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MULTI-TASK AUTOENCODER FOR NOISE-ROBUST SPEECH RECOGNITION

Haoyi Zhang, Conggui Liu, Nakamasa Inoue, Koichi Shinoda

Tokyo Institute of Technology, Japan

ABSTRACT

For speech recognition in noisy environments, we propose a
multi-task autoencoder which estimates not only clean speech
features but also noise features from noisy speech. We in-
troduce the deSpeeching autoencoder, which excludes speech
signals from noisy speech, and combine it with the conven-
tional denoising autoencoder to form a unified multi-task au-
toencoder (MTAE). We evaluate it using the Aurora 2 dataset
and CHIME 3 dataset. It reduced WER by 15.7% from the
conventional denoising autoencoder in the Aurora 2 test set A.

Index Terms— Denoising autoencoder, deSpeeching au-
toencoder, robust speech recognition

1. INTRODUCTION

Speech recognition is utilized in our everyday life, thanks to
its rapid development. However, the existence of noise de-
grades its performance drastically. Many methods have been
proposed to solve this problem. Their examples include vec-
tor Taylor series (VTS) [1, 2, 3] and SPLICE [4].

Recently deep learning has been successfully applied to
robust speech recognition, and the denoising autoencoder
(DAE) has been one of its most effective methods [5]. Using
a sufficient amount of data, it can learn non-linear mapping
functions from noisy-speech features to clean-speech fea-
tures. There have been many efforts dedicated to improving
it. A deep denoising autoencoder (DDAE) with five hidden
layers employs a pre-training method of the Restricted Boltz-
mann Machine (RBM) [6]. A recurrent layer was inserted
to learn the temporal context [7]. An ensemble model of the
DAEs enhances the model’s generalization ability [8].

The noisy-speech features consist of features from both
clean-speech signals and noise signals. What the traditional
denoising autoencoder does is to directly model the map-
ping from noisy-speech features to clean-speech features. It
can easily reduce noise signals and get clean-speech features
when speech features are dominant in noisy-speech features.
In the case of low signal-to-noise ratios (SNRs), however, it
performs poorly because noise significantly contaminates the
resulting speech signals.

In machine learning, multi-task learning (MTL), which
simultaneously trains more than one correlated tasks, is one
of the most promising approaches for increasing a model’s

generation ability [9]. The power of MTL is rooted in its
hidden-units-sharing structure, which leads to robust model
estimation for all the correlated tasks. MTL has been suc-
cessfully utilized for various tasks such as low-resource lan-
guage speech recognition [10] and joint training of triphones
and trigraphmes [11].

In this study, we propose a multi-task autoencoder (MTAE)
which jointly trains denoising and deSpeeching autoencoders.
Here the deSpeeching autoencoder estimates noise features
from noisy-speech features. We expect that the deSpeech-
ing autoencoder brings better clean-speech feature prediction
power. Our method is particularly effective when SNR is
low and noises are non-stationary. To the best of our knowl-
edge, it is the first work to use a neural network to estimate
noise audio features and to use it to enhance the estimation of
speech audio features. Its effectiveness is validated by speech
recognition experiments on the Aurora 2 and the CHIME
3 database. Lee proposed MTL for estimating both clean-
speech features and noise features [12]. They employed a
traditional DNN structure where the inputs are noisy-speech
and estimated noise. On the contrary, our multi-task au-
toencoder only takes noisy-speech as the input, and also it
employs a triangularly shared-units network structure, which
was proven to be significantly efficient.

2. RELATED STUDIES

2.1. Robust speech recognition

SPLICE predicts clean-speech from noisy-speech by learning
from stereo data [4]. In spectral subtraction, noise spectrum is
subtracted from noisy spectrum to obtain clean-speech spec-
trum [13]. In addition, researchers proposed noise-robust fea-
tures, such as the ETSI-AFE [14], the PNCC feature [15] and
the NMCC feature [16].

2.2. Denoising autoencoder (DAE)

A denoising autoencoder is a variant of an autoencoder (AE).
AE consists of two components: an encoder and a decoder.
The encoder converts an input x into a representation h(x),
and the decoder converts h(x) into a reconstructed input
g(h(x)). By minimizing the Mean Squared Error (MSE)
between an input x and its reconstructed input g(h(x)), AE



learns a good representation of the input. For making rep-
resentations robust against partial corrupted input data, a
denoising autoencoder (DAE) is proposed [17]. Instead of di-
rectly using x as an input, denoising autoencoders add noise,
such as Guassian noise and random mask noise, to it to make
a corrupted input x̃. DAE is trained with MSE between the
input x and the reconstructed input g(h(x̃)).

In the field of speech recognition, DAEs has been used
for speech enhancement [5]. Let x be an input noisy-speech
feature, and y be a prediction of a clean-speech feature. Then
the output y is calculated as follows:

y = W 1h0 + b1, (1)

h0 = σ(W 0x+ b0), (2)

where W 0, W 1 are learnable weights and b0, b1 are learn-
able biases, h0 is the output of the hidden layer, and σ is a
non-linear activation function. Normally σ is set as a sigmoid
function. DAE uses MSE between the network’s output y and
label y′ as a loss function:

L(x,y) = ||y′ − y||2. (3)

A single-layer denoising autoencoder can be extended to
a deep denoising autoencoder (DDAE) by using an RBM pre-
training method [6]; RBM provides the initialized weights
and biases that represent training data’s distribution, prevent-
ing the over-fitting problem from happening. DDAE gener-
ally over-performs DAE.

2.3. Multitask learning (MTL)

The joint training of correlated tasks often improves the per-
formance of all tasks [9]. Multi-task learning (MTL) provides
a way to combine several correlated tasks. In MTL of deep
nets, correlated tasks share the same input and some parts of
hidden units. Each task also possesses its own hidden units
for learning its unique knowledge.

The feature sharing structure enables information-sharing
between correlated tasks during training, which is the essence
of MTL. MTL is effective in the following three reasons.
First, it creates more general representations than single task
learning (STL). Correlated tasks in MTL focus on different
aspects of input data, which makes hidden layers learn all-
round features from them. Second, it impedes the overfitting
in each task; extra tasks act as an inductive bias that prevents
the model from adjusting the original task too well. Third, it
improves attribute selection. When training data is limited or
contains noise, it is hard for STL to pick out relevant features.

MTL has been widely used in many tasks. For example, in
multi-lingual speech recognition, an MTL-based DNN is built
where each language has its own output layers while sharing
the input layer and several hidden layers [18, 19]. Also, the
joint training of triphone and trigraphmes was proposed [11].

Noisy-speech features

Clean-speech features prediction Noise features prediction

Fig. 1. Multi-task autoencoder: The left side is a denoising
autoencoder and the right side is a deSpeeching autoencoder.
The green nodes in the upper-left belong to the denoising au-
toencoder, the blue nodes in the upper-right belong to the de-
Speeching autoencoder, and the red nodes in the middle are
shared by those two autoencoders.

3. PROPOSED METHOD

3.1. DeSpeeching autoencoder

First, we build a deSpeeching autoencoder, a neural network
that predicts noise features given noisy-speech features. Its
input is the noisy-speech feature and the output is the noise
feature. The training procedure of the deSpeeching autoen-
coder is similar to that of DAE: Use MSE loss between pre-
dicted noise features and noise features to learn the mapping
function from noisy-speech features to noise features. The
deSpeeching autoencoder can be extended to the deep de-
Speeching autoencoder by using the RBM-based pre-training.

3.2. Multi-task autoencoder (MTAE)

Next, we combine the two autoencoders, the denoising au-
toencoder and the deSpeeching autoencoder, to form a uni-
fied multi-task autoencoder (MTAE). Here, MTAE has a tri-
angularly shaped shared-units as shown in Fig. 1. In terms
of the number of units in each hidden layer, we first deter-
mine the first hidden layer to be n and the last hidden layer to
be 2n. Intuitively, we increase hidden layer’s units linearly.
When the number of hidden layer is L, the lth hidden layer
has

⌈
n(L+l−2)

L−1

⌉
hidden units, consisting of

⌈
n(L−l)
L−1

⌉
shared

hidden units,
⌈
n(l−1)
L−1

⌉
hidden units exclusive to the denois-

ing autoencoder and
⌈
n(l−1)
L−1

⌉
hidden units exclusive to the

deSpeeching autoencoder. The green nodes connect only to
the green and red nodes of the (l + 1)th layer, the blue nodes
connect only to the green and red nodes of the (l+ 1)th layer



Fig. 2. The performance of MTAE varying the loss weights
in Aurora 2 dataset under clean training.

while the red nodes connect to all the nodes of the (l + 1)th

layer.
The training procedure considers the loss from both of

the tasks. The model parameters are learned via the following
loss function:

L(x, s,n) = c||s′ − s||2 + (1− c)||n′ − n||2, (4)

where s, s′ are the predicted clean-speech feature and the
original clean-speech feature respectively, n, n′ are the pre-
dicted noise feature and the original noise feature respec-
tively, and c is a weight between the two tasks.

The denoising task and the deSpeeching task collaborate
together and provide mutual information. For the conven-
tional DAE, directly modeling the mapping function from
noisy-speech features to clean-speech features does not work
well when SNR is low, since large noise signals conceal
clean-speech features. However, in the case of multi-task
autoencoder, the prediction of clean-speech features takes
noise features’ estimation as prior information by triangularly
shaped shared-units. If the denoising task gets accumulated
information from shared units, it may somehow figure out
noise features, which makes it easy to subtract noise features
and predict clean-speech features.

4. EXPERIMENTS

4.1. Experimental settings

We evaluated our proposed method, MTAE, on the Aurora 2
database and the CHIME 3 database. The Aurora 2 database
is a continuous digits recognition corpus under noisy environ-
ments [20]. The training data set provides two modes: clean
condition training and multi-condition training. Each mode
contains 8,440 utterances. The test data consists of 3 subsets:
Set A, Set B, and Set C. Set A uses the same noise as the
multi-condition training set, Set B uses four different types
of noise (restaurant, street, airport and train station), Set C
uses two types of noise (suburban train and street) with dif-
ferent channel conditions. The CHIME 3 database is a speech
recognition corpus under noisy environments based on WSJ

Table 1. WER (%) results of MTAE on Aurora 2 under clean
training .

SNR Set A Set B Set C Avg.

Clean 0.68 0.68 0.71 0.69
20dB 1.01 1.25 1.14 1.13
15dB 1.34 2.45 2.16 1.98
10dB 2.29 7.34 5.37 5.00
5dB 5.04 20.10 10.86 12.00
0dB 17.90 47.96 36.78 34.21
-5dB 53.57 73.08 68.32 54.99

Avg. 5.52 15.82 11.26 10.87

Table 2. WER (%) of MTAE and the other methods on Au-
rora 2 under clean training (averaged over 0-20 dB).

Method Set A Set B Set C Avg.

MFCC [20] 38.66 44.26 33.86 38.93
ETSI-AFE [14] 12.19 12.91 14.23 13.11

NMCC [16] 16.77 14.91 17.50 16.39
DDAE [6] 6.39 20.44 17.20 14.68

MTAE 5.52 15.82 11.26 10.87

corpus [21]. It consists of 7,138 artificial noisy utterances that
achieved by mixing clean WSJ0 utterances with noise back-
ground (cafe, bus, street, pedestrian area). For evaluation, we
use the real noisy data (”et05 real”). We carried out the Au-
rora 2 and the CHIME 3 speech recognition system by using
the KALDI toolkit [22].

We use the MFCC feature of 13 dimensions. To include
the context information, we use continuous 11 frames as
the input. The input dimension is 143. We use 5 for L
and 1024 for n in Subsection 3.2. Therefore, (a, b, c) from
the 1st hidden layer to the 5th hidden layer are (0, 1024, 0),
(256, 768, 256), (512, 512, 512), (768, 256, 768) and (1024, 0,
1024), respectively.

We train our model using multi-condition training data. In
Aurora 2 experiments, 8,440 utterances are divided into 7,806
utterances for training and 634 utterances for validation. In
CHIME 3 experiments, we use 6,600 utterances for training
and 528 utterances for validation.

4.2. Experimental results

In Fig. 2, we show the results using different loss weights c
in Eq.4, for the denoising and deSpeeching autoencoder. The
lowest WERs for all test sets appear when c = 0.5. We use
0.5 for c below.

Table 1 shows the Aurora2’s detailed results of the pro-
posed MTAE when the speech recognition system is trained
by using clean utterances. The WERs of Set A are much lower
than that of Set B and Set C due to a lager mismatch between



Table 3. WER (%) of MTAE and DDAE on Aurora 2 under
clean and multi-condition training (averaged over 0-20 dB).

Method A multi B multi A clean B clean

MFCC [20] 12.19 13.73 38.66 44.26
DDAE [6] 8.92 22.26 6.39 20.44

MTAE 7.71 18.20 5.52 15.82

Noisy-speech features

Clean-speech features prediction Noise features prediction

Fig. 3. Structure 1: The traditional MTL structure.

the training data and test data (Set B and Set C). Table 2 com-
pares our method with the other methods. Our method out-
performed the other methods in Set A and Set C. In the open
noise condition test (Set B), it has higher WER than ETSI-
AFE [14] and NMCC [16]. The reason may be that MTAE
provides biased information of noise in the open noise condi-
tion test.

Table 3 represents Aurora2’s results of the conventional
DDAE and the proposed MTAE under both clean training
and multi condition training. For clean training, the acoustic
model is trained with clean data and DDAE/MTAE is trained
with multi condition data. For multi-condition training, we
train both the acoustic model and the DDAE/MTAE with
multi-condition data. It is interesting that the clean training
gives lower WERs than the multi condition training for both
Set A and Set B. Probably this is because the predicted clean
features are more similar to the clean training features than
the multi condition training features.

To investigate the effectiveness of the triangular-shaped
structure of MTAE, another two types of network structures
are examined for comparison: (1) Structure 1: the number of
nodes for each hidden layer is the same, as shown in Fig. 3,
(2) Structure 2: the same structure with MTAE, but nodes are
fully connected between layers, as shown in Fig. 4. Table 4
shows the results. We confirm that our method achieves better
performance than these two.

In addition, we present the CHIME 3’s results under clean
training to show the scalability of the MATE in Table 5. It
shows that our method also performs well in real case.

Noisy-speech features

Clean-speech features prediction Noise features prediction

Fig. 4. Structure 2: The same number of nodes with MTAE,
but fully connected between layers.

Table 4. The word error rate of Str.1 and Str.2 on Aurora 2
Set A under clean training.

SNR Str. 1 Str. 2 MTAE

Clean 0.59 0.63 0.68
20dB 1.53 1.67 1.01
15dB 2.19 2.26 1.34
10dB 3.71 3.93 2.29
5dB 7.12 7.80 5.04
0dB 20.44 21.06 17.90
-5dB 56.81 57.52 53.57

Avg. 7.00 7.34 5.52

Table 5. WER (%) of MTAE and the other methods on
CHIME 3 under clean training (averaged over 0-20 dB).

Test set MFCC DDAE MTAE

et05 real 50.83 29.71 26.93

5. CONCLUSIONS

We have proposed a multi-task autoencoder (MTAE), which
combines the denoising autoencoder and the deSpeeching au-
toencoder. By simultaneously training these two, the predic-
tion abilities of the denoising autoencoder and the deSpeech-
ing autoencoder are both boosted. Experiment results show
that our proposed MTAE reduced WER by 15.7% from the
conventional denoising autoencoder in Aurora 2 test set A.

In future, we investigate how many shared hidden units
are the optimal. In addition, more different MTL structures
should be applied to check how structures affect the effective-
ness. It is also interesting to extend our method to multi-task
recurrent autoencoder.
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