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Abstract.  In high-dimensional statistical inference in which the number of 
parameters to be estimated is larger than that of the holding data, regularized 
linear estimation techniques are widely used. These techniques have, however, 
some drawbacks. First, estimators are biased in the sense that their absolute 
values are shrunk toward zero because of the regularization eect. Second, 
their statistical properties are dicult to characterize as they are given as 
numerical solutions to certain optimization problems. In this manuscript, we 
tackle such problems concerning LASSO, which is a widely used method for 
sparse linear estimation, when the measurement matrix is regarded as a sample 
from a rotationally invariant ensemble. We develop a new computationally 
feasible scheme to construct a de-biased estimator with a confidence interval 
and conduct hypothesis testing for the null hypothesis that a certain parameter 
vanishes. It is numerically confirmed that the proposed method successfully 
de-biases the LASSO estimator and constructs confidence intervals and p-values 
by experiments for noisy linear measurements.
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1.  Introduction

Estimating high-dimensional unknown variables from a limited number of data pre-
cisely and reliably is an important task in statistics, machine learning, signal process-
ing, and so on. For instance, such demands arise in compressed sensing [1, 2] and 
genomics [3]. Since, in these problems, the number of parameters often far surpasses 
that of observed data, it is clear that some sparsity assumptions on the parameters are 
necessary to reasonably estimate them. Therefore, one needs to simultaneously solve 
two problems: variable selection, which seeks relevant (or non-zero) parameters for the 
data generation process, and parameter estimation. In the past few decades, a number 
of methods have been developed to tackle such problems. One of the most successful 
approaches is the least absolute shrinkage and selection operator (LASSO) [4] method 
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for high-dimensional linear regression problems in which the estimator is obtained by 
minimizing the L1 norm regularized likelihood function. As LASSO estimators can be 
easily obtained by versatile algorithms for convex optimization [2, 5] and have appeal-
ing consistency properties [6–8], they have received considerable attention.

Specifically, let us consider the linear measurement model:

yi = a�
i x0 + ξi, ξi ∼i.i.d N

(
0, σ2

)
, i = 1, 2, ...,M ,� (1)

where x0 ∈ RN and ai ∈ RN are the parameter (signal) and measurement vectors, 
respectively, σ2 ∈ R is a parameter that describes the strength of the measurement 
noise, and N (µ, σ2) is the normal distribution with mean μ and variance σ2. Notation 
� means the operation of matrix/vector transpose. In matrix notation, this model is 
expressed as

y = Ax0 + ξ,� (2)
where a�

i  corresponds to the ith row of the matrix A ∈ RM×N . A is called the observa-
tion or measurement matrix by cases. The objective of high-dimensional linear regres-
sion is to find the parameter vector x0, where the number of measurements M is smaller 
than that of the parameter N. Note that in this high-dimensional setting, one cannot 
obtain a true solution with simple linear algebra because A�A is not invertible; by 
contrast, in the classical setting where M  >  N, the unique unbiased estimator is eas-
ily obtained as x̂classical = (A�A)−1A�y by using the least squares method. To achieve 
this aim, LASSO seeks an estimator by solving an optimization problem that imposes 
sparsity via an L1 penalty:

x̂LASSO(y,A;λ) ≡ argmin
x

[
1

2
‖y − Ax‖22 + λ‖x‖1

]
,� (3)

where λ is a hyperparameter that controls the strength of the regularization. This 
convex optimization problem can be solved eciently by using versatile algorithms. 
Although LASSO might be seen as simple heuristics, it has an appealing consistency 
property: in a certain sparsity condition on the true parameter x0 and an appropriate 
control of the regularization strength λ, the LASSO solution and x0 are consistent in 

the sense that ‖x̂LASSO − x0‖22/N vanishes as the measurement ratio γ ≡ M/N  tends to 
infinity. For a more comprehensive review of LASSO in the context of high-dimensional 
settings, see [9].

Unfortunately, LASSO also has some drawbacks. First, the LASSO solution is 
biased as long as λ > 0 is finite. The amplitude of the LASSO estimator x̂LASSO is 
shrunk toward zero by the regularization term and its absolute value is typically smaller 
than that of the true parameter x0 even in an ideal sparsity assumption. Second, no 
explicit form of the distribution is available for the estimator, as it is just expressed as a 
numerical solution of (3). Consequently, one can neither construct confidence intervals 
nor perform hypothesis testing for the null hypothesis that a certain element of the 
parameter vanishes. These bottlenecks are considered to be problematic in real applica-
tions in which the statistical reliability of the estimation result should be assessed. This 
situation is dierent from the one of classical statistics in which one can analytically 
obtain an unbiased estimator and its distribution.

https://doi.org/10.1088/1742-5468/aace2e
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To resolve the problems stated above, in this study, we develop a new scheme for 
de-biasing and uncertainty estimation in the LASSO estimation in the case that the 
observation matrix A is generated from rotationally invariant random matrix ensem-
bles, which are concretely defined in the next section. The uncertainty addressed in 
this study concerns the randomness that arises from the random observation matrix 
A and measurement noise ξ. Our approach is based on a careful observation of the 
replica analysis of LASSO and an advanced mean-field method known as expectation 
consistent approximation or the adaptive Thouless–Anderson–Palmer (TAP) approach 
[10–12] developed in machine learning [13] and statistical mechanics. We numerically 
show that the proposed algorithm eectively de-biases the LASSO estimator and esti-
mates its uncertainty.

The rest of this manuscript is organized as follows. In section 2, we explain the 
problem setting. In section 3, we describe the result of the replica analysis of LASSO 
and its physical implications. Then, the design of our scheme is introduced. The deri-
vation of the free energy density is in appendix. In section 4, the proposed scheme is 
numerically tested by experiments for noisy linear measurements using various matrix 
ensembles. The last section provides a summary.

2. Problem setting

2.1. Model specification

In this study, we focus on random design models of (2), in which A is a random matrix 
and the true parameter vector x0 is sparse in the sense that the number of its non-
zero components is limited to �N  (0 � � < 1). More precisely for A, we assume that for 
eigenvalue decomposition A�A = ODO�, O can be regarded as a random sample from 
the uniform distribution of the N ×N orthogonal matrices and the empirical eigen-

value distribution 
∑N

i=1 δ(λ− λi)/N, where {λi}i are the eigenvalues of A�A, converges 
to a certain distribution ρ(λ) in the limit N → ∞ with probability one.

2.2. De-biasing and uncertainty estimation in LASSO

Let x̂LASSO(y,A;λ) be the LASSO estimator for the given y,A, and λ. We are inter-
ested in the two problems associated with x̂LASSO(y,A;λ). The first problem is that 

the LASSO estimator is biased. In other words, 
∣∣∣E [

x̂LASSO
i

]
A,ξ

− x0,i

∣∣∣, (i = 1, 2, ...,M) 

remains finite for λ > 0 because of the shrinkage eect caused by the regularization 
term λ‖x‖1. The second is that the LASSO estimator does not have an explicit form of 
the distribution. As a consequence, one can neither construct a confidence interval nor 
compute a p-value to conduct hypothesis testing for the null hypothesis that a certain 
parameter vanishes.

In response to the aforementioned problems, we construct the following quanti-
ties. The first quantity is the de-biased estimators {x̂debiased

i }i that have confidence 

intervals {Ii(αsig) ≡ [x̂debiased
i − Li(αsig), x̂

debiased
i + Ui(αsig)]}i with significance αsig. The 

term de-biased means that this estimator coincides with the true parameter on average: 

https://doi.org/10.1088/1742-5468/aace2e
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E[x̂debiased
i ]A,ξ = x0,i. The second quantity is the p-values to test whether the LASSO 

estimator is zero or not. We are interested in hypothesis testing with the null hypoth-
esis H0,i : x0,i = 0. The confidence intervals concerning the de-biased estimators and 
hypothesis testing via p-values assess the uncertainty in LASSO.

In the past few years, several researchers have been working on the issue closely 
related to that stated here [14–16]. These studies discuss de-biasing and hypothesis 
testing in high-dimensional statistics for a fixed observation matrix where the random-
ness comes from the measurement noise, under tight sparsity assumptions on a true 
sparse signal, which corresponds to the � → 0 limit in the current setting. In contrast 
to these studies, we concentrate on the case that the randomness comes from both the 
random observation matrix and the measurement noise without an explicit sparsity 
assumption on the true parameter keeping � ∼ O(1).

3. A statistical mechanics approach

3.1. Replica analysis for general rotationally invariant random design matrices and its 
physical implications

To investigate how the LASSO solution depends on the true solution, observation 
matrix, and measurement noise, we first evaluate the free energy density corresponding 
to the LASSO Hamiltonian H(x) ≡ ‖y − Ax‖22/2 + λ‖x‖1 at a zero-temperature limit:

f(λ) ≡ − lim
β→∞

lim
N→∞

1

Nβ
E [lnZ(y,A;λ)]A,ξ ,� (4)

where β is the inverse temperature and Z is the partition function:

Z(A,y;λ) =

∫
exp

(
−β

2
‖y − Ax‖22 − βλ‖x‖1

)
dx.� (5)

We take the limit N → ∞ with γ = M/N ∼ O(1) fixed. In the zero-temperature limit 
β → ∞, the Boltzmann distribution e−βH(x)/Z  is dominated by the configurations of 
the LASSO solution (3). Hence, one can evaluate how the LASSO estimator depends 
on x0,A, ξ by analyzing the macroscopic behavior of the typical free energy density (4) 
using statistical mechanics.

Since the Hamiltonian defined above has a mean-field nature in the sense that all 
the variables are weakly connected, the free energy density (4) can be evaluated by 
using the replica method:

f = extr
χ,χ̂,Q,Q̂,m,m̂

[
G′(−χ; J)(Q− 2m+ �− χσ2) +

γ

2
σ2 − Q̂Q

2
+

χ̂χ

2
+ m̂m

+ lim
N→∞

1

N

N∑
i=1

∫
min
xi

{
−Q̂

2
x2
i +

(
m̂x0,i +

√
χ̂zi

)
xi − λ |xi|

}
Dzi

]
,

� (6)

https://doi.org/10.1088/1742-5468/aace2e
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where extrχ,χ̂,Q,Q̂,m,m̂ F(χ, χ̂,Q, Q̂,m, m̂) denotes the extremization of the function F  

with respect to its arguments and G′(x; J) is the derivative of G(x; J) with respect to 
x. We have defined 

∫
(...)Dz, J ,G(x) as follows:

∫
(...)Dz ≡

∫
(...)

e−
z2

2

√
2π

dz,� (7)

J ≡ A�A,� (8)

G(x; J) ≡ extr
z

[
−
∫

ρJ(s) ln |z − s| ds+ zx

2

]
− 1

2
ln x− 1

2
,� (9)

where ρJ(s) is the asymptotic eigenvalue distribution of J. The derivative of the func-
tion G(x; J) has the following form:

G′(x; J) =
1

2

(
z(x)− 1

x

)
,� (10)

where z(x) is implicitly determined by the extremal condition of (9):

x = SJ(z(x)) ≡
∫

ρJ(λ)

z(x)− λ
dλ.� (11)

The transformation SJ that appears in (11) is called the Stieltjes transformation of ρJ . 
The introduced function G is connected to the R-transform RJ(·) of the asymptotic eigen-

value distribution of J in studies of free probability theory [17]: G(x; J) =
∫ x

0
RJ(t)dt. 

Appendix provides a brief derivation of the free energy density (6).
The connection between the free energy density (6) and macroscopic observables is as 

follows. At the extremum, Q,m, and χ correspond to the macroscopic physical observ-

ables: Q = E [〈|x|2〉]A,ξ /N , m = E
[
〈x�

0 x〉
]
A,ξ

/N , and χ = βE
[
〈|x|2〉 − |〈x〉|2

]
A,ξ

/N . 

Each of these corresponds to the self-overlap, the overlap between the LASSO solutions 
and true solutions, and the macroscopic susceptibility. The notation 〈...〉 represents the 

Boltzmann average in the zero-temperature limit: 〈...〉 ≡ limβ→∞
∫
(...)e−βH(x)dx/Z . In 

addition, from direct calculation, one can show the following relationships between the 
free energy density, regularization term, and residual sum of squares:

f =
γ

2
RSS + r̄,� (12)

r̄ ≡ E

[〈
1

N

N∑
i=1

|xi|

〉]

A,ξ

= χ̂χ+ m̂m− Q̂Q,� (13)

RSS = E [RSS]A,ξ ≡ E
[〈

1

M
‖y − Ax‖22

〉]

A,ξ

,� (14)

=
2

γ

[
G′(−χ; J)(Q− 2m+ �− χσ2) +

γ

2
σ2 − 1

2
χχ̂

]
,� (15)

https://doi.org/10.1088/1742-5468/aace2e
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where r̄ and RSS represent the per-element average of the regularization term and 
residual sum of squares, respectively. By using the relationships (13) and (15) and the 

extremal condition concerning Q̂, m̂, χ̂ , the conjugate fields Q̂, m̂, χ̂  can be represented 
via the macroscopic physical variables:

χ̂ =
γG′′(−χ; J)

G′(−χ; J)−G′′(−χ; J)χ
RSS +

−G′′(−χ; J)γ + 2 (G′(−χ; J))2

G′(−χ; J)−G′′(−χ; J)χ
σ2,� (16)

Q̂ = m̂ = 2G′(−χ; J).� (17)

Here, χ,G′(−χ; J) and G′′(−χ; J) are given as follows:

χ = −SJ(z(−χ)),� (18)

G′(−χ; J) =
1

2

(
z(−χ) +

1

χ

)
,� (19)

G′′(−χ; J) =
1

2

(
z′(−χ) +

1

χ2

)
,� (20)

where z′(−χ) is obtained from the derivative of equation (11):

z′(−χ) = −
[∫

ρJ(λ)

(z(−χ)− λ)2
dλ

]−1

.� (21)

The minimization problem in equation (6) corresponds to the eective single body 
problem, which determines the value of the local magnetization 〈xi〉. Splitting into 
eective single body problems from the original multi-body estimation problem is called 
the decoupling principle in the literature on information theory [18, 19]. A comparison 

with the TAP/cavity analysis indicates that hi ≡ m̂x0,i +
√

χ̂zi and m̂ correspond to 
the local field and Onsager reaction coecient, respectively [21]. Here, zi ∼ N (0, 1) 
eectively represents the randomness that comes from the observation matrix and 
measurement noise. Figure 1 schematically shows the distribution of the local fields 
and how the local field determines the LASSO solution. Each local field is distributed 
according to the normal distribution N (m̂x0,i, χ̂) and the LASSO solution is obtained 
by acting the soft-thresholding operator STλ,Q̂ on it:

x̂LASSO
i = STλ,Q̂(hi) ≡

hi − λsgn(hi)

Q̂
Θ(|hi| − λ) ,� (22)

where Θ(z) is Heaviside’s step function.
The LASSO solution takes a non-zero value if the amplitude of the corresponding 

local field is larger than λ. Conversely, if and only if it is smaller than λ, the LASSO 
solution is exactly zero. Hereafter, we call the non-zero and zero components of the 
LASSO solution the active and inactive components, respectively.

The above observations indicate that once the local fields and m̂, χ̂ are estimated 
from the LASSO solutions, one can construct an intended p-value Pi as

https://doi.org/10.1088/1742-5468/aace2e
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Pi ≡ 2

{
1− Φ

(
hi√
χ̂

)}
,� (23)

Φ(x) ≡
∫ x

−∞

e−
t2

2

√
2π

dt,� (24)

and an unbiased estimator as

x̂debiased
i ≡ hi

Q̂
,� (25)

with a confidence interval

Ii(αsig) =

[
hi

Q̂
− Φ−1

(
1− αsig

2

) √
χ̂

Q̂
,
hi

Q̂
+ Φ−1

(
1− αsig

2

) √
χ̂

Q̂

]
,� (26)

of significance αsig. These are the key observations for the design of our scheme.

3.2. Adaptive TAP approach to constructing local fields and their variances from LASSO 
solutions

3.2.1. Derivation of the adaptive TAP equations.  To derive the relation between the 

LASSO solution x̂LASSO(= 〈x〉) and the local fields, let us consider Gibbs free energy:

G(m) ≡ extr
h

[
h�m− 1

β
ln
{
e−

β
2
‖y−Ax‖22+βh�x−βλ‖x‖1dx

}]
.� (27)

The average 〈x〉 is determined as the global minimizer of G(m): 〈x〉 = argminm G(m). 
Once the above Gibbs free energy is exactly calculated, the extremal conditions of h 
and m generally associate the average 〈x〉 and local field [20]. However, the evaluation 

Figure 1.  Left: the distribution of the local fields. The shaded region corresponds 
to the probability that the LASSO solution is active. Each local field is distributed 
according to the normal distribution N (m̂x0,i, χ̂). In this example, x0,i  <  0. Right: 
local field dependence of the LASSO solution. The LASSO solution is determined 
by acting the soft-thresholding operator on the local field.

https://doi.org/10.1088/1742-5468/aace2e
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of equation (27) is computationally dicult in general. To overcome this diculty, we 
take the following expectation consistent with the adaptive TAP approach [10–12]. 
First, we define an alternative Gibbs free energy:

G(m,Q) ≡ extr
h,Λ

[
h�m− N

2
ΛQ− 1

β
ln

{∫
e−

β
2
‖y−Ax‖22+βh�x−β

2
Λ‖x‖22−βλ‖x‖1dx

}]
,� (28)

which provides the constraints on the first and macroscopic second moments so that 
〈x〉, 〈|x|2〉/N = argminm,Q G(m,Q).

Unfortunately, equation (28) is also dicult to evaluate directly. The adaptive TAP 
approach resorts this calculation to the following approximation:

G(m,Q) � φada(m,Q) ≡ φ̃(m,Q; l = 0) + φG(m,Q; l = 1)− φG(m,Q; l = 0),

�
(29)

φ̃(m,Q; l) ≡ extr
h,Λ

{
h�m− N

2
ΛQ− 1

β
ln

∫
e−

βl
2
‖y−Ax‖22+βh�x−β

2
Λ‖x‖22−βλ‖x‖1dx

}
,

�

(30)

φG(m,Q; l) ≡ extr
hG,ΛG

{
h�

Gm− N

2
ΛGQ− 1

β
ln

∫
e−

βl
2
‖y−Ax‖22+βh�

Gx−β
2
ΛG‖x‖22dx

}
,

�

(31)

where φ̃(m,Q; l = 0), φG(m,Q; l = 1), and φG(m,Q; l = 0) are the free energies for the 
modified distributions: the first term is a factorized distribution but contains the origi-
nal non-Gaussian prior factor e−βλ‖x‖1, while the second and third terms are the global 
and factorized multivariate Gaussian distribution that replaces the prior factor e−βλ‖x‖1 
with a Gaussian factor e−βΛG‖x‖22/2. In contrast to the original form of Gibbs free energy 
(28), adaptive TAP free energy (29) can be easily calculated as it is composed of only 
integration over the multivariate Gaussian and factorized distributions. The evaluation 
of the integrals and extremal conditions in the second and third terms of equation (29) 
provides the following expression of φada:

φada(m,Q) = extr
h,Λ

[
1

2
‖y − Am‖22 −

NΛQ

2
− N

β
G(−χ; J)

+h�m− 1

2Λ

N∑
i=1

(|hi| − λ)2Θ(|hi| − λ)

]
,

� (32)

where χ ≡ β(Q− q), q ≡
∑

i m
2
i /N . It has been shown [11, 22] that the above free 

energy φada(m,Q) is asymptotically consistent with replica theory in the sense that 

limβ→∞,N→∞ E [extrm,Q φada(m,Q)]A,ξ /N = E [f ]A,ξ when A is a sample from the rota-
tionally invariant ensemble. Thus, the extremal condition on h, Λ,m,Q and linear 
response argument give the intended TAP/cavity equations, which connect the local 
field and LASSO estimator for the current matrix ensembles for β → ∞,N → ∞:

h = Λm+ A�(y − Am),� (33)

mi =
hi − λ sgn(hi)

Λ
Θ(|hi| − λ),� (34)

Λ = 2G′(−χ),� (35)
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χ =
1

NΛ

N∑
i=1

Θ(|hi| − λ) =
�active
Λ

,� (36)

where �active ≡
∑N

i=1 Θ(|hi| − λ)/N = |{i|x̂LASSO
i �= 0}|/N is the active component den-

sity of the LASSO solution (3).

3.2.2. General construction procedure of the de-biased estimator, confidence interval, 

and p-value.  In summary, once the LASSO estimator x̂LASSO(y,A;λ) is obtained for 
a set of (y,A,λ) by using versatile algorithms for the optimization problem (3) such as 
least-angle regression [25], coordinate descent [26], and various approximate message 
passing algorithms [7, 27–29], one can estimate the local fields h(y,A;λ), de-biased 

estimator x̂debiased(y,A;λ), confidence interval {Ii(αsig)}i, and p-value Pi as follows. 
We emphasize here that there is no need to use the derived TAP equation to obtain a 
LASSO estimator.

First, the active component density �active is calculated from the LASSO solution:

�active(y,A;λ) =
1

N

∣∣{i|x̂LASSO
i (y,A;λ) �= 0}

∣∣ .� (37)

Second, z(−χ) is obtained by combining equations (18), (19), (35) and (36): z(−χ) is 
obtained as the solution of

z =
1− �active
SJ(z)

.� (38)

This equation is solved analytically or numerically depending on the cases. Note that 
this equation  is easily solved by using a simple iteration algorithm even if an ana-
lytical expression is not obtained. Then, z′(−χ),χ,G′(−χ; J),G′′(−χ; J), the Onsager 

coecient Q̂ = Λ, the local field h(y,A;λ), the de-biased estimator x̂debiased(y,A;λ), the 
residual sum of squares, and the variance of the local field χ̂  are obtained by subse-
quently substituting the obtained values into equations (14), (16), (18)–(21), (25), (33) 
and (35):

z′(−χ) = −
[∫

ρJ(λ)

(z(−χ)− λ)2
dλ

]−1

,� (39)

χ = −SJ(z(−χ)),� (40)

G′(−χ; J) =
1

2

(
z(−χ) +

1

χ

)
,� (41)

G′′(−χ; J) =
1

2

(
z′(−χ) +

1

χ2

)
,� (42)

Q̂ = Λ = z(−χ) +
1

χ
,� (43)

https://doi.org/10.1088/1742-5468/aace2e
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h(y,A;λ) = Q̂x̂LASSO(y,A;λ) + A�
(
y − Ax̂LASSO(y,A;λ)

)
,� (44)

x̂debiased(y,A;λ) =
h(y,A;λ)

Q̂
,� (45)

RSS =
1

M

∥∥∥y − Ax̂LASSO(y,A;λ)
∥∥∥
2

2
,� (46)

χ̂ =
γG′′(−χ; J)

G′(−χ; J)−G′′(−χ; J)χ
RSS +

−G′′(−χ; J)γ + 2 (G′(−χ; J))2

G′(−χ; J)−G′′(−χ; J)χ
σ2.� (47)

Finally, the de-biased estimator’s confidence interval {Ii(αsig)}i and p-value {Pi}i are 
obtained based on equations (23)–(26).

Note that a consistent estimator of the error variance σ2 should be needed when it 
is unknown.

4. Numerical experiment

4.1. Settings

We perform numerical experiments to assess the usefulness of the proposed scheme1. For 
this, we artificially generate the true sparse parameter x0, observation matrix A, and 
measurement noise ξ. The true sparse parameter x0 is generated from the Bernoulli–
Gauss distribution: x0,i ∼i.i.d. (1− �)δ(x0,i) + �N (0, 1) for i = 1, 2, ...,N . The measure-
ment noise is distributed according to the Gaussian distribution ξ ∼ N (0M , σ2IM). For 
the random observation matrix ensembles, the following ensembles are considered.

	 (i)	� The random i.i.d. Gaussian ensemble in which all entries of A are i.i.d. Gaussian 
variables with mean 0 and variance 1/N. For this ensemble, the asymptotic 
eigenvalue distribution is given as the Marchenko–Pastur distribution [30]:

ρ(s) = (1− γ)δ(s) +
γ

2π

√
(λ+ − s)(s− λ−)

s
I[λ−,λ+](s),� (48)

λ± = (1±√
γ)2 ,� (49)

IS(x) =
{
1 if x ∈ S

0 otherwise
.� (50)

		 Then, the form of G′(−χ; J),G′′(−χ; J),χ and Q̂ are given as follows:

G′(−χ; J) =
γ

2

1

1 + χ
,� (51)

1 Some demonstration codes are available at https://github.com/takashi-takahashi/debiasing_lasso_demo.

https://doi.org/10.1088/1742-5468/aace2e
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G′′(−χ; J) =
γ

2

1

(1 + χ)2
,� (52)

χ =
�active

γ − �active
,� (53)

Q̂ = γ − �active.� (54)

		 By substituting the above expressions of G′,G′′ into (16), one can show that 
χ̂  does not depend on σ2. This is the characteristic property of this ensemble. 
Generally, χ̂  depends on the measurement noise σ2.

	 (ii)	� The row-orthogonal ensemble [22, 31] constructed by randomly selecting M rows 
from a randomly generated N ×N orthogonal matrix. For this ensemble, the 
asymptotic eigenvalue distribution is given as ρ(s) = (1− γ)δ(s) + γδ(s− 1). In 

this case, the form of G′(−χ; J),G′′(−χ; J),χ and Q̂ are given as follows:

G′(−χ; J) =
1

2

(
z(−χ) +

1

χ

)
,� (55)

G′′(−χ; J) =
1

2

(
z′(−χ) +

1

χ2

)
,� (56)

χ =
ρA(1− �active)

γ − �active
,� (57)

Q̂ =
γ − �active
1− �active

,� (58)

where

z(−χ) = −
1− χ+

√
(χ+ 1)2 − 4γχ

2χ
,� (59)

z′(−χ) = −
1− 2γχ+ χ+

√
(χ+ 1)2 − 4γχ

2χ2
√

(χ+ 1)2 − 4γχ
.� (60)

	 (iii)	� The random discrete cosine transform (DCT) ensemble in which A is constructed 
by randomly selecting M rows from N ×N DCT matrix. While this ensemble 
shares the same eigenvalue distribution as the row-orthogonal one, it is much 
more relevant for practical purposes, as the computational cost for observation 
and inference can be significantly reduced by using the fast Fourier transform 
technique. In addition, although the rotationally invariant assumption on O does 
not hold, this ensemble is also compatible with the current adaptive TAP scheme, 
as pointed out by [24].

https://doi.org/10.1088/1742-5468/aace2e
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	 (iv)	� The geometric setup [31, 32] in which A is constructed as A = UΣV �, where 
U ∈ RM×M and V ∈ RN×N are random samples from the uniform distribution of 
orthogonal matrices, and Σ ∈ RM×N is a diagonal matrix whose (i, i)th element 
is given by νi ∝ τ i−1 for i = 1, 2, ...,M . The parameter τ ∈ (0, 1) is chosen so that 
the given value of the peak-to-average eigenvalue ratio

κ ≡ ν2
1

M−1
∑M

i=1 ν
2
i

� (61)

		  is met and the singular values are scaled to satisfy the power constraint 

1 = 1
N

∑M
i=1 ν

2
i . The asymptotic eigenvalue distribution is given as

ρ(s) = (1− γ)δ(s) +
γ

ηs
I(Be−η ,B)(s),� (62)

		 where η and B are related to the peak-to-average ratio κ:

κ =
η

1− e−η
,� (63)

B =
κ

γ
.� (64)

		  In this case, the explicit form of G′,G′′ cannot be obtained. Thus, it should be 
evaluated numerically. To achieve this aim, we conduct the procedure explained 
in section 4.2.3, using the expression of the Stieltjes transform and z′(−χ):

χ = −SJ(z(−χ)) = −
∫

ρ(s)

z(−χ)− s
dλ = − 1

z(−χ)

[
1− α

η
ln

z(−χ)− B

z(−χ)− Be−η

]
,

� (65)

z′(−χ) =
z(−χ)2

−1 + γ
η
ln z(−χ)−B

z(−χ)−Be−η − z(−χ)
(z(−χ)−Be−η)(z(−χ)−B)

.� (66)

We mainly use the random i.i.d. Gaussian ensemble and random DCT ensemble for 
the numerical experiments. The geometric setup is only used in section 4.2.3. We do 
not use the original row-orthogonal setup.

Once a tuple of (x0,A, ξ) is generated, we calculate x̂LASSO, h, χ, χ̂ and Q̂ = Λ, 
x̂debiased by using the procedure explained in section 3.2.2. To estimate the error vari-
ance σ2 needed in the random DCT case, we use the naive cross-validation-based 
estimator:

σ̂2(y,A; λ̂) ≡ 1

M −N�active

∥∥∥y − Ax̂LASSO(y,A; λ̂)
∥∥∥
2

2
,� (67)

where λ̂ is selected by K-fold cross-validation. In [23], it is empirically shown that this 
estimator robustly estimates the error variance, more so than its competitors.

https://doi.org/10.1088/1742-5468/aace2e
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We use Ns = 1000 dierent sets of pairs (A, ξ) for fixed x0 to evaluate the statisti-
cal properties of the observables. We set � = 0.1, γ = 0.5, σ2 = 0.02, and K  =  40, except 
for the geometric setup. In the geometric setup, we set � = 0.1, γ = 0.8, σ2 = 0.02, and 
κ = 8.

4.2. Results

4.2.1. Distribution of the local fields and de-biased estimators.  First, we examine the 
statistical properties of the local fields and de-biased estimators. Figure 2 plots the 

sample quantiles of {(hi − Q̂x0,i)/
√

χ̂}i versus the theoretical quantiles of the standard 

normal distribution for one configuration of (x0,A, ξ). It is clear that all the points are 
close to the line with unit slope and zero intercept. Further, figure 3 plots the aver-
age values of the x̂LASSO and x̂debiased versus the true parameter x0. In contrast to the 
LASSO estimators, which are shrunk toward zero by the regularization term, x̂debiased 
eciently reduces the LASSO estimator’s bias. The average is taken over Ns realiza-
tions of (A, ξ). These results validate our theoretical predictions on the local fields and 
de-biased estimators. Figure 4 plots the constructed de-biased estimators and their 95% 
confidence intervals. We show only the first 80 components for the sake of clarity.

Although figures  2–4 show the results for one value of λ, the same results are 

obtained for a wide range of λ. The means of {hi − Q̂x0,i}i and {x̂debiased − x0,i}i are zero 

in both the i.i.d. Gaussian and the random DCT cases (figures 5(a) and (b)). Further, 

the variances of {hi − Q̂x0,i}i and {x̂debiased
i − x0,i}i agree with their estimates of χ̂  and 

χ̂/Q̂2, respectively for the whole range of the weight of the L1 regularizer λ (figures 5(c) 
and (d)).

4.2.2. Hypothesis testing.  An important advantage of the proposed scheme over 
LASSO is that it provides a hypothesis testing method with a null hypothesis that a 
certain parameter vanishes. Although LASSO provides a parameter selection rule that 
selects an active component set A(y,A;λ) as A(y,A;λ) = {i|x̂LASSO

i (y,A;λ) �= 0}, it 
cannot measure the statistical significance for finding an active component.

Specifically, we are interested in testing an individual null hypothesis H0,i : x0,i = 0 
versus the alternative hypothesis H1,i : x0,i �= 0, assigning a p-value of Pi for these tests. 
To this end, we evaluate the p-value of {Pi} by using equation (23) for a two-tailed test. 
Then, the decision rule is to reject the null hypothesis H0,i if the observed p-value Pi is 
lower than α̃sig and to accept the alternative hypothesis otherwise:

T̂i(y,A;λ) =

{
1 if Pi � α̃sig (reject)

0 otherwise (accept)
,� (68)

where α̃sig is the significance level. We use T̂  as a rejection flag. This procedure ensures 
that the type I error probability or the FPR is α̃sig. Here, the FPR is the probability of 
falsely rejecting the null hypothesis H0,i:

FPR ≡

∣∣∣
{
i|T̂i = 1 and x0,i = 0

}∣∣∣
|{i|x0,i = 0}|

.� (69)

https://doi.org/10.1088/1742-5468/aace2e
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Indeed, figure 6 shows that the significance level α̃sig and empirical false positive rate 
(FPR) are in excellent agreement.

Further, we examine the relation between the FPR and TPR or the statistical 
power achieved by LASSO and our hypothesis testing procedure. Here, the TPR is the 
probability that the test correctly rejects the null hypothesis H0,i:

TPR ≡

∣∣∣
{
i|T̂i = 1 and x0,i �= 0

}∣∣∣
|{i|x0,i �= 0}|

.� (70)

Note that although we can control the FPR by varying the significance level α̃sig, the 
TPR cannot be controlled. Thus, a performance measure of the variable selection pro-
cedure by hypothesis testing can be given as the TPR for each value of the FPR. We 
evaluate the performance of hypothesis testing by using the ROC curve, which plots 
the TPR versus the FPR as an implicit function of α̃sig. We examine the TPR and 
FPR by varying the significance level α̃sig for each regularization parameter λ. For 

Figure 2. Q-Q plot of {(hi − x0,iQ̂)/
√

χ̂}i. The red line is the unit slope and zero 

intercept line. Left: the i.i.d. Gaussian case. Right: the random DCT case.

Figure 3.  De-biasing eect of x̂debiased. The blue points stand for the average value 
of the LASSO solution x̂LASSO and orange points stand for the average value of 
the de-biased estimator x̂debiased. The black line is the unit slope and zero intercept 
line. Left: the i.i.d. Gaussian ensemble case. Right: the random DCT ensemble 
case.
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Figure 4.  Constructed de-biased estimator x̂debiased and its 95% confidence interval. 
In both the left and the right panels, the blue points stand for the true parameter 
x0 and orange points are the de-biased estimator x̂debiased. The orange error bars 
are the 95% confidence intervals. Left: the i.i.d. Gaussian ensemble case. Right: the 
random DCT ensemble case.

Figure 5.  (a) and (b): mean of {hi − Q̂x0,i}i and {x̂debiased − x0,i}i. (c) and (d): 
comparison of the estimated and empirical values of the variances of {hi − Q̂x0,i}i 
and {x̂debiased

i − x0,i}i. The orange and red points represent the theoretically 

estimated values. The blue and green points stand for the empirical ones. (a) and 
(c) are the i.i.d. Gaussian case. (b) and (d) are the random DCT case.
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comparison purposes, we also plot the ROC curve for LASSO. For LASSO, the TPR 
and FPR are examined by changing the regularization parameter λ.

Figure 7 summarizes the results averaged over Ns configurations of (A, ξ). It is 
observed that for some values of λ around which the variance of the de-biased estima-
tor is minimized, our testing procedure performs slightly better than LASSO in the 
sense that the TPR of the testing method is slightly larger than that of LASSO’s one 
for some values of the FPR. In the case of LASSO, when the measurement ratio γ is 
suciently small, the TPR and FPR do not coincide with (1, 1) for finite λ > 0, as the 
consistency property does not hold in such a situation and the number of active comp
onents of the LASSO estimator is always smaller than min(N ,M) [9]. On the contrary, 
as our hypothesis testing procedure always approaches the point (1, 1) from (0, 0), we 
can examine the TPR for all the values of the FPR ∈ [0, 1]. The superiority of the TPR 
comes from the fact that we are using the knowledge of the ensemble of the observa-
tion matrix. Further, as the hypothesis testing procedure controls the FPR and TPR 
by varying the significance αsig but not λ, one does not suer from the shrinkage eect 
in the variable selection procedure. This is another advantage over variable selection 
by LASSO. These observations show the utility of our hypothesis testing procedure.

4.2.3. Hyperparameter selection via confidence interval minimization.  The issue of 
hyperparameter selection is noteworthy here. As LASSO has the hyperparameter λ 
that controls the strength of the regularization, one should choose a value of λ based 
on some criteria. As shown in figure 5, the estimated variance of the de-biased esti-

mator χ̂/Q̂2 has a minimum value at some λ > 0. At this point, one can estimate x0 
with the highest conviction in the sense that the confidence interval has the smallest 
width. It is therefore expected that the estimated variance of the de-biased estimator 
itself serves as a hyperparameter selection criterion. Indeed, in the i.i.d. Gaussian and 
row-orthogonal/random DCT cases, one can analytically show that minimizing the 
confidence interval is the equivalent to the minimization of the leave-one-out cross-
validation error C:

Figure 6.  Significance level versus the observed false positive rate (FPR). The 
black solid line is the unit slope line. Left: the i.i.d. Gaussian case. Right: the 
random DCT case.
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χ̂

Q̂2
=

{
1
γ
C the i.i.d. Gaussian case,

1−γ
γ
C + σ2 the row-orthogonal or the random DCT cases.� (71)

In other words, the leave-one-out cross-validation error and width of the confidence 
intervals are related with the linear transformation in these cases (figure 8).

Here, the leave-one-out cross-validation error is a widely used hyperparameter selec-
tion criterion that evaluates prediction performance, defined as follows:

C(y,A;λ) = 1

M

M∑
i=1

1

2

∥∥∥yi − a�
i x̂

LASSO(y\i,A\i;λ)
∥∥∥
2

2
,� (72)

where the symbol \i denotes the absence of the ith component (e.g. 

a\i = (a1, ..., ai−1, ai+1, ..., aN)
�) and each term in the summation evaluates the fitness 

to the ith data when the true signal is inferred from the other data. In the settings 
considered here, the above leave-one-out cross-validation error is expressed as follows 
[34, 35]:

C =

(
1− �active

γ

)−2

RSS =

(
1− 2χG′(−χ; J)

γ

)−2

RSS.� (73)

By substituting the expression of the leave-one-out cross-validation error (73) into 
equation (16), the relations (71) are obtained.

To investigate the validity of the above observation that the confidence interval 
minimization and leave-one-out cross-validation error minimization provide the same 

λ, we test the geometric setup case in which χ̂/Q̂2 is not expressed as a linear func-

tion of C. Figure 9 compares the variance of {x̂debiased − x0,i}i with the leave-one-out 

Figure 7.  ROC (receiver operating characteristic) curves. The black solid line 
represents the ROC curve for LASSO obtained by varying the regularization 
strength λ. The points correspond to the ROC curve for the proposed hypothesis 
testing method. Left: the i.i.d. Gaussian case. Right: the random DCT case.
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Figure 8.  Comparison of the width of the confidence interval versus the leave-one-
out cross-validation error. The blue and orange points show the average width of 
the confidence interval and leave-one-out cross-validation error, respectively. The 
blue solid line and orange dashed line indicate the value of λ that minimizes the 
confidence interval and leave-one-out cross-validation error, respectively. The left 

and right vertical axes represent the values of χ̂/Q̂2 and C, respectively. The axis 

range for C is chosen according to equation (71) so that the curves of χ̂/Q̂2 and C 

overlap. The values of λ that minimize the width of the confidence interval and 

cross-validation error perfectly coincide as expected. Left: the i.i.d. Gaussian case. 
Right: the random DCT case.

Figure 9.  Comparison of the width of the confidence interval versus the  

leave-one-out cross-validation error for the geometric case. Here, χ̂/Q̂2 is evaluated 

by var
[
x̂debiased
i − x0,i

]
. The blue and orange points show the average width of the 

confidence interval and leave-one-out cross-validation error, respectively. The 
blue solid line and orange dashed line indicate the value of λ that minimizes  
the confidence interval and leave-one-out cross-validation error, respectively. 

The left and right vertical axes represent the values of var
[
x̂debiased
i − x0,i

]
 and 

C, respectively. Unexpectedly, the values of λ that minimize the width of the 
confidence interval and cross-validation error perfectly coincide.

https://doi.org/10.1088/1742-5468/aace2e


A statistical mechanics approach to de-biasing and uncertainty estimation in LASSO for random measurements

20https://doi.org/10.1088/1742-5468/aace2e

J. S
tat. M

ech. (2018) 073405

cross-validation error (73). Surprisingly, the minimization of these two quantities seems 
to provide the same value of λ, although they do not have a functional relation as (71).

From the above observations, we speculate that the minimization of the confidence 
interval proposed here and the minimization of the leave-one-out cross-validation error 
yields the same value of λ for LASSO in general rotationally invariant observation 
matrices, but further investigation in this direction is still needed.

Figure 10.  Left: original megapixel grayscale image. Center: its discrete cosine 
transform (DCT) coecients. Most of the coecients are relatively small and 
hence can be estimated by sparse linear regression. Right: given data. Half of the 
pixels are masked and the other half are degraded by Gaussian noises.

Figure 11.  Distribution of some components of the de-biased estimators. The 
strength of L1 norm was set to λ = 12.0. (a) and (c) show the distributions of 
de-biased estimatosr for the largest and smallest amplitude DCT coecients, 
respectively. The red lines show the true values of the DCT coecients. The 

orange curves show Gaussians predicted by the developed method. (b) and (d) 
show the Q-Q plot of (x̂debiased

i − x0,i)/
√

χ̂ for the largest and smallest amplitude 
DCT coecient, respectively. The red lines are the unit slope zero-intercept lines.
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4.3. Demonstration on a real-world data set

We illustrate the practical relevance of the proposed method by application to a prob-
lem of inferring Fourier components from down-sized and noisy measurements of real 
space signals. Although such demands widely arise in various Fourier analyses, we here 
show a demonstration using an image for ease of visual understanding. The real space 
signals consist of a partially observed megapixel gray-scale image data y ∈ R1024×1024 
(figure 10 left). Randomly chosen half of its elements are masked and the other half are 
degraded by Gaussian noises, variance of which is set to 1% of the average power of the 
original signal (figure 10 right). Given the data, the problem is to estimate the DCT 
coecients x (figure 10 center) of the original image from the observed noisy pixels. As 
the measurement process can be written as linear measurement model using a partial 
DCT matrix, the proposed scheme is directly applicable to this inference problem. To 
investigate the statistical properties of the de-biased estimators, we created 1000 real-
izations of the random masking and Gaussian noises.

The results are similar to that for synthetic data set in subsection 4.2. Figure 11 shows 
the distributions of the de-biased estimators for some DCT coecients. It is verified 
that the de-biased estimators are normally distributed around the true coecients. 

Figure 12 compares the variance of {x̂debiased
i − x0,i}i and leave-one-out cross-validation 

error. As expected from the properties of partial DCT matrices, these two quantities 
are related with linear transformation. These results imply that the proposed method 
is of practical relevance for signal processing problems handling real-world data set.

Figure 12.  Comparison of the variance of the de-biased estimators versus the 
leave-one-out cross-validation error. The blue and orange points represents the 
average variance of the de-biased estimators and leave-one-out cross-validation 
error, respectively. The blue solid line and orange dashed line indicate the value of 
λ that minimizes the variance of the de-biased estimators and leave-one-out cross-
validation error, respectively. As expected from the property of the measurement 
matrix, these two quantities are related with linear transformation.
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5. Summary

We developed a new computationally feasible scheme for de-biasing and uncertainty 
estimation in LASSO in the case of rotationally invariant observation matrix ensembles 
and validated the proposed scheme by using numerical experiments. We focused on 
the development of a de-biased estimator that has a confidence interval and hypothesis 
testing scheme for the null hypothesis that a certain parameter vanishes. The numer
ical experiments showed that the proposed method eciently constructed de-biased 
estimators with confidence intervals and p-values for the intended hypothesis testing. 
We revealed that the proposed hypothesis testing slightly improved the variable selec-
tion performance in the sense that the TPR of the testing method achieves a slightly 
larger value than that of the LASSO’s one for some values of the FPR. Further, 
we examined the utility of the estimator of the confidence interval as a criterion for 
determining the hyperparameter. Surprisingly, minimizing the width of the confidence 
interval was equivalent to the minimization of the leave-one-out cross-validation error 
in our investigation.

Although we only focused on LASSO for linear models, future work could include 
an extension to other sparse regression methods such as the elastic net [36] as well as 
generalized linear models.
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Appendix. Derivation of the free energy density

To take the average that appears in (4), we use the replica method [33] based on the 
identity for n ∈ R:

f = − lim
β→∞

lim
N→∞

1

βN
lim
n→0

E [Zn]A,ξ

n
.� (A.1)

In the replica method, we first take the average of the nth power of the partition func-
tion over the randomness of A, ξ for the positive integer n ∈ N, and then analytically 
continue the obtained expression to real n ∈ R to take the limit n → 0, exchanging the 
order of the limits.

For the general matrix ensembles considered here, it is convenient to first take the 
average over ξ. By taking this average, we obtain the following expression under the 
replica symmetric ansatz:

E [Zn]A,ξ =

∫
E
[
exp

(
1

2
TrJL

)]

A

eSdQdqdm,� (A.2)

where L, ua, and S are defined as follows:
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L ≡ β2σ2

1 + βnσ2

(∑
a

ua

)(∑
a

ua

)�

− β
∑
a

uau
�
a ,� (A.3)

ua ≡ xa − x0,� (A.4)

eS ≡
∫ n∏

a=1

δ(NQ− x�
a xa)δ(Nm− x�

a x0)

×
∏

1�a<b�n

δ(Nq − x�
a xb) exp

{
−Nγ

2
βnσ2 − βλ

∑
a

‖xa‖1

}
dx,

�

(A.5)

where ua and xa are the ath replica’s variable. In [37], it was shown that under 
the rotational invariance assumption on the random matrix J = A�A for eigenvalue 
decomposition J = ODO� considered in this study, the average over A that appears in 
equation (A.2) is evaluated by using the eigenvalues {si}i of L/N for suciently large N:

E
[
exp

(
1

2
TrJL

)]

A

= exp

{
N

∑
i

G(si; J)

}
,� (A.6)

where G(x; J) is the function defined in (9). Under the replica symmetric ansatz, L/N 
has three types of eigenvalues: s1 = β∆Q− βn(q − 2m+ �) + nβ2σ2∆Q, s2 = −β∆Q, 
and s3  =  0. The number of degeneracy is 1,n− 1, and N  −  n, respectively. Thus, we 
obtain the following expression up to the leading order in n:

E
[
e

1
2
TrJL

]
A
= exp [−Nnβ {−G(−β∆Q; J)/β

+G′(−β∆Q; J)(q − 2m+ �− β∆Qσ2)
}]

.
� (A.7)

On the contrary, by using the Fourier transform of the delta function and Hubbard–
Stratonovich transform: eB

2/2A =
∫
e−Ax2/2+Bx

√
A
2π
dx for A > 0,B ∈ R, the factor eS is 

given as follows:

eS =

∫
exp

[
Nn

{
γσ2

2
+

qq̃

2
+

QQ̃

2
−mm̃

+
1

N

N∑
i=1

∫
lnφ(x0,i, zi, Q̃, q̃, m̃; β,λ)Dzi

}]
dQ̃dq̃dm̃,

� (A.8)

φ(x0,i, zi, Q̃, q̃, m̃; β,λ) =

∫
exp

{
−Q̃+ q̃

2
x2
i + (m̃x0,i +

√
q̃zi)xi − βλ|xi|

}
dxi.

� (A.9)
For β → ∞, the relevant variables scale as β(Q− q) = χ, Q̃+ q̃ = βQ̂, m̃ = βm̂, and 
q̃ = β2χ̂ of order unity to ensure an appropriate limit f exists. Finally, by combin-
ing equations  (A.7)–(A.9) and evaluating the integrals by adopting the saddle point 
method, we obtain equation (6) for β,N → ∞.
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