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Chapter 1 General Introduction 
 

Before discussing each chapter showing experiments on three-dimensional Dirac fermion 

system Ca3PbO, in this first chapter, the relevant theoretical backgrounds are briefly 

introduced.  

 

1.1.  Berry phase and Berry curvature 

The Berry phase [1] has become one of the key concepts in diverse branches of 

physics. Over the last three decades, it has been gradually realized that the Berry phase 

of the electronic wave functions can have a substantial impact on material properties and 

play a key role in a variety of phenomena [2] including polarization [3,4], orbital 

magnetism [5–7], and various (quantum [8–10], anomalous [11,12], or spin [13–16]) 

Hall effects. The Berry phase can be regarded as the Aharonov-Bohm phase of a charged 

particle traveling along a loop including a magnetic flux, whereas the Berry curvature, a 

vector quantity related to the Berry phase by integration, can be regarded as an effective 

magnetic flux density (or magnetic field) in a parameter space (k-space for our 

interests) [2]. In particular, the notion of Berry phase is crucial for the understanding of 

topological phenomena. [17,18]. The following discussions in this section (1.1) are based 

on Ref. [2]. We first discuss how the Berry phase emerges during the adiabatic evolution 

of a quantum state. Then we look at the local description of the Berry phase in terms of 

the Berry curvature. 

We consider a Bloch Hamiltonian describing the electrons in a solid, spanned by 

a set of adiabatic, time-dependent parameters, represented by k = (k1, k2,…), i.e.,  
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𝐻 = 𝐻(𝒌), 𝒌 = 𝒌(𝑡)                         (1.1) 

The Schrödinger equation for this system is written such that 

𝐻(𝒌)|𝑢*(𝒌)⟩ = 𝐸*(𝒌)|𝑢*(𝒌)⟩                     (1.2) 

where |𝑢*(𝒌)⟩ is the nth Bloch state described by a function that is smooth and single 

valued along a path C in k space. Suppose that 𝒌 travels from 𝒌- (𝒌(0) = 𝒌-) and 

returns to its original value 𝒌(𝑇) = 𝒌-  along a closed loop C. The wave function 

|𝜓*(𝑡)⟩	can be expressed as follows.  

|𝜓*(𝑡)⟩ = 𝑒345(6)exp :− 3
ℏ ∫ 𝑑𝑡′𝐸*

6
- 𝒌(𝑡′)@ A𝑢*B𝒌(𝑡′)CD              (1.3) 

Where the second exponential represents the dynamical phase factor. Plugging Eq. (1.3) 

into the time-dependent Schrödinger equation 

𝑖 ℏ F
F6
|𝜓*(𝑡)G = 𝐻B𝒌(𝑡)C|𝜓*(𝑡)⟩                     (1.4) 

and multiplying it from the left by H𝑛B𝒌(𝑡)CA, we find that 𝛾*(𝑡) can be described as a 

path integral in the k space as follows. 

𝛾*(𝑡) = ∮ 𝑑𝒌 ∙ 𝑨*(𝒌)N                          (1.5) 

where 𝑨*(𝒌) is a vector-quantity function 

𝑨*(𝒌) = 𝑖⟨𝑢*(𝒌)|∇𝒌|𝑢*(𝒌)⟩                            (1.6) 

This vector 𝑨*(𝒌)	is defined as the Berry connection or the Berry vector potential in k 

space. Equation (1.5) demonstrates that in addition to the dynamical phase factor, the 

physical system obtains the Berry phase 𝛾*(𝑡). Furthermore, the rotation of 𝛾*(𝑡) is the 

Berry curvature 

𝜴*(𝒌) = ∇𝒌 × 𝑨*(𝒌)                           (1.7) 

Inserting the Eq. (1.7) into Eq. (1.5) and using Stokes’s theorem, we obtain another 

expression for	𝛾*(𝑡)	
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𝛾*(𝑡) = ∫ 𝑑𝑺 ∙ 𝜴*(𝒌)U                           (1.8) 

Since the Berry curvature is expressed as 𝜴*(𝒌) = ∇𝒌 × 𝑨*(𝒌), 𝛾*(𝑡) and 𝜴*(𝒌) can 

be regarded as the magnetic flux and magnetic flux density (or magnetic field), 

respectively.  

Apparently, 𝑨*(𝒌)  depends on the gauge 	𝜉(𝒌) . By transforming the Bloch 

function 

A𝑢*B𝒌(𝑡)CD 	→ 	 𝑒3X(𝒌)A𝑢*B𝒌(𝑡)CD                    (1.9) 

𝑨*(𝒌) changes as  

𝑨*(𝒌) 	→ 	𝑨*(𝒌) −
F
F𝒌
𝜉(𝒌)                      (1.10) 

Subsequently, 𝛾*(𝑡) described by Eq. (1.5) will be transformed by the change in the 

gauge 𝜉B𝒌(0)C − 𝜉B𝒌(𝑇)C , where 𝒌(0)	 and 𝒌(𝑇)  represent the initial and final 

positions on a closed path C. It is important to remember that the phase of the basis 

function A𝑢*B𝒌(𝑡)CD is single valued. This requires 𝑒3X(𝒌), shown in Eq. (1.9), to be also 

single valued. From this requirement, Berry predicted [1] 

𝜉B𝒌(0)C − 𝜉B𝒌(𝑇)C = 2𝜋 × integer                   (1.11) 

This suggests that 𝛾*(𝑡)	can be only transformed by	2𝜋𝑛, where 𝑛 is an integer, through 

the change in the gauge and that it cannot be canceled out. Thus, for a closed path C, 

𝛾*(𝑡) is a gauge-invariant physical quantity and so is 𝜴*(𝒌). 

 In general, one can produce a closed path in the k space by applying either a 

magnetic field or an electric field. In case of using a magnetic field, we can generate a 

cyclotron motion of electrons along a closed orbit in the k space. This way the Berry 

phase can be observed in various magneto-oscillatory experiments [19–21], which have 

been reported in LaRuIn5 [22] and more recently graphene [23–25].  
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 To understand how the Berry phase is calculated, we consider the following 

simple Bloch Hamiltonian describing the two-band model of the electrons in a crystal, 

𝐻(𝒌) = 𝒅(𝒌) ∙ 𝝈	                          (1.12) 

where 𝝈 are the Pauli matrices and 𝒅(𝒌) is a vector that parameterizes the Hamiltonian. 

In particular, we focus on the case of linear energy-momentum dispersion 𝒅(𝒌) = 𝒌, i.e. 

Dirac dispersion. In this case, the calculation of the Berry curvature simply gives  

𝜴*(𝒌) = 	±
c
d
𝒌
ef

                           (1.13) 

where the positive and negative signs represent lower and upper bands, respectively. 

Dirac [26] interpreted that Eq. (1.13) represents the field produced by a monopole at 𝒌 =

0, where the two energy levels become degenerate, implying the emergence of the Dirac 

points. Integrating the Berry curvature around a sphere encompassing the Dirac point 

yields 

c
dg ∫ 𝑑𝑺 ∙ 𝜴*(𝒌)U = ±1                     (1.14) 

This suggests that the Dirac point can be viewed as the magnetic monopoles and anti-

monopoles in k-space. Equation (1.14) further implies that the Berry curvature over a 

closed manifold is quantized in the units of 2𝜋  and represents the total number of 

monopoles inside the manifold. This number is defined as the Chern number.  

 

1.2.  Bulk-boundary correspondence 

One of the fundamental concepts of topological phenomena is the bulk-boundary 

correspondence. We consider a bulk system at its boundary, which breaks the crystal 

symmetry of the bulk. To make up for the broken symmetry at the boundary, the edge 

state is needed so that the whole system, combining bulk and edge, can recover the 
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symmetry. The bulk states in topological systems are known to be robust against 

perturbations, and so are the edge states owing to the bulk-boundary correspondence. This 

concept underlies various topological phenomena, and several examples are described 

below. The discussions are based on references [17,27–29]. 

 

1.2.1. 2D quantum Hall state 

1.2.1.1.  Bulk state 

The 2D quantum Hall (QH) state is a good example to start off our discussions. 

For convenience, we let ℏ = c = 1. Suppose that an electrical field 𝐸j	is applied along 

y-axis. Following the arguments in Ref. [27], we let the vector potential 𝐴j = −𝐸j𝑡. The 

crystal momentum transforms as follows. 

B𝑘m, 𝑘jC → B𝑘m, 𝑘j−𝐸j𝑡C ≡ 𝒌(𝑡)                  (1.15) 

Thus, the Hamiltonian 𝐻B𝒌(𝑡)C	depends on time as well. Subsequently, the electric 

current 〈𝐽m〉 along x- axis is calculated as follows. 

〈𝐽m〉 = −𝑒∑ ∫ ste
(dg)tuv*wxy H𝑢𝒌(6)

* A Fz𝒌({)
Fe|

A𝑢𝒌(6)
* D                   (1.16) 

= 𝑖𝑒∑ ∫ ste
(dg)tuv*wxy }~

F�𝒌({)
5

Fe|
� 𝑢̇𝒌(6)

* D − H𝑢̇𝒌(6)
* A

F�𝒌({)
5

Fe|
G�          (1.17) 

= 𝐸j
�t

dg
∑ ∫ ste

dg3uv*wxy }~
F�𝒌({)

5

Fe|
�
F�𝒌({)

5

Fe�
G − ~

F�𝒌({)
5

Fe�
�
F�𝒌({)

5

Fe|
G�        (1.18) 

= 𝐸j
�t

dg
∑ ∫ ste

dguv*wxy 𝛺�(𝒌)                             (1.19) 

where ∑ and∫ 𝑑d𝑘uv*wxy  represent the sum of the all the bands below the Fermi level 

𝐸�	and the crystal momentum integrated over the whole Brillouin zone (BZ), respectively. 

From the first line to the second line, partial integration and 𝑖 F
F6
A𝑢𝒌(6)
* D =

𝐻B𝒌(𝑡)CA𝑢𝒌(6)
* D	are employed. Equation (1.19) demonstrates that the Hall conductivity 
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𝜎mj	can be expressed as 

𝜎mj =
�t

dg
∑ ∫ ste

dguv*wxy 𝛺�(𝒌)               (1.20) 

≡ �t

dg
𝑁��                            (1.21) 

where 𝑁�� represents the Chern number. This equation implies that 𝑁��	takes integer 

values as long as the	𝐸� stays inside the band gap [2]. Thus, 𝜎mj	is quantized to a certain 

integer, remaining intact against external perturbations.  

 

1.2.1.2. Relation to the boundary 

Now we discuss the relation between the bulk and the boundary. First we look at 

an infinite system where only the contribution from the bulk is included. Using the 

Maxwell’s equations and the continuity equation, the current 〈𝑱〉	and the electron density 

〈𝜌�〉	can be described as follows. 

〈𝐽3〉 = 𝜎mj ∑ 𝜖3�� 𝐸�                    (1.22) 

〈𝜌�̇〉 = ∇ ∙ 〈𝑱〉                         (1.23) 

= 𝜎mj∇ × 𝑬 = 𝜎mj
F�
F6

               (1.24) 

∴ 〈𝜌�〉 = 𝜎mj𝐵                          (1.25) 

Next, to understand the effect of the boundary, we consider a semi-infinite system where 

the region 𝑥 ≥ 0	is occupied by quantized Hall states and 𝑥 < 0	by a vacuum. We 

suppose that the electron confinement potential behaves as a step function. Equations 

(1.22) and (1.25) are modified as follows. 

〈𝐽3〉 = 𝜃(𝑥)𝜎mj ∑ 𝜖3�� 𝐸�                (1.26) 

〈𝜌�〉 = 𝜃(𝑥)𝜎mj𝐵                      (1.27) 

Subsequently, the continuity equation can be represented as  
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〈𝜌�̇〉 + ∇ ∙ 〈𝑱〉 =
F�(m)
Fm

𝜎mj𝐸j                    (1.28) 

= 𝛿(𝑥)𝜎mj𝐸j                      (1.29) 

= 𝛿(𝑥) �
t

dg
𝑁��𝐸j                    (1.30) 

where 𝑁��	is given by Eq. (1.21). Thus, the time derivative of the charge in the bulk can 

be derived by performing spatial integration as follows. 

F
F6
𝑄�� ¡ = 𝐿 �t

dg
𝑁��𝐸j                  (1.31) 

where 𝐿 ≪ 1 represents the length of the system along the y-axis. This indicates that the 

charge is not conserved if we only look at the bulk in the system. Therefore, it is necessary 

to let the boundary state (or edge state in this case) break the charge conservation through 

such phenomena as chiral anomaly [30] (Adler-Bell Jackiw anomaly [31,32]) to cancel 

out the charge variation resulting from the bulk so that the system as a whole (bulk and 

edge) can maintain the charge conservation.  

 Due to this bulk edge correspondence, there exist the 1D chiral edge states, as 

depicted in Fig. 1.1. They are chiral in that the electrons travel in one direction only along 

the edge. These states are robust against disorder because there exit no states that can be 

used for backscattering [17].  To calculate the time derivative of the charge in the edge, 

we start with the linear energy-momentum dispersion relation of the edge state near the 

𝐸�	as follows [see Fig. 1.1(b)]. 

𝐸e = 𝑣(𝛿𝑘j − 𝑒𝐸j𝑡)                   (1.32) 

where 𝛿𝑘j	 and 𝑣  represent the momentum measured from the 𝐸�	 and the fermi 

velocity, respectively. This shows that the change in the number of carriers ∆𝑁 for the 

time ∆𝑡 can be expressed as  

∆𝑁 = − ¦
|¦|

�x�∆6
§
t¨

                      (1.33) 
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Subsequently, the time derivative of the charge in the edge is 

F
F6
𝑄©ª«© = −𝑒 lim

∆6→-

∆®
∆6
= χ𝐿 �t

dg
¦
|¦|
𝐸j             (1.34) 

where χ represents the chirality χ = −sgn(𝑣). Therefore, as long as the 𝑁��	of such 

edge states are generated with	χ = sgn(𝑁��), the conservation of the charge in the whole 

system (bulk and edge) is maintained. Given that 𝑁��	 remains intact against 

perturbations as long as the band gap stays open, the 1D chiral edge states remain intact 

against perturbations as well.  

 

1.2.2. 2D quantum spin Hall state 

The 2D quantum spin Hall (QSH) state, also known as the 2D topological insulator, 

is analogous to the 2D QH state except for a critical difference: the existence of an 

external magnetic field. The 2D QH states break the time-reversal symmetry (TRS) owing 

to the applied magnetic field so that the quantized Hall effect can emerge, whereas the 

2D QSH states conserve the TRS [33]. 

 

1.2.2.1.  In case where 𝑆� is conserved 

First, we consider systems where 𝑆� is conserved. Suppose that we have a QH 

system with spins pointing upward (spin-up) in parallel to the magnetic field B applied 

along +𝑧-axis in which the spin-up electrons travel counterclockwise along the edge. 

Next, we consider a counterpart system with spins pointing downward (spin-down) in 

parallel to the magnetic field B applied along −𝑧-axis in which the spin-down electrons 

travel clockwise along the edge. By overlapping these two systems together, we obtain a 

TRS system where spin-up and spin-down electrons travel in the opposite directions along 

the edge, defined as helical state, as depicted in Fig. 1.2. Instead of calculating the 
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electrical Hall current that does not exist under TRS, we calculate spin Hall current which 

denotes the difference of spin-up and spin-down currents as follows. 

〈𝐽m³〉 =
c
d�
(〈𝐽m↑〉 − 〈𝐽m↓〉)                     (1.35) 

= c
d�
(𝜎mj↑ 𝐸j − 𝜎mj↓ 𝐸j)                 (1.36) 

= 𝜎mj³ 𝐸j                            (1.37) 

where 𝜎mj³ , 𝑁¶·³ , 〈𝐽m↑〉,	and 〈𝐽m↓〉 represent the spin Hall conductivity, spin Churn number, 

spin-up current, and spin-down current, respectively. They are described as follows. 

𝜎mj³ = c
d�
(𝜎mj↑ − 𝜎mj↓ )                    (1.38) 

= �
dg
𝑁¶·³                             (1.39) 

𝑁¶·³ ≡ c
d
(𝑁¶·↑ − 𝑁¶·↓ )                    (1.40)  

〈𝐽m↑〉 = 𝜎mj↑ 𝐸j                           (1.41) 

= 𝐸j
�t

dg
𝑁¶·↑                         (1.42) 

= 𝐸j
�t

dg
∑ ∫ ste

dguv*wxy 𝛺�↑(𝒌)           (1.43) 

〈𝐽m↓〉 = 𝜎mj↓ 𝐸j                           (1.44) 

= 𝐸j
�t

dg
𝑁¶·↓                         (1.45) 

= 𝐸j
�t

dg
∑ ∫ ste

dguv*wxy 𝛺�↓(𝒌)           (1.46) 

Given that 𝑆�  is conserved, 𝑁¶·↑  and 𝑁¶·↓  take integer values, implying that 𝑁¶·³ =

c
d
(𝑁¶·↑ − 𝑁¶·↓ )  also takes integer values because 𝑁�� = 𝑁¶·↑ + 𝑁¶·↓ = 0  under TRS. 

Therefore, the system has 𝑁¶·↑  (= −𝑁¶·↓ ) number of spin-up (spin-down) edge states 

traveling along the edge, leading to 𝑁¶·³ 	number of helical edge states.  
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1.2.2.2.  In case where 𝑆� is not conserved 

1.2.2.2.1. Kramers theorem 

Next, we consider a system with TRS where	𝑆� is not conserved. In a real material, 

there generally exist such interactions, notably spin orbital interactions 𝑳 ∙ 𝑺 [33,34], that 

break the conservation of 𝑆�. In this subsection, it is revealed that when the number of 

helical edge states is odd, the edge states remain gapless, but when it is even, they become 

gapped, transforming the system into a topologically trivial one. The Kramers pair at the 

time reversal invariant momentum (TRIM) Γ3 = −Γ3 + 𝐺 , where 𝐺  is the reciprocal 

wave vector, is the key to understanding the gap-opening mechanism.  

We consider a TR operator Θ	defined as follows 

Θ = 𝑖𝜎j𝐾 = 𝐽𝐾, 𝐽 = : 0 1
−1 0@                 (1.48) 

where 𝐾 is a complex conjugate operator (an anti-unitary operator) and 𝜎j is the y-

component of the Pauli matrix. Θ acts on 𝑳 and 𝑺	as follows. 

𝑳 ↦ 𝑳¾ = Θ𝑳Θ¿c = −𝑳                  (1.49) 

𝑺 ↦ 𝑺¾ = Θ𝑺Θ¿c = −𝑺                  (1.50) 

Thus, if we have a system represented by a Hamiltonian with the spin orbital interaction 

𝐻UÀ, Θ acts on 𝐻UÀ as follows. 

𝐻UÀ = 𝑓(𝒌)𝑳 ∙ 𝑺,						𝑓 ∈ ℝ		            (1.49) 

𝐻UÀ ↦ Θ𝐻UÀΘ¿c = 𝑓(𝒌)∗(−𝑳) ∙ (−𝑺) = 𝐻UÀ       (1.49) 

Therefore, the system with the spin orbital interaction is TR-invariant. In general, under 

TRS, the Bloch Hamiltonian satisfies  

𝐻(−𝒌) = Θ𝐻(𝒌)Θ¿c                  (1.50) 

[𝐻, Θ] = Θ𝐻 − 𝐻Θ = 0                 (1.51) 

For systems with spin 1/2, the Schrödinger equation is represented as  
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 𝐻(𝒌)|𝑢(𝒌)⟩ = 𝐸|𝑢(𝒌)⟩,                  (1.52) 

|𝑢(𝒌)⟩ = Ç𝑢
(𝒌)↑

𝑢(𝒌)↓
È                     (1.53) 

Owing to TR-invariance, the Hamiltonian satisfies 

Θ𝐻(𝒌)|𝑢(𝒌)⟩ = 𝐻(𝒌)Θ|𝑢(𝒌)⟩,             (1.54) 

= 𝐸Θ|𝑢(𝒌)⟩,                 (1.55) 

Thus, 

A𝑢(𝒌)ÉD = Θ|𝑢(𝒌)⟩                   (1.56) 

𝐻(𝒌)A𝑢(𝒌)ÉD = 𝐸A𝑢(𝒌)ÉD                 (1.57) 

This shows that A𝑢(𝒌)ÉD has the same energy eigenvalue as |𝑢(𝒌)⟩. Furthermore, 

⟨𝑢(𝒌)A𝑢(𝒌)ÉD = (𝑢(𝒌)∗↑, 𝑢(𝒌)∗↓)(𝑖𝜎j)𝐾 Ç
𝑢(𝒌)↑

𝑢(𝒌)↓
È   (1.58) 

	= (𝑢(𝒌)∗↑, 𝑢(𝒌)∗↓) : 0 1
−1 0@Ç

𝑢(𝒌)∗↑

𝑢(𝒌)∗↓
È  (1.59) 

= (𝑢(𝒌)∗↑, 𝑢(𝒌)∗↓) Ç 𝑢
(𝒌)∗↓

−𝑢(𝒌)∗↑
È        (1.60) 

= 𝑢(𝒌)∗↑𝑢(𝒌)∗↓ − 𝑢(𝒌)∗↓𝑢(𝒌)∗↑ = 0        (1.61) 

𝐸(𝒌, ↑) = 𝐸(−𝒌, ↓)                              (1.62) 

At TRIM	𝚪𝒊, 𝐻𝚪𝒊 = 𝐻¿𝚪𝒊Ì𝑮 = 𝐻¿𝚪𝒊 is satisfied. Therefore, Eq. (1.61) demonstrates that 

the system is doubly degenerate at TRIM under TRS (Kramers theorem).  

 

1.2.2.2.2. Z2 classification  

The Kramers degeneracy at TRIM is important for the Z2 classification. Suppose 

that the perturbation with TRS is applied to the system. Such perturbation can be induced 

by the spin orbital coupling 𝑳 ∙ 𝑺 which breaks the conservation of 𝑆�	while maintaining 

the TRS of the system. Now we examine whether the edge states remain gapless under 

the perturbation. The examples for 𝑁¶·³ = 1, 2, 3	are described in Fig. (1.3). 
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I. 𝑁¶·³ = 1: As illustrated in Fig. 1.3(a), the helical states cross at TRIM 𝚪𝒊. 

Owing to the protection by TRS from the Kramers theorem, the crossing 

points at TRIM	Γ3 remains ungapped under the perturbation.  

II. 𝑁¶·³ = 2: There are two crossing points (black open circles) in Fig. 1.3(b) that 

are gapped because they are far from TRIM and lack the protection by TRS, 

consequently resulting in a normal insulator.  

III. 𝑁¶·³ = 3: At least one Kramers pair remains ungapped, thereby allowing the 

edge states to remain gapless under perturbations.  

As the three examples show, the edge states remain gapless if 𝑁¶·³  is odd, whereas they 

become gapped if 𝑁¶·³  is even. With the edge states broken, the system is topologically 

trivial. 

 

1.2.2.3.  Calculation of the Z2 topological invariant 𝜈 

The above graphical discussions are mathematically developed in Ref. [35,36], 

and now the calculation of the Z2 topological invariant number 𝜈 can be performed. 

Important consequences derived from the arguments in Ref [35,36] are briefly introduced 

here. For details, please consult the original papers. 

 

1.2.2.4.  With inversion symmetry 

We consider a system that has inversion symmetry. The Z2 topological invariant 

number 𝜈 can be calculated by the following equation. 

(−1)Ð = ∏ 𝛿3Ò
3Óc = ∏ ∏ 𝜉dÔ®

ÔÓc (Γ3)Ò
3Óc           (1.63) 

where 𝜈 = 1(0)  represents the topologically nontrivial (trivial) state. 𝛿3 =

∏ 𝜉dÔ®
ÔÓc (Γ3)  is assigned to each TRIM 𝚪𝒊	(i = 1~4	in	2D,
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i. e. , (0,0), (0, 𝜋), (𝜋, 0), (𝜋, 𝜋)) , and 𝜉dÔ = 𝜉dÔ¿c = ±1  represents the parity 

eigenvalue at each TRIM 𝚪𝒊 with m ranging from 1 to N, where 2N is the number of 

bands below 𝐸�, which is assigned to reside inside the band gap, as illustrated in Figure 

1.4. Given that the system has inversion symmetry, the Hamiltonian of the system satisfies 

𝐻 = 𝑃𝐻𝑃¿c ⟺ 𝐻(−𝒌) = 𝑃𝐻(𝒌)𝑃¿c           (1.64) 

where 𝑃	is the inversion operator. Equation (1.32) gives 

𝐻(𝒌)|𝑢(𝒌)⟩ = 𝐸(𝒌)|𝑢(𝒌)⟩,                (1.65) 

𝐻(−𝒌)(𝑃|𝑢(𝒌)⟩) = 𝐸(𝒌)(𝑃|𝑢(𝒌)⟩)         (1.66) 

This suggests that at TRIM 𝚪𝒊, |𝑢(𝒌)⟩ is the simultaneous eigenfunction of both the 

Hamiltonian 𝐻𝚪𝒊	 and the inversion operator 𝑃 , confirming the existence of parity 

eigenvalues 𝜉dÔ	at TRIM 𝚪𝒊. 

In addition, since the inversion operator 𝑃 does not change the spin, Eq. (1.66) implies  

𝐸(𝒌, ↑) = 𝐸(−𝒌, ↑)                       (1.67) 

In combination with Eq. (1.62), this demonstrates 

𝐸(𝒌, ↑) = 𝐸(−𝒌, ↑) = 𝐸(𝒌, ↓)                  (1.68) 

Therefore, for the systems with TRS and inversion symmetry, all bands are doubly 

degenerate so that 2N bands are below 𝐸�. At each doubly degenerate point, the parity 

eigenvalue is expressed as 𝜉dÔ = 𝜉dÔ¿c = ±1 . Parity eigenvalue 𝜉  only takes ±1 

due to 𝑃d = 1.  

 

1.2.2.5.  Band inversion 

This gives the essential rule that the Z2 topological invariant number changes the 

value as  band inversion occurs at some TRIM, leading to the phase transition from a 

topologically trivial sate to a topologically nontrivial state. Suppose that in a system with 
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a large lattice constant, the conduction and valence bands at 𝚪𝒊 = 0 are s-orbital and p- 

orbital like in the beginning, as depicted in Fig. 1.5(a). As the lattice constant a decreases, 

the hopping energy in the system accumulates to the point where the s- and p-like bands 

start to invert at TRIM 𝚪𝒊 through the spin orbital coupling	𝑳 ∙ 𝑺. Due to the increase in 

the spin orbital coupling, the gap opens so that the topological invariant number	𝜈 can be 

defined. If an odd number of band inversions occurs at TRIM, from Eq. (1.63), the parity 

eigenvalues below 𝐸� changes sign, leading to a change in the Z2 topological invariant 

number	𝜈, transforming the system from the trivial insulator to topological insulator. The 

concept of band inversion allows the Z2 topological invariant number 	𝜈  to be easily 

calculated and plays an important role in the exploration for topological materials.   

 

1.2.2.6.  Without inversion symmetry 

Next we consider a system without inversion symmetry. The formulation for this general 

case is discussed in Ref. [35]. The Z2 topological invariant number	𝜈 can be calculated as 

follows. 

(−1)Ð = ∏ 𝛿3Ò
3Óc                    (1.69) 

𝛿3 =
Úª©Û[Ü(𝚪𝒊)]
ÝÞÜ(𝚪𝒊)

= ±1                (1.70) 

where 𝑤(𝚪𝒊) is a 2𝑁 × 2𝑁	unitary matrix defined by	𝑤Ô*(𝒌) = ⟨𝑢Ô(−𝒌)|Θ|𝑢*(𝒌)⟩ 

(m, n ranges from 1 to 2N), and 	𝑃𝑓  stands for the Pfaffian, a function defined by 

antisymmetric matrix with 2𝑁 × 2𝑁  dimensions. 𝑃𝑓  has a property of (𝑃𝑓)d = 1, 

allowing 𝜈 to take either 0 or 1. The system with 𝜈 = 0 is a trivial insulator, whereas 

the system with 𝜈 = 1 is a topological insulator. 

 

1.2.3.  3D topological insulator 
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In this section, theoretical backgrounds for the 3D topological insulators (TI) 

under TRS are briefly introduced. The following discussions in this section (1.2.3) are 

mainly based on Ref. [28]. 

 

1.2.3.1.  Bulk-boundary correspondence 

Bulk-boundary correspondence also applies to 3D TIs. We consider a bulk 

system at its boundary surface, which breaks the TRS of the bulk. To make up for the 

broken TRS at the boundary surface, the surface state is needed so that the whole system, 

combining bulk and surface, can recover the symmetry. These surface states consist of an 

odd number of 2D Dirac cones with mass 𝑚3 = 0, where 𝑖 represents the 𝑖Û·	Dirac 

cone, giving rise to the half-integer quantized Hall conductivity 

𝜎z = ∑ �t

dg
Ôá
|Ôá|

d®¿c
3                    (1.71) 

This formula shows that the Hall conductivity remains finite even in the limit 𝑚3 → 0. 

Such a half Hall conductivity has been discussed for a long time in high-energy physics 

and termed the “parity anomaly” [34,37]. The concept of the parity anomaly was adopted 

by Haldane in 1988 to explain the emergence of nonzero quantized Hall conductance in 

2D materials without an external magnetic field [37]. This broken TRS state on the 

surface makes up for the broken TRS state in the bulk, thereby recovering the TRS as a 

whole system.  

 The theoretical discussions on the bulk edge correspondence of 3D TIs are 

developed in Ref. [28]. Instead of going over the rigorous mathematical derivations 

systematically, the fundamental parts are briefly summarized here. Please consult the 

original paper for details. The essence is that when the boundary is absent, the bulk 

magneto-electric or topological term 𝑆�~𝜃 ∫𝑑𝑡 𝑑â𝑥(𝑬 ∙ 𝑩) satisfies TRS at 𝜃 = 0 in 
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a trivial insulator and 𝜃 = 𝜋 in a topological insulator. However, when the boundary is 

included, even for 𝜃 = 𝜋, an extra term 𝛿𝑆�~∫𝑑𝑡 𝑑d𝑥𝜖3�e𝐴3𝜕�𝐴e	is generated under 

TR operation, breaking the TRS as long as only bulk is considered. To cancel out the 

extra term 𝛿𝑆� , an additional surface term 𝑆�³�åÞ = −𝛿𝑆�	is needed. The expression 

exactly turns out to be the one for the 2D Dirac system such that 𝑆�³�åÞ = −𝛿𝑆�~ −

∫𝑑𝑡 𝑑𝒓𝜖3�e𝐴3𝜕�𝐴e, confirming the existence of the surface 2D Dirac cones in 3D TI.  

 

1.2.3.2.  Parity anomaly 

As discussed above, parity anomaly is the key to the emergence of surface states 

in 3D TIs. In this section, we investigate this concept more carefully. We consider again 

the following simple expression, introduced in Eq. (1.12), for single 2D massive Dirac 

Hamiltonian. 

 𝐻(𝒌) = 𝒅(𝒌) ∙ 𝝈 = 𝜆(𝝈 × 𝒌)� = −𝑚�       (1.72) 

𝒅(𝒌) = (𝑘j, −𝑘m,𝑚)                     (1.73) 

The first term of Eq. (1.72) represents the Rashba-type SOC, typical for the surface states 

of 3D TIs. The mass term 𝑚 is inserted in the second term. As demonstrated in Fig. (1.6), 

the Hall conductivity can be described as 

𝜎mj = − �t

� ∫
ste
dg
𝛺�(𝒌)                  (1.74) 

= Ô
|Ô|

�t

d�
= ± �t

d�
                     (1.75) 

The Hall conductivity is half quantized in the unit of 𝑒d ℎ⁄  owing to the unit vector 

𝒅(𝒌)	which covers only either north or south hemisphere of the unit sphere according to 

the sign of the mass 𝑚 . As mentioned above, the half quantized Hall conductivity 

remains finite in the system even in the limit 𝑚3 → 0, consequently breaking the TRS 
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(parity anomaly).  

 In addition to the half quantized Hall conductivity, an odd number of Dirac cones 

is a unique feature that can exist only on the surface of 3D TI. It is not allowed to emerge 

in the normal 2D system with 1D boundary due to charge conservation. Suppose we have 

a 2D system with 1D boundary and with only one Dirac cone. The following arguments 

apply for an odd number of Dirac cones as well. From the discussions in section (1.2.1) 

for the 2D QH state, there should be the 1D chiral edge state propagating along the 

boundary (1D edge) so that it makes up for the broken charge conservation in the 2D bulk. 

However, since now the 2D bulk has half quantized Hall conductivity, the equation of 

charge accumulation rates, combining bulk and edge contributions, becomes 

F
F6
𝑄ê�ëedì + F

F6
𝑄�sí�cì = 𝐿 �

t

�
𝐸j(

Ô
d|Ô|

− χ) ≠ 0         (1.76) 

where χ represents the chirality of the 1D edge states taking the value of either +1 or -1. 

Thus, a 2D system with 1D boundary consisting of only one Dirac cone cannot restore 

the charge conservation even after taking into account the contribution from the 1D chiral 

edge state. However, charge conservation should be always maintained for any system. 

Equation (1.75) indicates that the 2D system with boundary must have an even number 

of Dirac cones (Nielsen-Ninomiya theorem) [38]. For a system with an even number of 

Dirac cones, charge can be conserved by choosing χ = 𝑚 |𝑚|⁄ . Therefore, the Hall 

conductivity of the ordinary 2D systems is allowed to take only the multiples of 𝑒d ℎ⁄ . 

Furthermore, for systems with TRS, there should exist an equal number of Dirac cones 

with positive	𝑚 > 0 and negative 𝑚 < 0	signs.  

 On the other hand, for the 2D surface of 3D TIs, the above constraints are absent 

because the 2D surface state on the 3D TIs is free from boundary, validating an odd 

number of Dirac cones with Hall conductivity half quantized in the unit of 𝑒d ℎ⁄ . In 
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addition, the broken TR state of the 2D surface state is balanced by the TR broken bulk 

of the 3D TIs, so as a whole system composed of bulk and surface, the TRS is maintained. 

 

1.2.3.3.  Calculation of the topological invariant number 𝜈 for 3D TI 

As demonstrated above, under TRS, the bulk state can be identified by the 

magneto-electric term	𝑆�~𝜃 ∫𝑑𝑡 𝑑â𝑥𝑬 ∙ 𝑩 with 𝜃 = 0 for a trivial insulator and 𝜃 =

𝜋 for a topological insulator, distinguishing the system into two classes (Z2 classification). 

Owing to the bulk boundary correspondence, the odd number of Dirac cones is only 

allowed for the surface states of 3D TIs with	𝜃 = 𝜋. This conclusion is general and valid 

for the systems with interactions as well [28]. 

There is a different approach discussed in Ref. [36], which makes easier the 

calculations of the topological invariant number. The main points are summarized in this 

section. Please consult the original paper for details. The topological number can be 

calculated similarly to the case of 2D TIs and are described as follows. 

(−1)Ðð = ∏ 𝛿3ñ
3Óc                       (1.77) 

(−1)Ðò = ∏ 𝛿3Ò
3Óc(�Óc,d,â)                 (1.78) 

where 𝛿3 is defined exactly in the same way as in Eq. 1.63.  

𝛿3 = ∏ 𝜉dÔ®
ÔÓc (𝚪𝒊)                     (1.79) 

with 𝜉dÔ	(𝑚 = 1~𝑁)  the parity eigenvalues at TRIM Γ3 . In 3D, there exist eight 

TRIMS as illustrated in Fig. 1.7 such that 

𝚪𝒊 =
(*ó𝑮óÌ*t𝑮tÌ*f𝑮f)

d
                    (1.80) 

where 𝑛� = 0, 1 and 𝑮� is the reciprocal vector. Inversion symmetry is assumed in this 

section. In contrast to the 2D case, there are four topological invariant numbers 

𝜈-, 𝜈c, 𝜈d, 𝜈â , which are normally expressed in the format of 𝜈-; (𝜈c, 𝜈d, 𝜈â) . The 
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topological invariant number 𝜈-  is the most essential topological invariant number 

covering all eight TRIMs and determines whether the system is strong TIs (𝜈- = 1)	or 

not (𝜈- = 0). The strong TIs have surface states consisting of odd numbers of Dirac 

cones in any crystal planes. This Z2 classification of 𝜈- (= 0, 1) coincides with the Z2 

classification of 𝜃	(= 0, 𝜋)  in the magneto-electric term. If 𝜈- = 0  and other 

topological invariant numbers 𝜈c, 𝜈d, 𝜈â	which cover only four TRIMs on the plane 

perpendicular to 𝑛�) are not zero, then the systems are called weak TIs. For example, 

0; (1, 0, 0) is a weak TI.  Weak TIs can be expressed as the stacking of 2D TIs along 

certain axis. In the case of 0; (1, 0, 0), it is stacked along x-axis and does not have surface 

states for some of the crystal planes as illustrated in Fig. 1.7.  Weak TIs are not protected 

against such perturbations as non-magnetic impurities and can become gapped in the 

surface states due to perturbations. Therefore, they are comparable to trivial insulators.  

 

1.2.4.  Topological crystalline insulators 

Another type of 3D topological materials is topological crystalline insulators 

(TCIs) [39]. In TCIs, the surface states are protected by crystal symmetries including 

mirror symmetry (MS) [40], rotational symmetry 𝐶*  [41], and rotational symmetry + 

time reversal symmetry [39]. In this section, we consider a system protected by MS.  

The Hamiltonian of the system with MS satisfies 

𝐻 = 𝑀�𝐻𝑀�
¿c ⟺ 𝐻(𝒌) = 𝑀�𝐻(𝒌)𝑀�

¿c         (1.81) 

where 𝑀�	represents the mirror operator that reflects the state with respect to 𝑧 = 0 

plane. The mirror operator can be expressed as 𝑀� = 𝑃𝐶d, where 𝐶d	and 𝑃 represent 

the two-fold rotational operator along z-axis and the inversion operator, respectively. For 

spin 1/2 system, given that 𝐶dd = −1, 𝑀�
d = 𝑃d𝐶dd = −1 is satisfied. Thus, the mirror 
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eigenvalues equal ±𝑖 . Due to the 𝑀�  operator, the wave function 𝑒3𝒌∙𝒓 =

𝑒3Be|mÌe�jÌe÷�C	transforms to 𝑒3Be|mÌe�j¿e÷�C. This is different from TRS operator 𝑇 

and inversion symmetry operator 𝑃. Therefore, such equations as Eqs. 1.50 and 1.64 are 

not allowed as follows.   

𝐻 = 𝑀�𝐻𝑀�
¿c ⇎ 𝐻(−𝒌) = 𝑀�𝐻(𝒌)𝑀�

¿c        (1.82) 

However, if 𝒌 is constrained on the 2D mirror plane (𝑘� = 0 plane), then the following 

equation is allowed. 

𝐻 = 𝑀�𝐻𝑀�
¿c ⟺ 𝐻(𝒌Ô) = 𝑀�𝐻(𝒌Ô)𝑀�

¿c      (1.83) 

where 𝒌Ô ≡ (𝑘m, 𝑘j, 0) is fixed on the mirror plane 𝑘� = 0. Thus, Eq. (1.83) suggests 

𝐻(𝒌)|𝑢(𝒌)⟩ = 𝐸(𝒌)|𝑢(𝒌)⟩,                (1.84) 

𝐻(𝒌)(𝑀�|𝑢(𝒌)⟩) = 𝐸(𝒌)(𝑀�|𝑢(𝒌)⟩)            (1.85) 

These results demonstrate that on the mirror plane 𝑘� = 0, |𝑢(𝒌Ô)⟩ is the simultaneous 

eigenfunction of both the Hamiltonian 𝐻(𝒌Ô) and the mirror operator 𝑀�. Therefore, 

on the mirror plane, the Hamiltonian can be expressed as  

𝐻(𝒌Ô) = ù𝐻
Ì3(𝒌Ô) 0
0 𝐻¿3(𝒌Ô)

ú             (1.86) 

Eq. (1.86) implies that the system resembles the case of 2D QSH systems with 𝑆� 

conserved. Since the degree of freedom for 𝑘�	(= 0) is removed on the mirror plane, the 

system is now two-dimension so that we can employ the similar arguments developed in 

2D QSH systems. The Chern number 𝑁��
±3 can be assigned to each subset Hamiltonian 

𝐻±3(𝒌Ô). Under TRS, the total Chern number equals 0, 𝑁��Ì3 + 𝑁��¿3 = 0, so the mirror 

Chern number 𝑁��Ô ≡ (𝑁��Ì3 − 𝑁��¿3)/2  also takes integer. Since the 𝑁��Ì3	 subset and 

𝑁��¿3	subset do not mix with each other due to mirror symmetry, there always exist 𝑁��Ì3 

(𝑁��¿3 ) numbers of “right” (“left”) moving chiral edge states along the mirror line of 

projected mirror plane, as illustrated in Fig. 1.8. These chiral edge modes lose the 
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meaning once they deviate from the mirror plane. However, the crossing points (Dirac 

points) always exist in the mirror line, as depicted in Fig. 1.8, confirming the existence of 

Dirac cones on the surface of the system.  

 

1.2.5.  Weyl semimetals 

The concept of topology is not restricted to “insulators” where the gaps in the bulk 

remain open. It can be found in gapless systems, which are defined as Weyl 

semimetals [42–44]. The Weyl semimetal is a semimetal where the bulk valence and 

conduction bands meet at discreet points, around which nondegenerate 3D Dirac cones 

composed of even numbers of Weyl nodes emerge. As discussed below, the Weyl nodes 

can be viewed as the magnetic monopoles and antimonopoles in k-space. Therefore, they 

can be considered as topological materials despite the absence of gaps. In the next 

subsections, the theoretical backgrounds of Weyl semimetals are briefly summarized. The 

following discussions are mainly based on Ref. [45]. Please consult the original papers 

for details. 

 

1.2.5.1.  Bulk boundary correspondence 

Bulk boundary correspondence also applies to Weyl semimetals. Weyl 

semimetals can be viewed as the 3D surface states of the hypothetical 4D QH system [46]. 

As demonstrated in section 1.2.1, charge is not conserved owing to chiral anomaly [30] 

(Adler-Bell-Jackiw anomaly [31,32]) on the edge of a 2D QH system if only the bulk is 

considered. The broken charge conservation on the edge is fixed by the chiral 1D edge 

state so that the whole system, combining 2D bulk and 1D edge, can recover the charge 

conservation. Similarly, the chiral 3D surface state (Weyl semimetal state) of a 4D QH 
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system breaks the charge conservation due to chiral anomaly. This anomaly makes up for 

the broken charge conservation in the 4D bulk, allowing the whole system to recover the 

charge conservation. 

 

1.2.5.2.  Chiral anomaly 

Chiral anomaly is, in a nutshell, the broken charge conservation which is 

expressed by the rate of the charge accumulation on the 3D surface of the 4D QH system 

as follows [38]. 

F
F6
𝑄³�åÞü��âì = 𝑔 F

F6
𝑄�sí�cì = −χ𝑉 �f

�t
𝑬 ∙ 𝑩            (1.88) 

where 𝑔 = 𝐵𝐴/(�
�
)  represents the degeneracy of each Landau level with the cross 

section 𝐴	of the sample normal to the applied magnetic field 𝐵 and 𝑉 represents the 

volume of the sample. Eq. 1.88 suggests that the broken charge conservation of the 3D 

surface states is fundamentally equivalent to that of the 1D chiral edge states of the 2D 

QH systems. This similarity can be understood more clearly from the expressions of the 

Landau levels of the Weyl semimetals.  The Hamiltonian of the Weyl semimetal can be 

represented as follows [45]. 

𝐻ÿ�jë(𝒌) = 𝒌 ∙ 𝒗 ∙ 𝝈 = ∑ 𝑣3�𝑘3𝜎�3�∈m,j,� , χ = sgn[det𝒗]	           (1.89) 

The Landau levels are expressed as follows [45]. 

𝐸* = 𝑛𝑣�Ú2|𝑛|𝑒𝐵 + (𝒌 ∙ 𝑩)d, 𝑛 = ±1,±2,±3,…	           (1.90) 

𝐸- = −χ𝑣�(𝒌 ∙ 𝑩)                                      (1.91) 

where 𝐸-	represents the quantum limit. As shown by Eq. (1.91) and Fig. 1.9, the lowest 

Landau level of Weyl semimetal is chiral in that it linearly disperses along the direction 

of the applied magnetic field 𝑩, similar to the case of the 1D edge state with a clear 
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distinction that it is now degenerate with 𝑔 = 𝐵𝐴/(�
�
)	due to Landau quantization. 

Therefore, under the magnetic field which is so strong that the lowest Landau level 𝐸- 

is occupied, the Eq. 1.88 becomes valid [45].  Furthermore, Eq. 1.88 can be applied to 

the case of low magnetic field as demonstrated by Ref. [47] by employing semiclassical 

formulation in which the effects of Berry curvature 𝜴𝒌  are incorporated into the 

Boltzmann transport equation. 

 

1.2.5.3.  Weyl semimetals in real 3D bulk 

In the previous section, the Weyl semimetal states were viewed as the 3D surface 

state of the hypothetical 4D QH bulk. However, in reality, there does not exist such 

materials as 4D bulk; instead, the Weyl semimetals emerge in normal 3D bulk. This leads 

to some modifications in the previous discussions. First, as an alternative to 4D bulk QH 

system, an even number of Weyl nodes with equal numbers of opposite chiralities are 

required to recover the broken charge conservation in the 3D bulk owing to Eq. 1.88 

(Nielsen Ninomiya’s theorem) [38]. Therefore, in the real 3D bulk system of Weyl 

semimetals, the total charge is always conserved as follows. 

F
F6
𝑄6#6üëâì = F

F6
𝑄$ÓÌcâì + F

F6
𝑄$Ó¿câì = 0		             (1.92) 

where F
F6
𝑄$Ó±câì  represents the chiral charge with chirality χ. On the other hand, this 

charge conservation implies that the chiral charge is not conserved [48] as follows. 

F
F6
𝑄��3åüëâì = % F

F6
𝑄$ÓÌcâì − F

F6
𝑄$Ó¿câì & /2 = −𝑉 �f

�t
𝑬 ∙ 𝑩		(1.93) 

Eq. (1.93) is called “charge pumping effect” [48], which is schematically shown in Fig. 

1.10. This effect can be detected as negative magnetoresistance in the real 3D Weyl 

semimetals.    
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1.2.6.  Dirac semimetals 

Weyl semimetals can be realized in materials where either inversion symmetry 

(IS) or time-reversal symmetry (TRS) is broken. In most of the real materials, however, 

both IS and TRS exist. Dirac semimetals are close counterparts of Weyl semimetals, 

possessing linear energy-momentum dispersions in 3D. We consider a system with 

effective four band model. For each Dirac node, the Hamiltonian can be expressed as 

follows. 

𝐻ì3åü�(𝒌) = '
𝐻ÿ�jë
Ì (𝒌) 0
0 𝐻ÿ�jë

¿ (𝒌)(          (1.94) 

Eq. (1.94) shows that the Dirac Hamiltonian 𝐻ì3åü�	 consists of two Weyl nodes 

𝐻ÿ�jë
± (𝒌) with opposite chirality (monopoles and antimonopoles). 

 

1.2.6.1.  Crystal symmetry protection 

In the real material with both IS and TRS, however, under external perturbations, the 

two Weyl nodes mix with each other, leading to gap opening. Thus, Eq. (1.94) is not valid 

for systems with both IS and TRS. Subsequently, the Hamiltonian should be modified as 

follows. 

𝐻ì3åü�(𝒌) = '
𝐻ÿ�jë
Ì (𝒌) 𝑀(𝒌)
𝑀)(𝒌) 𝐻ÿ�jë

¿ (𝒌)
(          (1.95) 

where 𝑀(𝒌)	represents the mixing term. However, if the system possesses additional 

symmetry that effectively ensures 𝑀(𝒌) = 0	under perturbation, Eq. (1.94) can stay 

valid and the system remains ungapped. The general mathematical formulation for 

systems with rotational symmetry 𝐶*	are developed in Ref. [49], which is summarized in 

Fig. 1.11. For details, please consult the original paper to Ref. [49]. The phase diagram of 
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Dirac semimetals illustrated in Fig. 1.11 is the generalized version of that for Weyl 

semimetals demonstrated by Murakami et al. in Ref. [27,50–52]. As shown in Fig. 4.1, it 

can be categorized into three cases. Fig. 1.11(a) shows the case without 𝐶* protection, 

where the gap can only stay closed at a critical point 𝑚 = 𝑚� and requires the system 

to be fine tuned to the point. Thus, it is hardly feasible to achieve the Dirac semimetal 

phase in materials. Figs. 1.11(b) and (c) demonstrate the cases of stable Dirac semimetals 

free from such experimental burden. For the case (b), the Dirac nodes exist at TRIM 

points and are stable regardless of the values of the parameter m, exemplified by a 

hypothetical compound BiO2 [53]. However, BiO2 does not exist in reality, and so far, 

there is no experimental report for the case (b). Fig. 1.11(c) shows the relevant case for 

Na3Bi [54] and Cd3As2 [55–57], the first two experimental realizations of stable Dirac 

semimetals. For the case (c), the Dirac semimetal phase is stable for a finite parameter 

range 𝑚�c < 𝑚 < 𝑚�d of the system, meaning that the gap in an insulating phase closes 

at a TRIM when 𝑚 = 𝑚�c  and yields two Dirac nodes along a line which satisfies 

𝑅*𝒌 = 𝒌 where 𝑅* denotes the 3 × 3 matrix representing the 2𝜋 𝑛⁄ 	rotation. The two 

Dirac nodes propagate along the line and mix with each other at another TRIM point	at 

𝑚 = 𝑚�d to open a gap, and the system goes into another insulating phase.  

 

1.3.  Objectives and outline of the present studies 

Motivated by the theoretical and experimental advances in the studies of Dirac 

materials, there has been growing interest in the cubic antiperovskite family as potential 

source of such topological phases as 3D Z2 topological insulators [58], 3D massive Dirac 

fermions [59–61], topological crystalline insulators [62,63], and topological 

superconductors [64]. In particular, recent band calculations on Ca3PbO [59] predict that 
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there exists a 3D gapped Dirac fermion at a finite momentum along the G-X path in the 

3D BZ, which stems from the band inversion of the Ca 3d and Pb 6p bands at the G point, 

as shown in Fig. 1.12. The primary feature is that the bands comprising the Dirac fermion 

are the only bands that appear near the EF, thereby allowing for a simple and 

straightforward study on 3D Dirac fermions free from the influences of other bands with 

parabolic dispersions. In addition to the prediction of the 3D Dirac fermion system, 

another band calculation on Ca3PbO [62] shows that it is also a candidate for the 

topological crystalline insulator. More recent band calculations on the surface states of 

Ca3PbO [63] predict that there exist kinks and divergences in the surface density of states 

as signatures of van-Hove singularities. The presence of van Hove singularities in the 

surface density of states is an interesting feature, which has been confirmed as a key factor 

in the physics of the high-Tc superconductors, notably cuprates. Given that another 

antiperovskite oxide, Sr3-xSnO, exhibits bulk superconductivity upon hole doping [64], it 

might be also possible to induce superconductivity on the surface of Ca3PbO by accurate 

tuning of the Fermi level, consequently leading to topological superconductivity. 

In this study, the following objectives were set to confirm the presence of 3D Dirac 

fermions in Ca3PbO. 

1. Synthesis of high-purity Ca3PbO single crystals with low carrier density 

2. Observation of the 3D Dirac-like band structure of Ca3PbO using angle-resolved 

photoemission spectroscopy (ARPES) measurements 

3. Evaluation of magneto-transport properties as signatures of Dirac fermions in 

Ca3PbO using Shubnikov-de Haas (SdH) oscillations measurements 

This thesis is summarized as follows.  

Chapter 1 describes the general introduction and objectives of this study. 
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Chapter 2 describes the experimental techniques employed in this study.  

Chapter 3 describes the flux growth and basic magneto-transport properties of Ca3PbO 

single crystals 

Chapter 4 describes the ARPES studies on the 3D band structure of Ca3PbO and the 

effects of Bi doping on the band width and the Fermi level of Ca3PbO.  

Chapter 5 describes the studies of SdH oscillations in Bi-doped Ca3PbO. 

Chapter 6 summarizes this study.  
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Figure 1.1: Schematics of the edge state in the quantum Hall (QH) system. (a) The semi-
infinite QH system emerges in the region 𝑥 ≥ 0, whereas the region 𝑥 < 0 is occupied 
by a vacuum. When the electric field 𝐸j	is applied, the Hall current is accumulated into 
the x = 0 edge, leading to the 1D chiral edge state that propagates in one direction along 
the y-axis. (b) The band dispersion of the edge state.  
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Figure 1.2: (a) Schematic pictures of the QSH system generated by overlapping two QH 
systems with opposite spins. This figure is adopted from Ref. [27]. (b) Helical edge states. 
Red and blue lines represent the spin-up and spin-down states, respectively. 
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Figure 1.3: (a),(b),(c) Examples of the Z2 classification for QSH systems with spin orbital 
coupling for 𝑁¶·³ = 1, 2, 3, respectively. Red and blue lines represent the spin-up and 
spin-down bands, respectively. The crossing points illustrated by the black solid and black 
open circles show Kramers degenerate states at TRIM and non-Kramers degenerate states, 
respectively. For 𝑁¶·³ = 1, 3, at least one Kramers pair remains ungapped, demonstrating 
that the edge states are protected. On the other hand, for 𝑁¶·³ = 2, The non-Kramers 
degenerate states become gapped because they are not protected by TRS, and the edge 
states are broken, resulting in normal insulators. Figures are adopted from Ref [29]. 
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Figure 1.4: Schematics for Eq. 1.63. (a) the 2D BZ. There are four TRIM points𝚪𝒊 =
(0,0), (0, 𝜋), (𝜋, 0), (𝜋, 𝜋). (b) The schematic band dispersions. 𝜉dÔ	(𝑚 = 1~𝑁) 
shows the parity eigenvalues at each TRIM 𝚪𝒊, where 2𝑁 is the number of bands 
below	𝐸�. 
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Figure 1.5: Schematic images of band inversion. (a) Band dispersion of a trivial insulator  
with a large lattice constant a. The conduction and valence bands at 𝚪𝒊 = 0 are s-orbital 
and p- orbital like. (b),(c) Band dispersion without and with spin orbital coupling (SOC) 
with a small a, respectively. Part of the figure is adopted from Ref. [65]. 
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Figure 1.6: Schematic images of 2D massive Dirac dispersion. (a) Massive Dirac band 
dispersion with a gap of 2|𝑚|. (b) Half quantized Hall conductivity remains finite even 
in the limit 𝑚3 → 0, consequently breaking the TRS (parity anomaly).  
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Figure 1.7: Examples illustrating several phases corresponding to 𝜈-; (𝜈c, 𝜈d, 𝜈â). (a) The 
signs of 𝛿3 at the 𝚪𝒊	points on the vertices of a cube. (b) The Fermi surface on a (001) 
plane for each phase. The produce of 𝛿3 on the projected planes with open (solid) circles 
illustrating ∏ 𝛿3Ò

3Óc = +1(−1) . Between the open and solid circles, there exist odd 
numbers of Fermi surfaces. On the other hand, even numbers of Fermi surfaces including 
0 between open-open or solid-solid circles. In the right most panel, the odd numbers of 
Dirac cones exit in any crystal planes. In contrast, the surface states do not appear in the 
left three panels for some crystal planes. These three panels represent WTIs, where the 
2D TIs are aligned along [001], [01-1], [11-1] axis respectively and do not have surface 
states on the planes normal to these axes. The figures are adopted from Ref. [36]. 
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Figure 1.8: Schematic images of (a) the mirror plane at 𝑘� = 0 and (b) the surface states 
composed of the pseudo-spins representing the two mirror eigenvalues ±𝑖 in TCIs. If 
the crystal is cut along the plane perpendicular to 𝑘j  axis, they then the chiral edge 
modes emerge along the mirror line (𝑘m axis) on which the mirror plane is projected.  
Although these chiral edge modes lose the meaning when the 𝑘³�åÞü�� deviates from the 
mirror plane, the crossing points (Dirac points) always emerge because the two chiral 
edge modes at the mirror line do not mix with each other owing to the protection by mirror 
symmetry.     
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Figure 1.9: Schematic images of Weyl semimetal state. (a) Weyl semimetal state 
represented by the 3D surface state of the 4D QH state. (b) Landau level spectrum of 
Weyl semimetal states under magnetic field. The 0th Landau level becomes chiral with 

chirality χ, accumulating the charge at a rate of F
F6
𝑄³�åÞü��âì = −χ𝑉 �f

�t
𝑬 ∙ 𝑩 (chiral 

anomaly) which cancels out the broken charge conservation in the 4D bulk so that the 
charge conservation as a whole system can be recovered. 
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Figure 1.10: Schematic images of chiral anomaly. The charge pumping occurs between 
(a) the left branch of Weyl node (𝜒 = +1) and (b) the right branch of Weyl node (𝜒 =
−1). Under magnetic field 𝑩, the lowest Landau level is chiral, traveling along the 
direction of 𝑩. If the electrical field 𝑬 is applied parallel to 𝑩, charge pumping 
happens. 
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Figure 1.11: Schematic images of Dirac semimetal phases at various cases. (a) The case 
without crystal symmetry protection, requiring fine tuning of the parameter 𝑚. (b) The 
case where the Dirac nodes exist at the TRIM and remain ungapped due to the rotational 
symmetry regardless of the value of the parameter 𝑚. (c) The case where the Dirac nodes 
emerge at points other than TRIMs. The figures are adopted from Ref. [49]. 
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Figure 1.12: (a) Crystal structure and (b) band structure calculations of Ca3PbO with the 
distributions of the Ca	𝑑â�t¿åt,Ca	𝑑mj,Ca	𝑑mt¿jt,Ca	𝑑�m/j�,	and Pb p orbital weights. 
The orbital weights are represented as the width of the bands. The figures are adopted 
from Ref. [59]. 
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Chapter 2 Experimental Techniques 
 

In this section, we briefly introduce the basic principles of the experimental 

techniques used in this study. 

 

2.1.  Angle-resolved photoemission spectroscopy 

Angle-resolved photoemission spectroscopy (ARPES) is one of the most direct 

experimental techniques to study the electronic structure of solids [66,67]. The 

phenomenon of photoemission was first observed by Hertz (1887). This was later 

demonstrated as a manifestation of the quantum nature of light by Einstein (1905), who 

perceived that when photons of energy ℎ𝜈 (where 𝜈 is the photon frequency) strike a 

sample surface, an electron can absorb a photon and escape from the material with a 

maximum kinetic energy ℎ𝜈 − 𝜙, where 𝜙, the material work function, is a measure of  

the potential barrier at the surface that prevents the electrons of the valence bands from 

escaping into vacuum. A good approximation of the photoemission process can be 

expressed by the three-step model, as shown in Fig. 2.1(a). 

1. An electron in the valence band of the bulk is first excited by the photon. 

2. The excited electron travels to the surface. 

3. The photoelectron escapes from the sample into the vacuum. 

After a photoelectron escapes into the vacuum, it is being collected with an 

electron energy analyzer as a function of its kinetic energy 𝐸¡./ for a given emission 

angle 𝜃. This way, we can determine the photoelectron momentum 𝒑 from its kinetic 

energy by 
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𝐸¡./ =
	𝒑t

dÔ
                           (2.1) 

 𝒑 = Ú2𝑚𝐸¡./                    (2.2) 

The direction of 𝒑/ℏ is obtained from 𝜃 and 𝜑 which are the the polar and azimuthal 

emission angles under which the electrons escape from the surface (Fig. 2.1(b)).  

 Within the non-interacting electron picture, and by applying total energy and 

momentum conservation laws, we can relate the kinetic energy and in-plane momentum 

(𝑘2 and 𝑘3) of the photoelectron to the binding energy 𝐸u in the solid as follows. 

𝐸¡./ = ℎ𝜈 − 𝜙 − |𝐸u|                     (2.3) 

𝑘2 =
c
ℏÚ2𝑚𝐸¡./sin𝜃cos𝜑                 (2.4) 

𝑘3 =
c
ℏÚ2𝑚𝐸¡./sin𝜃sin𝜑                 (2.5) 

On the other hand, owing to the existence of the surface potential experienced by the 

escaping electron, the component of the momentum perpendicular to the sample surface 

𝑘5	(𝑘6) is not conserved. To evaluate the effect of the surface potential, we assume that 

the energy of the “real” finite state 𝐸7  (irrespective of the influence of the surface 

potential) has an energy offset of 𝑉-	with respect to the kinetic energy 𝐸¡./	measured by 

the analyzer as follows. 

𝐸7 = 𝐸¡./ + 𝑉-                      (2.6) 

where 𝑉- is usually regarded as the inner potential. 

 Under the in-plane momentum conservation, we know that ℏ𝑘∥ =

Ú2𝑚𝐸¡./sin𝜃. In addition, we know that 𝐸7 =
(ℏe∥)t

dÔ
 +(ℏe9)

t

dÔ
. From these equations, we 

obtain: 

𝑘5 =
c
ℏ
Ú2𝑚(𝐸¡./cosd𝜃 + 𝑉-)              (2.7) 
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 The value of can be determined experimentally by measuring the periodicity of 

the energy dispersion along the out-of-plane momentum 𝑘5  direction at the normal 

emission angle. However, for samples where the dispersion perpendicular to the sample 

surface is small, such a measurement would be difficult. 

 

2.2.  Quantum oscillations 

In this subsection, we briefly review the formulas of quantum oscillations (QO) in 

the contexts of Dirac materials. The discussions are derived from Ref. [18,68]. Please 

consult the original papers for details.  

Under an external magnetic field, the Landau level (LL) quantization of the energy 

states occurs in crystalline solids. As the field is tilted, the density of states at EF 

undergoes quantum oscillations, leading to the variation of physical quantities as a 

function of 1/B. In particular, the oscillations emerging in conductivity or resistivity are 

called Shubnikov-de Haas (SdH) oscillations, whereas the oscillations emerging in 

magnetic susceptibility are called de Haas-van Alphen (dHvA) oscillations.  

The condition for LL formation is extracted from a generalized Lifshiftz-Onsager 

quantization expression 

𝑆�
ℏ
��
= 2𝜋(𝑛 + c

d
+ 𝛽 + 𝛿)                 (2.8) 

where 𝑆� is the cross-sectional area of the Fermi surface normal to the field and 𝑛 is 

the LL index that depends on 1/B.	𝛿 is an additional phase shift stemming from three-

dimensional curvature of the Fermi surface that is 0 for a 2D cylindrical FS and 

±c
ñ
	and	for a 3D FS [69,70]. 

 The additional phase shift 𝛽 equals 0 in conventional parabolic bands. However, 
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it was shown by Roth, 1966 that for arbitrary dispersions, 𝛽  can take other values. 

Mikitik and Sharlai, 1999 demonstrated that the expressions of Roth, 1966 could be 

converted to a form in which 𝛽 is shown to be equivalent to the Berry phase experienced 

by an electron as it goes around a closed loop in momentum space [19]. One of the 

fundamental features of Dirac fermions is this nontrivial Berry phase, which can be 

experimentally determined by QO measurements.  

 Such SdH oscillation experiments have been intensively studied in such 2D 

Dirac materials as graphene and topological insulator surface states and more recently in 

3D materials, where it is generally harder to determine the Landau indices without a 

detailed analysis. First, in general, carrier density is so high that it is experimentally 

challenging to access low LL indices. Second, most of the candidate materials for Weyl 

and Dirac semimetals have complex band structures near the EF, limiting the range of LL 

indices that can be clearly identified.  

 Despite these difficulties, SdH oscillations have been measured in various Weyl 

and Dirac semimetals, revealing evidence for nontrivial Berry phase shift. Representative 

data for SdH oscillations in a Dirac semimetal can be found in Fig. 2.2 for Cd3As2. The 

linear fit to the LL index plot intercepts the n axis at the values of 0.56 and 0.58, indicating 

evidence for a Berry phase offset of order 𝜋	[71]. In a more recent study on the phase 

shift of SdH oscillations in 3D topological semimetals [72], it is suggested that the values 

of 0.56 and 0.58 should be modified to 0.06 and 0.08 by subtracting the extra 1/2, which 

results from assigning integer indices to the valleys in ΔRxx instead of the peaks in ΔRxx. 

To precisely extract the nontrivial Berry phase, it is suggested that the expression of the 

additional phase in the general form of the SdH oscillations should be summarized as 

follows. 
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ΔRxx ∝ cos[2𝜋(𝐹 𝐵⁄ + 𝜙)]                      (2.9) 

where 𝐹  is the oscillation frequency and ΔRxx is the oscillatory component in the 

resistance Rxx. 𝜙 stands for the total additional shift, which can be directly obtained from 

the linear fit of the LL index plot using 𝑛 = 𝐹 𝐵⁄ + 𝜙 to the peaks in ΔRxx. Using Eq. 

(1.104), it is demonstrated that the phase shift 𝜙 in Dirac or Weyl semimetals takes the 

values of either ±c
ñ
	or ± >

ñ
 [72]. 
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Figure 2.1: Schematic images of the photoemission process and ARPES experiments. a) 
Three-step model for the photoemission process inside the sample. 1. Excitation of an 
electron represented by a wave packet into the bulk final state. 2. Travel to the surface. 3. 
Escape into vacuum. (b) Geometry of an ARPES experiment. The momentum of the 
electron inside the sample can be obtained from the measured values of 𝐸¡./,	𝜃, and 𝜑.  
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Figure 2.2: (a) Ocillatory component of the resistance 𝑅mm of Cd3As2 as a function of 
1/B after subtracting a smooth background. (b) LL index n vs. 1/B. The solid and open 
circles represent the integer (𝑅mm	valley) and half integer (𝑅mm	peak) indices, respectively. 
Figures are adopted from Ref. [71].  
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Chapter 3 Flux Growth and Magneto-transport 

Properties of Ca3PbO Single Crystals 
 

3.1.  Introduction 

The synthesis of Dirac fermion systems and studies of their remarkable electronic 

properties, such as high charge carrier mobility, have recently become active areas of 

research [17,28,73,74]. The surface states and/or bulk states, which display linear energy 

dispersion in the surface or bulk, are expected to be stable against non-magnetic disorder 

and protected by time-reversal symmetry. In particular, the observation of quantum 

oscillations known as Shubnikov-de Haas (SdH) oscillations has played a pivotal role in 

detecting Dirac fermions in materials. Observation of these features allows a study of the 

Fermi surfaces and electron effective masses of the bulk and surface states [18]. 

To perform such magneto-transport experiments, the synthesis of single crystals with 

high purity and high homogeneity is needed. Chemical vapor transport (CVT) is a crystal 

growth technique widely used in the growth of single crystals of such Dirac materials as 

three-dimensional (3D) topological insulators, including Bi2Se3 [75], Bi2Te3 [76,77], and 

(Pb1-xSnx)Se [78,79]. This technique cannot be applied to oxide materials that do not 

easily sublime at low temperatures. Thus, antiperovskite oxide Ca3PbO, a material 

recently predicted to be a 3D Dirac fermion system [59], requires alternative growth 

techniques. In recent crystallographic studies of antiperovskite oxides [80], it has been 

reported that single crystals of various antiperovskite compounds could be grown with 

the use of an alkaline earth as flux, which were one of the constituents of desired 

compounds. The maximum size of the Ca-related crystals obtained to date is ~140 μm, 
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which has limited the experimental feasibility of transport measurements. To reduce the 

experimental effort involved in transport measurements, it would be desirable to grow 

single crystals large enough for practical property measurements.  

In addition to the size of the crystals, control of carrier density is another important 

factor in studies of Dirac materials, particularly for Bi2Se3, which is always electron 

doped owing to Se vacancies [81–83]. It is not possible to investigate the transport 

properties of a Dirac fermion system where the Fermi level is separated from the Dirac 

point. Antiperovskite oxides are no exception. In thermoelectric studies of Ca-related 

antiperovskite oxides, it has been reported that polycrystalline samples are heavily hole-

doped [84]. Thus, for characterization of Dirac fermions, it is essential to suppress 

unintentional hole doping induced by the growth process. 

Taking these factors into consideration, we optimized the growth parameters to 

obtain large single crystals of Ca3PbO with a low carrier density. For the flux, we selected 

Ca rather than Pb, which is frequently used as a flux owing to its low melting point. The 

advantage of Ca flux over Pb flux can be understood from the Ca-Pb phase diagram [85], 

as shown in Fig. 3.1. Since Ca3PbO is synthesized by reaction of CaO and Ca2Pb which 

is the most Ca-rich compound in the Ca-Pb binary system [85], the formation of other 

Ca-Pb phases due to the decomposition of Ca3PbO by Ca flux does not occur. On the 

other hand, such an unwanted phase can be formed in Pb flux because there exist several 

Pb-rich binary compounds: 2Ca3PbO + Pb → 2Ca5Pb3 + CaO. Thus, we selected a Ca 

flux expecting to realize growth conditions where Ca3PbO is a single phase 

accompanying the molten Ca flux during its single growth process. In this paper, we 

report that single crystals, ~1 mm in size with a carrier density of 4.0 × 1019 cm−3, could 

be successfully obtained from molten Ca flux methods. The crucible material and sealing 
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method were found to be critical factors for achieving large crystals with low carrier 

density. To demonstrate the high purity and homogeneity of our crystals, we measured 

SdH oscillations on a crystal grown under the optimum synthesis conditions. 

 

3.2.  Experimental 

3.2.1.  Synthesis 

Ca3PbO crystals are reported to be sensitive to air and moisture [80,86,87], so all 

procedures were performed in an Ar-filled glove box. First, we prepared polycrystalline 

samples as seed materials for the synthesis of Ca3PbO single crystals. Starting materials 

were Ca2Pb and CaO. Ca2Pb was prepared by reaction of Ca and Pb metals in a molar 

ratio of 2.2:1. A mixture of Ca (Sigma-Aldrich, 99.99%) and Pb (Sigma-Aldrich, 99.99%) 

was placed in an iron crucible (Fe 99.5%), sealed in a stainless steel capsule (18% Cr-8% 

Ni), heated to 850°C at a rate of 50°C/h, and held at that temperature for 12 h. Excess Ca 

was added to compensate for the evaporation loss of Ca that could yield the formation of 

other binary compounds such as Ca5Pb3. CaO was prepared by heating CaCO3 (Sigma-

Aldrich, 99.99%) at 1200°C for 1 h in an ambient atmosphere and subsequently allowed 

to cool in a vacuum. Next, the resulting Ca2Pb and CaO powders were weighed in the 

stoichiometric antiperovskite ratio, thoroughly mixed in a silica glass mortar, and pressed 

into pellets. The pellets were sealed in a stainless steel capsule and heated at 950°C for 

24 h. To promote homogeneity, the resulting sintered samples were ground again, pressed 

into pellets, and heated at 950°C for 12 h. Ref. [86] reported that the starting materials of 

Ca and PbO with a 10% excess of Ca were heated at 850°C for 6 h. We also grew 

polycrystalline samples by following this process but found it difficult to maintain a 

stoichiometric composition. To minimize the deviation from the stoichiometric 
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composition, we instead started from binary compounds, which allowed us to efficiently 

prepare a relatively large amount of homogeneous seed materials (~2.3 g), necessary for 

the growth of single crystals larger than 500 μm. To investigate the thermal stability and 

determine the temperature conditions for the flux growth of Ca3PbO single crystals, 

polycrystalline samples were heated at various temperatures between 850 and 1200°C for 

6 h.  

Next, the synthesized materials were combined with Ca metal as a flux in a molar 

ratio of 1:10 in various types of crucibles (stainless steel, Mo, and Fe crucibles). The 

different types of crucibles were then sealed in a stainless steel capsule to determine the 

material that is least likely to react with the Ca flux and alter the amount of Ca flux during 

the growth process. In addition to the crucible material, the stainless steel capsule was set 

up in two ways: one with a large empty space inside the capsule and the other with two 

short stainless steel rods placed at the top and bottom of the crucible to fill the inner space, 

as depicted in Figs. 3.4(e) and (f), respectively. The capsules were heated up to 1000°C 

at a rate of 66.6°C/h and held at that temperature for 6 h. Subsequently, the temperature 

was slowly decreased at a rate of 0.5°C/h to 800°C, and maintained at that temperature 

for 20 h. To grow larger crystals, we added a slow cooling step to the growth process. 

Finally, the crucible was removed from the capsule and the residual Ca flux was removed 

by evaporation at 800°C under vacuum. 

 

3.2.2.  Characterization 

Polycrystalline samples were ground and sealed in a plastic capsule filled with Ar 

gas and characterized by powder X-ray diffraction (PXRD), using a Bruker D8 Advance 

diffractometer with Cu Ka radiation source (Bruker, Corp., USA) at room temperature. 
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The diffraction patterns were recorded in the 2q angular range of 15°–90°. Peak indexing 

was carried out by Rietveld refinement performed with the TOPAS package [88]. Single-

crystal X-ray diffraction (SXRD) was performed on a 0.1 mm × 0.1 mm × 0.1 mm crystal 

using a Rigaku R-AXIS RAPID II diffractometer with Mo Kα radiation source (Rigaku, 

Corp., Japan) at room temperature. The crystals were mounted on a glass capillary. To 

avoid exposure to air, they were immersed in liquid paraffin before being transferred to 

the SXRD apparatus. Unit cell refinement was performed with the CrystalClear software 

(version 1.3.6 SP3 Rigaku Corporation, Tokyo, Japan, 2007.). The rocking curve of 001 

diffraction was measured using a SmartLab diffractometer system with Cu Kα radiation 

source (Rigaku, Cop., Japan) at room temperature. Full widths at half maximum 

(FWHMs) of the rocking curves were employed as the measure of crystallinity of the 

samples. The chemical composition was determined by electron-probe microanalysis 

(EPMA) using a field emission electron microprobe JEOL JXA-8530F (JEOL, Ltd., 

Japan). The analysis of the oxygen content is highly sensitive to the tilting of the sample 

surface, while those of Ca and Pb are considerably less sensitive to the tilting; thus, the 

atomic ratios of Ca to Pb were used to evaluate the chemical composition.   

 

3.2.3.  Transport measurements 

Resistivity 𝜌mm	and Hall resistivity	𝜌mj were measured by the four-probe method 

using a Physical Property Measurement System (PPMS) (Quantum Design, Inc., USA) 

where magnetic fields (µ0H) up to 9 T were applied normal to the (001) sample surface. 

The geometry of electrodes is illustrated in Fig. 3.4(d). Crystals were fixed on sapphire 

substrates by applying Stycast 2850 epoxy and heated at 80°C to cure the epoxy. The 

sample surfaces were then gradually scrapped with sandpaper to a thickness less than 0.1 
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mm, contacted by silver epoxy, and heated in the glove box at 150°C to dry the epoxy. To 

prevent the sample from reacting with ambient atmosphere during the measurements, the 

samples were covered with Paratone-N oil before being transferred to the measurement 

chamber of the PPMS. The electric current I = 5 mA flowed along the a axis on the ab 

plane. The Hall resistivity along the b axis was extracted from the difference of the 

transverse resistance measured at positive and negative fields such that 𝜌mj(𝑩) =

[𝜌(𝑩) + 𝜌(−𝑩)]/2, where 𝑩 represents the magnetic flux density. Using this method, 

we removed the longitudinal resistivity component stemming from voltage probe 

misalignment. The magnetization of the sample is neglected in the following sections (B 

= μ0H).  

 

3.3.  Results and discussion 

3.3.1.  Characterization 

Figure 3.2(a) shows the PXRD patterns of polycrystalline samples measured after 

the first and second heat treatments at 950 °C, which fitted well to the crystal structure 

reported in the literature [80,86]. The XRD patterns demonstrated that the sample was 

already a single-phase of Ca3PbO after the first treatment and remained unchanged after 

the second heat treatment. Figures 3.2(b) and (c) show the PXRD patterns of 

polycrystalline samples heated at temperatures between 850 and 1200°C. In particular, 

the change in the thermal stability of Ca3PbO could be clearly observed in the peak at ~ 

32° corresponding to the (111) reflection, the strongest one in the XRD patterns, which 

remained unchanged up to 1050°C and began to deviate at 1150°C. The deviation of the 

(111) reflection at 1150°C could be quantitatively explained by the increase in the lattice 

parameters, which we estimated to deviate by 2% from that of the samples heated at 
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850°C. The change in the lattice parameters could be understood by taking into account 

the formation of Ca deficiencies. More of these defects formed as temperature was 

increased, subsequently inducing the precipitation of Ca-deficient compounds as 

impurities, and eventually leading to decomposition of Ca3PbO into Pb and CaO. These 

observations indicated that Ca3PbO cannot remain thermally stable at temperatures higher 

than 1050°C. Hence, we determined the initial temperature for the growth of single 

crystals to be 1000°C.   

Figures 3.3(a)-(d) show microscope images of the samples grown in stainless steel, 

Mo, and Fe crucibles. Square-like facets were observed in all samples, whereas the size 

of the crystals reached up to ~1 mm in samples grown in the Fe crucibles, making it easier 

to prepare samples for transport measurements. Figures 3.3(e) and (f) show backscattered 

electron (BSE) images of the crystals grown in a Fe crucible with filled space. The major 

part of the square-like facet represented by gray color corresponds to the Ca3PbO phase. 

Black spots, pointed by red and pink arrows, are confirmed to be CaO and Fe particles, 

respectively. Light gray spots, pointed by orange arrows, show the Pb-rich regions of the 

Ca3PbO phase. To suppress the effect of compositional deviation, the crystal surface was 

mechanically polished with sandpaper before performing the Hall effect and SdH 

oscillation measurements. The BSE images in Figs. 3.3(e) and (f) show the composition 

of the crystals before and after the mechanical treatment with sandpaper, depicting that 

Fe particles and Pb-rich regions of the Ca3PbO phase were reduced after the treatment. 

The chemical composition of the samples grown in various crucibles are summarized in 

Table 1. The atomic ratios of Ca to Pb, regardless of the crucible material, show a Ca 

deficiency proportion of 2-3%. 

Figures 3.3(g)-(i) show the XRD patterns of a crystal grown in an Fe crucible with 
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filled space. The q-2q scan in Fig. 3.3(g) solely consists of the peaks corresponding to the 

(00l) reflections, confirming that the square facets correspond to the (00l) planes and that 

the sample was single phase. Figure 3.3(h) represents the XRC for the 001 diffraction 

(∆ω). The FWHM is 0.06°, indicating the high quality of the grown single crystals. The 

2q-fixed f-scan of the (111) diffraction in Fig. 3.3(i) revealed a fourfold in-plane 

symmetry, indicating that the samples were single domain. 

 

3.3.2.  Transport properties 

To successfully observe the SdH oscillations in Ca3PbO, control of the carrier 

density N is crucial in that the oscillation frequency depends on N and determines the 

magnitude of the magnetic field needed to clearly detect the oscillations. A lower value 

of N requires a field of lower magnitude. In addition, mobility is the second crucible 

parameter because it affects the amplitude of the oscillations. Figures 3.4(a) and (b) show 

the temperature dependence of the resistivity 𝜌mm , carrier density N, and transport 

mobility μtr and the field dependence of the Hall resistivity 𝜌mj for samples grown in 

various crucibles, respectively. The 𝜌mm–T curve for the sample grown in the stainless 

steel crucible (18% Cr-8% Ni) shows a semiconductor-like upturn at low temperatures, 

while N is comparatively high. This behavior can be attributed to magnetic impurities 

such as Ni and Cr included in the crucible, suggesting that the samples reacted with these 

magnetic elements during the crystal growth. 

Except for the crystals grown in stainless steel crucibles, the transport 

measurements revealed metallic conduction with p-type carriers in each sample, which 

could stem from Ca deficiencies detected in all the samples, as summarized in Table I 

where the atomic ratios of Ca to Pb (Ca/Pb) for crystals grown in various crucibles are 



57 
 

listed together with the residual resistivity ratio (RRR), N (2 K), N (2 K) per Ca atom in 

unit cell, and μtr (2 K). Table I shows that all the samples potentially contain Ca 

deficiencies of ~ 3% at maximum. However, the deviation from the stoichiometric 

composition is comparable to the standard deviation so that it is difficult to distinguish 

Ca deficiencies of each sample. In contrast, the numbers of carriers per Ca atom in unit 

cell, which can be estimated from hole densities, considerably vary from 0.1 % to 7 %. 

These comparisons demonstrate that the relationship between Ca deficiencies and hole 

densities cannot be clearly explained in the present study. 

Despite the problem with the origins of high hole densities, the comparison of 

transport properties in Table I reveals that the highest RRR of 2.675(7), the lowest N of 

4.011(2) × 1019 cm−3, and the highest μtr of 3893(2) cm2 V−1 s−1 are obtained in the 

samples grown in Fe crucibles with filled space, indicating that the Fe crucibles with filled 

space are best-suited to the synthesis of Ca3PbO single crystals with a Ca flux. Also, these 

comparisons indicate that confinement of Ca flux in the crucible during the growth 

process is effective in reducing N and increasing μ. Consequently, magnetoresistance 

(MR) was largest for the samples grown in Fe crucibles with filled space, as shown in Fig. 

3(c). Due to the linear dispersion around valence band maximum, the effective mass 𝑚∗ 

of hole in Ca3PbO drastically decreases with the reduction of residual hole density N. In 

addition, EPMA results show that hole carriers stem from Ca vacancies; thus, the 

difference in MR ratio, which depends on 𝑚∗ , results from a slight variation in Ca 

deficiencies. Since the tight fitting crucible lid is effective for the suppression of N, the 

different MR ratio is likely to be caused by degree of Ca melt leakage. If the crucible 

material has high wettability for Ca melt, the melt can easily spill out along the crucible 

wall. Therefore, Fe is considered to be less wettable than other crucible materials.  
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3.3.3.  Shubnikov-de Haas oscillations and band parameters 

Through the use of Ca3PbO single crystals grown in Fe crucibles with filled space, 

we succeeded in detecting SdH oscillations in the Hall resistance Rxy. In contrast, the 

oscillations in MR were hardly discernible. In general, the amplitude of oscillations of 

the longitudinal resistance Rxx is greater than that of Rxy. However, as shown in the 

geometry of electrodes [Fig. 3.4(d)], the distance between the electrodes for Hall voltage 

is approximately two times as long as that for longitudinal voltage, leading to a factor of 

Rxy (9 T)/Rxx (9 T) = 14.1 mW / 5.8 mW ~ 2.4 at 2 K. Due to the difference in the magnitude 

of voltage, the SdH oscillations were only detected in Rxy. Figure 3.5(a) shows the field 

dependence of the Hall resistance Rxy and its derivative dRxy/dB at 2 K. These results show 

that the oscillations were amplified as the field increased. By subtracting a polynomial 

background of Rxy at temperatures between 2 and 40 K, the SdH oscillations periodic in 

1/B are observed [Fig. 3.5(b)]. The fast Fourier transform (FFT) spectrum of the SdH 

oscillations at 2 K, as illustrated in Fig. 3.5(c), shows a single oscillation frequency F = 

65 T, which corresponds with a periodicity Δ(1/B) = 0.015 T−1. We used the Onsager 

relation, F = (ħ/2πe)SF, where ħ is Planck’s constant and SF is a cross-sectional area of 

the Fermi surface normal to the field, to obtain SF = 6.2 × 10−3 Å−2 which amounts to only 

0.3% of the cross-sectional area of the first Brillouin zone (BZ). By assuming a circular 

cross section, we extracted a very small Fermi wave vector of kF = 0.044 Å−1. The DFT 

calculation in Ref. [59] predicts that there exist three pairs of hole pockets with uniaxial 

anisotropic shapes on G-X path in the bulk Brillouin zone of hole-doped Ca3PbO. Despite 

this theoretical prediction, experimental studies on the Fermi surface of Ca3PbO have 

been lacking. To study the anisotropic Fermi surface, it is essential to observe the SdH 
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oscillations in a wide range of the magnetic field. Our results demonstrate that it is 

feasible to detect the SdH oscillations in DC fields, thereby suggesting the studies on the 

Fermi surface of Ca3PbO using high-field measurements. 

We further analyzed the SdH oscillation amplitude to derive the band parameters of 

Ca3PbO. Using the standard Lifshitz–Kosevich (LK) formula [70], the temperature-

dependent amplitude ΔRxy is expressed as ΔRxy(T)/ΔRxy (0) = l(T)/sinh(l(T)), and the 

thermal factor is described by l = 2π2kBTm*/(ħeB), where kB and 𝑚∗  represent the 

Boltzmann constant and the effective cyclotron mass, respectively. Figure 3.5(d) shows 

the temperature dependence of the relative oscillatory component ΔRxy(T)/ΔRxy(2 K) for 

the peak at 1/B = 0.120 T−1. The fit yields 𝑚∗	= 0.064 m0 with m0 the bare electron mass. 

The Fermi velocity vF = ħkF/𝑚∗ was calculated to be vF = 8.07 × 105 m/s. The Dingle 

temperature TD = 41 K can be derived from a Dingle plot, as shown in Fig. 3.5(e). 

Accordingly, a long mean free path of lq = 24 nm was estimated. The values of these band 

parameters are comparable to those of well-studied 3D Dirac fermion systems such as 

Cd3As2 [71,89]. Conversely, there was a clear difference in the ratio of quantum mobility 

to transport mobility. The quantum mobility μq of Ca3PbO calculated by μq  = etq/𝑚∗ was 

823 cm2 V−1 s−1, which is 21% of the transport mobility μtr of 3860 cm2 V−1 s−1. This ratio 

was three orders of magnitude smaller than that in Cd3As2 [90] although the carrier 

density of the Cd3As2 crystal exhibiting the highest μtr is 7.4 × 1018 cm−3 [90], this was 

only an order of magnitude smaller than that of the Ca3PbO crystals. The discrepancy in 

the ratio of μq to μtr mainly stems from the considerable difference of μtr between these 

two materials. The μtr of Cd3As2 can reach 9 × 106 cm2 V−1 s−1 [90], which is three orders 

of magnitude higher than that of Ca3PbO. The difference of μtr could be attributed to the 

energy difference between the upper and lower Dirac cones of Ca3PbO, which is 
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approximately three times as large as that of Cd3As2, suggesting that the separation 

between the Fermi level and the Dirac point in Cd3As2 would be much smaller than that 

in Ca3PbO. To obtain higher mobility in Ca3PbO, it is thus necessary to further decrease 

the carrier density.  

 

3.3.4.  Conclusions 

We investigated the optimum conditions for the synthesis of Ca3PbO single crystals by a 

Ca flux method to increase the size of crystals and reduce hole carrier density. The 

crucible material and sealing method were critical factors for confining Ca melt during 

growth process. Using crystals grown in Fe crucibles sealed in stainless steel capsules 

where empty space was completely filled, we succeeded in growing single crystals, 1 mm 

in size, with a carrier density of 4.0 × 1019 cm−3. SdH oscillations were clearly observed 

in a crystal grown under the optimum synthesis conditions. Various band parameters of 

Ca3PbO were measured and found to be consistent with those expected for Dirac fermion 

systems. 
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Figure 3.1: The calcium-lead phase diagram adopted from Ref. [85]. 
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Figure 3.2: (a) Powder X-ray diffraction (PXRD) patterns and Rietveld refinements of 
polycrystalline samples measured after the first and second heat treatments with the 
Miller indices shown in parenthesis for respective crystal planes. Plot shows the observed 
(black line) and calculated (red line) PXRD patterns with a difference curve (green line). 
Vertical tick marks represent Bragg reflections in the Pm3@m space group. The broad peak 
observed at ~20° stems from diffraction of the plastic capsule. (b),(c) Comparison of 
PXRD patterns of polycrystalline samples heated at various temperatures. The (111) peak 
at each temperature is shown in (c). 
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Figure 3.3: Characterization of the samples grown in different crucibles. (a)-(d) 
Microscope images of crystals grown in stainless steel (a), Mo (b), and Fe crucibles (c, 
d), respectively. (e),(f) Compositional images of the crystals grown in an Fe crucible with 
filled space before and after the mechanical treatment with sandpaper, obtained by EPMA. 
Black spots (pointed by red arrows) indicate CaO particles, whereas white spots (pointed 
by orange arrows) represent surface Pb-rich regions of the Ca3PbO phase. Black spots 
pointed by pink and yellow arrows show Fe particles and holes, respectively. (g-i) X-ray 
diffraction (XRD) patterns of a crystal grown in an Fe crucible with filled space. (g) XRD 
pattern of q-2q scan. The observed peaks correspond to the (00l) reflections of Ca3PbO, 
which confirm that the grown crystal was single phase. (h) Normalized rocking curve for 
the (001) reflection. (i) XRD pattern of f scan for the (111) reflection.  
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Figure 3.4: Transport properties of crystals grown in stainless steel, Mo, and Fe crucibles. 
In particular, the data of the crystals grown in Fe crucibles with and without empty space 
in the stainless steel capsules are illustrated by blue and orange symbols, respectively. (a) 
Temperature dependence of resistivity 𝜌mm, carrier density N, and transport mobility μtr. 
(b),(c) Field dependence of Hall resistivity	𝜌mj	and magnetoresistance (MR) at 2 K. (d) 
Schematic of the four-probe configuration for the transport measurements in which the 
current flows along the a axis on the ab plane with the magnetic field applied along the c 
axis. (e),(f) Schematic images of stainless steel capsules with and without empty space, 
respectively. Yellow parts and gray cubes represent Ca melt and Ca3PbO crystals formed 
during the growth process. 
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Figure 3.5: SdH oscillations in crystals grown in Fe crucibles with filled space. (a) Hall 
resistance Rxy and the derivative of the Rxy with respect to B at 2 K. (b) Oscillatory 
component of Rxy vs. 1/B scaled by the periodicity Δ(1/B) = 0.015 T−1 at various 
temperatures. (c) FFT spectrum of the SdH oscillations at 2 K. (d) Temperature 
dependence of the oscillation amplitudes ΔRxy(T)/ΔRxy (2 K) for the peak at 1/B = 0.120 
T−1. (e) Dingle plot at 2 K for the SdH oscillations with the oscillation frequency F = 65 
T. 
  



66 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
Table 1: Parameters of the samples grown in different crucibles. Fe and Fe* crucibles 
represent those with and without empty space in the stainless steel capsules. Ca:Pb is 
the atomic ratio of Ca to Pb determined by EPMA. RRR is the ratio	𝜌mm(300 K)/𝜌mm(5 
K). N and μtr are carrier density and transport mobility at 2 K, respectively. 
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Chapter 4 ARPES Studies of Ca3PbO 
 

4.1.  Introduction 

Three-dimensional (3D) Dirac fermion systems have emerged as one of the most 

prominent topics in condensed matter physics. They comprise a class of topological 

materials in which bulk conduction and valence bands with linear energy-momentum 

dispersion relations meet at finite points or along curves in k space. These phenomena 

have been theoretically predicted and experimentally verified to occur at the phase 

transition point between a trivial insulator and a topological insulator [27,91–93], or in 

topological semimetals including those of the 3D Weyl [42,94–110], 3D Dirac [54–

57,111–113], and topological nodal line semimetal (TNLS) [94,114–128] types. 

Recently, there has been a growing interest in the cubic antiperovskite family as 

potential source of such novel topological phases of matter as 3D Z2 invariant topological 

insulators [58], 3D massive Dirac fermions [59,84,130], topological crystalline 

insulators [62,63], TNLSs [118,119], and topological superconductors [64]. In particular, 

recent theoretical calculations on Ca3PbO [59] (Fig. 1(a)), made of Ca2+, Pb4− and O2− 

ions, predict the presence of a 3D gapped Dirac-like cone at finite momentum along the 

G-X direction, which results from a band inversion of the Ca 3d and Pb 6p bands at the 

G point. Of paramount interest is the possibility that Ca3PbO hosts 3D Dirac fermions 

with cubic symmetry as an intrinsic part of its electronic structure, since 3D Dirac 

fermions in other materials are sometimes only realized under such extreme conditions 

as low temperature or high pressure [131–133]. Like normal cubic perovskite materials, 

notably SrVO3 [134], Ca3PbO exhibits easy cleavage along (001) planes, which preserve 
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a C4 symmetry element in the bulk structure, a prerequisite for the protection of its bulk 

massive Dirac states and surface massless Dirac states. It is thus feasible to conduct 

experiments with a magnetic field applied along the C4 rotation axis, as proposed 

previously [30]. Furthermore, the states near the Fermi level (EF) are predicted to be 

derived entirely from Dirac-like bands with linear dispersion allowing for fundamental 

and direct studies of 3D Dirac fermions [59].  

In order to verify the presence of 3D Dirac fermions experimentally, it is necessary 

to identify a Dirac point in 3D momentum space and investigate the electronic structure 

associated with the particular point not only along the surface-parallel directions (kx or ky) 

but also along the surface-perpendicular direction (kz). These requirements call for an 

experimental probe with a good definition of kz. Soft x-ray angle-resolved photoemission 

spectroscopy (SX-ARPES) is the most powerful method for directly studying the 3D 

electronic band structures of bulk materials, and has been demonstrated to provide a high-

kz resolution [135]. Thus, SX-ARPES using the tunable excitation energy of synchrotron 

radiation is eminently suited for the navigation of the 3D electronic structure of Ca3PbO. 

In this paper we employ SX-ARPES to experimentally observe the Dirac-like band 

dispersion along the G-X direction in the 3D Brillouin zone (BZ) of bulk Ca3PbO. By 

comparing these results with those for Bi-doped Ca3PbO, we also show that electron 

doping leads to the shifts of the band structure downward, thereby demonstrating that 

aliovalent doping is effective in tuning the EF of Ca3PbO without fundamentally changing 

its Dirac-like band structure.  
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4.2.  Experimental 

4.2.1.  Synthesis 

The details on the synthesis of Ca3PbO single crystals are provided in the chapter 

3. The single crystals used in ARPES experiments were grown in an iron crucible sealed 

in a stainless steel capsule where its inside space remained empty. In fact, the ARPES 

experiments were performed before the optimum synthesis conditions were obtained. The 

results of ARPES experiments motivated us to further improve the synthesis conditions 

to reduce the hole carrier density. For APRES experiments, we used the crystals with 

black color and square-like facets [Fig. 4.1(b)] 

The size of the grown crystals reaches ~ 1 mm, which is large enough to obtain 

well-cleaved sample surfaces for ARPES measurements. We also grew the electron-doped 

samples with a chemical formula Ca3(Pb1−xBix)O (x = 0.07). Synthesis of the Bi-doped 

single crystals followed the same procedure as that for the non-doped crystals, except that 

Ca5Bi3 was added as a Bi source to the Ca2Pb and CaO starting materials, with the molar 

ratios being of the form Ca2Pb:Ca5Bi3:CaO = 1−x : 2x/5 : 1.  

 

4.2.2.  Characterization 

Ca3PbO crystallizes in a cubic inverse perovskite type structure [Fig. 4.1(a)] with 

a = 0.484 nm and space group Pm3@m [86]. The O atoms are located at the centers of the 

unit cell, surrounded by corner-sharing, regular Ca6 octahedra. Single-crystal X-ray 

diffraction (SXRD) was performed on a 0.1 mm × 0.1 mm × 0.1 mm crystal using a R-

AXIS RAPID II diffractometer and Mo K-alpha radiation, at room temperature. The 

crystals were mounted on a glass capillary. Afterwards, to avoid exposure to air, they were 

immersed in liquid paraffin before transferring them from an Ar-filled glove box to the 
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SXRD apparatus. Unit cell refinement was performed with the CrystalClear software 

(version 1.3.6 SP3 Rigaku Corporation, Tokyo, Japan, 2007.). The samples were 

confirmed to have a cubic crystal structure with lattice parameter a = 0.485(2) nm, 

matching that of polycrystalline Ca3PbO.  

The compositional formula of the non-doped single crystal used in the ARPES 

measurements was determined to be Ca2.94(4)Pb1.00(1)O1.00(4) by electron-probe 

microanalysis (EPMA) using a field emission electron microprobe JEOL JXA-8530F, 

indicating that the crystals contain vacancies on 2% of the Ca sites. As for the Bi-doped 

samples, EPMA confirmed that the Bi content is almost comparable to the nominal value 

~ 0.07 and that the samples are also slightly Ca-deficient. 

 

4.2.3.  Transport measurements 

Resistivity, Hall resistivity, and specific heat measurements were performed in the 

temperature range of 1.8–300 K and the magnetic field (B) range of –9 to 9 T using a 

Physical Property Measurement System (Quantum Design). Cu wire contacts in the four-

probe configuration were mounted to the sample with silver epoxy inside the Ar-filled 

glove box. The samples were heated in the glove box to 150°C to cure the epoxy. Samples 

were immersed in Paratone-N oil to prevent them from reacting with ambient air during 

the measurement. The electric current flowed in the ab plane while the applied B was 

parallel to the c axis. Fig. 4.2 shows the field dependence of Hall resistivity at various 

temperatures. It is confirmed that both non-doped and Bi-doped samples were p-type at 

all temperature ranges. Fig. 4.3 shows specific heat divided by the temperature of the 

Ca3PbO single crystals, C(T)/T, as a function of T2 in the low temperature region between 

1.8 K and 3.7 K. The data was fitted to the expression C(T)/T = g + bT2. The derived 
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Sommerfeld coefficient (g ) is 1.16(2) mJ mol-1 K-2. The theoretical g  calculated from the 

free-electron model is 2.29 mJ mol-1 K-2. The ratio of the measured g  to the calculated g  

yields the thermal effective mass, mth, of ~ 0.51 m0. 

 

4.2.4.  Ultraviolet photoemission spectroscopy (UPS) 

UPS measurements were performed with Scienta Omicron DA30 electron 

analyzer under the base pressure lower than 2 × 10−8 Pa at room temperature. UV light 

was generated using a monochromatized microwave-driven He discharge lamp (MBS L-

1). To excite photoelectrons, we used the He IIa resonance line (hn = 40.8 eV). Samples 

were cleaved in situ along the (001) surface at the measurement temperature. Fig. 4.4 

shows the secondary electron emission measured at an applied voltage of 7 V. The work 

function f of Ca3PbO was determined to be 3.5 eV ± 0.1 eV. By using the value of f ~ 

3.5 eV determined by UPS, the inner potential V0 was estimated to be ~ 8.5 eV. 

 

4.2.5.  Soft X-ray angle-resolved photoemission spectroscopy 

In order to experimentally identify the 3D massive Dirac fermions, we performed 

bulk-sensitive SX-ARPES measurements at the beamline BL–2A MUSASHI at the 

Photon Factory, KEK. The tunable excitation energy of the synchrotron radiation source 

enabled us to trace the electronic structures in all three dimensions of momentum space. 

Samples were cleaved in situ at the measurement temperature of ~ 20 K under an ultrahigh 

vacuum of 1 × 10−10 Torr, and the experimental data were collected using a Scienta SES-

2002 electron energy analyzer with light linearly polarized along the horizontal direction. 

The energy and angular resolutions were set to approximately 170 meV and 0.3°, 

respectively. 
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4.2.6.  DFT calculations 

To provide a theoretical reference with which to compare our ARPES results, we 

performed DFT band structure calculations with the Perdew-Burke-Ernzerhof (PBE) 

generalized-gradient approximation [136] using the VASP code [137], while the effective 

mass and hole carrier concentration were calculated using SKEAF code [138]. In 

agreement with the pioneering theoretical work on this compound [59], a Dirac electron 

is found to be located along the G–X direction in the BZ [Figs. 4.5(a) and (b)].  

 

4.3.  Results and discussion 

4.3.1.  Transport properties 

Fig. 4.1(c) shows the temperature dependence of the mobility, carrier density, and 

resistivity of the non-doped and the Bi-substituted Ca3PbO samples. These measurements 

reveal metallic conduction with p-type carriers [Figs. 4.1(c) and 4.2]. Upon partially 

substituting Pb with Bi, the carrier density N slightly decreased from 1.4 × 1020 cm−3 to 

6.9 × 1019 cm−3 at T = 2 K, but the Hall mobility µ significantly increased from 50 cm2 

V−1 s−1 to 370 cm2 V−1 s−1 at this temperature [Fig. 4.1(c)]. The high hole carrier 

concentration is consistent with the EPMA result indicating that both the non-doped and 

the Bi-substituted samples contain a Ca deficiency of 2% which is likely to generate 

holes: Ca¶A× → V¶A¾¾ + 2ℎ● + Ca(g).  

Fig. 4.1(d) shows the magnetic-field (B) dependence of the magnetoresistance 

(MR) ratio for both non-doped and Bi-doped Ca3PbO at T = 2 K, where the MR ratio (%) 

is defined as [r(B) – r(0 T)]/r(0 T) × 100. The linear dependence of the MR ratio on the 

magnetic flux density B, one of the distinguishing magnetotransport properties of Dirac 
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fermions [64], is clearly observed when the first-order derivative dMR/dB curve is 

investigated, as illustrated in Fig. 4.1(e). dMR/dB is semiclassically proportional to B2 at 

low B, but it soon saturates at a critical field |B| of ~ 1.6 T, which is defined as the point 

of intersection between the extrapolated slope at low B and the saturation level at high B 

(dotted lines). The linear B-dependence observed at moderately low B values in both non-

doped and Bi-doped Ca3PbO are characteristic features of Dirac fermions. 

 

4.3.2.  3D nature of the band structure 

The ARPES intensity image in Fig. 4.5(c) shows the band structure along the X–

G–X path of the kz axis, generated from ARPES scans at photon energies from 256 eV to 

371 eV with the inner potential of 8.5 eV [Fig. 4.4]. The intensities in the binding energy 

range less than 1 eV are not sufficient to describe the band structure of Ca3PbO near EF. 

To better visualize the band structure, the second-derivative ARPES spectrum is 

illustrated in Fig. 4.5(d). The bands marked as B1 and B2 are still not so easy to 

distinguish for the kz direction, showing that the Δkz broadening (~ 0.25 Å−1) is too large 

to resolve these two bands that are also approximately 0.25 Å−1 apart from each other. In 

addition, the suppression of the intensity can be ascribed to matrix element effects. 

Despite the limit of resolution, it becomes possible to confirm the emergence of B1/B2 

bands in the lower binding energy range and determine the photon energy of 311 eV 

corresponding to G in the 3D BZ. Through comparison with the PBE calculations, the 

band near the EF is assigned to the Pb-6p3/2 derived bands, while the band whose top 

reaches 1.0 eV is attributed to the Pb-6p1/2 derived one. The Pb-6p band structure is 

consistent with the results of PBE calculations, though the EF is shifted downward from 

the Dirac points. 
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Next, in order to see the band dispersion in more detail, we investigated the band 

structure of Ca3PbO along the kx direction, which provides equivalent information to that 

of Figs. 4.5(c) and (d) but with much higher momentum resolution. Fig. 4.5(e) presents 

the resulting valence band structure along the X–G–X path of the kx axis with ky = 0 Å−1, 

together with the plots of the peak positions of the momentum distribution curves 

(MDCs) and energy distribution curves (EDCs). The two Pb 6p3/2 bands marked as B1 

and B2 cross the EF and consequently form hole pockets around the G point. The presence 

of these hole pockets is in accord with the results of transport measurements which 

revealed p-type conductivity.  

 

4.3.3.  Estimation of the Dirac point position and bandwidth 

To elucidate the measured dispersions in detail, we compared the observed band 

dispersion near the EF with that of the PBE calculations for the B1 band, which directly 

passes through the theoretical Dirac points [Fig. 4.7(a)]. To enable a quantitative 

discussion, the band dispersion of B1 determined by extracting the peak positions of the 

MDCs and EDCs along the G-X line is reproduced with a linear least squares fit to the 

following phenomenological equation 

Eobs(kx) = Eshift + a * Ecal(kx).                     (1)  

where Ecal, Eshift and a represent the calculated band dispersion, the energy shift, and the 

correction factor of the band mass m*, respectively. Only Eshift and α are adjustable 

parameters during the fit to the observed band dispersion. The best fit is obtained with 

a ~ 1.43(2) and Eshift ~ 0.46(1) eV, showing that the bandwidth of the calculated B1 is 

expanded by 43 % in our Ca3PbO sample. By reducing the bandwidth of the experimental 

B1 by 1.43, the Dirac points originating from the B1 are estimated to reside 0.32(1) eV 
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above the EF. By assuming that the shape of actual band structure is similar to the 

calculated one, the hole concentration is estimated from the volume of Fermi surface 

obtained by calculated band structure with EF shift of  Eshift /a. The estimated 

concentration, 2.33 × 1020 cm-3 (B1: 2.07 × 1020 cm-3, B2: 2.59 × 1019 cm-3), almost agrees 

with the value ~ 1.4 × 1020 cm-3 obtained from the Hall measurements. In addition, Fig. 

4.5(e) shows that all the three Pb-6p bands are well reproduced by Eq. (1) with the same 

parameters, although there are some discrepancies at the energy positions near stationary 

points such as G. The agreement between the modified calculated bands and the APRES 

spectra is further confirmed by the matching between the second-derivative ARPES 

spectra and the modified PBE calculations in Fig. 4.5(f).  

 

4.3.4.  Bi-substitution effect on band structure 

Next, in order to examine the effects of Bi substitution on the electronic structure 

of Ca3PbO, we performed ARPES measurements on Bi-doped Ca3PbO. Before the 

ARPES measurement, we measured the core-level spectra of the Bi-doped samples to 

check for a shift of the EF due to Bi substitution (electron doping), as shown in Fig. 4.6(a).  

In comparing the peak positions of the Pb 4f between the non-doped and the Bi-doped 

Ca3PbO samples, it becomes clear that Bi-doping has induced a peak shift of ~ 0.12 eV 

toward higher binding energy, delineating the connection between Bi substitution and 

electron doping in Ca3PbO.   

Fig. 4.6(c) illustrates the ARPES intensity plots for a Bi-doped crystal along the 

X–G–X path of the kx direction at ky = 0 Å−1 [cut A in Fig. 4.6(b)], overlaid with the plots 

of the peak positions of the MDCs and EDCs. The B1 band is similarly reproduced with 

a fit to Eq. (1) [Fig. 4.7(b)]. The best fit is obtained with a ~ 1.06(1) and Eshift ~ 0.188(6) 
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eV. By reducing the bandwidth of the experimental B1 by 1.06, the Dirac points are 

estimated to be located 0.176(6) eV above the EF. Then, hole concentration is estimated 

to be 8.72 × 1019 cm-3 (B1: 8.21 × 1019 cm-3, B2: 5.06 × 1018 cm-3), relatively consistent 

with the value ~ 6.9 × 1019 cm-3obtained from Hall measurements. This result illustrates 

that the decrease in hole carrier concentration by Bi doping led to the decrease in the 

expansion of the bandwidth of the B1 from 43 % to 6 %. Although it is uncertain how 

the change in the bandwidth affects the massive Dirac states predicted in Ca3PbO, it is 

evident that Bi doping contributes to the reformation of the bandwidth of the B1 to the 

theoretical one. The second-derivative ARPES spectra in Fig. 4.6(d) confirms the 

agreement between the experimental bands and modified calculated bands. 

For a massive Dirac fermion, cone-like band dispersions show finite curvature at 

the Dirac points. In Ca3PbO, the Dirac fermion is predicted to be massive so that the 

corresponding band dispersions do not directly pass the Dirac point; therefore, their 

shape should become parabolic as the bands approach the Dirac point, as verified in other 

massive Dirac fermion systems such as magnetically doped Bi2Se3 [140]. Fig. 4.6(e) 

displays the ARPES intensity plots for measurements along cut B, which runs through a 

single Dirac point in Fig. 4.6(b), together with the results of the PBE calculations along 

cut B modified by using the parameters obtained in the fit of the B1 band along cut A to 

Eq. (1). The second-derivative ARPES spectra in Fig. 4.6(f) show some intensity above 

the EF due to thermal excitation energy of 2kBT (~3 meV). However, the intensity at ~ 

0.01 eV above the EF is attributed to some noise produced by taking the second derivative. 

In accord with the form of the calculated band structure, which becomes parabolic at the 

Dirac point as shown in Figs. 4.6(e) and (f), that of the experimental band structure is 

also relatively parabolic, consistent with the feature of the massive Dirac states.  
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4.4.  Conclusions 

We performed ARPES measurements on Ca3PbO to examine whether or not it 

possesses 3D Dirac fermions. Our observations of the bulk Dirac-like band dispersions 

near EF via SX-ARPES were consistent with the results of electronic structure 

calculations. This good agreement between calculated and experimental dispersion 

strongly supports that Ca3PbO is host to native 3D Dirac fermions. In addition, we showed 

that the substitution of Bi for Pb in Ca3PbO led to the reduction of the excess hole carrier 

concentration, the shift of the Dirac point relative to the EF, and the reformation of the 

expanded bandwidth of the band comprising the Dirac point. Furthermore, we confirmed 

that Ca3PbO can be cleaved along the (001) plane, which preserves the C4 symmetry. 

These findings encourage further electron doping in Ca3PbO to directly investigate the 

possibility of a finite mass gap in the Dirac-like band dispersions and the more extensive 

exploration of the inverse perovskite family as a promising venue for 3D Dirac fermion 

systems. 
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Figures 
 

 
 

Figure 4.1: The sample and the electron transport properties of Ca3PbO. (a) The crystal 
structure of Ca3PbO. (b) Photograph of a Ca3PbO single crystal with clear square-like 
facets. (c) Mobility, carrier density, and resistivity vs. temperature curves measured for 
Ca3PbO and Ca3Pb0.92Bi0.08O. (d),(e) Magnetoresistance (MR) and the first-order 
derivative of the MR with respect to magnetic field (B), dMR/dB, vs. B for Ca3PbO and 
Ca3Pb0.92Bi0.08O at T = 2 K.  
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Figure 4.2: (a),(b) Magnetic field dependence of the Hall resistivity of Ca3PbO (blue solid 
lines) and Ca3Pb0.93Bi0.07O (pink lines) at various temperatures, respectively. 
  



80 
 

 
 
 
 
 
 
 
 

 
 

Figure 4.3: Specific heat divided by temperature, C(T)/T, as a function of T2 in the low 
temperature region between 1.8 K and 3.7 K., shown as blue circles. The solid line 
represents the best-fit curve using the expression C(T)/T = g + bT2. 
  



81 
 

 
 
 
 
 
 
 

 
 
Figure. 4.4: (a) Secondary electron emission of the (001) surface of Ca3PbO single 
crystals measured at an applied voltage of 7 V.  
 
 



82 
 

 
Figure 4.5: Comparison of the measured and theoretically calculated band structures of 
Ca3PbO.  (a),(b) The PBE-DFT band structure of Ca3PbO and its bulk BZ. Red dots 
highlight the six 3D Dirac point positions. (c),(e) ARPES intensity plots along the G-X 
lines of the kz and kx directions, respectively. The peak positions of the MDCs and EDCs 
are plotted by the red open squares and blue open circles, respectively. The intensity plots 
are symmetrized with respect to the center lines and averaged (see Fig. 4.8). Black dashed 
lines represent the results of band structure calculations. (d),(f), Second-derivative 
ARPES spectra along the G-X lines of the kz and kx directions, respectively.  
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Figure 4.6: (a) Core-level photoemission spectra of Ca3PbO and Ca3Pb0.92Bi0.08O. (b) 2D 
cross-section of the BZ of Ca3PbO. Red dots represent the four 3D Dirac points in the 
plane, denoted as kD. (c),(e) ARPES intensity plots along cuts A and B, respectively, 
measured for a Bi-doped crystal. The peak positions of the MDCs and EDCs are plotted 
by the red open squares and blue open circles, respectively. (d),(f) Second-derivative 
ARPES spectra along cuts A and B, respectively. Black dashed and solid lines illustrate 
the results of band structure calculations for cut A and B, respectively. 
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Figure 4.7: (a),(b) Comparisons between the observed binding energy Eobs of band B1 in 
Figs. 4.3(e) and 4.4(c) and the modified binding energy Emod of the calculated B1 band, 
respectively. The Emod is obtained by shifting the calculated binding energy Ecal toward 
lower binding energies by 0.46 eV for the non-doped Ca3PbO crystal and 0.19 eV for the 
Bi-doped crystal. Light blue solid squares, yellow solid triangles, and blue solid circles 
show the Eobs, Ecal, and Emod values, respectively. 

To analyze the energy of the predicted Dirac points, we fit the peak positions of 
the momentum distribution curves (MDCs) and energy distribution curves (EDCs) of the 
B1 band along the G-X line in Figs. 4.3(e) and 4.4(c) to the linear equation Eobs = Eshift + 
a *Ecal.  Eobs, Ecal, Eshift and a represent the observed binding energy of B1 in the MDCs 
and EDCs, the calculated binding energy of B1, the energy shift between Eobs and Ecal, 
and the correction factor of the band mass 𝑚∗, respectively. Figs. 4.5(a) and (b) compare 
the Eobs and the modified binding energy of the calculated B1, which is represented by 
Emod. It is clear that the Eobs values are well-reproduced by the Emod ones in both the non-
doped and Bi-doped cases. Based on the calculated Fermi surface for the non-doped and 
Bi-doped samples, the effective masses, 𝑚∗, of the band B1 are estimated to be ~ 0.69 
m0 and 0.52 m0, respectively. These values are almost comparable to the thermal effective 
mass of the non-doped sample, mth, obtained from our specific heat measurements of ~ 
0.5 m0 [Fig. 4.3]. 
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Figure 4.8:.(a)-(d) ARPES intensity plots for non-doped and Bi-doped Ca3PbO crystals.   
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Chapter 5 Shubnikov-de Haas Oscillations in Ca3PbO 
 

5.1.  Introduction 

Three-dimensional (3D) Dirac fermion systems comprise a new class of topological 

materials where bulk conduction and valence bands with linear dispersion cross at 

discrete points or along curves in k space. These phenomena have been experimentally 

confirmed in topological semimetals incorporating those of the 3D Dirac [55–

57,90,71,54,112], 3D Weyl [100–103,141–143], and topological nodal line 

semimetals [127,128]. Motivated by the growing interest for new Dirac materials, recent 

theoretical calculations on antiperovskite Ca3PbO have predicted that there exists a 3D 

gapped Dirac-like cone along the G-X line [59], which stems from a band inversion of the 

Ca 3d and Pb 6p bands at the G point.  

Following the prediction, we performed the angle-resolved photoemission 

spectroscopy (ARPES) experiments on Bi-doped Ca3PbO single crystals to investigate 

the 3D electronic structure [144]. The ARPES and transport measurements revealed that 

the Bi-free samples were unintentionally heavily hole-doped so that the Fermi level (EF) 

crosses not only the Dirac-like dispersion band but also the parabolic band. Thus, electron 

doping is necessary to assess the pure Dirac fermion system. Although the samples still 

remained p-type even after Bi doping to Pb site, it was shown that electron doping by Bi 

led to the Fermi level upward shifts to Dirac point without alternation of Dirac-like band 

structure [144].  

In this study, we report the magnetotransport property of Bi-doped Ca3PbO with 

Shubnikov-de Haas (SdH) oscillation demonstrating the emergence of Dirac fermion 
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system. Magnetotransport measurement is a straightforward method for detecting Dirac 

fermions as well as ARPES. The linear dispersion of energy band gives rise to linear 

quantum magnetoresistance (MR) at the quantum limit, where only the lowest Landau 

level crosses the EF [139]. Another distinctive feature is the nontrivial p Berry phase 

shift [19], a phase generated from the cyclotron motion of electrons along a Dirac point. 

These characteristics have been widely confirmed in such Dirac materials as 

graphene [24,145], topological insulators [146–148], and topological 

semimetals [71,90,149–154].  

For Bi-doped Ca3PbO, we observed a linear MR at temperatures up to 40 K. The SdH 

oscillations are clearly discerned at low temperatures and reveal a non-trivial p Berry 

phase shift, complementary to previous ARPES measurements. Owing to the low 

effective mass and the existence of two SdH frequencies, one being twice the other, the 

Landau level splitting was observed at temperatures as high as 43 K. The field-angular-

dependence of SdH frequencies in high magnetic field shows at least three branches 

corresponding to three pairs of uniaxial FS pockets on G-X path reflecting the cubic 

symmetry of bulk crystal.   

 

5.2.  Experimental 

5.2.1.  Synthesis 

The details on the synthesis of Ca3(Pb1-xBix)O single crystals are provided in the 

chapter 3. The single crystals used in the SdH oscillation measurements were the ones 

obtained from the optimum synthesis conditions, i.e. they were grown in an iron crucible 

sealed in a stainless steel capsule in which two short stainless steel rods were placed at 

top and bottom sides of crucible to reduce open space. Due to the suppression of Ca 
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deficiency, the hole carrier density N in the grown crystal was decreased down to ~ 2.0 × 

1019 cm−3 at 2 K which is about 1/3 of that in the ARPES study. The compositional formula 

of Bi-doped Ca3PbO single crystals was determined to be Ca2.92(9)Pb0.98(3) Bi0.015(2)O1.3(4) 

by electron-probe microanalysis (EPMA), showing that the crystals still contain 

vacancies on approximately 2% of the Ca sites. 

 

5.2.2.  Magneto-transport measurements 

Magnetotransport measurements were performed in the standard Hall and resistivity 

configuration using a Quantum Design 9T–Physical Property Measurement System 

(PPMS). Crystals were fixed on sapphire substrates by applying Stycast 2850 epoxy and 

contacted using silver epoxy in an argon glovebox to avoid exposure to an ambient 

atmosphere, and were then immersed in Paratone-N oil before transferring the sample to 

the measurement chamber in PPMS. Quantum oscillations measurements with a tunnel 

diode oscillator technique (TDO) [152] were also conducted by attaching the samples to 

a copper coil of ~8 turns that comprises part of a TDO circuit, resonating at ~82 MHz. 

The sample with coil was rotated in situ, q being the angle between the magnetic flux 

density B and the [001] direction. Magnetic fields (μ0H) of up to 55 T were applied by 

the nondestructive pulse magnet at the ISSP. The magnetization of sample is neglected in 

the following sections (B = μ0H). To provide a theoretical reference with which to 

compare our magnetotransport results, we performed DFT band structure calculations 

with the Perdew-Burke-Ernzerhof (PBE) generalized-gradient approximation [136] using 

the VASP code [137], while the effective mass and hole carrier concentration were 

calculated using SKEAF code [138]. 
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5.3.  Results and discussion 

5.3.1.  SdH oscillations under low fields 

Fig. 5.1(a) shows the magnetoresistance (MR) ratio (%) [ρ(B) – ρ(0)]/ ρ(0) × 100 as 

a function of B up to 9 T at temperatures between 2 and 40 K with a field applied along 

the c axis (i.e., B⊥ab plane). The linear B-dependence of the MR ratio is confirmed by 

the derivative of the longitudinal resistance dRxx/dB curve [inset in Fig. 1(a)], consistent 

with the previous report [144]. SdH oscillations can be resolved from as low as B = 5 T 

in both MR and Hall resistance Rxy with the help of the derivatives dRxx/dB and dRxy/dB, 

as shown in Figs. 5.1(a) and (b), respectively.  

By subtracting a polynomial background of Rxx at 2 K < T < 40 K, SdH oscillations 

periodic in 1/B are observed [Fig. 5.1(c)]. The fast Fourier transform (FFT) spectrum of 

the SdH oscillations as a function of B at 2 K [the inset in Fig. 5.1(c)] reveals a single 

oscillation frequency F = 41.5 T, which corresponds to the periodicity Δ(1/B) = 0.024 T−1. 

According to the Onsager relation, F = (ħ/2πe)SF, where ħ is Planck’s constant and SF is 

a cross-sectional area of FS normal to the field, we obtain SF = 3.9 × 10−3 Å−2, a tiny area 

corresponding to only 0.2 % of the cross-sectional area of the first Brillouin zone (BZ). 

By assuming a circular cross section, a very small Fermi wave vector of kF = 0.035 Å−1 

is estimated.  

Quantum oscillation of resistance ΔRxx can be described by Lifshitz-Kosevich (LK) 

formula [69,70]: 

DE||
DE||(-)

= 𝐶 ∑ 𝑅F𝑅ì𝑅³
c

√H
I
HÓc cos :2𝜋𝑝 %�

�
− c

d
+ 𝜙ì + 𝜙�&@              (1) 

where Δ𝑅mm(0)  is the background resistivity, 𝐶  is a positive coefficient, and 𝑝 

represents the pth harmonic oscillation. The temperature and the Dingle factors are 
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expressed as 𝑅F = l(T)/sinh(l(T)) and 	𝑅ì = 	 𝑒¿lL with l(ì) = 2π2pkB𝑇(ì)𝑚∗/(ħeB), 

where kB and 𝑚∗ represent the Boltzmann constant and the effective cyclotron mass. The 

spin damping factor is given by 𝑅U  = cos %𝑝𝜋 í
d
𝜇∗&, where 𝜇∗ = 𝑚∗/𝑚-  with 𝑚- 

being the bare electron mass, and 𝑔 represents the spin 𝑔 factor. The phase factor	𝜙ì 

is determined by the dimensionality of the FS, and the value varies from 0 for 2D FS to 

+ or – 1/8 for a minimum or maximum cross section of 3D FS, respectively [69,70]. 

Another phase factor	𝜙� is the Berry phase, which is 0 for normal electrons but 1/2 for 

Dirac fermions [69]. Due to the maximum cross section of the FS, the total phase shift 𝜙 

for Ca3PbO is predicted to be 3/8. 

 Figure 5.1(d) shows the temperature dependence of the relative oscillatory 

component ΔRxx(T)/ΔRxx(2 K) for the peak at 1/B = 0.135 T−1. For simplicity, we have 

neglected harmonics here. The fit yields 𝑚∗~ 0.046 m0 with m0 the bare electron mass. 

Subsequently, the Fermi velocity vF = ħkF/𝑚∗ is calculated to be vF = 8.77 × 105 m/s. A 

long mean free path of lq = 26 nm can be extracted from the Dingle plot [the inset in Fig. 

5.1(d)]. The quantum mobility μq calculated by μq  = etq/𝑚∗ is 1132 cm2 V−1 s−1. The 

values of these band parameters are comparable to those of well-studied 3D Dirac fermion 

systems such as Cd3As2 [71,89].  

 

5.3.2.  Lande g factor and Berry phase 

Next, we consider the spin reduction factor 𝑅U  and oscillation phases. For the 

analysis of the 𝑔  factor, the spin-zero method has been widely used in quantum 

oscillation studies on two-dimensional (2D) or quasi-2D materials such as organic 

metals [153], high-Tc cuprates [154,155], and iron-based superconductors [156]. The 

cross-sectional area of FS in a quasi-2D metal increases as a function of 1/ cos 𝜃 while 
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tilting the field, leading to an increase in cyclotron mass, 𝜇∗(𝜃) = 𝜇∗(0)/ cos 𝜃 . 

Substitution of this 𝜃 -dependence in the equation of 𝑅U  results in a periodic 

disappearance of 𝑅U  with the spin-zero condition for the fundamental harmonic, 

𝑔𝜇∗(𝜃) = 2𝑛 + 1, where 𝑛 is an integer [153]. Thus, to determine the values of the two 

unknowns, 𝑔𝜇∗(𝜃) and	𝑛, at least two successive spin-zero angles need to be detected. 

Figure 5.2 shows the oscillatory components of the resistance as a function of 

1/(𝐵 cos 𝜃)	 at various angles of the magnetic field with respect to the normal of the 

sample surface, measured for another sample with 𝑚∗(0) ~ 0.074 m0. The curves at 𝜃 = 

0° and 5° show a maximum near F/B = 11, while that at 𝜃 = 25° shows a minimum, 

suggesting that the first spin-zero exists between 𝜃 = 0° and 25°. Likewise, the second 

spin-zero can be identified between 𝜃 = 25° and 45° near F/B = 13.5. Furthermore, by 

looking at the curves near F/B = 14.5, we can see that the waveform at 𝜃 = 45° almost 

remains the same until 𝜃 = 50°, whereas it is hard to distinguish the curve at 𝜃 = 55°. 

Under an assumption that the first spin-zero is at 𝜃 = 15±5° with 𝜇∗= 0.076, we 

can obtain a 𝑔-factor, 𝑔 = 13.12(2𝑛 + 1). If we take 𝑛 = 2 (𝑔	 = 66(1)), the second 

spin-zero emerges at 𝜃 = 46.4°, which is consistent with the experimental observations. 

No other values for 𝑛 can explain the positions and number of spin-zeros detected in the 

experiment; that is, 𝑛 < 2 does not account for the second spin-zero while 𝑛 > 2 yields 

extra spin-zeros. With 𝑔	 = 66(1) and 𝜇∗ = 0.046 at 𝜃 = 0°, the phase of 𝑅U for the 

oscillations shown in Fig. 1(c), 𝜋 í
d
𝜇∗, is estimated to be 1.52𝜋 and hence 𝑅U > 0. This 

considerably large 𝑔  factor suggests the existence of strong spin-orbit coupling in 

Ca3PbO, which is predicted to account for the band inversion at G leading to the 

emergence of 3D Dirac fermions in Ca3PbO. 

We now evaluate the phase shift 𝜙 for Ca3PbO. The nontrivial π Berry phase has 



92 
 

been recognized as a hallmark of various Dirac materials [24,71,146,156], and 𝜙 can be 

determined either directly from the fit to the LK formula or the Landau level (LL) index 

plot. Figure 5.3(a) shows the oscillatory component of magnetoconductivity 𝜎mm(B) of 

the sample (characterized by Fig. 5.1) as a function of 1/B at 2 K, obtained by using the 

formula 𝜎mm(B) = 𝜌mm B𝜌mmd + 𝜌mjd C⁄ ,	where 𝜌mm	and 𝜌mj	are the longitudinal and Hall 

resistivities, respectively. The LK fit of Δ𝜎mm yields the total phase shift of 𝜙 = 0.376(3), 

which is closely equivalent to the value predicted for Ca3PbO. In addition, to perform the 

LL index plot, we assign LL integer indices n to minima in Δ𝜎mm and half indices to 

maxima in Δ𝜎mm  [157], shown in Fig. 3(b). In case of 𝑅U  > 0, the nth minimum in 

Δ𝜎mm	satisfies the following relation [158] 

																																															2𝜋 %�
�
− c

d
+ 𝜙& = (2𝑛 − 1)𝜋                    (2) 

Thus, the plot of n vs 1/B makes a straight line with 𝐹 and 𝜙 corresponding to the slope 

and the intercept on the n axis, respectively. The best-fit straight line in Fig. 5.3(b) 

intercepts the n axis at the value 𝜙 = 0.36(5), consistent with the value derived from the 

LK fit. However, in a recent theoretical work, it is argued that the phase shift 𝜙 in the 

fundamental oscillation should not be interpreted as direct evidence for 3D Dirac 

fermions, emphasizing that it represents a phase defined by spin-orbit coupling constant 

𝜆, further accounting for the Zeeman contribution [159]. With this new definition, further 

theoretical studies are required to evaluate the phase shift expected for Ca3PbO. 

 

5.3.3. Zeeman splitting 

To investigate the quantum limit of the SdH oscillations at high fields, we performed 

TDO measurements instead of using the standard four-probe configuration method, which 

was unfeasible for our samples due to the difficulty of making stable contacts for the 
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measurements in pulse magnetic fields. Figure 5.4(a) shows the field dependence of the 

resonant frequency up to 55 T at temperatures between 4 and 78 K with the field applied 

normal to the (001) plane. The frequency variation ΔfTDO represents the change in the 

conductance of the sample following the relation, ΔfTDO ∝ 1/ρxx, where ρxx is longitudinal 

resistivity.  

To conduct background subtraction, we use the linear interpolation of the raw data at 

78 K. The FFT spectrum [inset in Fig. 5.4(a)] at low fields (5 T < B < 11 T) reveals a 

single oscillation frequency F = 41.5 T, consistent with the results of the four-probe 

configuration measurements in DC magnetic fields. In contrast, the oscillatory component 

ΔfTDOOSC at 4 K [blue line in Fig. 5.4(a)] in the high-field range (5 T < B < 55 T) shows 

oscillations with multiple frequencies, which appear as additional peaks other than the 

peak at F = 41.5 T in the FFT spectrum [Fig. 5.4(b)]. Regarding the origins of these extra 

peaks, we consider two candidates: other extremal orbits due to anisotropy of the Fermi 

surfaces and harmonics generation by Zeeman splitting. 

Our DFT calculation predicts that bulk Fermi surface of slightly hole-doped Ca3PbO 

forms three pairs of nearly ellipsoidal hole pockets on G-X lines, ax, ay, and az, which 

can be transferred to each other by cubic crystal symmetry [59]. The inset in Fig. 5.4(b) 

depicts the schematic image of ax, ay, and az in the 3D BZ of Ca3PbO. Actually, our 

previous ARPES measurement demonstrated the existence of hole pockets on G-X lines 

and the distinct Fermi velocities along the two cuts crossing either a single or double 

Dirac points [144]. In particular, the DFT calculation shows that the cross-sectional area 

of az is approximately twice as large as that of ax when the field applied along the kx axis 

[q = 90° in the inset shown in Fig. 5.4(b)]. In this case, as the angle between the field and 

the [001] direction increases, the oscillation with F = 41.5 T (az) would increase and 
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gradually approach that with F = 83 T, whereas the oscillation with F = 83 T (ax) would 

decrease and gradually approach that with F = 41.5 T. As for the Zeeman splitting, the 

peaks in the FFT spectra would always appear twice as large as ax and az. 

 

5.3.4.  Angular dependence of SdH oscillations under high fields 

To verify the ellipsoidal FS model and clarify the origins of oscillation with high 

frequencies, we performed the angle-dependent TDO measurements by tiling the 

magnetic field from the [001] direction (q = 0°) to the [00-1] direction (q = 180°), which 

passes through the [100] (q = 90°) direction [see Fig. 5.4(f)]. Figure 5.5(a) shows the 

oscillatory components ΔfTDOOSC at various angles in the field range from 5 T to 55 T, 

where the split spacing markedly changes with q, which can be simply attributed to the 

angular-dependent effective mass.  

Figure 5.5(b) shows the FFT peak positions plotted as a function of q.  The solid and 

open dots represent the peaks with high and low amplitudes, respectively. To confirm the 

dimensionality of the SdH oscillations, we use the ellipsoidal FS model parameterized by 

ax, ay, and az, each of them representing the oscillation frequency corresponding to the 

cross-sectional area of the ellipsoidal FS along the G-X path of the kx, ky, or kz axis, 

respectively. As shown in the inset depicted in Fig. 5.4(b), while tilting the field from the 

[001] to the [100] direction, ay would remain constant. On the other hand, ax and az would 

vary with the field angle by following the equation (with a π/2 shift for ax) [138]:  

𝐹(θ) = 	αm(SÓ-°)α�(SÓ-°)U(cotdθ+ 1) Bαm(SÓ-°)d cotdθ+ α�(SÓ-°)d CV      (1) 

where F(q), αm(SÓ-°), and α�(SÓ-°) represent the oscillation frequencies as a function of 

q and the two primary frequencies ax = 41.5 T and az = 83 T. The ellipsoidal FS model 

can describe the angular dependence of the oscillation frequencies well up to the second-
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order harmonics of ax, ay and az. Most of the peaks with low amplitudes [open dots in 

Fig. 5.5(b)] can be attributed to combination frequencies of ax, ay and az [dashed lines in 

Fig. 5.5(b)]. Some peaks with low amplitudes at q = 6°, 175°, and 185° may originate 

from the difference between the two frequencies of F ~ 100 T and 40 T.  

As shown in Fig. 5.5(b), the angular dependence of SdH oscillations agrees well 

with simulated results for the ellipsoidal Fermi surface model, demonstrating the 

existence of multiple extremal orbits due to the anisotropic Fermi surfaces, ax and az, as 

well as their harmonics due to Zeeman splitting, 2ax and 2az. The next question is which 

oscillatory amplitude is more predominant than that of the other at such angles as q = 45° 

where contributions from these two origins, ax + az and 2ax (or 2az), exactly cross each 

other. This can be solved by looking at the adjacent angles where the oscillatory amplitude 

of 2ax (or 2az) is higher than that of ax + az. Thus, we conclude that the high-frequency 

components observed at q = 90° are dominated by harmonics of ax and az oscillations. As 

a whole, the angular dependence of the 3D SdH oscillations provides evidence for the 

presence of three pairs of 3D Fermi pockets with uniaxial anisotropy along the G-X path 

in bulk Ca3PbO, as predicted by the DFT calculation in Ref. [59]. 

 

5.4. Conclusions 

By observing the SdH oscillations, we have resolved the bulk FS of Bi-doped 

Ca3PbO with distinctive features of Dirac fermions including linear magnetoresistance, 

light effective mass, and a nontrivial p Berry phase shift. Owing to the carriers with low 

effective mass and the two primary SdH frequencies, one being twice the other, the 

Landau level splitting was clearly observed at temperatures as high as 43 K. The field-

angular-dependence of the oscillation frequencies with three branches reveals that the FS 
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is composed of three pairs of hole pockets with uniaxial anisotropy on the G-X path as 

predicted for bulk Ca3PbO crystal by DFT calculation. 
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Figures 

 

 

 
 
FIG. 5.1. SdH oscillations under DC fields and Fermi surface parameters. (a),(b) MR and Rxy vs. B 

for Bi-doped Ca3PbO up to 9 T at temperatures between 2 K and 40 K. The insets show the 

derivatives dRxx/dB and dRxy/dB vs. B at 2 K, respectively. (c) Oscillatory component of longitudinal 

resistivity ΔRxx vs. 1/B at various temperatures. The inset shows the FFT spectrum of the SdH 

oscillations at 2 K. (d) Oscillation amplitudes ΔRxx(T)/ΔRxx (2 K) vs. T for the peak at 1/B = 0.135 T-

1. (e) Dingle plot of the SdH oscillations with the oscillation frequency F = 41.5 T. 
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FIG. 5.2. Oscillatory components of the resistance as a function of 1/(𝐵 cos 𝜃) at various angles, 

measured for another sample with m*(0) ~ 0.074 m0.  
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FIG. 5.3. (a) Oscillatory component of magnetoconductivity of the Bi-doped Ca3PbO single crystal, 

characterized by transport properties shown in Fig. 1, Δsxx vs. 1/B fitted to the Lifshitz-Kosevich 

formula. The minima positions are assigned as integer Landau level indices. (b) Landau level index 

plot. 
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FIG. 5.4. High magnetic field data obtained from TDO measurements. (a) Resonant frequency, ΔfTDO, 

vs. B up to 55 T at temperatures between 4 and 78 K with the field applied normal to the (001) plane.  

The inset shows the FFT spectrum of the SdH oscillations at 4 K for fields between 5 T and 11 T. (b) 

FFT spectra of oscillatory component ΔfTDO
OSC at 4 K. The peaks are assigned as ax and az with their 

second harmonics and their combinations. The inset shows the schematic image of the ellipsoidal FS 

in the 3D BZ of Ca3PbO.  
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FIG. 5.5. Angular dependence of SdH oscillations under high magnetic fields. (a) Oscillatory 

component ΔfTDOOSC at various angles. (b) Angular dependence of the FFT peak positions. The solid 

and dashed lines show the simulated results for the 3D ellipsoidal model using harmonics and 

combinations, respectively. The solid and open dots represent the FFT peaks with high and low 

amplitudes.  
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Chapter 6 General Conclusion 
 

To observe three-dimensional Dirac fermions in Ca3PbO, we synthesized the single 

crystals of Ca3PbO. By employing angle-resolved photoemission spectroscopy, we 

observed the Dirac-like energy dispersion along the Γ − X direction in the Brillouin zone 

of bulk Ca3PbO. In addition, we performed magnetotransport measurements to detect 

Dirac fermions. Analysis of the prominent Shubnikov-de Haas oscillations in Bi-doped 

Ca3PbO demonstrates clear evidence for the bulk 3D Fermi surface with a nontrivial 

Berry phase shift and very light effective masses. TDO measurements under high fields 

reveal the existence of two primary SdH frequencies, one being twice the other. Together 

with the low effective mass, the oscillations of these two frequencies account for the 

emergence of the Landau level splitting which persists up to 43 K. The field-angular-

dependence of the oscillation frequencies with three branches reveals that the FS is 

composed of three pairs of hole pockets with uniaxial anisotropy on the G-X path as 

predicted for bulk Ca3PbO crystal by DFT calculation. 

In chapter 1, the relevant theoretical backgrounds of the studies of 3D Dirac 

fermions are briefly introduced. Based on the backgrounds, the objectives and the 

contents of the present studies are described.  

In chapter 2, the basic principles of the two main experimental techniques in this 

study, angle-resolved photoemission spectroscopy and quantum oscillations, are briefly 

introduced. For quantum oscillations, the experimental background on the verification of 

the non-trivial Berry phase shift is described in detail.  
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In chapter 3, the single crystal growth of Ca3PbO by a Ca-self-flux method is 

discussed. Cubic crystals, 1 mm in 

size, were successfully obtained 

through the use of iron crucibles 

sealed in stainless steel capsules. 

The crucible material and sealing 

method were found to be critical 

factors for achieving large crystals with low carrier density. The crystals were 

subsequently characterized by powder and single-crystal x-ray diffraction experiments, 

electron-probe microanalysis, and Hall effect measurements. Through the use of short 

stainless steel rods as tight caps for the crucible and fillers to occupy extra space in the 

capsule, the Ca evaporation loss of the flux, which contributes to Ca vacancy formation, 

was effectively reduced. Hence, the hole carrier density in the single crystal was reduced 

to 4.0 × 1019 cm−3. The crystal synthesized under optimized growth conditions showed 

clear Shubnikov-de Haas oscillations, indicating its high purity and homogeneity.  

In chapter 4, the band structure of Ca3PbO is investigated through soft x-ray angle-

resolved photoemission spectroscopy. Cone-

like band dispersions were observed for 

Ca3PbO, in close agreement with the predictions 

of electronic structure calculations. The analysis 

on the band width of the cone-like dispersion 

and the shift in the Fermi level demonstrate that 

chemical substitution of Bi for Pb is effective in 

tuning the Fermi level of Ca3PbO while leaving 
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its electronic structure intact. It is confirmed that the inverse perovskite family provides 

a promising platform for the exploration of 3D Dirac fermion systems.  

In chapter 5, magnetotransport and tunnel diode oscillation measurements were 

performed on Bi-doped Ca3PbO in magnetic fields up to 55 T and temperatures between 

2 K and 78 K. The observations of the SdH oscillations reveal the bulk 3D Fermi surface 

(FS) with distinctive features of Dirac fermions including linear magnetoresistance, light 

effective mass, and a nontrivial p Berry phase shift. Owing to the carriers with low 

effective mass and the two primary SdH 

frequencies, one being twice the other, the 

Landau level splitting was clearly observed at 

temperatures as high as 43 K. The field-angular-

dependence of the oscillation frequencies with 

three branches reveals that the FS is composed 

of three pairs of hole pockets with uniaxial 

anisotropy on the G-X path as predicted for bulk 

Ca3PbO crystal by DFT calculation. 
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