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Abstract. Effects of CuBr addition to perovskite CH3NH3PbI3(Cl) precursor solutions on photovoltaic properties were 
investigated. The CH3NH3Pb(Cu)I3(Cl,Br)-based photovoltaic devices were fabricated by a spin-coating technique, and 
the microstructures of the devices were investigated by X-ray diffraction, optical microscopy and scanning electron 
microscopy. Current density-voltage characteristics were improved by a small amount of CuBr addition, which resulted 
in improvement of the conversion efficiencies of the devices. The structure analysis showed decrease of unit cell volume 
and increase of Cu/Br composition by the CuBr addition, which would indicate the Cu/Br substitution at the Pb/I sites in 
the perovskite crystal, respectively. 

INTRODUCTION 

Thin film solar cells with perovskite-type CH3NH3PbI3 compounds have been widely studied recently due to 
their easy fabrication processes and the high conversion efficiencies [1-4]. After a conversion efficiency of 15% was 
attained [5], higher efficiencies have been accomplished for various perovskite compounds and device structures, 
and the conversion efficiencies above 20% were achieved [6-9]. 

It has been reported that photovoltaic properties of the perovskite solar cells strongly depended on compositions 
and crystal structures of the perovskite compounds. Metal atom doping, such as tin (Sn) [10,11] antimony (Sb) [12-
15], copper (Cu) [16], or arsenic (As) [17], at the lead (Pb) sites have been performed. The optical absorption ranges 
of the perovskite compounds were expanded by Sn [10,11], and the photoconversion efficiencies of the perovskite 
solar cells were improved by Sb-, Cu- or As-doping [12-17]. Other elemental doping such as chlorine (Cl) [4,18-21] 
or bromine (Br) [15,22] at the iodine (I) sites of the perovskite crystals have also been reported. The doped Cl ions 
could lengthen the diffusion length of excitons, which resulted in the improvement in the conversion efficiency [4]. 
Further studies on the metal and/or halogen doping at the Pb and/or I ites are fascinating for effects on the 
photovoltaic properties and microstructures of the perovskite solar cells. 

The purpose of the present work was to investigate photovoltaic properties and microstructures of photovoltaic 
devices with perovskite-type CH3NH3Pb(Cu)I3(Cl,Br) compounds, which were prepared by a simple spin-coating 
technique in air. Cu is more nontoxic element than Pb. Effects of CuBr addition using a mixture solution of 
perovskite compounds on the photovoltaic properties and microstructures were investigated by light-induced current 
density-voltage (J-V) characteristics, X-ray diffraction (XRD), optical microscopy, and scanning electron 
microscopy (SEM) with energy dispersive X-ray spectrometry (EDS). 
 

EXPERIMENTAL 

A schematic illustration for the fabrication of the present CH3NH3Pb(Cu)I3(Cl,Br) photovoltaic cells is shown in 
Fig. 1. Details of the basic fabrication process are described in the reported papers [21,23]. F-doped tin oxide (FTO) 
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substrates were cleaned using an ultrasonic bath with acetone and methanol, and dried under nitrogen gas. 0.15 M 
and 0.30 M TiO2 precursor solution was prepared from titanium diisopropoxide bis(acetylacetonate) (Sigma-
Aldrich, 0.055 mL and 0.11 mL) with 1-butanol (1 mL), and the 0.15 M TiO2 precursor solution was spin-coated on 
the FTO substrate at 3000 rpm for 30 s, and heated at 125 °C for 5 min in air to form a TiOx layer. Then, the 0.30 M 
TiO2 precursor solution was spin-coated on the TiOx layer at 3000 rpm for 30 s, and heated at 125 °C for 5 min. This 
process of 0.30 M solution was performed two times, and the FTO substrate was annealed at 500 °C for 30 min to 
form the compact TiO2 layer. For the mesoporous TiO2 layer, the TiO2 paste was prepared with TiO2 powder 
(Nippon Aerosil, P-25) with poly(ethylene glycol) (Nacalai Tesque, PEG #20000) in ultrapure water. The solution 
was mixed with acetylacetone (Wako Pure Chemical Industries, 10 μL) and triton X-100 (Sigma-Aldrich, 5 μL) for 
30 min, and was left for 12 h to suppress the bubbles in the solution. After that, the TiO2 paste was coated on the 
substrate by spin-coating at 5000 rpm for 30 s. Then, the cells were annealed at 120 °C for 5 min and at 500 °C for 
30 min to form the mesoporous TiO2 layer. 

For the preparation of the perovskite compounds, a solution of CH3NH3I (Showa Chemical Co., Ltd., 190.7 mg) 
and PbCl2 (Sigma-Aldrich, 111.2 mg) was prepared with a mole ratio of 3:1 in N,N-dimethylformamide (DMF, 
Nacalai Tesque, 500 μL) at 60 °C for 24 h [18,19]. CuBr (Sigma-Aldrich) was also added in the solution without 
decreasing the PbCl2 content. The solution of CH3NH3Pb(Cu)I3(Cl,Br) was introduced into the TiO2 mesopores by a 
spin-coating method and annealed at 140 °C for 10 min to form the perovskite layer. Then, a hole transport layer 
(HTL) was prepared by spin-coating on the perovskite layer. For the hole transport layer, a solution of 2,2',7,7'-
tetrakis[N,Ndi(p-methoxyphenyl)amino]-9,9'-spirobifluorene (spiro-OMeTAD, Sigma-Aldrich, 36.1 mg) in 
chlorobenzene (Wako Pure Chemical Industries, 0.5 mL) was mixed with a solution of lithium 
bis(trifluoromethylsulfonyl)imide (Li-TFSI, Tokyo Chemical Industry, 260 mg) in acetonitrile (Nacalai Tesque, 0.5 
mL) for 12 h. The former solution with 4-tert-butylpyridine (Aldrich, 14.4 μL) was mixed with the Li-TFSI solution 
(8.8 μL) for 30 min at 70 °C. All procedures for preparation of the thin films were performed in ordinary air. Finally, 
gold (Au) contacts were evaporated as top metal electrodes. Layered structures of the present solar cells were 
denoted as FTO/TiO2/CH3NH3Pb(Cu)I3(Cl,Br)/spiro-OMeTAD/Au, as shown in Fig. 1. 

J-V characteristics of the photovoltaic cells were measured under illumination at 100 mW cm–2 by using an AM 
1.5 solar simulator (San-ei Electric, XES-301S). The J–V measurements were performed by source measure unit 
(Keysight, B2901A Precision SMU). The scan rate and sampling time were ~0.08 V s–1 and 1 ms, respectively, and 
averaged values of forward and reverse scans were used for the photovoltaic parameters. Four cells were tested for 
each condition. The solar cells were illuminated through the side of the FTO substrates, and the illuminated area was 
0.090 cm2. The microstructures of the present cells were investigated by using an X-ray diffractometer (Bruker, D2 
PHASER), a transmission optical microscope (Nikon, Eclipse E600) and a scanning electron microscope (Jeol, 
JSM-6010PLUS/LA) equipped with EDS. 
 

 

FIGURE 1. Schematic illustration for the fabrication process of CH3NH3PbI3 photovoltaic devices using TiO2 nanoparticles. 
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 RESULTS AND DISCUSSION 

The J–V characteristics of the TiO2/perovskite/spiro-OMeTAD photovoltaic devices under illumination are 
shown in Fig. 2, which indicates effects of CuBr addition to the CH3NH3Pb(Cu)I3(Cl,Br) device. Measured 
photovoltaic parameters of the devices are summarized as Table 1. The CH3NH3PbI3(Cl) device provided a power 
conversion efficiency (η) of 7.31%, a fill factor (FF) of 0.609, a short-circuit current density (JSC) of 14.4 mA cm–2, 
and an open-circuit voltage (VOC) of 0.832 V. Power conversion efficiencies of the devices depended on the amount 
of CuBr addition. The highest efficiency was obtained for the 1% CuBr-added CH3NH3PbI3(Cl), which provided an 
η of 9.40%, a FF of 0.647, a JSC of 17.3 mA cm–2, and a VOC of 0.841 V. A decrease in the series resistance (Rs) and 
an increase in the shunt resistance (Rsh) of the present CuBr-added cells were also observed, as indicated in Table 1. 
Cu addition would lead to a reduction in Rs and an improvement in the JSC. A decrease in the leakage current and an 
increase in Rsh resulted in improved FF values. 

Optical microscope images of CH3NH3Pb(Cu)I3(Cl,Br) cells are shown in Fig. 3. Microparticles are observed for 
the cells with CuBr, as shown in Fig. 3(b)-3(d), compared with the standard CH3NH3PbI3(Cl) cells. Perovskite 
crystals with sizes of ~5 μm are observed at the surface of the mesoporous TiO2.This microstructures would improve 
the photovoltaic properties, as well as the doping effect of Cu and Br at the Pb and I/Cl sites, respectively. When 5% 
CuBr was added, larger crystals with a size of ~10 μm are also observed, as shown in Fig. 3(d). 
 

 
 
FIGURE 2. (a) J-V characteristics of the present CH3NH3Pb(Cu)I3(Cl,Br) photovoltaic devices. (b) Structure model of 
CH3NH3Pb(Cu)I3(Cl,Br). 
 

TABLE 1. Measured photovoltaic parameters of the present photovoltaic devices. 
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FIGURE 3.  Optical microscope images of (a) standard CH3NH3PbI3(Cl), (b) +CuBr 1%, (c) +CuBr 3%, and (d) +CuBr 5% cells. 
 

 
 

FIGURE 4.  XRD patterns of TiO2/CH3NH3PbI3 photovoltaic devices. 
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TABLE 2. Measured structural parameters of the present photovoltaic devices. V: unit cell volume. Z: number of chemical units 
in the unit cell. 

 
 

 
 
FIGURE 5.  (a) SEM image of CH3NH3PbI3(Cl) cell. Elemental mapping images of (b) Pb M line, (c) I L line, and (d) Cl L line. 
 
 

Figure 4 is XRD patterns of the present CH3NH3Pb(Cu)I3(Cl,Br) cells. The diffraction reflections can be indexed 
by a tetragonal crystal system (I4/mcm) for the CH3NH3PbI3(Cl) cells. Split diffraction peaks of 004–220 at 2θ of 
~28° for the standard cell changed into diffraction peaks of 200 by increasing the amount of CuBr addition, which 
indicates the structural transformation from the tetragonal to cubic crystal system (Pm-3m) [23,24]. Measured 
structural parameters of the present photovoltaic devices are summarized as Table 2. With increasing the amount of 
CuBr addition, the unit cell volume was decreased, which would be due to the small ionic sizes of Cu and Br 
compared with Pb and I. 

Figure 5(a) shows a SEM image of CH3NH3PbI3(Cl) cell, and microcrystals with various sizes in the range of 
2~20 μm are observed. Elemental mapping images of Pb, I, and Cl by SEM-EDS are shown in Figs. 5(b)-5(d), 
respectively. The elemental mapping images indicate that the particles observed in Fig. 5(a) correspond to the 
CH3NH3PbI3 compound. The composition ratios of the elements Pb, I, and Cl were calculated from the EDS 
spectrum using background correction by normalizing the spectrum peaks, as listed in Table 3. This result indicates 
that I might be deficient from the starting composition of CH3NH3PbI3. 
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FIGURE 6.  (a) SEM image of CH3NH3PbI3(Cl) cell. Elemental mapping images of (b) Pb M line, (c) I L line, (d) Cl L line, (e) 
Cu K line, and (f) Br L line. 
 

TABLE 3. Measured compositions of CH3NH3Pb(Cu)I3(Cl,Br) cells. 
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properties. From the SEM-EDS results, Cu and Br elements were detected, and the compositions of I decreased, and 
the deficient I might increase the hole concentration. 

Two assumed mechanisms could be considered for the increase of the photoconversion efficiencies. The first 
mechanism is as follows: when a small amount of Cu was doped in the CH3NH3PbI3(Cl) phase, carrier concentration 
in the perovskite phase would be increased by the CuBr addition, which would result in the increase of the JSC 
values. The second is as follows: the homogeneous surface and interfacial structures formed by adding CuBr to the 
CH3NH3PbI3(Cl), which improved the photovoltaic properties, especially the FF values. Further studies are 
necessary for precise structure determination of the devices. 
 

CONCLUSION 

CH3NH3Pb(Cu)I3(Cl,Br)-based photovoltaic devices were fabricated by a spin-coating technique, and effects of 
CuBr addition to the perovskite CH3NH3PbI3(Cl) precursor solutions on the photovoltaic properties were 
investigated. The microstructures of the devices were investigated by XRD and SEM-EDS. The unit cell volume of 
the perovskite phase was slightly decreased by adding a small amount of CuBr, and the Cu/Br composition 
increased. This would indicate Cu/Br substitution at the Pb/I sites in the CH3NH3PbI3(Cl) perovskite crystal. Carrier 
concentration in the perovskite phase would be increased by the CuBr addition, which would result in the increase of 
the JSC values and the conversion efficiencies to 9.4%. 
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