afenmy A ={a¥+ad|aec AT,0<a < —(A_,a¥)} D —wo(AT\ Af), we
deduce that {8 | 1 < k < M’} = —w,(At\ Af). Since #(A+ \ Af) = M, it
follows that M = M’, and hence {8F | 1 <k < M} = —wo(A+\ Af).

We show that ¢ € I for 1 <k < M. Weset ¢/ := Sii”'sik_laiv;c forl1 <k <M.
v v

Since uay, = oy, we have
k

L _ N
/8]6 — usél .o .sgk—lazk — Sill e 8

Vo e Q. Vo~V
i, Uy, = Sy e Sy g = G

Hence it follows that {¢Y | 1 <k < M} = {8 | 1 < k < M} = —w,(A+ \ A}).
If there exists k € {1,..., M} such that i; = 0, then, by choosing the minimum of

such k’s, we obtain ¢}/ = s - - 8it 1Ozl.v, ¢ AT, contrary to the equality {¢11<
- k

k< M} =—wo(AT\ ﬁg) Therefore, we have i) € I for 1 <k < M.
Next, we show that s;; - - - s;7 is a reduced expression for v(A_) and usg,, - - ¢,
is a reduced expression for my. Since sy ---s¢,, is a reduced expression, so is

Ly 4 -
St e Sin - Therefore, there exist iy, , ...,y € I such that w, = Sif S S
Vo L
VIR Y i;wlo% = _woﬁkv
1 <k < M, by using the reduced expression above for w,, we obtain

is a reduced expression for w,. Because Sy S s -8

N+ L L v v
AT ={—wof, ..., —woSyy, Sy Sify i, v .,o%v}.
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Here, {8F | 1 < k < M} = —wo(A+ \ A}) implies {sir, - --sifj\uzoz;{Mﬂ, . ,a;/,N} =

A;C From this by descending induction on M +1 < k < N, we deduce that

hrp1s -0y €5, and Si,,, " Si 1s an element of Wg; note that the length of this

element is equal to N — M, which is the cardinality of Zg Therefore, Sifyy T Sily is
the longest element w,(S) of W, and hence sy -+ s = wowo(S) = v(A-), which is
a reduced expression for v(A_). Moreover, because my_ = v(A_)my with £(my_) =
f(v(A_)) + £(my) by Lemma 3.3.1 (3) for the case u = A, my = v(A\_)"tm,_ =
USgy, ., "+ Sy 18 a reduced expression for my.

Finally, we show that i, =4} for 1 <k < M. Since M = M’ as shown above,

)\77ﬁ _ . .

for 1 < k < M by the definition of ®, and

—aV —V
UJO/B]?S = _UJO/B]I; = _woCk = _Siﬁv )

theinSthg T S0 T S, O
—_— S DY S S DY S a
i YRR Tor1 i
by Remark 3.3.9. Thus, for 1 <k < j < M, we have s;7 ---8; Sy -8y «qy <
N M+1 M k+1 k

Sify St Qs where the order < is the fixed weak reflection order on
J J

Sir v 8 g
N M1t

AT defined just before Proposition 3.3.8. Here we recall from Remark 3.3.7 that
Br = Siy Sy, @iy, 1 < k< N. Because

{Be | 1<k <M} ={sy sy, sy, s,y | 1<k<Mp=AT\Ag,

. .
M1t Yo+

it follows from the definition of the weak reflection order < on A* together with
(3.3.3) that

{51<"‘<5M}={Sz‘;v"'5

Therefore, noting that 8 = s;y s, ;, for 1 <k < N, we obtain

S,

— At +
ZMSZéalll —<-<SZ/NSz/M+1az,NI}_A \AS

-/
M1

s sy ag, for 1<k <M. (3.3.5)

siN.“SikH»laik:Sis\,“'S ZSM Zk+

-/
M1

By substituting the equalities s;,, , ---5;, = wo(5) = Sify gy " Sily into (3.3.5), we
have s;,, -+ Sjy @iy = sy - Sir , | il for 1 < k < M. In particular, when k = M,
we have «;,, = T which implies that iy = ¢, If i; = z; fork+1<j5 <M, then
. _ ) Y

it follows from s;,, - - s 0 = sip -+ sir @y that oy = ag , and hence ip= 7.

Thus, by descending induction on k, we deduce that i, =4} for 1 <k < M. O
Remark 3.3.11 ([LNSSS2, §6.1]). For 1 < k < L, we set

<>‘*7 kOS> — ag b,
dy := — = —;
(A=, BP®) (==, B)
the second equality follows from Remark 3.3.9; here dj is just the first component
of ®(8P%) € Qxo x (AT\AY). For 1 <k, j < L, ®(B%) < ®(59%) if and only if
k < j, and hence we have

0<d <---<dpS1. (3.3.6)
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, —V —V
Lemma 3.3.12. If1 <k < j <L and di = dj, then woﬁgs =< wOBJQS )

Proof. By the definitions, we obtain ®(8%) = (dk, wo@v> and <I>(B]QS) = (dj,wo@v).

Since dy = d; and ®(3P%) < <I>(,8JQS), we have woﬂgsv =< wo@v. O

3.3.2 Orr-Shimozono formula in terms of QLS paths
Let A € PT be a dominant weight, and set S =S\ ={i €I | (\, o)) = 0}.

Definition 3.3.13 ([LNSSS2, Definition 3.1]). A pair ¢ = (w1, wa, ..., ws;00,01,...,0s)
of a sequence wi, ..., w, of elements in W* such that wy, # wy1 for 1 <k <s—1
and an increasing sequence 0 = g9 < --- < g5 = 1 of rational numbers is called a
quantum Lakshmibai-Seshadri (QLS) path of shape A if

(C) for every 1 < i < s — 1, there exists a directed path from w;+1 to w; in
QBG,, A\ (W).

Let QLS(A) denote the set of all QLS paths of shape A.

Remark 3.3.14. We know from [LNSSS4, Definition 3.2.2 and Theorem 4.1.1] that
condition (C) can be replaced by

(C) for every 1 < i < s — 1, there exists a directed path from w;y; to w; in
QBG,,,(W?) that is also a shortest directed path from w11 to w; in QBG(W®).

For ¢ = (w1, wy,...,ws;00,01,...,0s) € QLS(N), we set
s—1
wt(1) 1= Y (0i41 — o) wita,
i=0

and we define a map & : QLS(A) — W by x(¢)) := ws. Also, for 4 € WA, we define
the degree of ¢ at u by

s

deg,, () = — > _ oywtr(wis1 = wy);
=1

here we set wsi1 = v(p). Note that by Remark 3.3.14, oywty(wiy1 = w;) € Z>g
for 1 <i<s—1. Also, o5 = 1 for i = s by the definition of a QLS path. Hence it
follows that deg,, () € Z<o.

Now, we define a subset EQB(w) of W for each w € W. Let w = s;, ---s;, be a
reduced expression for w. For each J = {ji1 < jo < j3 <--- < j,} C {1,...,p}, we
define

pbJ = (w:'207‘-'52T;Bj17"°7/8jr)

as follows: we set [, := s;, -+ 85, (,) € AT for 1 < k < p, and set
ZOZ’U):Sil“’Sip,
Zl = w56j1 = Sil .. 'Sijlflsij1+1 .. 'Sip = Sil e Sijl o e Sipa

2;2 = w56j1 Sﬂj2 = 8i1 o .. sijlflsij1+l .. SijQ*lSi]Q«l»l o .. Sip = Sil .. Sijl o e Sijz “ee Sipu

Zr:wsﬁjl...sﬁj’r:Sil...sijl...SijT...sip’
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where the symbol = indicates a term to be omitted; also, we set end(py) := z,.
Then we define B(w) := {ps | J C {1,...,p}}, and

QB(w) := {pJ € B(w)

Bj;
2 —2 ziq is a directed edge of QBG(W) .
forall0<i<r-—1

We remark that J may be the empty set (; in this case, end(pp) = w.

Remark 3.3.15. We identify elements in QB(w) with directed paths in QBG(W).
More precisely, for py = (w = 2o, ..., 2r; B}, .. Bj.) € QB(w), we write

Bj Bjyr
pJ:(w:Z07"'7z7";/8j17”'/8j7»): <w:ZOL>"'L>ZT’>'

Remark 3.3.16. Let w = 2z h 2 =2 .. Bi> zr = z be a directed path in

QBG(W). Then we see that

. . . Bj Bj in
1§j1<]2<"'<]r§p<:><w:Z0i>Zli>"'&>ZT:Z>EQB(U}).

Also, it follows from Proposition 3.2.5 (1) that the map end : QB(w) — W is
injective.

By using the map end : B(w) — W defined above, we set EQB(w) := end(QB(w)).

Proposition 3.3.17. The set EQB(w) is independent of the choice of a reduced
expression for w.

Proof. Let us take two reduced expressions for w:

IL:w=s;,---s5,, and K:w = s, ---sp,

P P’

In this proof, let EQB(w); (resp., EQB(w)g) denote the set EQB(w) associated to
I (resp., K).

It suffices to show that EQB(w); C EQB(w)k. From the two reduced expressions
above for w, we obtain the following two reduced expressions for w,:

Wo = Si_, " SigSiy iy (3.3.7)

Wo = Si_g " SigSky " Skp-

Using the reduced expression (3.3.7) (resp., (3.3.8)), we define B, (resp., Ym), —¢ <
m < p, as in (3.2.1). Then we have

{/6—11’"'761)} = {V—Q7"'7’YP}:A+7 (339)
Bi,-- B} = {vh st =ATNw AT, (3.3.10)

Let z € EQB(w)g, and

Py = <w =29 &1—> 21 ﬁ2—> &T—> Zp = z> € QB(w)r; (3.3.11)
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recall from Remark 3.3.16 that 1 < j; < --- < j,. < p. It follows from Proposition
3.2.5 (1) that there exists a unique shortest directed path in QBG(W)

w = Yo T Y1 Tray . Jor Yr = 2, (3.3.12)

with —¢ < n; < ng < --- < n, < p; this is a label-increasing directed path with
respect to the weak reflection order defined by v_4 < --- < 7,. To prove that
z € EQB(w)g, it suffices to show that 1 < ny. It follows from (3.3.9) that for
1 <wu < r, there exists —q < t,, < p such that 3;, = ~y,,. Therefore, by (3.3.12),

5t1 6t2 ﬁt,«
W=Yo =YL —> > Yp =2

is a directed path in QBG(W). We see from Proposition 3.2.5 (2) that this path is
greater than or equal to the path (3.3.11) in the lexicographic order with respect to
the edge labels. In particular, we have t; > j; > 1. Since v,, = 3, € AT Nw 1A~
we deduce that n; > 1 by (3.3.10). This implies that EQB(w); C EQB(w)k. O

Let 1 € WA. Recall that v(p) € W¥ is the minimal-length coset representative
for the coset {w € W | wA = u}. We set

QLS"*(A) := {¢ € QLS(A) | r(¢) € [EQB(v(p)wo(S))]}-

Remark 3.3.18. If w = w,, then we have EQB(w,) = W by Proposition 3.2.5 (1),
since in this case, we can use all the positive roots as an edge label. If p = A_ = wo A,
then v(p)wo(S) = wo by (3.3.1), and hence |EQB(v(u)wo(S))] = W*. Therefore,
we have QLSY*>()\) = QLS(\).

With the notation above, we set

g(:hMQLS"’OO (A) = Z ewt(¢)qdegu(w)_
PEQLSH(A)

The following is the main result of this section.

Theorem 3.3.19. Let A € P* be a dominant weight, and u € WA. Then,

E,u,(q, OO) = gChMQLS'u’OO(A)

3.3.3 Proof of Theorem 3.3.19

Let A € P be a dominant weight, 4 € WA, and set S:= Sy ={i € [ | (\, o)) =
0}. In this subsection, in order to prove Theorem 3.3.19, we give a bijection

= @(e;mu) — QLS ()

that preserves weights and degrees.
We fix reduced expressions

A ()t =iy i
O() = Sigeqr* Sings (3.3.13)
wo(S) =5 (3.3.14)

intr " Sin
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for v(A_)v(u)~t, v(p), and we(S), respectively; recall that A\ = woA. Then, by
Lemma 3.3.1 (4), v(A_) = s;, - - - si,, is a reduced expression for v(A_). Asin §3.3.1,
we use the weak reflection order < on A™ introduced in Remark 3.3.7 (which satisfies
(3.3.3)) determined by the reduced expressmns above for v(A_) and wo(S). Also,
we use the total order <’ on A+ nm;y - A defined just before Proposition 3.3.8
and take the reduced expression m)_ = ’LLSgl --+sg, for my_ given by Proposition
3.3.8; recall that us,, = s;u for 1 <k < M. It follows from Lemma 3.3.1 (3) that
(v(p)v(A2)"H) ma_ = my and —L(v(p)v(A-)"1) + £(my_) = £(m,). Moreover, we
see that

(U(N)U()‘*)_l) ma_ = (Sig =+ Sip) uSe, + - Se,

Lemma 3.3.10
— USZK”‘SZFSZ]_”'SEL ZUS€K+1”.S£L’

and hence m;, = usy, , - sg, is a reduced expression for m,. In particular, when
p = A (note that v(\) = e), my = usy,,,, --- s, is a reduced expression for m.

Also, recall from Remark 3.3.7 and the beginning of §3.3.1 that 8, = s;,, - -
1<k <N, and g% =S, S 00, 1 <k <L

Remark 3.3.20. Keep the notation above. We have

Sigt1

~ 1
A+ mm)\ A aff — {IBOS"..’/BIC/)S}’
OS
A:ffmm aﬂ_{IBK+1a"-v/8L }7
Al nmy Ay = {837 5%}
)\ ff MJr].?"" L .
- A+ “1X- ~ A+ “1A— ~ A+ “1xX-
In particular, we have Al Nmy Ay C Alg Nm "Ale C Ajg Nmy~ Agg.

Lemma 3.3.21 ([M1, (2.4.7) (i)]). If we denote by < the characteristic function of
A7, de.,

[0 ifyeAT,
gm'_{l ify €A,

then
K;‘H N m;lﬁgﬂf ={a" + ad lae A7,0 <a<s(w(p)vr)ta)+ N w.a)}.

Remark 3.3.22. Let v1,7v2,...,7 € ﬁ:ﬁc N m_lﬁ;:ﬁ«, and define a sequence
(Y0, Y15+ Yr3 V1, Y25 - -5 V) DY Yo = my, and y; = y;—18,, for 1 < i <r. Then, the

sequence (Yo, Yis- -, Yr; V1,725 ---,Yr) is an element of QTB (e;my,) if and only if the
following conditions hold:

(1) 1 <" 72 < --- <" ¥, where the order <’ is the weak reflection order on
A;ﬁ nmy, 1A~ . introduced at the beginning of §3.3.3;

(2) dir(yi—1) & dir(y;) is an edge of QBG(W) for 1 < <.
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In the following, we define a map Z : &3(6; my) — QLS#*°(X). Let p?s be an
arbitrary element of &3(6; my,) of the form

(OF] os ,0s 0S. 0S8 p0S (O]
by :(m/.L:ZO yRL sy Rr ;/le 76]’2 7-"75]})6@(6;771#)7

with J = {ji < --- < jr} C{K +1,...,L}. We set z; := dir(z2%), 0 < k < r.
Then, by the definition of &3(6; my),

—=V —=V —V
_ROS _30Ss _ 530S
’Bn 5J2 Bjr

v(p)v(A_)! bemma 3.3.1 0 x e Ty (3.3.15)

is a directed path in QBG(W). We take 0 = up < uj < -+ < ug—1 < us = r and
0=0p<01<-<0s-1<1=0,in such a way that (see (3.3.6))

Ozdjlz"':djul <dju1+1:'-':dju2<"'<dj :"':djT<1:0's;

ug_1+1

=00 =01 =0s—1
(3.3.16)
note that d;; > 0 if and only if u; = 0. We set w]’g = Ty, for 0 < p <51,
and w, := x,. Then, by taking a subsequence of (3.3.15), we obtain the following
directed path in QBG(W) for each 0 < p < s — 1:

Vv —=a VvV —=a
_30s _ 308 _ 508
/ B]"pﬂ B]“er? B]“pﬂ /
Wy, = Ty, Toptl Typyy = Wyiy

Multiplying this directed path on the right by w,, we obtain the following directed
path in QBG(W) for each 0 < p < s —1 (see Lemma 3.2.4):

woﬁos Y woﬁos Y
/ Jup+1 Jup41 /
Wp 1= W,Wo = Ty, Wo e Ty Wo = Wy Wo = Wpi1.
(3.3.17)
Note that the edge labels of this directed path are increasing in the weak reflection
order < on AT introduced at the beginning of §3.3.3 (see Lemma 3.3.12), and lie in

AT\ Afg; this property will be used to give the inverse to =. Because

_ _ a;, _
(1- Up)(/\vwoﬁjous> = (1—=d;,) (A woBJQTJS) = —W]@%<A—a /BJQUS> = aj, € Z

for up +1 < u < uptq, 0 < p < s —1, we find that (3.3.17) is a directed path in
QBG(1_5,)2 (W) for 0 < p < s—1. Therefore, by Lemma 3.2.8, there exists a directed
path in QBG(l_Up)/\(WS) from |wp] to |wpt1], where S = {i € I | (A, o)) = 0}.
Also, we claim that |wp] # |wp41] for 1 < p < s — 1. Suppose, for a contra-
diction, that |w,| = |wp41]| for some p. Then, w,Ws = wp;1Wg, and hence
min(wy+1Ws, <w,) = min(w,Ws, <y,) = wp. Recall that the directed path (3.3.17)
is a path in QBG from wj, to wpy1 whose labels are increasing and lie in AT\ AJSr.
By Lemma 3.2.9 (1), (2), the directed path (3.3.17) is a shortest path in QBG from
wp to min(wy,1Ws, <y,) = min(w,Ws, <y,) = wp, which implies that the length
of the directed path (3.3.17) is equal to 0. Therefore, {ju,+1,--;Ju,41} = 0, and
hence u, = w11, which contradicts the fact that u, < upy1.
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Thus we obtain

U= (lws], [ws—1],. .., |w1];1 —0g,...,1 —00) € QLS(A). (3.3.18)
We now define Z(p5) := 1.
Lemma 3.3.23. Keep the notation and setting above, and let iy« Sip Sipyy "+ Siy
be a reduced expression for v(pu)ws(S) obtained by concatenating (3.3.13) and (3.3.14).
Then, |wi] € |EQB(v(p)wo(S))]. Hence we obtain a map = : QB(e;m,) —
QLSH#™>(N).
Proof. Since it is clear that v(u) € |[EQB(v(u)ws(S))], we may assume that |wy ]| #
v(p).

Since 2§ = m,, we have wj) = zy = dir(z§%) = v(u)v(A_)~L. It follows that
wo = whwe = (v(p)v(A=)") wo Lemma 331 (2) v(p)wo(S). If up = 0, then we obtain
w; = wy = v(p)ws(S) , contrary to the assumption that |wi] # v(p). Hence it
follows that w; > 1. This implies that j,, < M by the definition of u; in (3.3.16)
and the proof of Lemma 3.3.10. Thus, we obtain K +1 < j; < ja < -+ < jy, < M.

Now, consider the directed path (3.3.17) in the case p = 0. This is a (non-
trivial) directed path in QBG(W) from wy = v(u)ws(S) to wy whose edge labels
are increasing in the weak reflection order < on A™ introduced at the beginning

—\V
of §3.3.3. Because these edge labels are w, (5;.25) = Bj. = Siy " Sij, Qi for
1 < k < wy (the first equality follows from the proof of Lemma 3.3.10), it follows
from the fact that K +1 < j; < jo < -+ < Ju; < M and Remark 3.3.16 (re-

call that we take a reduced expression for w, given by concatenating the reduced
expressions for v(A_)v(p)~! and v(pu)ws(S)) that wy € EQB(v(u)ws(S)). Hence

Lwi] € [EQB(v(p)wo(S5))]. 0
Proposition 3.3.24. The map Z : &3(6; my) — QLSH°(X) is bijective.
Proof. Let us give the inverse to E. Take an arbitrary ¥ = (y1,... ,Ys;70,...,Ts) €

QLS*>()). By convention, we set ys11 = v(u) € WS. We define the elements vy,

1 <p<s+1, by vep1 = v(p)we(S), and v, = min(y,Ws, <y,,,) for 1 <p <s.
Because there exists a directed path in QBG, A(W?9) from y,11 to y, for 1 <

p < s—1, we see from Lemma 3.2.9 (2), (3) that there exists a unique directed path

—Wop,1 —WoYp,tp

Up cee g Up+1 (3.3.19)

in QBG, (W) from v,41 to vy whose edge labels —wovpy,, - .., —wop,1 are increas-
ing in the weak reflection order < and lie in AT\ Ag for 1 <p < s—1; we remark
that this is also true for p = s, since 7, = 1. Multiplying the vertices in this directed
path on the right by w,, we obtain by Lemma 3.2.4 the following directed paths:

L Yp,1 Yp,2 Vp,tp . 1 < <
Up,0 = UpWo Up,1 s Up4+1Wo = vp,tpa SPSsS.

Concatenating these paths for 1 < p < s, we obtain the following directed path:

V1,1 Y1,t1 Y2,1 Vs—2,t5_o Ys—1,1
V1,0 yo ? V1,t; = V2,0 e Vs—2ts_o = Us—1,0 :
(3.3.20)
Vs—1,ts_1 Vs,1 Vs,ts —1
S Vs 1, = Vs > Usg, = Ust1,0 = V(p)v(AL)
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in QBG(W). Now, for 1 <p<sand1<m <tp, weset dpy i =1-7,€QN [0,1),
apm = (dpm — 1){A=, ’Y;\;/,m>’ and Yp,m = apmd — ’Yz\)/,m'
Claim 1. 3, € Afp nmy 1AL

Proof of Claim 1. Since 7, > 0, and since the path (3.3.19) is a directed path
in QBG, (W) whose edge labels are increasing and lie in AT\ A}, we obtain

apm = —TplA = Vm) = TN —Wo 1) € Z>o0-
We will show that apm < s(v(p)v(A=) " (=vpm)) + (X, wo (=) Here we
note that the inequality (X, wo (=7ym)) = =A% m) = —TpAYym) = apm

holds, with equality if and only if p = s. Hence it suffices to consider the case
p = s. In the case p = s, the path (3.3.19) is the unique directed path in QBG(W)
from v(p)ws(S) = vst1 to vs whose edge labels are increasing and lie in AT\ AY.
Also, since ¥ € QLS**(\) and k(¢) = ys = |vs], we find that there exists v, €
EQB(v(u)ws(S)) such that |v)] = ys. By the definition of EQB(v(u)ws(S)), there
exists a unique directed path in QBG(W) from v(u)ws(S) to v, whose edge labels
are increasing; we see from (3.3.3) that this directed path is obtained as the concate-
nation of the following two directed paths: the one whose edge labels lie in AT\ A{,
and the one whose edge labels lie in Aig. Therefore, by removing all the edges whose
labels lie in A; from the path above, we obtain a directed path in QBG(W) from
v(p)ws(S) to some v € y;Ws NEQB(v(p)wo(S)) whose edge labels are increas-
ing and lie in A*\ A¥. Here, since |vs] = [v}] and vy = min(ysWs, <y(uyw.(s)):
Lemma 3.2.9 (2) shows that vs = v”. Hence we have vs € EQB(v(u)ws(S)). More-
over, by the definition of EQB(v(u)ws(S)), the edge labels —woys 1, ..., —WoVs t,
in the given directed path in QBG(W) from v(pu)ws(S) = wvsy1 to vs are ele-
ments of A+ N (v(1)we(S)) " A~, and hence v()wo(S) (—woysm) 2 @)
v()v(A=) " (=ys.m) € A™. Therefore, in the case p = s, we have ¢(v(p)v(A_) " (=Ysm)) =
1. Thus we have shown that asm = (X, we (—7Y,,)) < s(()v(A=) " (=vsm)) +
(A wo (—74,))- Hence we conclude that 3y, € Kiﬁ N m;lﬁ;ﬂr by Lemma 3.3.21.
|

Claim 2.

(1) We have
Ve <o =< Fop < sy < - <A1,
where <’ denotes the weak reflection order on A:ﬁc ﬂm;} A;H introduced at the
beginning of §3.3.3; hence we choose J' = {ji,...,j.} C {K+1,...,L} in
such way that

OS (O} ~ ~ ~ ~
(ﬁji PR ?ﬁj’, ) = (’Ys,ts, ceey Vsl Vs—1tg_15 - - - 7’)/1,1) .

(2) Letl1 <k <7, andtakel <p <s,0<m <t, such that (BJ?S << Bis) =
_gos”
(Fste <+ <" Fpm)- Then, dir(29%) = vpm—1. Moreover, dir(z05) —
dir(299) is an edge of QBG(W).
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Proof of Claim 2. (1) It suffices to show the following;:
(i) for 1 <p <sand 1 <m < t,, we have Y m < Ypm—1;
(i) for 2 < p < s, we have Y1 <’ Yp—1.4,_,

A=Yy ) —ap,m <)‘*7_77Y,m71>_apymfl
= m) A= m—1)

(i) Because = dp, and = dpm—1, we have

(I)(ip,m) = (dp,ma _w0'7p,m)7
(I)(;?p,m—l) = (dp,m—la _wo'YpJn—l)'

Therefore, the first component of ® (7, ,,) is equal to that of ®(7;,—1) since dj, , =
1 — 1, = dpm—1. Moreover, since —wWeYpm < —WoVpm—1, We have <I>(7pm) <
®(Yp,m—1). This implies that ¥, , <" 3pm—1 by Proposition 3.3.8.

(ii) The proof of (ii) is similar to that of (i). The first components of ®(7,, 1) and
®(Yp-1,4,_,) are dp1 and dp_14, ,, respectively. Since dp1 =1—-7, <1 -7, 1 =
dp—14, ., we have (Y1) < ®(Jp-14,_,). This implies that 3p1 <" Fp—1,6,_:-

(2) We proceed by induction on k. Since dir(z§%) = dir(m,) = v(p)v(A-)~*
and ﬁgs = Js1., we have dir(29%) = dir(29%)s 505 = v(p)v( A=) "Ly, = Ust—1.

J
Hence the assertion holds in the case k = 1. '
Assume that dlr(zk 1) = Up,m for 0 S m < tp; here we remark that v, ,,—; is the

predecessor of vy, ,, in the directed path (3.3.20) since 0 < m — 1 < ¢,_;. Hence we

have dir(zp%) = dir(z9%))s 5P = = VpmSypm (3:2:20) Upm—1. Also, since (3.3.20) is a

Ik
_zosY

directed path in QBG(W), v, = dir(295)) ek dir(29%) = vy m—1 is an edge of
QBG(W). m
Since J' = {jl,...,j;} C {K +1,...,L}, we can define an element p9® to be

(mu = z[?s, 298, 7,, 7WB BQS, e ,ﬁQS), where z(())s =my, z,?s = z,? 18508 for

1 <k <7'; it follows from Remark 3 3.22 and Claim 2 that pJS € &3 (e;my). Hence

we can define a map © : QLS#*°(\) — &3 (e;my) by O(¢) := p9S.
It remains to show that the map @ is the inverse to the map Z, i.e., the following

two claims.
Claim 3. For ¢ = (y1,...,Ys;T0y---,7Ts) € QLS()\), we have Z 0 O(¢) = 1.
Claim 4. ForpoS = (mu = 288,205, ... 6]1 ,ﬂh ,.. ,,Bjors) € @(e;mu), we

have © o Z(p99) = p9®.

Proof of Claim 3. We set O(¢y) = p9°, with J' = {ji,...,j;,}. In the following
description of O(v¢) = p?, , we employ the notation wuy,, op, w), and wj, used in the
definition of Z(p9%).

For 1 < k < 7', if we set BJQS = Yp,m With m > 0, then we have dj;ﬁ =1+
k

deg(85) des(3
@\ﬂf;%f) =1+ % =1+ O\f"ﬁ = dpm. Therefore, the sequence (3.3.16)

p?
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determined by ©(¢)) = pS),S is

O=dst, = =dsg <ds_14, , =+ =ds 11 <+ <dyy, =-=dig<1l=1-m.
=1—7s :]-:;s—l :1_T1

(3.3.21)

Because the sequence (3.3.21) of rational numbers is just the sequence (3.3.16) for

Oy) = pS)/S, we deduce that B]QS =Ys—p+1,1for 1 <p<s,and o, =1—75_), for 0 <
up

p < s. Therefore, we have wj, = dir(zgps) = Ug—p+1,0 and Wy = Vs_pt1,0Wo = Us—_pt1-
Since |wp] = |Vs—p+1] = Ys—p+1, we conclude that Zo O(¢)) = (|ws],..., w1];1 -

Osyevos 1 —00) = (Y1, Ys;T0y -5 Ts) = . M

Proof of Claim 4. We set ¢ = E(p?s), and write it as ¥ = (y1,...,Ys; 70y - -, Ts),
where y, = |ws1—p| for 1 <p < sand 7, =1— o0, for 0 < p < s in the notation
of (3.3.18) (and the comment preceding it). Also, in the following description of
E(p(}s) = 1), we employ the notation vy m, dpm, ap.m: Vp.m, Tp,m. and J' used in the
definition of O(v)).

Recall that wy = v(p)we(S) = vsy1. For 0 <p <s—1,

_wo'stp,tS,p\ —WoYs—p,1

Vs—p+1 ? Us—p

is a directed path in QBG(W) whose edge labels are increasing and lie in A*\ A
(see (3.3.19)). Now we can show by induction on p that w), = vs_p4q for 1 <p <s.
Indeed, if w, = vs_p41, then both of the path above and the path (3.3.17) start from
wp and end with some element in wy, 1 Ws = vs_,Wg (this equality follows from the
definition of vs_,), and have increasing edge labels lying in AT\ A&, Therefore,
by Lemma 3.2.9 (2), we deduce that the ends of these two paths are identical, and
hence that wp41 = vs_p. Moreover, since these two paths are identical, so are the
edge labels of them:

— v — eV
(wo B < < waBS ) = (~WoYsopte_, <+ < ~WoYs—p,1)

Jup+1 u
os Y
for 0 < p < s —1. From the above, we have up4+1 —u, = t5_, and 7Bjup+lc =
Vs—pytep—tt1 for 0 <p <s—1,1<k <5, Because o) = djup+1 =...= aljup+1
for0<p<s—1,1-0p,=7spfor0<p<s,and1—75_p =dsp1 =+ =dspt,_,

for 0 <p <s—1, we see that for 1 <k <t,_,,

BOS = p9S 4g. 4

Jup+k Jup+k Jup+k
_ n0Ss _ . _ OS N
- Bjup-kk (d]up+k 1)<)\7’ Bjup+k>5

— \% Vv ~
- _/ys—p,tsfp—k:—&—l + (ds—pyts—p—k-f—l - 1)<)‘*a Vs—p,tsfp—k+1>5
_ \ N

= Vs—pito_p—k+1 T As—pt._,—k+10

= is—p,ts_p—k:—i—l-

Therefore, we have

OS / 1 208 _ (= / !~
(B9 < <805, ) = Gty <+ < Fap) » 0P <51,
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Concatenating the sequences above for 0 < p < s — 1, we obtain
(528 << 5('28) = (Fota <"+ <" Fs1 <" Fsmrpuy < <" A1)
_ oS _r . .. _t pOS
= (53'1 R 5]';,) :

Hence the set J’ determined by E(p(}s) = 1 is identical to J. Thus we conclude that
©oZ(p9®) =p9PF =p95. =

This completes the proof of Proposition 3.3.24. O

We recall from (3.2.4) and (3.2.5) that deg(8) is defined by 8 = 8 + deg ()5
for 5 € h & Co, and wt(u) € P and dir(u) are defined by: u = t(wt(u))dir(u) for
U E Wext = t(P) x W.

Proposition 3.3.25. The bijection = : @(e;mu) — QLS*(\) satisfies the fol-
lowing:

(1) wt(end(p9%)) = wt(E(p9));
(2) deg(qwt*(p9%)) = —deg,, (2(p99)).

Proof. We proceed by induction on #.J.

If J = (), then it is obvious that deg(qwt*(p9%)) = deg“(E(pf,)S)) = 0 and
wi(end(p9%)) = wt(Z(p9%)) = p, since Z(p95) = (v()we(S);0, 1).

Let J = {j1 < jo < -+ < j}, and set K := J\ {j,}; assume that Z(pQ®) is of
the form: Z(pP°) = (|ws), [ws—1], ..., |w1];1—0s,...,1—00). In the following, we
employ the notation w,, 0 < p < s, used in the definition of the map =. Note that
dir(pR®) = wswo and wy = v(1)wo(S) by the definition of =. Also, observe that if
dj, = dj,_, = 051, then {dj, <--- < dj_, <dj} ={dj <--- <dj_,}, and if
dj, > dj._, = 051, then {dj, <--- < dj,_, <dj} ={dj, <--- < dj,_, <dj}.
From these, we deduce that

(stSwO@Ja st—lJa RN I_wlja 1- Os, 1- Os—15--+» 1- UO)
Jr
=( os) if dj, = dj,_, = 051,
(stswoﬁj’ LwSJ, st_lj,.. .y {le;l — Us,l - djml — 051 ...,1 - (70)
Jr
if dj'r > djr—l = 0g_1.

For the induction step, it suffices to show the following claims.

Claim 1.
(1) We have

_ _ —V
Wt(:(p?s)) = Wt(:(p?(s)) — ajrwswoﬂj(zs .
(2) We have
deg,, (E(p9°)) = deg, (E(®RY)) — xraj,.,

where x, =0 (resp., xr := 1) if wgs <+ wg 18 a Bruhat (resp., quantum)

Wo ﬁjors

edge.
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Claim 2.

(1) We have
—V
wt(end(p9®)) = wt(end(pR°)) — aijswoﬂj(zS .

(2) We have
deg(qwt*(p9%)) = deg(qwt*(pR>)) + xraj,.

Proof of Claim 1. (1) If dj, = d;,_, = 0s_1, then we compute:

s—1

t(E(pJ )) =(0s — 0s-1)[wss ﬁos A+ Z — op—1) [wp] A
p=1

s—1

=(0s — 05,1)11)88%5]@)\ + Z(o*p — Op—1)WpA

r =1

= Z — Op-1)WpA + (05 — 0s—1)wss | Bﬁ)\ — (05 — 0s_1)wsA
P,

S
dj.=0s_1, 0s=1
ir=0s_1 Z(gp — op-1)wph + (1 = dj, Jwss,, FosA — (1= dj, JwsA.
p:1 Jr

It d;, > dj,_, = 0s—1, then we compute:

s—1
wt(E(p5°)) =(05 — d,) [wss,, gos] A+ (dj, — os1) [ws| A + > (0 = op—1) Lwp) A
r =1

=(0s — djr)wsswcﬁﬁ)\ + (dj, — os—1)wsA + Z — Op—1)WpA
Jr

S

= Z(O'p — Op—1)WpA — (05 — Os—1)WsA

p=1
+ (05 — djr)wsswoﬁﬁ)\ + (dj, — 0s—1)wsA
Jr

= Z — Op—1)wpA + (0 djr)wssw()b,jﬁ)\ — (05 — dj, )wsA

= Z(Up —op-1)wpA+ (1 - djr)wsswoﬂjﬁA = (1 = dj JwsA.
p=1 i

In both cases above, since

S S

t(E(pK ) = Z(ap — op—1)[wp] A = Z(Up — Op—1)WpA,

p=1 p=1
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and since

(]. — djr)ws )\ — (1 — djr)ws/\

SU)O,B'ﬁ
Jr
= —(1 = dj, )ws(A, wo@””@@v
- _O\CL%)S)()\_HBJQT%wstBjC:SV by Remark 3.3.11
- B;,

—v
_ . OS
- —a]rwswoﬁjr ,

it follows that

s

wt(Z(pFS)) = Z(ap — op—1)wpA + (1 — djr)wsswoﬁ)‘ — (1 —dj,)wsA
p=1 "

—aV
= Wt(‘:(plo{s)) - ajrwsw05jcis .

(2) From the relation between p(}S and pR5, and from the definition of &3(6; my),
_os"
we find that wswes Fos — 7 Wslo is an edge of QBG(W). Hence, by Lemma

3.2.4, wss sos — " w, is an edge of QBG(W).

If dj, = dj,_, = 0s-1, then by the definition of deg, (along with [LNSSS2,
Lemma 7.2]), we see that

s—2
deg, (E(p5®)) = = > (1 = op)wta(lwpr1] < [wp)) — (1 - dj. )wix([wss,, gos] <= [ws-1])
p=0 "
(3.3.22)
s—2
= — (1 — Up)Wt)\(wp_H <= wp) — (1 — djr)wt)\(wsswoﬁ = ws_l).
p:() Jr

Here, wy = v(p)ws(S) as mentioned in the proof of Lemma 3.3.23, so that |wg] =
—=V —=2V

v(p). Since dj, = dj,_, = 0s—1, we have woﬁjofl =< woﬁjors by Lemma 3.3.12.

Because the (unique) label-increasing directed path in QBG(W) from ws_1 to ws

v
has the final edge label woﬁj?i , by concatenating this directed path from ws_1 to

woﬁosv
wg with w, —2— WS, 505, We obtain a label-increasing (hence shortest) directed
°Fir

path from ws_1 to WsS,, 508 passing through ws. Therefore, we deduce that
°Fjr

Wt,\(wssw 508 < Ws—1) = WtA(wssw 08 ws) + wty(ws < ws—1). (3.3.23)
°Fijr °Fjr

It follows from (3.3.22) and (3.3.23) that

s—1
degM(E(pS) ) =— Z(l — op) Wit (wpt1 <= wp) — (1 — djr)wt,\(wsswoﬁ — ws).
p=0 "

33



If dj, > dj,_, = 051, then by the definition of deg, (along with [LNSSS2,
Lemma 7.2]), we see that

s—1

deg,, (E(5%)) = = Y (1 — op)wtx(wpr1 = wp) — (1 - A, JWiA(wss,, o5 ¢ Ws),
p=0 "

where wo = v(p)ws(S). Also, by the definition of deg,, (along with [LNSSS2, Lemma
7.2]), we have

s—1

degM(E(p?(S)) == Z(l — op)Whx(Wpt1 < wp),
p=0

where wg = v(p)ws(5).
In both cases above, we deduce that

deg“(E(pgs)) = degu(E(p[O{S)) — (]_ — djT)Wt)‘(wSSwoF < U}s).

If Ws$,, 305 < Ws is a Bruhat edge, then we have WtA(wssw 505 wg) = 0. If
°Fjr °Fjr

WS, o5 < Ws is a quantum edge, then we have th(stw 508 ws) = (A, woﬁjos>.
°Fjr °Fjr "
Note that

. 720S\ Remark 3.3.11 aj, B0S\ _ .
(1 d]r)<)‘7woﬁjr > - <)\ BOS> <>\_7ﬂ]r > = ay,..
g

Therefore, in both cases, we have degu(E(p(J)S)) = degM(E(p?(S)) — Xraj,, and Claim
1(2) is proved. m

Proof of Claim 2. Let us prove part (1). Note that end(p95) = end(p%s)sﬁos, and
Jr
that

end(pR®) = t(wt(end(py>)))dir(end(pR”)) = t(wt(end(py®)))wswo;

the second equality follows from the comment at the beginning of the proof of Propo-

o _ o . 30S .
sition 3.3.25. Also, we have Sg0s = Sajr5+ﬁﬁs =1t —aJTﬂjT S/Bﬁs' Combining

)

these, we obtain

—V
end(p?®) = (t(wt(end(p?{s)))wswo) <t (—ajrﬁjOTS >S/3’-OS
Jr
_ A(0O5)) — a. 0s"
= wt(end(py>)) aj, wsWo 35 WsWoS 358
Jr

and hence .
wt(end(p9%)) = wt(end(pP>)) — ajrwswoﬁﬁs .

Let us prove part (2). Since dir(end(p%3)) = wswo, we have dir(end(p9®)) =

woﬁ'ﬁv
WsWoS 555 If WsS,, 308 2 w, is a Bruhat edge, then it follows from Lemma
Jr °Fjr
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o8V

3.2.4 that WsWoS_ 555 — 5 wsw, is also a Bruhat edge. Hence we obtain J© =
’UJo,BOS

K*. This implies that deg(qwt*(p9%)) = deg(qwt*(pR5)). If wss 0,05 —— w;
OS

is a quantum edge, then it follows from Lemma 3.2.4 that wswos e —r WsWo

is also a quantum edge. Hence we obtain J* = KT U {]T} This implies that

deg(qwt*(p95)) = deg(qwt*(p°)) + deg(ﬂos) = deg(qwt (P93)) + a;,. Therefore,

in both cases, we have deg(qwt*(p9%)) = deg(qwt*(p2®)) + xra;,, and Claim 2 (2)

is proved. m

This completes the proof of Proposition 3.3.25. O

Proof of Theorem 3.3.19. We know from Proposition 3.2.11 that

E,(g,00) = Z Wt(end(p5%)) o —deg(awt* (p7%))

P9S€QB(eim,.)

Therefore, it follows from Propositions 3.3.24 and 3.3.25 that

E,(g,00) = Z eVt (¥) gdeg, (V)
PEQLSH > (X)

Hence we conclude that Ej,(q,00) = gch, QLS**°()), as desired. O

3.4 Demazure submodules of level-zero extremal weight
modules

3.4.1 Untwisted affine root data

As in §2.3, we use the following notation.
Let g.g be the untwisted affine Lie algebra over C associated to the finite-
dimensional simple Lie algebra g, and b.g = (®j€ La (Coz}/) ® CD its Cartan subal-

gebra, where {a}/} C bag is the set of simple coroots, with I,g = I {0}, and

J€lg
D € b, is the degree operator. We denote by {aj }jGIaH'
roots, and by A; € b, j € Lg, the fundamental weights. Note that (o, D) = d;0
and (Aj, D) = 0 for j € Iz, where (-, -) : hig x bag — C denotes the canonical
pairing between h,g and b’ := Homc (hag, C). Also, let § = Zjelaﬁ ajo; € by and
c=> el ajva}/ € b.g denote the null root and the canonical central element of g.g,
respectively. Here we note that h,g = h & Cc @ CD; if we regard an element A € h*
as an element of h¥; by: (A, ¢) = (A, D) = 0, then we have w; = A; —a/Ag for i € I.
We take a weight lattice P,g for ga.g as follows: Pyg = (@jgaﬁ ZAj) D Zo C blg,
and set Qatr = ey, Zay.

Remark 3.4.1. We should warn the reader that the root datum of the affine Lie alge-
bra g.g is not necessarily dual to that of the untwisted affine Lie algebra associated
to g in §3.2.2, though the root datum of g is dual to that of g. In particular, for the

C bl the set of simple
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index 0 € L, the simple coroot oy = ¢ — 60", with § € AT the highest root of g,
does not agree with the simple root § — ¢ in §3.2.2, which is denoted by « there.

The Weyl group W,g of gag is defined to be the subgroup (s; | j € L.g) C
GL(b%4) generated by the simple reflections s; associated to a; for j € Ig, with
length function ¢ : Wog — Z>o and identity element e € Wog. For £ € QY =
Dicr Zay, let t(§) € Wag denote the translation in hfg by £ (see [Kac, §6.5]). Then
we know from [Kac, Proposition 6.5] that {¢(¢) | £ € @V} forms an abelian normal
subgroup of Wag such that ¢(€)¢(¢) = t(£+(), &, ¢ € Q¥, and Wog = Wx {t(§) | € €
QV}. We denote by A.g the set of real roots, i.e., A, := {xaj |z € Wag, j € Iaff},
and by A;”H C A,g the set of positive real roots; we know from [Kac, Proposition
6.3] that

Aaﬁ:{a+n6|a€A,n€Z},
Afg=AYU{a+nd|ae A neZsy}.

For B € A, we denote by 8Y € hug the dual root of 8, and by sg € Wag the
reflection with respect to 5. Note that if 8 € A,g is of the form § = a 4+ nd with
a € A and n € Z, then sg = sot(na).

3.4.2 Peterson’s coset representatives

Let S be a subset of I. Following [Pe] (see also [LS, §10]), we set:

QY% = ZZO&;/, (3.4.1)

€S
(Ag)aft := {a +nd|a€Ag,ne Z} C Aug, (3.4.2)
(Ag)fe = (Ag)ar NA =AY U{a+nd |a € Ag, n € Zso}, (3.4.3)
(Ws)ast := Ws x {t(€) | £ € Q%) = (s | B € (As)g)s (3.4.4)
(WS)ap := {2 € Wagp | 28 € Ay for all B € (Ag) 4} (3.4.5)

Then we know the following from [Pe| (see also [LS, Lemma 10.6]).

Proposition 3.4.2. For each x € Wy, there exist a unique x1 € (Ws)a{-f and a
unique o € (Wg)agr such that x = x1xa.

We define a (surjective) map I1° : Wog — (W9)ag by II%(2) 1= 1 if 2 = 2129
with 21 € (W9)ag and 29 € (We)ag.

Lemma 3.4.3 ([Pe]; see also [LS, Proposition 10.10]).
(1) I%(w) = |w] for every w € W.
(2) TI%(xt(€)) = 1% ()15 (¢(€)) for every x € Wag and & € QV.

An element € € QY is said to be S-adjusted if (v, &) € {—1, O} for all v € Aj{
(see [LNSSSI, Lemma 3.8]). Let QY524 denote the set of S-adjusted elements.

Lemma 3.4.4 ([INS, Lemma 2.3.5]).
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(1) For each & € QY, there exists a unique ¢p5(§) € Q% such that € + ¢pg(§) €
QY2 In particular, € € QY524 if and only if ¢s(€) = 0.

(2) For each & € QV, the element T19(t(£)) € (W9)ag is of the form T19(t(¢)) =
2et(€ + ¢5(€)) for a specific element 2z € Ws. Also, I1%(wt(€)) = |w]zt(€ +
bs(€)) for everyw € W and € € QY.

(3) We have
(W )at = {wzet(§) |w e W5, £ e @V}, (3.4.6)

Remark 3.4.5. (1) Let &, ¢ € QV. If ¢ = ¢ mod QY, i.e., £ —( € QY, then II¥(¢(¢)) =
IT5(¢(¢)) since t(€ —¢) € (Ws)ag. Hence we see by Lemma 3.4.4 (2) that & 4+ ¢5(£) =
¢+ ¢s(¢) and z¢ = z¢. In particular, ze, 4 (¢) = 2¢ for every £ € QY.

(2) Let 2 = wzet(§) € (W)aq, with w € W9 and ¢ € @QV-52; note that
I1%(z) = z. Then it follows from Lemma 3.4.3 (2) that for every ¢ € QV,

2T5(£(Q)) = I (@)I9 (£(0)) = 5 (at(Q)) € (W) (3.4.7)

3.4.3 Parabolic semi-infinite Bruhat graph

In this subsection, we prove some technical lemmas, which we use later.

Definition 3.4.6 ([Pe]). Let x € Wog, and write it as x = wt(§) for w € W and £ €
QV. Then we define the semi-infinite length 2 (z) of z by £% (x) := £(w) + 2(p, ),

where p = (1/2) > ca+ .
Let us fix a subset S of I.

Definition 3.4.7. (1) We define the (parabolic) semi-infinite Bruhat graph SiBG®
to be the Afi-labeled, directed graph with vertex set (W9).¢ and Aj;-labeled,

directed edges of the following form: x N spx for z € (W®),g and f € Ay, where
spr € (W)ag and £ (sgz) = £7 (x) + 1.

(2) The semi-infinite Bruhat order is a partial order < on (W9).g defined as
follows: for x, y € (W), we write 2 < y if there exists a directed path from z to
y in SiBG?; also, we write < y if 2 < y and = # y.

Let [-] = [-]ns : Q¥ — Qy\s denote the projection from Q" onto QY\S with
kernel QY. Also, for £,{ € QY, we write
(i £€-CeQVT =) Zxa). (3.4.8)
el

The next lemma follows from [NS4, Remark 2.3.3].

Lemma 3.4.8. Letu, v e W5, & ¢ € Q5 and B € Afy. Ifuzct(C) N vzet(€)
in SiBGY, then [£] > [¢].

Lemma 3.4.9. Let x € W9, and &, ¢ € QY524 Then, xzet(§) = wzet(C) if and
only if [€] = [C].
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Proof. The “only if” part is obvious by Lemma 3.4.8. We show the “if” part by
induction on £(z). If £(x) = 0, i.e., x = e, then the assertion z¢t(§) = z¢t(¢) follows
from [INS, Lemma 6.2.1] (with @ = 1, and J replaced by S). Assume now that
{(x) > 0, and take i € I such that ¢(s;z) = £(x) — 1; note that s;z € W and
—z'a; € AT\ A¥. By induction hypothesis, we have s;zz¢t(£) = sizzct(¢). If we
take a dominant weight A € P such that Sy = {i € I | (A, @) =0} = S, then we
see that
(sizzet(E)N, o) = (sizzct(ON, o)) = (siz), o) > 0.

Therefore, we deduce from [NS4, Lemma 2.3.6 (3)] that xz¢t(§) = x2:t(¢), as desired.
O

Lemma 3.4.10. Let x, y € (W¥)ag and B € Afy be such that x N y in SiBGY.

Then, TI5(xt(£)) LN 15 (yt(€)) in SiBG® for every € € QV. Therefore, if x,y €
(W5)agt satisfy x <y, then I1%(xt(€)) = 1% (yt(€)).

Proof. We see (3.4.7) that II° (xt(€)) = 2IT5(¢(¢)) and I1¥(yt(€)) = yII1%(t(£)). Since
y = spgx by the assumption, we obtain I19(yt(¢)) = sgll®(xt(¢)). Hence it suffices
to show that

02 (% (yt(€))) = €2 (1% (xt(€))) + 1. (3.4.9)

)
We write 7 € (W), as x = wzct((), with w € W9 and ¢ € Q¥4 (see (3.4.6)).
Then we see from [INS, Lemma A.2.1 and (A.2.1)] that

0F (TT5(t(€))) = £(w) +2(p — ps, ¢ +€)
=L(w) +2(p = ps, ) +2(p = ps, &)
=07 (I1%(x)) + 2(p — ps, €)
= 7 (z) +2(p — ps, £)
Similarly, we see that £% (I (yt(€))) = £2 (y)+2(p—ps, &). Since £7 (y) = £7 (x)+1
by the assumption, we obtain (3.4.9), as desired. O

Let z, y € W¥, and take a shortest directed path

R 71 2 3 Tp _
P =2 I T2 xp—y

from x to y in QBG(W?). Recall from §3.2.1 that the weight wt®(p) of this directed
path is defined to be

wt®(p)= > e’
1<k<p
Tp—1 LN T is

a quantum edge

We set
Euy 1= Wt (p) + ds(wt (p)) € QY (3.4.10)

in the notation of Lemma 3.4.4(1). We now claim that &, , does not depend on
the choice of a shortest directed path p from z to y in QBG(W?). Indeed, let
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p’ be another directed path from 2 to y in QBG(W*®). We know from [LNSSSI,
Proposition 8.1] that wt®(p) = wt®(p’) mod QY. Therefore, by Remark 3.4.5 (1),
we obtain wt®(p) + ¢s(wt¥(p)) = wt®(p’) + ¢s(wt*(p’)). This proves the claim.

Lemma 3.4.11. Let z, y € W°. Then we have yze, ,H(Eey) = .

Proof. We proceed by induction on the length p of a shortest directed path from
z to y in QBG(W®). If p = 0, ie., = y, then &ry = &ex = 0, and hence
2¢,, = t(§xy) = e. Thus the assertion of the lemma is obvious. Assume now that

p > 0, and let
! 72 TP
p:x =2 x1 Tp =1y
be a shortest directed path from z to y in QBG(W®). Then we deduce from [INS,

Proposition A.1.2] that z i> sgT in SiBG® (in particular, sgx >= x), where

ToY1 if z = zg - x1 is a Bruhat edge,

oY1 +0 if z=xg LI 1 is a quantum edge;
note that

T if x = xg LN x1 is a Bruhat edge,
SpL = SpLo = vy s " .
z1t(yy) if ¢ =z — x;1 is a quantum edge.

In the case that z = 29 —— 71 is a quantum edge, we have z1t(7y") = sgx € (Ws)aﬁ‘,
which implies, by (3.4.6) and the fact that 21 € W, that
7 eV and zy =e. (3.4.11)
Assume first that ¢ = zg LN x1 is a Bruhat edge. Note that p’ : x; LN
R AN x, = y is a shortest directed path from z; to y in QBG(W?®). Since
wt(p) = wt(p’) by the definition, we deduce that &, = &,,. Also, by the
induction hypothesis, we have yz¢, #(§s1,4) = 71. Combining these, we obtain
Yze, ,t(&ey) = yze, ,t (& y) = ¥1 = spz = x, as desired.

Next, assume that z = zg My oz is a quantum edge; we have Wts(p) =
wt®(p’) + 7y, which implies that &, , = &, , +7) mod QY. We compute

yz&’yt(fx,y) = yHS(t(§$7y)) by Lemma 3.4.4 (2)
= yHS(t(gﬂchy)t(gw,y = &ary))
= Y11 ((ry )% (H(Eay — €mry)) by Lemma 3.4.3(2)
= yzle,yt(§$lvy)ns(t(€$yy - 59[:1721))‘

Since &y = &y + 77 mod QY, we see from Remark 3.4.5 (1) and (3.4.11) that
1% (t(€2.y—E2y.y)) = t(7). Therefore, using the induction hypothesis Yze,, ,t(€y) =
r1 and Lemma 3.4.10, we deduce that

yzﬁm,yt(faﬁ,y) = (yzﬁzl,yt(faﬁhy))t('ﬁv) = HS((yzﬁml,yt(fﬂchy))t(’ﬁ)) = Hs(xlt(’ﬁ/))
—_—
E(Ws)aff
= 11%(spx) = spx = 2.

This proves the lemma. O
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Lemma 3.4.12. Let z, y € W, and ¢ € QY5 If yz:t(¢) = z, then [(] > [€xy-

Proof. We set

_ sj if j#0, ~ a; if j#0,
5j 1= and aj =
sg if 7 =0, -0 if j=0.
We know from [LNSSS1, Lemma 6.12] that there exist a sequence z = xg, x1, ...,
z, = e of elements of W and a sequence i1, ..., i, € Iyg = I U {0} such that
xalail Iflaig Igilain S
T = Iq 1 xn, =€ in QBG(W?);

note that x,;_ll&ik €At \Ag for all 1 < k < n. We prove the assertion of the lemma
by induction on n.

Assume first that n = 0, i.e., = e. Because y € W¥ is greater than or equal
to e in the (ordinary) Bruhat order, there exists a directed path p from e to y in
QBG(W*®) whose edges are all Bruhat edges (see, e.g., [BB, Theorem 2.5.5]); since
wtS(p) = 0, we obtain &, = wt¥(p) + ¢s(wt¥(p)) = 0. Also, if yzt({) =z =e =
ezot(0), then it follows from Lemma 3.4.8 that [¢] > [0] = [£c], which proves the
assertion in the case n = 0.

Assume next that n > 0; we set ¢ := 41 for simplicity of notation. Then, z~
xal&i e AT\ A;, and the assertion of the lemma holds for x1 = §;2¢9 = s;x by the
induction hypothesis.

Case (i). Assume that y~'@; € (—AT)UAZL. We deduce by [LNSSS1, Lemma 7.7 (3)]
that

l&i —

&iry = Euy — 0ipr '@y mod QY. (3.4.12)
Assume first that i # 0. Let ¢ € QV"°* be such that yz:t(() = x. Because
7 a; € AT\ Af and ylay € (—AT) U AY, we see from [INS, Lemma 4.1.6 (2)]

that yz¢t(¢) = s;x = s;x. Therefore, by the induction hypothesis, we obtain [¢] >
(3.4.12)

(Esiayl =" [Cal-
Assume next that ¢ = 0. Let ¢ € QY be such that yz:t(¢) > x. Because

r7tay = —2710 (= the finite part 2~ 1ag of 17 ay) € AT\ AL, and y~tag = -y~ 10
(= the finite part y~lag of ytag) € (—AT)UAY, we see from [INS, Lemma 4.1.6 (2)]
that

yzct(C) = sox = spwt(—x10Y) = oz t(z~'ay)

=1

Therefore, by Lemma 3.4.10,

1 (yzct(¢ — 2 'ag)) = I ((yzct(O)H(—2~'ay))
= 11 (Boxt(a™ag t(—2~'ay)) = 1% (52)

= Hs(l‘l) =T = go.%'.

If we write the left-hand side of this inequality as II%(yz¢t(¢ — 27 1ay)) = yzet(¢)
for some ¢’ € QY524 (see Lemma 3.4.4(2)), then we have ¢’ = ¢( — z71qy mod
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QY. Also, by the induction hypothesis, we have [('] > [£5,,,]. Combining these, we

obtain
(3.4 12)

=1+ 27 ay] = ey + 2 "] ),

as desired.
Case (ii). Assume that y~'a; € AT\ AY. By [LNSSS1, Lemma 7.7 (4)], we have

Gin (5] = Eay — Gi0r '@ + 00y~ ay mod QY. (3.4.13)

Assume first that i # 0; note that 5;y = s;y € W (see, e.g., [LNSSS1, Proposi-
tion 5.10]). Let ¢ € QV be such that yz:t(¢) = z. Because z 'a; € AT\ A‘S" and
ylay € AT\ AT, we see that
siyzct(C) = siyzct(¢) = six = s;@ by [NS4, Lemma 2.3.6 (3)].

. . . . (34.13)
Therefore, by the induction hypothesis, we obtain [(] > [{gﬂ@.y] €z,

Assume next that ¢ = 0. Let ¢ € QY be such that yzct({) > z. Because
r71ag = —2 710 (= the finite part - tag of 7 1ag) € AT\ AE and y~lag = —y~ 16
(= the finite part y~tag of y~tap) € AT\ A¥, we see from [NS4, Lemma 2.3.6 (3)]
that soyz¢t(¢) = sox. Therefore, by Lemma 3.4.10, we have

HS((soyth(C))t(—x_l&(\{)) - HS((ng)t( x 1045/))
Here we have
HS((SO:E)t( rlay ) = HS((soxt(x Lay))t(— :r_loz(\)/)) = Sox = 17.
Also, using Lemma 3.4.4 (2), we compute
I1° ((soyzct(Q))t(—a~'ag)) = I (soy=ct(¢ — =~ 'ay))
= 1% (soy2c)II° ((¢ — 2" ay))) = ¥ (soy) I (¢(C — 2~ 'ag))
= ¥ (Soyt(y~ " ag))I (H(C — =7 'ag)) = I1° Boyt(y~'ag H(¢ — 2~ 'ay))
=" Goyt(¢ +y~'ag —a'ay)).

If we write this element as II°((soyzct(Q))t(—z7'ay)) = [soy]zcrt(¢") for some
¢" € QY52 (see Lemma 3.4.4(2)), we see that (" = ¢ + y_lozE)/ z71ay mod QY.
In addition, by the induction hypothesis, we have [("] > [£5,4,15y)]- Combining
these, we obtain

(=[" -y 'ay + 2 "ay]
C1~yp (34.13)
> (S5 50y — ¥ 0y + 27 Ay ] [Ex,y]

as desired. This completes the proof of the lemma. O
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3.4.4 Semi-infinite Lakshmibai-Seshadri paths

Let A € P* be a dominant weight; we set S:= S\ ={ieI|(\ o) =0} C1.
Definition 3.4.13. For a rational number 0 < o < 1, define SiBG(\; o) to be the
subgraph of SiIBG® with the same vertex set but having only the edges of the form:
o L5 y with o(z), 8Y) € Z; note that SIBG(\; 1) = SiBGS.
Definition 3.4.14. A semi-infinite Lakshmibai-Seshadri (SiLS for short) path of
shape A is, by definition, a pair p = (1 > -+ = 25; 0 =09 < 01 < -+ < 05 = 1)

of a (strictly) decreasing sequence x1 = --- = x5 of elements in (W9),q and an
increasing sequence 0 = g9 < 01 < --- < 05 = 1 of rational numbers such that there
exists a directed path from z,41 to z, in SIBG(\; oy) forall u =1,2, ..., s — 1.

We denote by B%()\) the set of all SiLLS paths of shape A.

Following [INS, §3.1] (see also [NS4, §2.4]), we endow the set BZ () with a
crystal structure with weights in P,g by the root operators e;, f;, i € I, and the
map wt : B2 (\) — Pag defined by

s

wt(n) = Z(au — Ou—1)TyA € Pag

u=1

(3.4.14)
forn = (x1, ..., zs; 00, 01, ...,as)eB%()\),

Let Conn(B2 ()\)) denote the set of all connected components of B2 (\), and let

Bs (\) € Corgl(B% (X)) denote the connected component of BZ (A) containing 7 :=
(e;0,1) e B2 (\).
Also, we define a surjective map cl : (W).g — W?° by

cd(z) =w if 2 = wzet(€), with w € W* and € € Q¥524

and for n = (z1, ..., xs; 00, 01, ..., O5) € IB%%()\), we set
) i= (), -, el(zs); G0, 71, -, 0
where, for each 1 < p < ¢ < ssuch that cl(zp) = --- = cl(zq), we drop cl(zp), ..., cl(xg—1)

and oy, ..., 0g—1. We know from [NS4, §6.2] that cl(n) € QLS(X). Thus we obtain
amap cl: B2 ()\) = QLS(\).

Remark 3.4.15. Recall that 1. := (e; 0, 1) € QLS(\). We see from the definition
that an element in cl~!(v),) is of the form:

(25175(51)7 Z§2t(€2)7 DRI Zﬁsf1t(§$—1)7 Zﬁgt(gs)a g0, 01, «.., Os5—1, US) (3415)

for some s > 1 and &;, &, ..., & € QY»524,
The final direction of 7 € B? (\) is defined to be
k() =as € (Wag ifn=(x1,..., 25; 00, 01, ..., 0). (3.4.16)

Then, for z € (W).q, we set
BZ.(\) = {n € BT (\) | 5(n) = z}. (3.4.17)

The next lemma follows from [INS, Lemma 7.1.4].
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Lemma 3.4.16. Let n € IB%? (A), and let X be a monomial in root operators such
that 1 = Xn.. Assume that ng € B2 (\) is of the form (3.4.15). Then, k(Xno) =
k(1) (10)-

Now, we recall from §3.3.2 the degree function deg, : QLS(\) — Z< for the case
= A. We know the following lemma from [NS4, Lemma 6.2.3].

Lemma 3.4.17. For each v € QLS(X), there exists a unique 1y € IB%?()\) such that
cl(ny) =¥ and k(ny) € W5.

Let ¢ € QLS(X). We know from [NS4, (6.2.5)] that wt(ny) is of the form:
wt(ny) = A —~ +KJ for some v € QT and K € Z<,. (3.4.18)
(¥) :
=wt

Also, we know from [LNSSS2, Corollary 4.8] (see also the comment after [NS4,
(6.2.5)]) that

s—1
K=- Z Oy Wty (Wyt1 = wy) = deg) (V) (3.4.19)
u=1
for ¢ = (wq, ..., ws; 00, 01, ..., 05) € QLS(\). Here we should note that in the

definition of deg, (¢), ws+1 = v(A) = e, and hence that wty(ws+1 = ws) = wty(e =
ws) = 0.

Let us write a dominant weight A € P™ as A\ = Zie[ m;w; with m; € Zs>o for
i € I, and define Par(\) (resp., Par(\)) to be the set of I-tuples p = (p{?);c; of
partitions such that p(i) is a partition of length less than or equal to m; (resp., strictly
less than m;) for each ¢ € I. A partition of length less than 0 is understood to be
the empty partition (); note that Par(\) C Par()\). Also, for p = (p);cs € Par()\),
we set |p| = > g |pD|, where for a partition x = (x1 > x2 > -+ > Xm), We set
Ix| :== x1+- -+ xm. Following [INS, (3.2.2)], we endow the set Par(\) with a crystal
structure with weights in P,g; note that wt(p) = —|p|J.

Proposition 3.4.18. Keep the notation above.

e
2

(1) Each connected component C € Conn(BZ (X)) of BZ (\) contains a unique

element of the form:

T]C = (Zglt(fl), Z&t(fg), ey ng,lt(fs—l); €5 00,01y .., 051, O'S) (3.4.20)
for some s > 1 and &, &, ..., &1 € QY5 (see [INS, Proposition 7.1.2]).

(2) There exists a bijection © : Conn(BZ (\)) — Par(\) such that wt(n®) =
A —|©(C)|6 (see [INS, Proposition 7.2.1 and its proof]).

(3) Let C € Conn(BZ (\)). Then, there exists an isomorphism C = {e(0)} ®
B (\) of crystals that maps n° to ©(C) @ ne. Consequently, B~ (\) is iso-

morphic as a crystal to Par(\) ® IB%? (M) (see [INS, Proposition 3.2.4 and its
proof]).
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3.4.5 Extremal weight modules

In this and the next subsection, we mainly follow the notation of [NS4, §4 and
§5]; we use the symbol “v” for the quantum parameter in order to distinguish it
from ¢ = e’. Let A\ € Pt be a dominant weight. We denote by V(\) the extremal
weight module of extremal weight A over a quantum affine algebra U, (gag). This
is the integrable U, (gag)-module generated by a single element vy with the defining
relation that vy is an “extremal weight vector” of weight A\ (for details, see [Kasl,
§8] and [Kas2, §3]). We know from [Kasl, Proposition 8.2.2] that V() has a crystal
basis (L£(A), B()\)) with global basis {G(b) | b € B(\)}. Denote by u, the element
of B(\) such that G(uy) = vy € V(XA), and by By(A) the connected component of
B(\) containing uy.

Let U)(gat) C Uy(gagr) denote the a quantum affine algebra without the degree
operator. We know the following from [Kas2| (see also [NS4, §5.2]):

(i) for each i € I, there exists a U!(gag)-module automorphism z; : V(w;) —

[1}

V(w;) that maps vy, to v[l] = G(ug{), where ug, € B(w;) is a (unique)

element of weight w; + 9;

(ii) the map z; : V(w;) — V(w;) induces a bijection z; : B(w;) — B(w;) that
maps Ug,; to UQ{, this map commutes with the Kashiwara operators e;, fj,
J € L, on B(w;).

Let us write a dominant weight A\ € PT as \ = Zie[ m;w;, with m; € Z>q for
i € I. We fix an arbitrary total ordering on I, and then set V()) := Ricr V()™
By [BN, eq.(4.8) and Corollary 4.15], there exists a Uy(gas)-module embedding
@y : V(A) = V() that maps vy to Uy := @,;c;ve™. Also, for each i € I and
1 < k < mj;, we define z;;, to be the U (gas)-module automorphism of V(\) that
acts as z; only on the k-th factor of V(z;)®™ in V()), and as the identity map on
the other factors of V/(\); these z;x’s, i € I, 1 < k < m;, commute with each other.
Now, for p = (p();cr € Par()), we set

=[Iso0G1s s zim)- (3.4.21)

i€l
Here, for a partition p = (p1 > -+ > pm—1 > 0) of length less than m € Z>1, s,(z) =
5p(21, ..., Tm) denotes the Schur polynomial in the variables z1, ..., x,, corre-
sponding to the partition p. We can easily show (see [NS4, §7.3]) that s,(z~!)(Img @) C
Img @, for each p = (p);ec;r € Par()\). Hence we can define a U (gag)-module ho-
momorphism 2, : V(A) = V() in such a way that the following diagram commutes:

V) —25 V()
z,,l l 1) (3.4.22)
V()

Dy

V) —25 V()

note that z,v) = S, vy in the notation of [BN] (and [NS4]). The map z, : V() —
V(A) induces a C-linear map z, : L(X)/VL(A) = L(X)/vL(N); this map commutes
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with Kashiwara operators. It follows from [BN, p.371] that
B(X) = {zpb | p € Par(\), b € Bo(\) }; (3.4.23)

for p € Par()\), we set
uf = zpuy € B(A). (3.4.24)

Remark 3.4.19. We see from [BN, Theorem 4.16 (ii)] (see also the argument after
[NS4, (7.3.8)]) that z,G(b) = G(z,b) for b € By(A) and p € Par(]).

3.4.6 Demazure submodules

Let A € P™ be a dominant weight. For each x € Wg, we set
V.o (A) = U, (gasr) S vy C V(N), (3.4.25)

where S7°"™v) denotes the extremal weight vector of weight x\ (see esg, NS4,
(3.2.1)]), and U, (gag) is the negative part of Uy (gag). Since V() = ( ) for
)

x € Wag by [NS4, Lemma 4.1.2], we consider Demazure submodules V ( only
for x € (W%).g in what follows. We know from [Kas3, §2.8] and [NS4, §4.1] that
V.7 (A) is “compatible” with the global basis of V' (\); namely, there exists a subset

T

B, (M) C B(A) such that

V,(N= @ cvGh) cvy = € CvGD). (3.4.26)

beBL () beB(N)

We know the following theorem from [INS, Theorem 3.2.1] and [NS4, Theo-
rem 4.2.1].

Theorem 3.4.20. Let A € P™ be a dominant weight. There exists an isomorphism
Uy : B(A) S B2 (\) of erystals such that

(a) Wr(uP) =n® '@ for all p € Par(\) (in particular, ¥y (uy) = ne);

(b) WA(By (V) = BE, () for all z € (WS)uq

3.4.7 Affine Weyl group action

Let B be a regular crystal for U,(gag) in the sense of [Kas2, §2.2] (or [Kasl,
p- 389]); in particular, as a crystal for U, (g) C Uy, (gag), it decomposes into a disjoint
union of ordinary highest weight crystals. By [Kasl, §7], the Weyl group W,g acts
on B by
n 1 .
5 b fioif o= (wtb, of) >0, (3.4.27)
e;"b if n = (wtb, o Yy <0

for b € B and j € L. Here we note that B ()\) is a regular crystal for Uy (gag) for
a dominant weight A € P+.
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Remark 3.4.21 ([NS4, Remark 3.5.2]). Recall from Remark 3.4.15 that every element
n € I (1) is of the form (3.4.15). Then, for each 2 € Wy,

z-n = (% (z2g, (1)), ..., M5 (226, t(&)) ; 00, 01, -, 04), (3.4.28)

where S = S\ = {i € I | (\, o) = 0}. In particular, we see by (3.4.28) and the
uniqueness of n¢ that n = (z¢,t(&)) - 7°, with C € Conn(B? () the connected
component containing the 7.

Remark 3.4.22. Let p = (p);c; € Par()). Denote by ¢; € Z>o, © € I, the number
of columns of length m; in the Young diagram corresponding to the partition p(?),
and set £ := Y, . ¢ € QYT note that ¢; = 0 for all i € S. Also, for i € I, let

0 denote the partition corresponding to the Young diagram obtained from that
of p') by removing all columns of length m; (i.e., the first ¢; columns), and set
0 := (0)scr; note that @ € Par()\). Then we deduce from [BN, Lemma 4.14 and
its proof] that

Zpux = t(§) - (zour) = t(§) - u®. (3.4.29)

3.5 Graded character formulas for Demazure submod-
ules
and their certain quotients

3.5.1 Graded character formula for Demazure submodules

Fix a dominant weight A € P*; recall that S = S\ = {i € I | (\, o)) = 0}.
Because every weight space of the Demazure submodule V() correspondmg to

x € WS =W N (W?),q is finite-dimensional, we can define the (ordinary) character
ch V7 (A) of V7 (\) by

ChV Z dlmV )\ @6 ,
BEQaff

where V~(X)y_p denotes the (A — 3)-weight space of V7 (\). Here we recall that an
element 5 € Q. can be written uniquely in the form: g =~ + kd for v € @ and
ke Z. If we set ¢ := €%, then e*# = e} Vg%, Now we define the graded character
gch V.7 (X) of V7 (\) to be

gch V7 () == Z dim V- (M) r—yrs € Tg 7,
YEQ, kEZ

which is obtained from the ordinary character ch V,~(A) by replacing e® with ¢.

Theorem 3.5.1. Keep the notation and setting above. Let A\ = Y, ; m;w; € P,
and x € WS. The graded character gch V7 (X\) of V7 ()\) can be expressed as

gch V.- (\) = (H ﬁu - q—r)—1> o et gdern(®), (3.5.1)

iel r=1 PEQLS(N)

46



By combining the special case 2 = |w,| € W of Theorem 3.5.1 with the special
case 4 = woA of Theorem 3.3.19, we obtain the following theorem; recall from
Remark 3.3.18 that QLSY>**°(\) = QLS()).

Theorem 3.5.2. Let A\ € P be a dominant weight of the from \ = Y ier MiTi,
with m; € Z>o, @ € I. Then, the graded character gch'V,, (X) is equal to

<H l_j(l - q”)“) By (g, 00).

i€l r=1
Remark 3.5.3 ([NS4, Theorem 6.1.1]). We know from [LNSSS2, Theorem 7.9] that
Py(q',0) = Z eWH(¥) gdegn(¥)
$EQLS(N)

where Py (¢!, 0) is the specialization of the symmetric Macdonald polynomial Py (g™, t)
at t = 0. Also, by [LNSSS2, Lemma 7.7], we have E,_x(¢!,0) = P\(¢~',0). There-
fore, it follows from the special case x = e of Theorem 3.5.1 that the graded
character gch V.7 () is equal to

(H f[(l - Q"”)‘1> Eyox(g1,0).
el r=1

Note that we have V-~ (A) C V7 (\) by [NS4, Corollary 5.2.5].

3.5.2 Proof of Theorem 3.5.1
We see from Theorem 3.4.20 that

chV, (A = Z evtin,

since
B2\ = || (d7w)nB2(N),
PEQLS(N)

we deduce that

chVy(N= Y ( > eWt(”)>. (3.5.2)

PeQLS(N) necl‘l(w)ﬁBz()‘)

(%)

In order to obtain the graded character formula (3.5.1) for V7 (), we will compute
the sum (%) of the terms e"*" over all € cl7*(¢) N ng()\) for each ¢ € QLS(A).

Let ¢ € QLS()), and take ny, € B? (M) as in Lemma 3.4.17. Let X be a monomial
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in root operators such that 7, = Xn., where . = (e;0,1). We see by [NS4,
Lemma 6.2.2] that

7 (¥) = {X(#(¢) - n“) | C € Conn(BF (N)), ¢ € Q¥}; (3.5.3)
for the definition of n®, see (3.4.20). We claim that
B B C € Conn(B= ())),
1! B2, (\) = X(t(¢) - n° : 3.5.4
A7 (W) NB2, () { (t(¢)-n~) ‘ CEQY, (0> Eanw) } (3.5.4)

We first show the inclusion C. Let n € cl™!(v)) N B2, (\), and write it as n =
X (t(¢) - n°) for some C' € Conn(B=2 (X)) and some ¢ € QY (see (3.5.3)). Also, we
set y = k(1) = k(ny) € W9 We see by (3.4.28) that ¢(¢) - n° is of the form
(3.4.15), with s(t(¢) - n%) = 19 (¢(¢)) = 2ct(¢ + ¢5(¢)). Therefore, we deduce from
Lemma 3.4.16 that ﬁogX(t(C) n9)) = k(ny)k() - n%) = yzct(¢ + ¢s(¢)). Since
n=Xt(¢) n% € B2 () by the assumption, we have yz:t(¢ + ¢s(¢)) = z. Hence
it follows from Lemma 3.4.12 that [(] = [ + ¢5(C)] > [§2y] = [Erk(w)]- Thus, 1 is
contained in the set on the right-hand side of (3.5.4).

For the opposite inclusion D, let C' € Conn(BZ (\)), and let ¢ € QY be such
that [(] > [£;k(y)]- It is obvious by (3.5.3) that X (#(C) - n®) € cl71(¢)). Hence it
suffices to show that X (¢(¢) - %) € B?x()\). The same argument as above shows

that k(X (t(C) - 7)) = yact(C + ¢s(¢)), with y := k() € W9. Therefore, we see
that

K(X(t(C) - 770)) = yzct(C + ¢s5(C)) = yzéz,yt(fw,y) by Lemma 3.4.9
=z by Lemma 3.4.11,

which implies that X (¢(¢) - n®) € fo()\). This proves (3.5.4).
Let C € Conn(BZ ()\)), and write ©(C) € Par()\) as ©(C) = (p¥);cs, with

pl) = (pgi) > > p(z) 1) for each i € I. Also, let ¢ € QY be such that [(] >
[€2,(u)], and write the difference [€] = o n@w)] € Qv T as

[ gxnw) ZC’L @ 5

el

v

note that ¢; = 0 for all ¢ € S. Now, for each i € I, we set ¢; + p(i) = (¢; + ,ng) >

>+ :052-—1 > ¢;), which is a partition of length less than or equal to m;, and
then set

(¢i)ier +O(C) == (¢; + p)icr € Par(N). (3.5.5)
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Noting that (A, Q¢) = {0}, we compute:

wt(t(¢) - n<) = H(¢)(wt(n))
— (g YA —|(p® )161|5) by Proposition 3.4.18 (2)
= A=\ Q6= |(0)ier|o

<)‘ €$I€’¢)) <)\ Zcz > )ie]’é

el

=A—wty(z = k(¥))d — (Z mici> 5 — (0 ier]d
il

= wt(ne) — wta (z = w(1))3 = |(¢; + p)ierlo.

From this computation, together with (3.4.18), we deduce that

3

X(t(C) 1)) = wt(Xne) — wty (z = #(¥))d — | (ci + pD)ier|6
) — wi (2 = K(1))8 — | (ci + p)ics0 (3.5.6)
¥) + (degy(v) — wt(z = £(¥))) & — | (ci + pD)ier]0.

Because degy (¢) — wty(z = k() = deg,,(¢) by the definitions of deg,(¢) and
deg,(v) , we obtain

wt(X (£(C) - 7)) = wt(¥) + (degon () — (i + pD)ier])d.
Summarizing, we find that for each ¢ € QLS()),

3 ewt(n) 32:4) S VX Q)

n€cl_1(¢)ﬁ]Bi()\) CeConn(BE (N))
a CEvi [C]Z[Ea:,n(d))]

B GWt(T/))edeng(’z’)(s Z x—|p|5 €5:=q ewt(TZJ)qdeng(ﬂ’) Z q—|P|

pem Pem
_ ewt(w)qdegm(w) H ﬂ(l - qir)il'
i€l r=1

Substituting this into (3.5.2), we finally obtain (3.5.1). This completes the proof of
Theorem 3.5.1.

3.5.3 Graded character formula for certain quotients of Demazure
submodules

Let A € PT be a dominant weight; recall that S = S\ = {i € I | (\, o) =0}.
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For each z € W = W N (W?*).q, we set

Xo )= Y U(ean) Sz = > (Ve ): (3.5.7)
pePar(\) pEPar(N)
p#(0)icr p#(0)icr

for the definition of z, : V(X)) = V()), see (3.4.22).
For ¢ € QLS(A), we take and fix a monomial X, in root operators such that
Xyne = 1y, and set

My - 1(8) 1= Xy (t(€) - ne) for £ € Q.

Remark 3.5.4. Note that t(&) - n. = (II%(t(£)); 0, 1) (see (3.4.28)). We deduce from
[INS, Lemma 7.1.4] that if ny, = Xyne is of the form ny = (x4, ..., xs; 00, 01, ..., %),
then

My - t(ﬁ) = X¢(t(§) ) 776) = (aclﬂs(t(f)), ce stS(t(f))§ 00, 01, - -, Os).

In particular, the element 7, - t(§) does not depend on the choice of X;. Also, since
T I8 (HE)A =z A — (N, €)0 for all 1 < u < s, we see by (3.4.14) that

wt (1 - £(€)) = wt(ny) — (X, £)9 (3.5.8)
BLI) ) 4 (degn(8) — O, €)3 h

and that
cl(ny - t(§)) = ¢. (3.5.9)

Theorem 3.5.5. Keep the notation and setting above. For each x € W*¥, there
exists a subset B(X_ (X)) of B(\) such that

X;N= & cwcw). (3.5.10)

beB(Xz (V)

Moreover, under the isomorphism ¥y : B(A) = B= (\) of crystals in Theorem 3.4.20,
the subset B(X; (X)) C B()\) is mapped to the following subset of BZ (\):

BE O\ {1 tEnnwy) | ¥ € QLSOV}. (35.11)

From Theorem 3.5.5, we immediately obtain the following corollary; cf. [NS4,
Theorem 6.1.1 combined with Proposition 6.2.4] for the case x = e.

Corollary 3.5.6. For each x € W*, there holds the equality

gch( ( )/X ( )) Z €Wt(¢)qdegz>\(¢). (3.5'12)
HEQLS(N)

By combing the special case z = |w,] € W* of Corollary 3.5.6 with the special
case it = woA of Theorem 3.3.19, we obtain the equality

geh(Vy, (N)/ X, (V) = Euea (g, 00).
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Remark 3.5.7. We recall from Remark 3.5.3 that

E’wo)\(qila 0) = Z 6Wt(w)qdegk(¢).
PEQLS(N)

Hence it follows from the special case x = e of Corollary 3.5.6 that

gch(V,(N)/ X (N) = Euoa(g™,0);

cf. [LNSSS3, Theorem 35]. Here we have V, (\) C V7 (\), as mentioned in Re-
mark 3.5.3. However, we can easily show that X (A) NV, (\) 2 X, (M) (except
for some trivial cases). Therefore, there is no inclusion relation between the quo-
tient modules V,;_ (X)/ X, (A) and V7 (A\)/X_ (\); this can be also observed from the
comparison of some explicit computations of E, (¢~ !,0) and E,_ x(q,0).

3.5.4 Proof of Theorem 3.5.5
Lemma 3.5.8 (cf. (3.4.23)). Let x € W¥. Then, we have

B (A) = {zpb | p € Par(X), b € By (A\) N Bo(N)}. (3.5.13)

Moreover, for every p € Par(\) and b € B (A\)NBy(N), the element z,b is contained
in B (A).

Proof. We first prove the inclusion D. Let b € B, (A) N Byp(A), and write it as
b = Xuy for a monomial X in Kashiwara operators. For p € Par(\), we have
2pb = Xzpuy = XuP since z, commutes with Kashiwara operators (see §3.4.5). Now
we set 7 := Wy (b) and 1’ := W) (z,b), where ¥ : B(\) = BZ ()) is the isomorphism
of crystals in Theorem 3.4.20. Then, we have = X7, and 1/ = XUy (uP) = Xn°,
with C' := ©~!(p) € Conn(BZ (\)). Therefore, noting that x(n°) = e, we deduce
from Lemma 3.4.16 that x(1) = x(n)x(n®) = k(n). Also, since b € By ()), it follows

oo

that x(n) = z, and hence x(n) = k() = x. Hence we obtain n’ € B2 (\), which
implies that z,b € B (\). -

Next we prove the opposite inclusion C. Let b’ € B (), and write it as b’ = z,b
for some p € Par(\) and b € By(\) (see (3.4.23)); we need to show that b € B (A).
We set n := Uy(b) € B2 () and 7/ := Uy (¥') € BZ (\). Then, the same argument
as above shows that x(n) = k(1) > x. Hence we obtain n € B2 (\), which implies
that b € B (\). :

For the second assertion, let p = (p);e; € Par()\) and b € By (A\) N By(N);
remark that

I8

zpb € B, () < Wi(zpd) € B2 () <= K(¥a(2pb)) = z.

We write b as b = Xu) for a monomial X in Kashiwara operators. Also, define
0 := (0D);er € Par(\) and £ == 3", ; c;af € Q¥ as in Remark 3.4.22. Then it

follows that z,b = zpXuy = Xzpuy (3:129) X (t(€) - u®). If we set C := ©71(p) €

Conn(BZ ())), then we have
U (2pb) = U (X (H(E) - u?)) = X (t(€) - a(u?)) = X ((€) - n°);
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note that ¢(¢)-n® is of the form (3.4.15) with x(t(&)-n®) = II°(¢(¢)) by Remark 3.4.21
and the fact that x(n®) = e. Therefore, we see from Lemma 3.4.16 that

R(Wa(2pb)) = R(X () - 7)) = K(Xne)TI (#(6)). (3.5.14)

Here we recall that k(X7.) = x since b € B, (A) NBy(A). Also, recall that £ € Q¥ .
From these, we deduce that

k(U (2pD)) = K(Xn)IT (H(E)) = k(Xne) by Lemma 3.4.9
= I.

This proves the lemma. O

Proof of Theorem 3.5.5. We will prove that if we set

B:={zsb | p € Par(A\) \ (D)icr, b € By (A\) N By(A)} C B(N), (3.5.15)
then
=P cwaG). (3.5.16)
beB

We first show the inclusion D in (3.5.16). Let p € Par(\) \ (0);cr and b € B (A) N
Bo(A). We see from Remark 3.4.19 that G(z,b) = 2,G(b). Since G(b) € V7 () and

X; (\) = 2 (Ve )
EPar()\)
p#(0)ier
by the definition, we have G(z2,b) = 2,G(b) € X, (). Thus we have shown the

inclusion D in (3.5.16). Next we show the opposite inclusion C in (3.5.16). Since
{G@®) | be Bz (N} is a C(v)-basis of V7 ()), we deduce from (3.5.7) that

X; (M) = Spang( {2,G(b) | p € Par(V) \ (0);es. b € B; (V). (3.5.17)

Let p € Par(\) \ (0)ier and b € B, (\). By Lemma 3.5.8, we can write the b as
b=zt for some p’ € Par(\) and b’ € B, (X\) N By(A). It follows that z,b = 22,0
Because z, and z, are defined to be a certain product of Schur polynomials (see
(3.4.21)), the element z,2, can be expressed as:

2pZp = E Npl Zp, with Npr € Z;
p''€Par(\)
lp"|=|pl+10'|

here we remark that |p| 4 |p’| > 1 since p # (0);c;. Therefore, we deduce that
2pG(b) = 2pG(2pV) = 2p2 G(V')

= Z nprG( zp//b @ C(v
p' €Par()\) beB
lp"1=lpl+]P’|
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From this, together with (3.5.17), we obtain the inclusion X (A\) C @,z C(v)G(b)
in (3.5.16). Thus, we obtain (3.5.16), as desired. In what follows, we write B(X (\))
for the subset B C B(\) in (3.5.15).

Furthermore, we will prove that

A (B(X; (V) = Bﬁx )\ Ay - t(Ean(w)) | ¥ € QLS(N) }-
For this purpose, it suffices to show that for each ¢ € QLS()\),

o () N (B (V) = (7 @) NBLO)\ (o HEemw)}- (35.18)

Let ¢ € QLS(A); recall that Xy, is a monomial in root operators such that 7y =
Xyne. Then we know from (3.5.4) that

A7 () NBE,(\)
= {Xi/)(t(g) : 770) ‘ Ce COHH(B%()‘)% C S vi [C] > [S:C,n(w)]}

We first show the inclusion D in (3.5.18). Let 7 be an element in the set on the right-
hand side of (3.5.18), and write it as n = Xy (¢(¢) - n®) for some C € Conn(B%()\))
and ¢ € QY such that [(] > [€2.0(0))- We write the difference [(] — [£; x(p)] € Qv+
as [C] = [€x uw)] = 2ier ¢y with ¢; € Z>g for i € I (note that ¢; =0 for all i € 5),
and define p := (¢;)ier + O(C) € Par(\) as in (3.5.5). We claim that p # (0);e;s.
Suppose, for a contradiction, that p = (0);c;. Then we have O(C) = (0);c; and
c¢; = 0 for all ¢ € I, and hence

n=Xy(t() 1% = Xy (t()  ne) = Xyp(M(#(()); 0, 1)
= X, (IT ( (&, () )), 0, 1) since [C] = [§5 k()]
= Xy (HEam(w)) - M) = M -t i)

which contradicts the assumption that 7 is an element in the set on the right-hand
side of (3.5.18). Thus we obtain p # (0);c;. Now, we set

b:= \le(nlﬁ : t(ga:,n(dx))) = \Ij;\l (X¢(t(£w,n(1j))) : 776)) € B; (A) N BO()‘)a

note that 7y - (&, k(y)) € ]B%?x()\) by (3.5.4), and that b = Xy (t(&; x(y)) - ur). Then
we see by (3.5.15) that z,b € B(X, ()\)). Also, we have
ZPb =Zp (X¢( (gx K ( 1/))) 'LL)\)) = Xw( gz K( ) (Zpu)\))

= Xy (&) - tC] = [Euip))) - u ®<C>) by Remark 3.4.22
= Xy(t(¢ +7) - u®Y))  for some v € QY
= Xy (t(¢) - u®Y).
Therefore, Wy(z,b) = Xy (t(¢) - n°) = 7, which implies that 7 is contained in
Uy (B(X, (A))). Thus we have shown the inclusion D in (3.5.18).

Next we show the opposite inclusion C in (3.5.18). Since B(X; (\)) C By ()), it
follows that

A () N (B(X, (V) C el ) NBZ(N).
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Hence it suffices to show that ny - £(&; cp)) € Wa (B(X;(\)). Suppose, for a
contradiction, that there exists ' € B(X, (\)) such that Wy (V') = ny - t(&5 k)
By (3.5.15), we can write it as b’ = z,b for some p € Par()\) \ (0)icr and b €
B; (A\) N Boy(N). We set n:= W, (b) € B2, (A) NBg (A) and write #(n) € (W)agt as

Kk(n) = yzet(€) for some y € WS and € € QV-5%d. Then, k(n) = yzet(¢) = z since
ne ng()\), and hence

(€] > [€ay) by Lemma 3.4.12. (3.5.19)

Let us write b as b = Yu), for some monomial Y in Kashiwara operators (note that
n = Yne), and define ¢ = 3", ;cia) € Q¥ and o = (0);e; € Par()) in such a
way that p = (¢;)ier + 0 (see Remark 3.4.22 and (3.5.5)); note that ¢; = 0 for all
i € S. Then, by (3.4.29), we have

V = z2pb = zpYuy = Yzpouy = Y(¢(() - u?).
Therefore, we see that

Mt n(w)) = a() = Tr(Y(#(C) - u®)) = Y (£(() - n°), (3.5.20)
with C' := ©71(g) € Conn(B= ())). -

Since 7y - t(Epn(w)) = Xo(t(Ea ) - M) € By (), it follows that n% = 7., and
hence @ = (0)icr. Hence we obtain 7y - (&, .(y)) = Y (£(C) - 7). Since ¢(¢) - ne =
(IT5(¢(¢)); 0, 1), we see from Lemma 3.4.16 that (Y (t(¢) - 1)) = w(n)&(t(() -ne) =
yzet(E)II9(¢(¢)). Similarly, we see that r(my HEam))) = n(w)HS(t(fx’,{(w))). Com-
bining these equalities, we obtain m((ﬁ)ﬂs(t(fzﬁ(w))) = yzet(§)II5(¢(¢)), and hence
(y = £() and) [C + €] = (6 xp). Since [€] > (€] by (35.19) and ¢ € Q7+, it
follows that ([{] = [{4,] and) [¢] = 0, which implies that ¢; = 0 for all i € I\ S;
recall that ¢; = 0 for all ¢+ € S by the definition. Therefore, we conclude that
p = (¢)ier + © = (0);er; this contradicts our assumption that p € Par(\) \ (0)er.
Thus we have shown the inclusion C in (3.5.18). This completes the proof of Theo-
rem 3.5.5. O
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Chapter 4

Representation-theoretic
interpretation of
Cherednik-Orr’s recursion
formula for the specialization of
nonsymmetric Macdonald
polynomials at ¢ = oo

4.1 Introduction

In Chapter 3, we proved that for a dominant weight A and pu € WA, the spe-
cialization E, (g, 00) of the nonsymmetric Macdonald polynomial E,(q,t) at t = oo
is identical to a certain graded character of a specific subset QLS**°(\) of the
set QLS(A) of quantum Lakshmibai-Seshadri (QLS for short) paths of shape X;
here, we recall that the subset QLS*°°(\) is determined by the subset EQB(v (1))
of W, where v(u) denotes the maximal-length coset representative for the coset
{w e W | w\ = p}. We remark that the set QLS(A) provides an explicit realization
of the crystal basis of a special quantum Weyl module W, () over the quantum
affine algebra U/ (g.g), where g.g is the untwisted affine Lie algebra associated to g
(for details, see [NS1], [NS2], [NS3], [LNSSS1], [LNSSS2], and [Na]). However, the
description of the subset EQB(v(p)) C W is not very explicit.

The aim of this chapter is to give a representation-theoretic (or rather, crystal-
theoretic) proof of Cherednik-Orr’s recursion formula for the specialization E,, (¢, c0)
at t = oo, which is described in terms of Demazure type operators TZ-T =
1), i € I. More precisely, we prove the following.

176%0%(81'_

Theorem C (= Theorem 4.4.2; see also [CO, Proposition 3.5 (iii)]). Let A be a
dominant weight, ;1 € WA, and i € I be such that (u, o) < 0.
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(a) If —v(p) " tay is not a simple root, then
T] Eu(g,0) = Esiu(g, ).

(b) If —v(u) Loy is a simple root, then

1,V

T} Bu(g,00) = (1 g™ 70790 B, (g, 00).

We give a proof of this theorem by using a canonical U (gag)-crystal structure on
QLS()), that is, by means of the root operators e;, f;, for ¢ € I; in contrast to the
proof of the recursion formula of Demazure type for the specialization E,(q,0) at
t = 0, given in the appendix of [LNSSS3], our proof is much more difficult because
of the appearance of the factor 1 — q<’\’i(“)7laiv ) in case (b). Moreover, in the course
of our proof, we obtain a recursive relation for the subsets EQB(w), w € W, which
determines these subsets inductively in terms of the tilted Bruhat order (see §4.3.2
for details) by starting with the equality EQB(w,) = W.

We should mention that in [Kat], Kato gave an algebro-geometric interpretation
of the specialization E,(q, 00) at t = oo in terms of Schubert varieties of semi-infinite
flag manifolds.

This chapter is organized as follows. In Section 4.2, we fix our notation, and
review Theorem 3.3.19 in Chapter 3. In Section 4.3, we prove the recursive relation
for the subsets EQB(w), w € W. In Section 4.4, we recall a canonical U/ (gas)-
crystal structure on QLS()), and prove a variation of the string property of the
subset QLS**°(A\) C QLS(A) for p € WA. Also, we study the behavior of the
quantity deg,, (1) for ¢» € QLS"*°()) under root operators. Finally, by combining
these results with Theorem 3.3.19, we establish Theorem C.

This chapter is based on the joint work [NNS2] with Satoshi Naito and Daisuke
Sagaki.

4.2 Specialization of nonsymmetric Macdonald polyno-
mials at ¢t = oo in terms of QLS paths
In this chapter, we follow the notation of §2.1 and §3.2.1 for the root system of

finite types and the (parabolic) quantum Bruhat graphs and use some properties in
§3.2.1 such as Proposition 3.2.5.

4.2.1 Subsets EQB(w) of W

Asin §3.3.2, for each w € W, we define a subset EQB(w) of W. Let w = s, - - - 5,
be a reduced expression for w. For each J = {j1 <ja<j3 <---<jr} C{L,...,p},
we define

pPJ = (w2207"'7ZT;/Bj17"°7/Bjr)
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as follows: we set [y 1= s, -+ 55,4, € At for 1 < k < p, and set

20 =W = Sj; *+ Siy,
21 = wsﬁjl — Sil .. .Sijl—lsij1+1 .. .sip — Sil .. .sijl .o 'Sipa

29 = wsﬁjlsﬁjg — Sil ‘e Sijl—lsij1+l e SijQ—lsij2+l e Sip — Sil e Sijl e Sijg ‘e Sipa

Zr:wsﬁjl...SBjT:Sil...sijl...Sijr...sip7

where the symbol = indicates a term to be omitted; also, we set end(py) := z,.
Then we define B(w) := {ps | J C {1,...,p}}, and
QB(w)

Bii .
= {py € Bw) | 2 — 2,1 is a directed edge of QBG(W) for all 0 < i < r — 1},

We remark that J may be the empty set; in this case, end(py) = w. Finally, we set
EQB(w) := {end(ps) | ps € QB(w)}.

Remark 4.2.1 (= Remark 3.3.15). We identify elements in QB(w) with directed
paths in QBG(W). More precisely, for py = (w = z0,...,2; B4, ... 0j.) € QB(w),
we write

Bj Bir
pr=(w==z20,...,20j5,.-..0j.) = <w:zo—il—>---—i—>zr).

Remark 4.2.2 (= Remark 3.3.16). We take and fix a reduced expression wow ™! =

ﬁ.
Si_y " Siy for wow ™!, and set B := Sip  Sip Qi —q <k < p. Let w = 2o 5
8; . . . :
2 25 .. L zr =2, —q < jr < p, 1 <k <r, be a directed path in QBG(W).
Then

. . . j Bj in
1§]1<]2<---<3r§p<:)<w:zoﬁi>z1i>--~&>zr:z)EQB(w).

Also, it follows from Proposition 3.2.5 (1) that the map end : QB(w) — W, p; —
end(py), is injective.

Remark 4.2.3. (1) If w = wo, then we have EQB(w,) = W by Proposition 3.2.5 (1),
since in this case, we can use all the positive roots as edge labels.

(2) The set EQB(w) does not depend on the choice of a reduced expression for
w (see Proposition 3.3.17).

Ezample 4.2.4. Let g be of type As. Then, EQB(w,) = W by Remark 4.2.3(1).
Also, the elements py of QB(s1s2) are as follows (see Example 3.2.3):

IR pJ | end(py) |
0 (s152) 5152
{2} (8182 a—2> 81) S1

From this, we have EQB(s182) = {s152, s1}. Similarly, we have EQB(s2) = {s2,¢e}.
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4.2.2 Nonsymmetric Macdonald polynomials at ¢ = oo in terms of
QLS paths

In this subsection, we briefly recall Theorem 3.3.19. We follow the notation of
§3.3.2 for QLS paths as follows.

Definition 4.2.5 (= Theorem 3.3.13; [LNSSS2, Definition 3.1]). Let A € P* be
a dominant weight, and set S = Sy = {i € I | (\,/) = 0}. A pair ¢y =
(w1, wa, ..., Wws; Ty, T1,...,Ts) Of a sequence wi,...,ws of elements in W such that
wy # wiy1 for 1 <k < s—1 and an increasing sequence 0 = 79 < -+ < 75 = 1 of
rational numbers, is called a quantum Lakshmibai-Seshadri (QLS) path of shape A
if

(C) for every 1 < i < s — 1, there exists a directed path from w;y; to w; in
QBGTi/\(WS)'

Let QLS(X) denote the set of all QLS paths of shape .

Remark 4.2.6. We know from [LNSSS4, Definition 3.2.2 and Theorem 4.1.1] that
condition (C) can be replaced by the condition:

(C)’ for every 1 <i < s — 1, there exists a shortest directed path in QBG (W)
from w;11 to w; that is also a directed path in QBG.,(W?).

For ¢ = (w1, w2, ..., ws; 70,71, ..,Ts) € QLS(A), we set

s—1

wt(¢) == Z(T,;H — Tj)wiy1 A € P,
=0

and k(¢) := wy € W¥; we call the element x(1)) the final direction of .

Let A € P be a dominant weight, and p € WX. We denote by v(u) € W the
maximal-length coset representative for the coset {w € W | wA = u} in W/Ws. We
set

QLS () := {y € QLS(A) | (¥) € [EQB(v(1))]}-

Remark 4.2.7 (= Remark 3.3.18). If w = w,, then we have EQB(w,) = W by
Remark 4.2.3 (1). If p = woA, then 7(u) = ws since w, is the maximal-length coset
representative for the coset {w € W | wA = woA}. Therefore, we deduce that
|IEQB(@(p))] = W9, and hence QLSY*»*°()\) = QLS()).

For ¢ = (w1,...,ws;70,...,7s) € QLS(A), we define the degree of 1 at € WA
to be i

deg,, (¥) = — > miwtx(wis1 = wy);
i=1

here we set wsy1 := |U(w)], which is the minimal-length coset representative for
the coset {w € W | w\ = p} in W/Wg. Note that by Remark 4.2.6, it holds that
Tiwt(wiy1 = w;) € Z>o for 1 < i < s—1. Also, 75 = 1 by the definition of QLS
paths. Hence it follows that deg,, (1) € Z<o. Now, for a subset Y of QLS"**()), we
define the graded character of Y at u € WA to be

gch,Y = Z qleen(¥)ewt(®), (4.2.1)
ey
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Now, for u € P, let E,(q,t) denote the nonsymmetric Macdonald polynomial,
and set E,(q,00) := lim;_, F,,(q,t), which is the specialization at ¢t = oc.
We know the following formula for the specialization E, (g, 00) at t = oco.

Theorem 4.2.8 (= Theorem 3.3.19). Let A € P be a dominant weight, and p €
WA. Then, we have the equality

E,(q,00) = gchMQLS“’OO()\).

Ezxample 4.2.9. Let g be of type As, and let A = wy + ws. Then, the elements 1 of
QLS(A), together with their weights and degrees, are as follows (see Example 3.2.3):
Since QLSY***°(\) = QLS()\) by Remark 4.2.7, we have

’ ¢ ‘ Wt(¢) ‘ degwok(¢) ‘ degslsgz\(w) ‘ degSQA(¢) ‘
(€:0,1) N —2 —2 1
(81;0, 1) 31)\ —2 -1 -1
(82; 0, 1) 82)\ -2 -2 0
(s152;0,1) $182A -1 0 0
(s251;0,1) 981\ -1 -1 0
(ws;0,1) WoA 0 0 0
(s281,1;0,1/2,1) 0 -2 -1 -1
(8182,82;0, 1/2, 1) 0 —2 —2 0
(e,w5;0,1/2,1) 0 -1 -1 -1

Ewo,\(q,OO) — ewo)\_'_qfleslsg)\+q7163231)\+q72652)\+q72631/\_~_q726)\+(q71+2q72)60.

Also, recall from Example 4.2.4 that EQB(s1s2) = {s152, s1} and EQB(s2) = {s2,¢e}.

Therefore, we have
QLSslsg)\,oo()\)
QLSSQ)\,OO()\)

= {(s182;0,1), (51;0,1), (s251,51;0,1/2,1)},
= {(82; 07 1)7 (67 07 1)7 (81327 523 07 1/27 1)}7
and hence

E8152)\(q700) — 65132)\ + qflesl)\ + q7160’

EDP -1 _X

Eg (g, 00) =e®* +q e + €Y.

4.3 Properties of subsets EQB(w)

In order to establish Theorem C, we prove a recursive relation for the subsets
EQB(w), w € W. This relation enable us to determine the subset EQB(w) for an
arbitrary w € W by descending induction on the left weak Bruhat order; recall that
EQB(ws) = W (see Remark 4.2.3 (1)).
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4.3.1 Some technical lemmas

For each w € W, we set I, := {j € I | ws; < w}, where we denote by < the
Bruhat order on W.

Lemma 4.3.1. Letw € W and i € I be such that s;w < w; note that —w ‘o € AT,

(a) siw ¢ wWi, if and only if —w oy is not a simple root. Moreover, in this
case, Is = Iy

(b) s;w € wWiy, if and only if —w~'a; is a simple root. Moreover, in this case,
Isw = Iy \ {j} for a unique j € I, such that oy = —w™'ay.

Proof. Suppose that —w ™oy is a simple root, say ag. Then, since w > s;w = wsy,

we have k € [,,. Hence s;,w € wWry, .

Conversely, suppose that s;w € wWi,, and that 8 := —w™la; € AT is not a
simple root. Since s;w = wsg € wWy,, we have sg € Wy, . Therefore, 8 can be
written in the form 8 = Zjelw njo; with n; € Z>o. Hence we have

o =ww o) = Z njwa; (4.3.1)
jely

here, #{j € I, | nj # 0} > 2 since f is not a simple root. If j € I,,, then ws; < w,
and hence wa; € A™. It follows from equation (4.3.1) that «; can be written as
a sum of two or more positive roots, which is impossible. This proves the first
assertions of (a) and (b).

Let us prove the second assertions of (a) and (b). Let j € Ig,,. Then we
have s;ws; < s;w. Therefore, we have ((w) — l(ws;) > L(w) — {(s;ws;) — 1 =
l(w) — £(s;w) = 1 > 0, and hence ws; < w, which implies that j € I,,. Thus we
obtain Iy, C Iy. Let j € I, \ Is;. Since s;ws; > s;w and ws; < w, we see that

siwa; € AT and wa; € AT

Therefore, we deduce that wa; = —a;, and hence a; = —w™'a;. In case (a), there
does not exist such a j, and hence Iy, = I,. In case (b), there exists a unique j
such that a; = —wtay;, and hence I, = I, \ {j}. This proves the lemma.

O

Remark 4.3.2. Let w € W and i € I be such that s;w < w. Since s;w = ws_,,-1,,

_an—1n.
and {(w) — £(s;w) = 1, we see that s;w ——— w is a Bruhat edge. Also, we claim
that X
w ——2 s;w is a (quantum) edge if and only if s;w € wW7, .
This is shown as follows.
(a) Assume that s;w ¢ wWy, . Since —w™ " a; is not a simple root, we have

2(p, —w~! V> 1 > 1, so that —1 = {(s;w) — L(w) # —2(p,—~w 1) +1 < —1.

Hence w % s;w is not a quantum edge; it is clear that this is not a Bruhat
edge from the assumption that s;w < w.
(b) Assume that s;w € wWj,,. Since —w™'a; is a simple root, we have 2(p, —w™1a))—

1

_an—1,.
1 =1. Hence w ——%% s;w is a quantum edge.

60



—1,..
Lemma 4.3.3. Let w € W, v € AT, and i € I. Assume that w — s;w and
1

—SAW T Ty 3
ERUEN —— ws,, are Bruhat edges, and that w 2 ws, s a quantum or Bruhat

edge. Then, w 2 wsy 45 a Bruhat edge, and w = s;ws,.

Proof. Suppose, for a contradiction, that w 2 ws, is a quantum edge. Then,
—1,.
since w ——% s;w is a Bruhat edge, it follows from [LNSSS1, Lemma 5.14 (2);

-1,
the left diagram| that ws, SN siws, is a Bruhat edge, which contradicts the

_ —1q.
assumption that s;ws, SN ws, is a Bruhat edge. Hence w N ws~ is a Bruhat
edge.
Also, suppose, for a contradiction, that w - ws~ is a Bruhat edge and s;ws, #

. w Loy .
w. Then, since w — s;w and w N ws, are Bruhat edges, it follows from

—1,.

[LNSSS1, Lemma 5.14 (1); the left diagram] that ws, o0 %, sjws~ is a Bruhat
_ -1,

edge, which contradicts the assumption that s;ws, SN ws~ is a Bruhat edge.

Hence s;ws, = w. This proves the lemma.
O

—1,.
Lemma 4.3.4. Let w € W, v € AT, and i € I. Assume that w — s;w and
1

WSy Sy, siws~ are Bruhat edges. Then, the following conditions are equivalent:
(1) w N ws, is a Bruhat (resp., quantum) edge;
(2) siw 2 siws~ is a Bruhat (resp., quantum) edge.

Proof. From the assumptions, we easily deduce that {(w) — l(ws,) = £(s;w) —
{(sjwsy). The desired equivalence follows from this equality.
U

For u,v € W, let {(u = v) denote the length of a shortest directed path in
QBG(W) from u to v.
Lemma 4.3.5. Let u = ug &1—> Uy &2—> &";) u, = v be a directed path in
QBG(W) from w to v. Then, we have {(u = v) = r modulo 2.

Proof. From the decomposition h* = Ca & {u € b* | (4, a¥) = 0}, we see that
det(sq) = —1for a € A, since spa = —, and sop = pif p € {p € b* | (u, @) = 0}.

. . . B; Bj i .
Therefore, if there exists a directed path u = wug 2w B —’8—7—> U, = v in

QBG (W) from u to v, then det(u=tv) = det(sg,, ---sg;,) = (—1)". Similarly, we
have det(u~'v) = (—=1)/®=) gince £(u = v) denotes the length of a shortest directed
path in QBG (W) from u to v. From these, we deduce that (—1)" = (—1)4*=") and
hence that ¢(u = v) = r modulo 2.

O
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4.3.2 Recursive relation for subsets EQB(w)

In this subsection, we assume that s;w < w. Under this assumption, we study a
relation between EQB(w) and EQB(s;w). Let w = s;, - - - 54, be a reduced expression
for w. By Remark 4.2.3 (2), we can (and do) assume that i1 = i, and s;w = 54, - - - 54,
is a reduced expression for s;w; in this subsection, we fix such a reduced expression
for w. Also, we take and fix a reduced expression wow ! = s5; . Sig for wow_l,
and set [ = s;, -+ i, a4, for —qg <k <p.

Remark 4.3.6. By Remark 4.2.2, if s;,w = 2z 6L> 21 & e ’BJHT zr = z is a directed
path in QBG(W), then

Bj Bj i . . .
(siw:zo—]L)zl—J%---&%zT:z) € QB(s;w) ©2<j1<joa<---<jr <p.

Lemma 4.3.7. Let w € W and i € I be such that s;jw < w. Let z € EQB(w), and
let

pJ:(w:zomzlh---ﬁl)zT:z>EQB(w), (4.3.2)

where J = {1 < j; <--- < jr <p}.
(1) Assume that sjz < z:

(1a) if sz < 2q for all 0 < a <7, then s;z € EQB(s;w);
(1b) if there exists 1 < b <r —1 such that

SiZb > Zbs
Siza < 2o  forb+1<a<r,

then siz € EQB(w).
(2) If siz > z, then s;z € EQB(w). In particular, s;z € EQB(w) U EQB(s;w).

Proof. (1) Assume that s;z < z.

(1a) Suppose that j; = 1. Then, z; = s;;w = s;w, and hence s;21 = s;(s;w) >
sjw = z1, contrary to the assumption of (1la). Hence we obtain j; > 1, so that
Jr > g1 > 1forall 1 <k < r. Note that 3;, # 1 = —w e for 1 < k < r.
Therefore, we can apply Lemma 4.3.4 to the path py in (4.3.2), and hence obtain a
directed path in QBG(W):

Biy Bir
SiW = §;20 — + —— Sikr = 8;2;
note that the edge labels of this path are identical to those of the path p; in (4.3.2).
Since 1 < j1 < ja < -+ < jr < p, we deduce that s;z € EQB(s;w).
zb_lai

. zb_lai 786]‘b+1
(1b) We see easily that z, —— s;2p and Si2bB;,, = SiZb41

IB.
%58;,,, = Zbtrl are Bruhat edges, and that z, SSlAEN zp+1 is a directed edge of
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QBG(W). Hence it follows from Lemma 4.3.3 that z, = s;zp+1. Also, applying
Lemma 4.3.4 to the directed path

Bipso Bir
Zpp] —— o — =2

in QBG(W), we obtain a directed path in QBG(W):

Bips2 By
SiZpp1 —> 1 — SiZy = SiZ.

Concatenating p; with this path, we obtain a label-increasing directed path in

QBG(W):

Biy Bi, Bibia Bjr
W=20 —> " —> 2 =8i2pp1 —> " — SiZr = S;Z2.
From this, we deduce that s,z € EQB(w) by Remark 4.2.2.
(2) Assume that s;z > z. By Proposition 3.2.5 (1), there exists a unique label-
increasing directed path of the form

By Bry Brew,

w = 1Yo y Yu = Siz

from w to s;z in QBG(W); here, —q < k; < --- < k, < p. By Remark 4.2.2, in
order to prove that s;z € EQB(w), it suffices to show that 1 < k;.
Case (i). Suppose that there exists 1 < b < u — 1 such that

Silb > Yb,
Silfa < Yo Tforb+1<a<u.

Then, as in the proof of (1b), by Lemma 4.3.3 and Lemma 4.3.4, we obtain a label-
increasing directed path of the form

ﬁkl Bkb ﬁkb+2 Bku
w="Yo > > Yb = SilYb+1 > ? Silu = 2

from w to z in QBG(W). By the uniqueness of a label-increasing directed path from
w to z in QBG(W), we deduce that k; = j; > 1.

Case (ii). Suppose that s;y, < y, for all 1 < a < u. By Lemma 4.3.4, we obtain
a label-increasing directed path of the form

By Bl
SiW = SiYo —> - T2 SiYu = 2
from s;w to z in QBG(W). If j; = 1, then z; = s;;w = s;w. In this case, by
removing the first directed edge from the path p; in (4.3.2), we obtain a label-
increasing directed path of the form
o ﬁjQ Bir .
SiW =820 —> " —> 2 =2

from s;w to z in QBG(W). By the uniqueness of a label-increasing directed path
from s;w to z in QBG(W), we find that k1 = jo > 1. If j; > 1, then by concatenating
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the directed edge s;w By w with the path py in (4.3.2), we obtain a label-increasing
directed path of the form

B1 'le /Bj'r
SiW—W=20—> " —> 2 =2

from s;w to z in QBG(W). As in the case j; = 1, we find that k; = 1. This proves
the lemma.

O]

Now, following [BFP], for each w € W, we define the w-tilted Bruhat order <,
on W by:

r <y yifl(w=1y)=Lw=2x)+lx=y)forz,yc W;

recall that ¢(x = y) denotes the length of a shortest directed path from x to y in
QBG(W).

The following proposition shows how the subset EQB(w) determines the subset
EQB(s;w) for w € W and i € I such that s;w < w. Therefore, starting with the
equality EQB(w,) = W (see Lemma 4.2.3 (1)), we can determine all the subsets
EQB(w), w € W, inductively.

Proposition 4.3.8. Let w € W and i € I be such that s;w < w.
(1) If s;w ¢ wWy,,, then
(la) EQB(w) N EQB(s;w) =0,
(1b) EQB(w) U s;EQB(w) = EQB(w) U EQB(s;w).
(2) If siw € wWy,,, then
(2) EQB(s;w) = {= € EQB(w) | siw <, 2},
(2b) s;EQB(w) = EQB(w).

Proof. Recall that w = s;, 84, - - - 55, is the fixed reduced expression for w with iy =1
(fixed at the beginning of Section 4.3.2). Note that 81 = —w™'a;.

(1) Assume that s;w ¢ wWi,,.

(1a) Suppose, for a contradiction, that EQB(w) N EQB(s;w) # 0, and take
z € EQB(w) N EQB(s;w). Let

pJ:<w:zohzlﬁ5---%zT:z> € QB(w),
Bn Bn Bray
P = <Siw =Y —D Y1 — Sy 22> € QB(s;w),

with 1 < j1 < jo< - < jr<pand2<n <ng < -+ < ny < p. Since
siw ¢ wWr,, it follows from Remark 4.3.2 that there does not exist a directed edge
of QBG(W) from w to s;w = wsg,, and hence that j; # 1. Also, since s;w < w, it
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follows that s;w B—1> w is a Bruhat edge by Remark 4.3.2. Concatenating this edge
with ps, we obtain a directed path

Siwﬁ—%w:Zoﬁi),Zlhu-&)ZT:Z
in QBG(W) from s;w to z, which is a label-increasing one since j; # 1. Here we
note that px is a label-increasing directed path in QBG(W) from s;w to z. Since
n1 # 1, we have two different label-increasing directed paths in QBG(W) from s;w
to z, contrary to Proposition 3.2.5 (1). This proves (la).

(1b) It is easy to verify that EQB(w) U s;EQB(w) C EQB(w) U EQB(s;w) by
part (1la) and Lemma 4.3.7. Hence it suffices to prove that EQB(w) U s;EQB(w) D
EQB(w) U EQB(s;w). Since it is clear that EQB(w) U s;EQB(w) D> EQB(w), we
need only prove that s;EQB(w) D EQB(s;w).

Claim. Let z € EQB(s;w), and let

Bn Bn Bra
PK = <8¢w =y — Y1 — - Yu = Z) € QB(s;w),

with 2 <np <ng < --- < ny <p. Then, $;yq > Yq for all 0 < a < wu. In particular,
for a = u, we have s;z > z.

Proof of Claim. Suppose, for a contradiction, that there exists 1 < b < u such that

Siyv < Yb,
SilYa > Yo for0<a<b-—1.

-1 —1
Yp—1%i Y
Then, yp_1 — s;yp—1 and SiYp—158,, = Si¥p ——— Yp = Yb—153,, are both

Bruhat edges, and y5_1 —/Bib—> yp is a directed edge of QBG(W). Therefore, by Lemma
4.3.3 and Lemma 4.3.4, we obtain a directed path
Bny Bry_y Bry i1 Bru
W=8Yo —> "~ SiYp-1 =Y —— 7 2 Yu =2

in QBG(W) whose edge labels are increasing. Since the edge labels of this path are
increasing, we have z € EQB(w). Also, by the assumption of the claim, we have
z € EQB(s;w). Thus, z € EQB(w) N EQB(s;w), contrary to Proposition 4.3.8 (1a).
|

Now we take a directed path pg in the claim above. By Lemma 4.3.4, we obtain

B"l Bnu
W = SiYo —> ** — SiYu = S;%,

which is a label-increasing directed path such that n; > 2. It follows that s;z €
EQB(w), and hence z € s;EQB(w). Thus we have s;EQB(w) D EQB(s;w), as
desired.

(2) Assume that s;w € wWr,,.
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(2a) First we prove that EQB(s;w) C {z € EQB(w) | siw<,z}. Let z €
EQB(s;w), and let

Bn Bn B
PK = <Siw:y0 Dy yu=Z> € QB(s;w).

Note that n; > 2 by Remark 4.3.6. Since s;w € wWy,, we see that w ﬁ—1> sjw is a
quantum edge by Remark 4.3.2. Hence we obtain a label-increasing directed path

5n1 ﬁnz ﬁnu

B1
w — S;W = Yo Yy Yu = =

in QBG(W). This implies that z € EQB(w). Moreover, by Proposition 3.2.5 (2),
this path is a shortest directed path in QBG(W) from w to z. It follows that
Siw <y 2.

Next we prove that EQB(s;w) D {z € EQB(w) | s;w <, z}. Let z € EQB(w)
be such that s;w<,z. By the definition of the tilted Bruhat order, there exists a
shortest directed path in QBG(W) from w to z passing through s;w:

Bry Bka Brat By,
w e S;w cee— 2.
b1 . . Bry B .
Here we recall that w — s;w is a quantum edge. Since w —» .-+ — s;w is a

shortest directed path in QBG(W) from w to s;w, it follows that a = 1 and k; = 1.
Hence this path can be written as:

B B
w 2 PN N (4.3.3)

Since z € EQB(w), there exists a label-increasing directed path

ﬁjl IBjT

pJ:<w:zo—>~-—>zr:z>€QB(w)

from w to z in QBG(W); it follows from the definition of p; € QB(w) that j; > 1.
Also, since py is a label-increasing directed path, it follows from Proposition 3.2.5 (2)
that py is less than or equal to the directed path (4.3.3) in the lexicographic order
(with respect to the edge labels), which implies that j; < 1. Therefore, j; = 1, and
hence

61 Bj2 ﬁjr
pr=lw=20 —21=8W— ' —> 2r=2|.

.. Bj i
From this, it follows that | z; = sjw — --- &+ zr =z | € QB(s;w), and hence

z € EQB(s;w). Thus we have proved that EQB(s;w) D {z € EQB(w) | siw <4 z},
and hence (2a).

Finally, we prove (2b). Recall that s; EQB(w) C EQB(s;w) UEQB(w) by Lemma
4.3.7. Also, by part (2a), we have EQB(s;w) C EQB(w), and hence s;EQB(w) C
EQB(w). From this, we obtain EQB(w) C s;EQB(w), since s? = 1. This completes
the proof of the proposition.

O
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Ezample 4.3.9. (1) Let g be of type Ag, and let w = s1s9 and ¢ = 1; in this case, the
root —w ta; = oy + as is not a simple root, and hence sjw = s9 ¢ wWry, . Recall
from Example 4.2.4 that EQB(s1s2) = {s152, 51} and EQB(s2) = {s2,e}. Hence we
have EQB(s1s2) U s1EQB(s152) = {182, 51, $2, ¢} = EQB(s152) UEQB(s32).

(2) Let g be of type Az, and let w = w, and i = 2; in this case, the root
—w lay = a1 is a simple root, and hence sow = s159 € wWr, . Recall from Example
4.2.4 that EQB(w,) = W and EQB(s1s2) = {s152,s1} C EQB(w,). Moreover, it is
easy to check that for z € W, f(wo = 2) = l(wo = s152) + {(s152 = z) if and only
if z € EQB(s152).

(3) Let g be of type As. We take w = sow, € W, and fix a reduced expression
w = 815892835251 for w. Then, the elements p; of QB(w) are as follows:

T pJ | end(ps) |
0 (w) 51595359251
{2} (w a8, 51835251) 51838981
{3} (w ajtaztas e) e
{5} (w 4, 51528352) 51898389
{2,4} (w 23, 51838981 otes, s3) S3
{2,5} (w 23, 1835981 =5 518382) 518389
{3,5} (w tastas, o a1 s1) 51
{2,4,5} | (w 23, 1835981 atas, s3 =Ly $381) 5381

From this, we have

EQB(w) = {s152535251, 51535251, 51525352, 515352, 5153, 51, 53, €,
51EQB(w) = {s2535251, 535251, 525352, 5352, 5153, 51, 53, €}
Also, let ¢ = 1 and fix a reduced expression sjw = $2838281 for sjw; in this case,

the root —w ™'y = a + a3 is not a simple root, and hence sqw ¢ wWy,. Then the
elements py of QB(sjw) are as follows:

T pJ | end(py) |
1] (siw) 52535251
{1} (s1w =25 s35951) 838951
{4} (syw a1, $98382) 595389
{1,4} | (s1w 23y 535981 —L $3892) 5389

Hence we have EQB(sjw) = {s2535251, 535251, $28352, s3s2}. Thus, we see that for
w = Sow, and ¢ = 1,

EQB(w) U $1EQB(w) =
{8182838281, 51835251,51528352, 518352, $2835251, $25352, $35251, 352, $§183, S1, S3, e}
= EQB(w) U EQB(s1w).
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Lemma 4.3.10. Let w € W and i € I be such that s;w < w. If z € EQB(s;w),
then s;z > z.

Proof. If sjw ¢ wWr,, then the assertion of the lemma follows from the claim in the
proof of Proposition 4.3.8.
Suppose now that s;w € wWy, . Let z € EQB(s;w), and let

Bn Bn Brun
PK = (sz-w:yo Sy — /yu22> € QB(s;w);

note that n; > 1. Concatenating the directed edge w N siw of QBG (W) with this
path, we obtain a label-increasing directed path

6” Bn ny
w s g = yo gy L2 2

Yu = 2 (4.3.4)

in QBG(W). By Proposition 3.2.5(2), this path is a shortest directed path in
QBG(W) from w to z of length w + 1. If s;z < z, then there exists 1 < b < u
such that

SiYp < Yb,
SilYa > Yo for 0<a<b-—1,

since s;w < s;(s;w) = w. Now, applying Lemma 4.3.3 and Lemma 4.3.4 to pg, we
obtain a directed path

Bny Bry_y Byt Bra
W=8Y —> " ——>SYp—1=Yp ——> " — > Yy =2

in QBG(W) from w to z of length u — 1. This contradicts the fact that the directed
path (4.3.4) is shortest. This proves the lemma.
O

Proposition 4.3.11. Let w € W, z € EQB(w), and i € I be such that s;w < w
and s;z > z. Let A € PT be a dominant weight.

(1) We have
wty(w = s;2) = wta(s;w = 2).

(2) If » ¢ EQB(s;w), then
Wia(w = 5:2) = why(w = 2).
(3) If z € EQB(s;w), then
wta(w = s;2) + (A, —wtay)) = wty(w = 2).

Proof. (1) This is proved by [LNSSS2, Corollary 4.2]; see also equation (3.2.3).
(2) Assume that z ¢ EQB(s;w).
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Case (a). Suppose that s;w ¢ wWy,. Since z € EQB(w), there exists a label-
increasing directed path

Bj Bj i
pJ—<w—z0i>zlﬂ-~&>z,«—z> € QB(w)

in QBG(W) from w to z. Recall that in this case, there does not exist a directed
edge of the form w N siw, B1 = —w 'y, in QBG(W) by Remark 4.3.2. Hence

we see that j; > 1. Since s;w N w is a Bruhat edge, we obtain a label-increasing
(hence shortest) directed path

siw&w:zokzlh.--%zrzz
from s;w to z in QBG(W). Since wty(s;w b, w) = 0, we deduce that
wia(siw = 2) = wty(w = 2).
Combining this and the equality in part (1), we obtain
wty(w = s;2) = wta(s;w = 2) = wty(w = 2),

as desired.
Case (b). Suppose that s;w € wWi,. Let

Bk Bk,
SiW —  — Zg =2

be a label-increasing directed path in QBG(W), with —q <k} < --- < k, < p. Since
z ¢ EQB(s;w) by the assumption, it follows from Remark 4.2.2 that k; < 2. Since

w2 s;w, B = —w ™ lay, is a quantum edge by Remark 4.3.2 (b),
B
wﬂ—1>siwl>-~-&>za:z (4.3.5)

is a directed path in QBG(W).

Claim. The directed path (4.3.5) is not a shortest directed path in QBG(W) from
w to z.

Proof of Claim. Suppose, for a contradiction, that the directed path (4.3.5) is
shortest. Since z € EQB(w), there exists a (unique) label-increasing directed path
) Bi,

w Dy By (4.3.6)
in QBG(W) from w to z such that 1 < j; < -+ < ja+1 < p. Because the directed
path (4.3.6) is lexicographically minimal (with respect to the edge labels) among the
shortest directed paths from w to z by Proposition 3.2.5 (2), we deduce that j; = 1 by

comparing the first edges of directed paths (4.3.5) and (4.3.6). Also, by comparing
the second edges of directed paths (4.3.5) and (4.3.6), we deduce that jo < kj.
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However, since k1 < 2 as stated before this claim, we obtain 1 = j; < jo < k1 < 2,
a contradiction. m

We note that /(w = z) = a—1 or a + 1 by Lemma 4.3.5, since w N syw and
siw By w are directed edges of QBG(W). Since ¢(w = z) # a + 1 by the claim
above, it follows from Lemma 4.3.5 that {(w = z) = a — 1. Now, let

- Biu_
w 2y Py (4.3.7)

be a label-increasing directed path, with 1 < j; < --+ < j,—1 < p. Concatenating

the directed edge s;w By of QBG(W) with the directed path (4.3.7), we obtain a
directed path

By By P

Siw — w (4.3.8)

in QBG(W); since the length of this path is a, this is a shortest directed path in

QBG(W) from s;w to z. Since s;w By w is a Bruhat edge, wty(s;w N w) = 0.
Therefore, by comparing the A-weights of directed paths (4.3.7) and (4.3.8), we find
that

wtr(siw = z) = wty(w = z).

Combining this and the equality in part (1), we obtain
wty(w = $;2) = wty(s;w = 2) = wty(w = 2),

as desired.
(3) By Proposition 4.3.8 (1a), we deduce that s;w € wWy,. Since s;w <, z by
Proposition 4.3.8 (2a), we have

wity(w = 2) = wty(w = s;w) + wty(s;w = 2).

—w Lo
Also, since w ——%% s;w is a quantum edge by Remark 4.3.2 (b), wty(w = s;w) =
(A, —w ). Therefore,

wty(w = 2) = (A, —w ™ ta) + wty(s;w = 2).
Combining this and the equality in part (1), we obtain
wty(w = 2) = (A, —w 1 e)) Fwta(s;w = 2) = (N, —w ) + why (w = 5;2),

as desired. This completes the proof of the proposition.

4.3.3 Some additional properties of subsets EQB(w)

In this subsection, we show some additional properties of the subsets EQB(w),
w € W. In addition, by using Proposition 4.3.8, we obtain a recursive relation for
the subsets |EQB(w) |, w € W.
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Lemma 4.3.12. For each w € W, the subset EQB(w) decomposes into a disjoint
union of some cosets in W/Wr,, .

Proof. Let z € EQB(w). It suffices to show that zs; € EQB(w) for all j € I,,. Let
J € I,. Since ws; < w, we can take a reduced expression for w as:

w = 8j ++*8i,, Withi, =j.

Since z € EQB(w), there exists J C {1,...,p} such that
le 5jr o
pr=|lw=2— - —5 2z =2) €QBw).

If j, = p, then we set K = J\ {p}; otherwise, we set K = J U {p}. In both
cases, we have end(px) = 2zs;, = zs;. Also, in the case K = J \ {p}, it is clear that
pr € QB(w). In the case K = J U {p}, Bp = a;, = o is a simple root. Therefore,

PN zsj is a directed edge of QBG(W), and hence px € QB(w). Thus we obtain
end(pk) € EQB(w), and hence zs; € EQB(w). This proves the lemma.
O

The next lemma follows from [M1, Chap. 2].

Lemma 4.3.13. Let A € P be a dominant weight. Let € W and i € I be such
that (u, o)) # 0. Then s;v(p) = v(sipn). Moreover, the following conditions are
equivalent:

(1) (n, o) <0;
(2) siv(p) <v(p).

In what follows, we take and fix a dominant weight A\ € P*, and set S = S =
{ieI|(\a)=0}. Then, for p € WA, we have S C I,. Therefore, by Lemma
4.3.12, we deduce that

[EQB(@(k))] € EQB(v(n)), (4.3.9)

where | | denotes the surjection | | : W — W, w s |w].
The following is a generalization of Proposition 4.3.8; we use this proposition in
Section 4.4.4.

Proposition 4.3.14. Let € WX and i € I be such that {u,«) < 0.
(1) Assume that s;0(1) ¢ B(p)Wr,, . Then,
[EQB(W(1))] U [siEQB(W(1))] = [EQB(w(1))] U [EQB(0(sin))]-
(2) Assume that siv(p) € v()Wr, . Then,
(2a)

[EQB(v(sin))] ={z € [EQB@(n))] | v(sir) <s) 2},
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(2b)
[siEQB(v(n))] = [EQB(v(p))]-

Proof. First of all, by Lemma 4.3.13, we have v(s;u) = s;0(p) < v(p).
Let us prove part (1). By Lemma 4.3.8 (1b), we have

EQB(5(1)) U siEQB(w(1)) = EQB(5()) U EQB(W(s12).

By Lemma 4.3.12, both sides of this equation can be written as a disjoint union
of some cosets in W/ va(u)' Also, since S C Iy(,), we find that both sides of this
equation can be written as a disjoint union of some cosets in W/Wg. Therefore, by
applying the surjection | | : W — W9, w — |w], to the equation above, we obtain
the assertion of part (1).

Part (2) is an immediate consequence of Proposition 4.3.8 (2); indeed, using
Lemma 4.3.12, we can easily verify that

[{z € EQB(W(1)) | 9(sip) <) 2} = {z € [EQB0(w))] | v(sipt) gy 2}-

This proves the proposition.
O

The following is a generalization of Lemma 4.3.10; we use this lemma in Sections
4.4.4 and 4.4.5.

Lemma 4.3.15. Let p € WA and i € I be such that (p, o) < 0. If z € |[EQB(v(sip)) ],
then |s;z] > z. Moreover, siz € EQB(v(n)) \ EQB(v(sip)).

Proof. By Lemma 4.3.10 together with the inclusion (4.3.9), we have s;z > z, and
hence |s;z] > z; here we note that s;v(u) < v(p) by Lemma 4.3.13. Suppose,
for a contradiction, that |s;z| = z. Then, we see that s;z € zWg C ZWI@(SW) C
EQB(v(sip)) by Lemma 4.3.12 and the inclusion (4.3.9). Therefore, by Lemma
4.3.10, we have z = s;(s;2) > s;z, which contradicts the fact that s;z > z. Thus, we
deduce that |s;z] > z, and s;z ¢ EQB(v(s;u)). In addition, by Proposition 4.3.8,
we obtain s;z € EQB(v(n)) whether s;v(n) € v(u)Wr,,, or not. This proves the
lemma.

O

Remark 4.3.16. We can show that if w € W and z € EQB(w), then z is less than or
equal to w in the right weak Bruhat order on W; we omit its proof since we do not
use this fact in this chapter.

4.4 Recursion formula for E,(q, c0)

Cherednik and Orr gave a recursion formula ([CO, Proposition 3.5 (iii)]) for
the specialization E,(q,c0) of the nonsymmetric Macdonald polynomial E,(q,t) at
t = oo in terms of Demazure-type operators, for the affine root systems of dual
untwisted type. In this section, we give a crystal-theoretic (hence representation-
theoretic) proof of this recursion formula for the affine root systems of untwisted
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type. For this purpose, in view of Theorem 4.2.8, it suffices to prove that for a
dominant weight A € P, the graded characters ch,, QLS**(\), p € W, satisfy the
same recursion formula as the one above with E,,(g, 00) replaced by ch, QLS*>());
namely, we prove Theorem 4.4.1 below, by making use of a canonical U] (g.g)-crystal
structure on QLS(A).

Throughout this section, we take and fix a dominant weight A\ € P*, and set
S=8S={iel|(\)=0}

4.4.1 Demazure-type operators

For i € I, we define a C(g)-linear operator TZ-T on C(q)[P] by TZT = 1_317% (si—1);
note that for p € P,

eltoi eHt2a; 4o Sk if <M’ Oz;/> <0,
Tiet =40 if (4, o) =0,
ieu — eu_ai — e — 681M+a1 if <M7 a;/> > 0.

We will prove Theorem 4.4.1 in Sections 4.4.4 and 4.4.5; recall that —v(u) la; is a
simple root if and only if s;v(u) € v(u)Wr_, | (see Proposition 4.3.1).

V()

Theorem 4.4.1. Let p € WX and i € I be such that (u, o) <O.

(a) If —v(pn) Loy is not a simple root, or equivalently, if s;v(u) ¢ vV(u)Wr, ., then

()7

T! ch, QLS (X) = ch,,, QLS*#>(X).

(b) If —v(u) Loy is a simple root, or equivalently, if s;v(p) € v(u)Wp., ., then

o(p)’?

T} ch, QLS ()) = (1 — M >) chy,, QLS* ().

By combining this theorem with Theorem 4.2.8, we obtain Cherednik-Orr’s re-
cursion formula for E,,(¢,00), p € WA; cf. [CO, Proposition 3.5 (iii)] for the affine
root systems of dual untwisted type.

Theorem 4.4.2. Let A € PT be a dominant weight. Let € WX and i € I be such
that {p, o) < 0.

(a) If —v(p)"tay is not a simple root, then
T} Eu(g,0) = Bou(q, ).
(b) If —v(u) Loy is a simple root, then

T/ E, (g, 00) = (1 - q“’ﬂ(“)*l“”) Es,(q,00).

Now, we set DZT = T; + 1, which is a C(g)-linear operator on C(q)[P]. The next
lemma follows easily from the definition of DiT.
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Lemma 4.4.3. Leti € 1.
_eSiktay
(1) Dje“ = % for pe P.

(2) If p € P satisfies {(p, o)) <0, then

Dge“ = el T Ly eSik,
(3) (D))?=D].

Proof. Because (1) and (3) are immediate from the definition of the operator D;L,
we omit their proofs.
(2) By (1), we have

et (1 — =, amai)

1 — e

. _ Vo
= el ehte g en (el

D;f et

where, for the last equality, we have used the assumption that (u, ;) < 0. This
proves the lemma.
O

4.4.2 Crystal structure on QLS())

In this subsection, following [LNSSS4], we endow the set QLS()) with a canon-
ical U] (gag)-crystal structure, where U)(gag) denotes the quantum affine algebra
associated to the untwisted affine Lie algebra g.g associated to g.

We follow the notation of §3.4.1 (or §2.3). In this subsection, as in §3.4.1, we
regard an element A\ € h* as an element of ¥4 by: (A, ¢) = (A, D) =0, and then we
have @; = A; — a/Ag for i € I. Also, as in the proof of Lemma 3.4.12, we set

_ sj if j#0, _ aj ifj#0,
5j = and aj 1=
sp if j =0, -0 if j=0.

Remark 4.4.4. We identify an element ¢ = (v1,...,vs;00,071,...,0s) € QLS(\) with
the following piecewise-linear, continuous map 1 : [0,1] — by = @,c; Ray:

p—1
P(t) = Z(O’k — 0—1)kA + (t — op—1)vpA for op1 <t <op, 1 <p<s.
k=1

Let i € Igz. We define the root operators e;, f; : QLS(A) — QLS(A) U {0} as
follows.
First, we define a function H(¢) on [0, 1] by

H(t) = H () == (¥(1), @), t € [0,1],

and set
m =m? :=min{H'(t) | t € [0,1]}.

G
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It follows from [LNSSS4, Proposition 4.1.12] that m € Z<. If m = 0, then we set
e := 0. If m < —1, then we set

t1 :=min{t € [0,1] | H(t) = m},

to ;= max{t € [0,t1] | H(t) = m + 1},
and define e;1 by
P(t) for t € [0, o],
€iw(t) = w(to) + :SVZ(’(/J(t) — ¢(t0)) for t € [to,tl],
P(t) + a; for t € [t1,1].

Similarly, we define f; as follows. If H(1) — m = 0, then we set f;1) := 0.
Otherwise, we set

ty = max{t € [0,1] | H(t) = m},
th = min{t € [ty,1] | H(t) = m + 1},

and define f;9 by

h(t) for ¢ € [0, ty],
fio(t) == ¥(tg) +si(¥(t) —(ty))  for t € [tg, 1],
U(t) — a; for ¢ € [t},1].

Then, it follows from [LNSSS4, Proposition 4.2.1] that e;¢0 € QLS(A) LI {0} and
fi € QLS(\) LU {0} for ¢p € QLS(N).

Also, for i € Ly, we define &;, p; : QLS(A) — Z by &;(¢) := max{k € Z>q | ey #
0}, ¢i(¥) := max{k € Zo | ffv # 0}.

As for the representation theoretic meaning of the set QLS()), we know the
following; for details, see [NS1], [NS2], [NS3], [LNSSS1], [LNSSS2], [LNSSS4], and
[NaJ.

Proposition 4.4.5 ([LNSSS4, Theorem 4.1.1], [NS3, Theorem 3.2], [Na, Remark
2.15]). The set QLS(N), equipped with the maps wt, e;, fi,€i, i, t € L, is a Ul (gas)-
crystal. Moreover, it provides a realization of the crystal basis of a particular quan-
tum Weyl module W, (\) over a quantum affine algebra U!(gasg).

Example 4.4.6. Let g be of type As, and let A = wy + wy. Then the crystal graph
of QLS()) is as follows:
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/ K
Ns Nss Jo
fo Jo fo h
m 2 13
f2 fi
Nsas1 Ms1s2
\ / fo
Nws

Here, ¢, = (v;0,1) for v € W, and

1/}1 = (8281751;07 1/27 1)7 Tﬂ2 = (8132732;07 1/27 1)7 ¢3 = (6,’11)0;0, 1/27 1)

The next lemma follows from the definition of root operators.

Lemma 4.4.7. Leti € I and ¢ € QLS(X) be such that fip = 0. Then, |sir(¢)] <
k(). Moreover, if e;p # 0, then the following hold:

(1) if K(ei) = K(v), then for every p > 0 such that ey # 0, we have
r(e;y) = K(¥);
(2) if k(e) = [si(y)] < k(¥), then for every p > 0 such that e # 0, we have
K(e;y) = [sik(1)].

Proof. Since f;1) = 0 by the assumption, it follows from the definition of the root
operator f; that max{t € [0,1] | le(t) = mzp} = 1, and hence that the function
H ;’b (t) is weakly decreasing in a sufficiently small neighborhood of the point ¢ = 1.
Therefore, we must have (k(¥)\, o) <0, and hence [s;x(¢)] < K(1).

Now, suppose that there exists p € Zso such that ey # 0 and r(ely)) #
m(ef_lw); note that if x(efy)) # /ﬁ(ef_1¢), then x(efy) = |sik(e?1p)| by the

)

definition of e; (or, by the definition of f;). Therefore, if we set t) := max{t €
P p
[0,1] | Hfiw(t) = mfiw}, then from the definition of f;, we deduce that t{ := min{t €

P P p—1 P
[t0, 1] | H:iw(t) = mfiw + 1} = 1. Hence, by noting that m;* Y= m:iw -1, we
p—1 p—1
obtain max{t € [0,1] | H;" w(t) = m,’ 1/1} = 1. This implies that fi(e?_lw) =0,

1
and hence p = 1. This proves the lemma.

O]
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Remark 4.4.8. For ¢ € QLS(A) such that fj3) # 0, we obtain

r(e ) = - = K(Y) = - = Kleif{"™Y) < k(M)

by applying Lemma 4.4.7 to f™*¢) = ¢/, where f®4) := f9(¥)(¢)) and e®) :=
=W (1h). Moreover, if k(1) < |sik(¢)], then k(fM@e) = [s;k(¢))]; otherwise,
RUf0) = K(Y).

4.4.3 String property

Lemma 4.4.9. Let p € WX and i € I be such that (u, o)) < 0, or equivalently,
si0(p) = v(sip) < v(p) (see Lemma 4.3.13). If ¢ € QLSH°(X), then f"**¢ €
QLSH®()).

Proof. If k(f™*) = k(¢), then the assertion is obvious. Hence we assume that
K(FP1p) £ K(); in this case, k() < [sin(1) (< sir()) and K(FP™9) = |s:5()]
by Remark 4.4.8. Since k(¢) € |[EQB(v(p))] € EQB(T(n)) by the assumption, it
follows from Lemma 4.3.7 (2) that s;x(¢0) € EQB(v(n)), and hence x(fM**¢y) =
|sik(y)] € [EQB(v(r))]. Hence it follows that f** € QLS*°°(X). This proves
the lemma.

O

Proposition 4.4.10. Let u € WX and i € I be such that (u, ) < 0. Let ¢ €
QLS(N), and let S(v) denote the i-string containing v, i.e.,

p>0 q>0

() = (U{ez’w} U U{ff¢}) \ {0},

(a) If siv(p) ¢ @(/‘I’)WIE(M)’ then

QLS (A) N S(¥) =0, S(¥), or {fi"™*}.
(b) If siv(n) € o()Wi ), then

QLS (NN S () =0 or S(¥).

Proof. Assume that QLS**°(A\)NS(¢) # 0, and take ¢' € QLS**°(A\)NS(). Since
fraxg’ e QLS *°(N) NS(¢) by Lemma 4.4.9, we may assume that ¢’ is the lowest
element ™) of the i-string S(¢). If k(e;¢)') = w(¢'), then r(ely') = k(¥') €
|EQB(w(1))] for all p > 0 such that €1y’ # 0 by Lemma 4.4.7 (1). Hence we obtain
S(0) C QLS ().

Now we consider the case that k(e;9)") = |s;£(¢")] < k(¢'); in this case, by
Lemma 4.4.7 (2), s(efy’) = k(e;jt) = |s;x(¢’)] for all p > 0 such that ey’ # 0.

Case (1). If s;x(y') € EQB(v(p)), then x(efy’) € |[EQB(w(w))] for all p > 0
such that ey’ # 0, and hence S(¢) \ {¢'} € QLS**°(X). Thus, we obtain S(¢) C
QLS#>(A).

Case (ii). If s;x(¢') ¢ EQB(v(p)), then x(efy’) ¢ [EQB(v(u))] for any p > 0
such that ey’ # 0, and hence (S(¢) \ {¢/'}) NQLS*>°(\) = 0. Therefore, we obtain
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S@) NQLS>(A) = {¢'} = {fi*™¢}.
Also, if s;x(¢") ¢ EQB(v(n)), then we have sv(u) ¢ v(u)Wr,,, by Proposition
4.3.8 (2b). Hence we need the extra case that QLS**°(\) N S(y) = {fmaxw} only if
si0(p) & V(u)Wr,, - This proves the proposition.

O

Proposition 4.4.11. Let p1,uo € WA. Let p € QLS(\) and i € I be such that
e; ) # 0. Then,

deg,,, () — degy, (eiy) = —wta([0(p1)] = £(¥)) + wta([v(p2)] = K(ei)).
In particular, if k(1) = k(e;h), then deg, (¥) = deg,,(e;¥)) for all p € WA.

Proof. If we set Deg(v) := deg,(v) + wtr([9(v)| = k(v)) for v € WA, then it
follows from the definition of deg, (1) that Deg(¢)) does not depend on the choice of
v € W, and that it is identical to the right-hand side of the equation in [LNSSS2,
Corollary 4.8]. Therefore, by [LNSSS2, Remark 4.4], we have

Deg(eiy) = Deg(v),

and hence

deg,,, () + witr([0(p1)] = w(¢)) = degy, (i) + wia([0(p2)| = r(ei)).

This proves the first assertion of Proposition 4.4.11. The second assertion follows
from the first one.
O

4.4.4 Proof of the recursion formula in the case s;v(u) ¢ v(p)Wr

o(p)
Throughout this subsection, we take and fix p € WX and ¢ € I such that

(1, oY) < 0 and s;5(1) & T(u)Wr,,,. We set BF(N) := 50 ?QLS"(A) \ {0}.

Lemma 4.4.12. We have
EF(X) = QLS*™(X) U QLS (N).

Proof. First, we note that x(efy) = k() or |s;k()] for ¢ € QLS(A) and p € Zx
such that e?1) # 0. It follows from Proposition 4.3.14 (1) that the inclusion C holds,
and that QLS**°(\) N QLS®*#*>°(\) = (. Hence it remains to prove the opposite
inclusion D. It is obvious that E#(X) D QLS**°(\). Let ¢ € QLS*#°°(X). Then,
since r(¢) € |EQB(v(sip))], it follows from Lemma 4.3.15 that [s;x(¢)]| > k(v),
and s;x(¢) € EQB(T(u)). Also, by Remark 4.4.8, we have /i(fmaxw) |sik(v)], and
hence f**¢) € QLS*>°(X). Since there exists p € Zx( such that e (f**¢) = 9, we
deduce that ¢ = el (f**¢) € e!QLS#™°(X) \ {0} C E#(N), as desired. This proves
the lemma.

O

Lemma 4.4.13. Let ¢» € QLS#*°(X) be such that fiip =0, and let k € Z~qo be such
that e # 0. Then

78



(1) if e}y € QLS*°(N), then deg,,, (1)) = deg,, (¥);

(2) of ef@b € QLSH™>(N), then degu(e§¢) = deg,,(¥).
Proof. First, we note that efy € QLS**>(\) (resp., € QLS***>()\)) if and only if
e/ € QLSH®(N) (resp., € QLS*#>())), since r(ej)) = --- = k(eft)) by Lemma
4.4.7.

(1) Since eFyp € QLS®*#>°()\) by the assumption, we have e;i) € QLS*#*>°()).

In this case, since |EQB(T(1))| N [EQB(s;v(1))| = 0 by Proposition 4.3.14 (1), it
follows that x(e;y)) # k(1), and hence k(e;¢)) = |sik(¢0)| < k(1) by Lemma 4.4.7;
notice that s;x(¢) < k(1). Therefore, we see that

degu(w) - degs“u, (eﬂ/))

= —wtr(|o(p)] = k(W)) + wtr([siv(p)] = |sik(y)]) by Proposition 4.4.11

= —wt\(T(p) = k() + wtr(siv(p) = sik(y)) by equation (3.2.3)

=0 by Proposition 4.3.11(1);
the last equality follows since s;v(p) < ©(p) and s;x(¢) < k() by our assump-

tion. Since r(e;t) = K(e?) = -+ = r(ef1p) by Lemma 4.4.7 (2), we deduce that
deg,,,(e)) = -+ = degsm(efw) by Proposition 4.4.11. This proves the desired

equality degsw(efw) = deg“(w).
(2) Since ey € QLS**°()\) by the assumption, we have e;i) € QLSH#™(N).
If k(esp) = k(9), then deg,(e;t)) = deg,(v)) by Proposition 4.4.11. If k(e;1))

|sik(¥)]| < k(¢), then k(e;) = |sik(y)] € |[EQB(T(r))], and hence s;k(¢) €
EQB(v(r)) by Lemma 4.3.12. In this case, it follows from Proposition 4.3.8 (1a)
that s;k(¢) ¢ EQB(s;v(n)). Therefore, we see that

deg,, (¢) — deg,,(eit))

= —wtr(|o(p)| = &) + wtr(|o(p)| = |sik(¢p)]) by Proposition 4.4.11

= —wtr(V(p) = k() + wtr(v(p) = sik(y)) by equation (3.2.3)

=0 by Proposition 4.3.11 (2).

Thus, in both cases, we have deg,(e;¢)) = deg,(¢). Since r(e;yh) = k(e2y) =
- = k(eFy) by Lemma 4.4.7 (2), we deduce that deg,(e)) = - = degu(eiﬁﬁ) by

Proposition 4.4.11. This proves the desired equality degu(eiﬁb) = deg,, ().
O

Lemma 4.4.14. We have
chy, QLS*™(X) + chy,, QLS*™>®(\) = DI ch, QLS*>®(\).

Proof. Let Si,...,S: be all of the distinct é-strings S; such that QLS**(A\)N.S; # 0.
Then, QLS**°(\) decomposes into a disjoint union of i-strings as follows:

QLS*>°(N\) = (QLSH*>(A) N S1) U --- U (QLS*>(N) N Sy) .
From this, we deduce that

ch, QLS*™(\) = ch,, (QLS*®(A) N Sy) + -+ + ch, (QLS#®(A) N S,),  (4.4.1)
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where we use the notation (4.2.1). Applying Dg to equation (4.4.1), we obtain

D! ¢h, QLS">(X) = D! ch, (QLS*®(A\) N S1) + --- + D} ch, (QLS*®(A\) N S;).
Here, because QLS**°(X\) N.S; = §; or {f"**} for some ¢p € QLS**°(X) N S; for
each 1 < j <t by Proposition 4.4.10 (a), we see from the definition of E#(\) that

Er(AN)NS; =8 foralll <j<t,
and hence
EF(N)=S1U---US,.
Also, since E*(\) = QLS#*°(X\) L QLS**#*°°(\) by Lemma 4.4.12, we deduce that
ch,, QLS#°(X) + chg,,, QLS*#°(X)

¢
=D (chu(QLS"™®(A) N S)) + chy,, (QLS™ (X)) N 5))) .
j=1
Therefore, in order to prove the lemma, it suffices to show that for each 1 < j <'t,
DZT chy, (QLS**°(A\) N'S;) = ch,(QLS*>(X)NS;)+chg,,(QLS*#>(X)NS;), (4.4.2)
where we use the notation (4.2.1).

Now, let 1 < j < ¢, and write S; = {1, e;1),...,eFy} for some k > 0 (depending
on j), where 1) is the lowest element of the i-string S;. Since f;3) = 0, we have k =
—(wt(1), o). Hence wt(eFp) = wt(v) + ka; = wt(p) — (wt(¢), o Ye; = s;wt(2).
In view of Proposition 4.4.10 (a), we need to consider the following two cases.

Case (i). Assume that QLS**°(A)NS; = S;. In this case, we have QLS*#°°(A\)N
Sj = 0 by Lemma 4.4.12, and deg, (¢) = --- = deg,(eFy) by Lemma 4.4.13(2).
From these, we see that

ch, (QLS*°(X) NS;) + chy, , (QLS*#°°(X) N S;) = ch, (QLSH (X)) N.S;)
— glesn(W)ewt®) ... gdegu(eiy) siwt(y)
= qdegp(d)) (€Wt(1/’) + .-+ esth(w))

— D] qlesu(¥)mt(¥) by Lemma 4.4.3 (2),
and hence
D} ¢h, (QLS"> () N S;) = (D])*q &)
— D} gdesn(¥)ewt(¥) by Lemma 4.4.3 (3)

= ¢h,, (QLS**(A) N S;) + chy,, (QLS* (X)) N S;).

Case (ii). Assume that QLS*>°(A\)NS; = {¢}. In this case, we have QLS**>°(A\)N
S; = {ei, ..., ek} by Lemma 4.4.12, and deg,,(v) = deg,, ,(eith) = - = degsw(efd))
by Lemma 4.4.13 (1). From these, we see that ch,(QLS**(A\)NS;) = qae8u () gwt(¥),
and that

ChSiu(QLSSi%OO(A) N S]) — qdegsiu(ei¢)€Wt(ei¢) 4t qdegsi#(efw)ewt(efqp)
_ qdegu(w)(ewt(wHai 4ot eSiwt(w)).
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Hence we deduce that

D] ch,, (QLS™(X) N 8j) = D]g &) )
= gleen @) (") L4 et Y)Y by Lemma 4.4.3 (2)
= ch, (QLS**°(X) N S;) + ch, ,(QLS*#>°(X) N S;).

Thus, in both cases, we obtain equation (4.4.2), as desired. This proves the lemma.

O
Proof of Theorem 4.4.1 (a). By Lemma 4.4.14, we have
D! chy, QLS™>(X) = ch, QLS**®(\) + chs,, QLS*#(\).
Since D;-f = T;r + 1, we conclude from this equation that T;f ch, QLS**(X) =
chg,, QLS*#°°(X). This proves Theorem 4.4.1 (a).
0

Example 4.4.15. Let g be of type Az, and let A\ = w; + wsy, w = s1892, © = 1; by
Example 4.3.9, we have syw = so ¢ wWy,. Let ¢, v € W, and ¢y, k = 1,2,3, be
as in Example 4.4.6. Recall from Example 4.2.9 that

QLSSISW\,OO(A) = {1/15152 y 1/151 ) 7~p1}7
QLS* M (N) = {thsy, the, 2}

Since €1vYs,5, = V2, e%zﬁSlsQ = 1g,, €191 = 0, and e1vys;, = 1. by Example 4.4.6, we
see that

U ell)QLSﬁSZ)\’OO(A) \ {O} = {wswza %1 ’ 1/]17 %2 ) ¢€7 1/}2}

p=>0
= QLS*1522°°(\) LI QLS*2M°(\).

Also, by Example 4.2.9, we have

degslsg)\(wSlSZ) = degszk(w2) = degsz)(¢32) = 0’
degslsz)\(,(bsl) = degSQA(¢6) — _]-7 (443)
degs132)\(¢1) =-1
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Therefore, by using the data in Example 4.2.9, we compute:

DJIFESLSz)\(q? OO)

— DI ( Z qdeg5152)\(¢)eWt(¢)>

qﬁeQLsslsQ)\,oo(A)
_ DiqdegslsQA(w5152)eWt(w8152) + Dquegslszx(wsJeWt(%l) + Diqugsl‘g?)‘wl)eWt(wl)

— Diqdegslszx(wslw)681S2>\ _{_DJlfqugSISQA(wsl)eSM +D1qd0g5152>‘(w1)60
_ qdegSISQ,\(wslsz) (eslsz)\ 40 —1—682)\) _{_qdegSlsz)\(dJsl) (631/\ + eA) _,_qdegslSQA(’llu)eO

(by Lemma 4.4.3 (2))
g NI (ewt<¢5152) 1 oewtwn) 4 ewtwsz))

+ qugslsgz\(wsl) (eWt(d}Sl) + €Wt(w6)> _|_ qdegslsQ)\(wl)eWt(wl)

_ Z qio8s1522 (V) wt(¥) Z 1852 (V) Wt (¥) by (4.4.3)
PEQLS 15220 (}) PEQLS2M°(X)
= Es,5,1(q,00) 4+ Es,1(g,00).

4.4.5 Proof of the recursion formula in the case s;v(¢) € v(u)Wi,

Throughout this subsection, we take and fix p € WA and i € I such that
(u, )y <0 and s;v(p) € ()W,

T(p)”

Lemma 4.4.16. There ezist i-strings Si, ..., S C QLS**°(\) such that
QLS () = QLS*#>°(X\) LU f"* QLS >(A) LU Sp U -+ - LU Sy,
where QLS (X)) := {f* | ¢ € QLS**>°(\)}. In particular,

ch,, QLS#>())

= Chﬂ QLSSM,OO()\) + Ch“(fimaXQLSSm’oo()\)) + ChH(Sl UL St), (4.4.4)

where we use the notation (4.2.1).

Proof. Let ¢ € QLS***>°()\). Since k(¢) € |[EQB(s;u(p))], it follows from Lemma
4.3.15 that [sik(v0)| > k(¢), and s;x(v) € EQB(w(n)) \ EQB(v(sip)). If we set
W = ) € fmaXQLSSO()), then we have S(¢) = S(¥') = {o, et .., b’}
for some k € Z>o. Here, by Lemma 4.3.12 and Remark 4.4.8, we have x(¢)) =
[si6()) € [BQB((x)] \ [BQB(sit())] and r(en) = - = nl(eh!) = n(y) €
|IEQB(v(s;n))] € [EQB(v(w))]; notice that ¢’ # 1, and hence k£ > 0. Thus, we
have {e;1, ..., e’} = QLS #>°(\) N S(). Also, since o' = f¥) we see that
Y e fmaxQLS*#>°(X) N S(¢). Therefore, it follows that

S) = (¥ e/, .. eft'} = (QLS™ X (N) U fI™*QLS* (X)) N S(4)).

The argument above shows that QLS*#>°(\) U f***QLS*#°°(\) decomposes into a
disjoint union of 4-strings. In addition, by Proposition 4.4.10 (b), so does QLS**°(\).
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Hence the same is true for
QLS (1) \ (QLS™ () L " QLS""*(1));

here, we remark that QLS*°°(X) D QLS**>°(X)U fla*QLS*#°(\) since k(ely)’) €
|[EQB(T(p))| for all 1 < p < k if ¢p € QLS*#°°()), as seen in the argument above.
This proves the first assertion.

The second assertion follows from the first one.

Lemma 4.4.17.

(1) Let ¢ € fPa*QLS®*#°(X). Then, for every k € Z=q such that ek # 0, we
have

deg,,,,(efy) = deg,, (1) = deg,,(ef¥)) + (A, —v(p) o))

(2) Let S;, 1 < j <t, be as in Lemma 4.4.16, and let ¢» € S;. Then, for every
k,l € Z~q such that e,’fz/; #0, and f,fz/; # 0, we have

deg,, (ef ) = deg,, (i) = deg, (¥).

Proof. (1) Let ¢ € fP®*QLS®*#>°(\). It follows from the proof of Lemma 4.4.16
that k(e;10) = [sik(¥)] < kK(¥), and k(e;90) € [EQB(s;v(w))]; hence sik(v) < k(v).

Therefore, we have

degu(w) - degsiu(eiw)

= —wtx(|o(p)| = k(@)) + wtr([siv(p)] = [sik(y)]|) by Proposition 4.4.11

= —wtr(V(p) = k(Y)) + wtr(siv(p) = sik(v)) by equation (3.2.3)

=0 by Proposition 4.3.11 (1).

Also, since r(e;t)) = r(e?y) = --- = k(efy) by Lemma 4.4.7 (2), we see that
deg,,,(ei)) = -+ = degsm(efzb) by Proposition 4.4.11. Hence we obtain degsw(efzﬂ) =
deg,, ().

Now, since |s;k(¢)] = k(e;) € |[EQB(s;v(p))], we have s;r(10) € EQB(s;v(u))
by Lemma 4.3.12. Hence we see that

deg,,(¢) — deg,,(eiv))
= —wtr([o(p)| = k() + wtr(|v(p)| = [sik(¢)]) by Proposition 4.4.11

= —wtr(T(p) = k() + wtr(T(p) = sik(v)) by equation (3.2.3)
= (X, —v(p) o) by Proposition 4.3.11 (3).
Since k(e)) = K(e2) = -+ = k(ek1h) as mentioned above, we have deg,, (ei)) =

o= degu(e,’ﬁ/}) by repeated application of Proposition 4.4.11. Combining these, we
obtain deg,, (1)) = deg, (ef¢) + (X, —v(u)"'a}), as desired.

(2) By Lemma 4.4.9, it suffices to show that degu(efzp) = deg, (¢) for ¢ € S
such that ¢ is the lowest element of the i-string S;.
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If k(e;1) = K(v), then k(eF1p) = k(1)) by Lemma 4.4.7 (1). In this case, applying
Proposition 4.4.11 repeatedly, we obtain degu(efdj) = deg,, ().

If k(eiyp) = [sik(¥)] < k(1) (notice that in this case, we have s;k(¢) <
k(1)), then s;k(v) ¢ EQB(s;v(1)); indeed, since S; is an i-string such that S; N
QLS*#°°(X\) = 0, we have e;¢) € S;\QLS*#*°()), and hence k(e;10) ¢ |[EQB(s;0(p))].
Therefore, we have

deg,(¢) — deg, (eiv)
= —wtx(|o(p)| = k() + wtx(|o(u)| = |sik(¢0)]) by Proposition 4.4.11
) =

= —wtx(v(p k(1Y) + wtr(T(p) = sik(v)) by equation (3.2.3)
=0 by Proposition 4.3.11 (2).
Also, applying Proposition 4.4.11 repeatedly, we have deg,,(e;¢)) = --- = degﬂ(efw).

Combining these, we obtain deg,(ef¢) = deg, (1), as desired. This proves the
lemma.

O]

Lemma 4.4.18.

(1) Df chy(f" QLS (X)) = chy (P™QLS™ (X)) + chyyp QLS ().
(2) chy, QLS #®(\) = ¢ ") ch . QLS #0(X).

(3) D! ch,QLS*#>()\) = 0.

(4) Let Sj, 1 <j<t, beas in Lemma 4.4.16. Then, DI ch, S; = ch, S;.

Proof. By the proof of Lemma 4.4.16, there exists i-strings S7, ..., S, such that
QLS*#>°(\) U f™QLS*#>°(\) = Sj U--- U S).
To prove parts (1), (2), and (3), it suffices to show the following claim.
Claim. For each 1 < j < u, the following hold:

(i) D] chy,(S) N fPQLS (X)) = chy, (S} N fRXQLS*#(N)) + chy, () N
QLS™ (X))

(ii) chyu(S)NQLS*#22(\)) = gA ") chy,, (S5 N QLS*#>())).
(iii) D ch, (S} N QLS*#>())) = 0.

Proof of Claim. Let 1 < j < u, and write 5’; ={y, e, ..., efib} for some k € Z>g
(depending on j), where 1) is the lowest element of the i-string S;; note that & > 0
by the proof of Lemma 4.4.16. Then it follows that S} N fi***QLS*#>°(\) = {4}

and S;- N QLS*#>°(\) = {es, ..., efd;}.
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(i) We have chy, (S} N fRaXQLS™#°°(\)) = q&(")e"(¥) Hence it follows from
Lemma 4.4.3 (2) (note that (wt(¢), o)) < 0), together with the equality wt(efvy) =
siwt(1)), that

D} chy () N fRQLS*# (X)) = g8 (M) 4 4 eivte))
= qloBn() (emtW) ... 4 wHelv)),

Also, we see that

chy, (S} N fP**QLS®#°° (X)) + chs, (S5 N QLST#(N)) =
qo8u (V) wt() 4 gdegsu(ei) wilea) | o gdems;u(ef9) gwi(ef)

Because deg,(¢) = deg,,,(e)) = -+ = degsm(efw) by Lemma 4.4.17 (1), we
conclude that

D ch, (S} N fPQLS* ()
= chy, (8] N fQLS M (A)) + ch,(S) N QLS (X)),

as desired.
(ii) We deduce that

chy, (S} N QLS®*#>°()\))
= glesule)gwileiv)) oy gdegu(efv) wi(efy)
— gAI)ha)Hder, (9) (gwh(eit) Ly gWHeY)) by Lemma 4.4.17 (1)
— ATty (qdegsiu(eiw)em(e”) +---+ qdegsi”(ew)em(ew»

by Lemma 4.4.17 (1)
— AW ) chy, (S5 N QLS (X)),

as desired.
(iii) As in the proof of (ii), we compute:

chy, (S5 N QLS®*#>(X))
— q—</\a—ﬂ(u)*1aiv>+deg#(¢)(ewt(ew) 4ot ewt(efw)) by Lemma 4.4.17 (1)
= g~ M) e ) tdeg, (¥) ((ewt(w) +eVtley) o4 6wt(e§w)) _ ewt(w))

= q_<>\’_§(”)71aiv>+deg“(w) (DlL - 1) (eVt ) by Lemma 4.4.3 (2).
From this, we deduce that

D} ch, (S50 QLS*#>(\)) = g~ Nl +des, () <(D3)2 _ Dj) V(W)
=0 by Lemma 4.4.3 (3),

as desired. ®
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(4) Let 1 < j < u, and write S; = {¢,e;9), ..., e} for some k > 0 (depending
on j), where 9 is the lowest element of the i-string S;. From Lemma 4.4.17 (2) and
the equality wt(ef1)) = s;wt (1)), we deduce that

chy, S; = g8 () (eHY) oL g WHE)) = gdemu (W) (wHY) L g esiviY))
= D glesu (@) ewi(v),

From this, we see that
D! ¢h, S; = (D})? ch,{} = D! ch,{¢} = ch, S, by Lemma 4.4.3 (3),

which proves part (4).
U

Proof of Theorem 4.4.1 (b). Applying D;r to both sides of equation (4.4.4) in Lemma
4.4.16, we deduce that

D! ch, QLS*™())

= D] chy, QLS*#(\) + D ch, (fP**QLS*#>(\)) + D! ch,(S; U ---USy)
(4.4.5)

= ch, (f"™QLS*#°°(\)) + chy,, QLS™#°(X) 4 ch, (S U -+ - L.Sy)
by Lemma 4.4.18 (1), (3), (4).

By subtracting equation (4.4.4) in Lemma 4.4.16 from equation (4.4.5), we see that

T! chy, QLS™™(X) = chy,, QLS* () — ch, QLS*#>())
= (1 — MW )y chy,, QLS®#°(\) by Lemma 4.4.18 (2),
which proves Theorem 4.4.1 (b). O

Example 4.4.19. Let g be of type Ao, and let A = wy + ws, w = wo, and i = 2; by
Example 4.3.9, we have sow = s152 € wWy, . Let ¢, v € W, and ¢, k =1,2,3, be
as in Example 4.4.6. Recall from Example 4.2.9 that

QLS™*M(\) = QLS(A) = {¢, | v € W} U {¢y | k = 1,2,3},
QLS 522 (X) = {ths, 55, sy, Y1 }-

Since egthy, = VYsys9 €2¢5281 =, 6%¢5281 = s, 62¢32 = 9., and 62¢3182 = ety =
exths, = eahe = eaP3 = 0 by Example 4.4.6, we have

f?aXQLSﬂSQ)\’OO()‘) = {%;o, ¢8251}'

Hence we see that

QLSwoA,oo(A) — QLSslsz)\,OO()\) L féIlaXQLSS1$2)\,OO()\) L {d&wa"be} L {'QDQ} L {¢3};
remark that {1s,, .}, {102}, and {13} are 2-strings. We set

Sl = {d}wo’wmsz}y SZ = {¢5231»¢1,¢51}a S3 = {¢827¢e}a 54 = {¢2}a 55 = {’QZ}?)}
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Then we have

QLSY*M°(\) = Sy LU Sy LU S3 U S, LIS,
QLS* 1924 (\) L f"*QLS*1 52 (\) = 51 U Sa.

In addition, by Example 4.2.9, we have

degwoA(¢wo) = degslsgA(@Z’swz) = degwoA(¢S182) +1,
degwoA(¢8281) = degslsgA(d)l) = degslsgz\(djm)

(4.4.6)
= degwo/\(dﬁ) +1= degwo)\(d}Sl) +1,
degwo)\(qpsz) = degwo)\(qzbe);
note that (\, —ws'ay) = 1. Therefore, we compute:
D; Chwo)\ S1 = D; <qdegwo/\(wwo)€“’t(’/’wo) + qdegwoA(dJsl32)ewt(w5132)>

— D} <qdegwox<wwo)ewox n qdegmwﬂsg)eslszx)

= qdegwok(wwo)Dgew")‘ since D;esl”)‘ =0

= gd°8uox(Ywo) (ewo’\ + 65182’\) by Lemma 4.4.3 (2)

_ qdegwo)\(wwo)ewo)\ + qdeg5152x(¢51s2)68182>\ by (4.4.6)

— qdegwo N (%o ) eWt (wwo ) + qugSl so (1/151 59 ) eWt(wsl s9 )

= chyA(S1 N fEQLS* 522 (N)) + chy, 0 (S1 N QLS 524 (N)),

where, for the second and sixth equalities, we have used equalities wt (¢, ) = woA
and wt(vs,s,) = 152\ in Example 4.2.9. Similarly, we deduce that

DY chy,x Sz = chy,a(S2 N fFQLS™ 219(N)) + chy, g0 (S2 N QLS4 (N)).
Also, it is easy to check that
D} chy,x Sk = chy,x Sk for k = 3,4,5;
note that we use (4.4.6) for k£ = 3. Thus, we obtain

DI chy,\ QLSYoN®(N)
= chy A (fEXQLS*152M(\)) 4 chy, o, x QLS*52MC(N) + chyy, 2 (S3 U Sy U Ss).
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