
論文 / 著書情報
Article / Book Information

Title Deep Learning Based Multi-modal Addressee Recognition in Visual
Scenes with Utterances

Authors Thao Le Minh, Nobuyuki Shimizu, Takashi Miyazaki, Koichi Shinoda

Citation Proceedings of the Twenty-Seventh International Joint Conference on
Artificial Intelligence (IJCAI-18), pp. 1546-1553

Pub. date 2018, 7

Copyright  (c) 2018 International Joint Conference on Artificial Intelligence

URL http://static.ijcai.org/2018-Program.html

Powered by T2R2 (Tokyo Institute Research Repository)

http://static.ijcai.org/2018-Program.html
http://t2r2.star.titech.ac.jp/


Deep Learning Based Multi-modal Addressee Recognition in Visual Scenes with
Utterances

Thao Le Minh1 ∗, Nobuyuki Shimizu2, Takashi Miyazaki2, Koichi Shinoda1

1 Tokyo Institute of Technology, Tokyo, Japan
2 Yahoo Japan Corporation

thao@ks.cs.titech.ac.jp, {nobushim, takmiyaz}@yahoo-corp.jp, shinoda@c.titech.ac.jp

Abstract

With the widespread use of intelligent systems,
such as smart speakers, addressee recognition has
become a concern in human-computer interaction,
as more and more people expect such systems to
understand complicated social scenes, including
those outdoors, in cafeterias, and hospitals. Be-
cause previous studies typically focused only on
pre-specified tasks with limited conversational situ-
ations such as controlling smart homes, we created
a mock dataset called Addressee Recognition in Vi-
sual Scenes with Utterances (ARVSU) that contains
a vast body of image variations in visual scenes
with an annotated utterance and a corresponding
addressee for each scenario. We also propose a
multi-modal deep-learning-based model that takes
different human cues, specifically eye gazes and
transcripts of an utterance corpus, into account to
predict the conversational addressee from a spe-
cific speaker’s view in various real-life conversa-
tional scenarios. To the best of our knowledge, we
are the first to introduce an end-to-end deep learn-
ing model that combines vision and transcripts of
utterance for addressee recognition. As a result,
our study suggests that future addressee recogni-
tion can reach the ability to understand human in-
tention in many social situations previously unex-
plored, and our modality dataset is a first step in
promoting research in this field.

1 Introduction
Building human-friendly robots that are able to interact and
cooperate with humans has been an active research field in
recent years. A major challenge in this field is to develop
intelligent systems that can interact and cooperate with peo-
ple outside a laboratory setting. Applications include a robot
companion acting as an assistant, such as a robot butler, me-
chanical seeing-eye dog, robot lifeguard, and mobile nursing
care robot. One can easily imagine how useful a robot butler

∗This study was conducted during an internship at Yahoo!
JAPAN Research, Tokyo, Japan

can be if it can oversee family occasions, such as home par-
ties, and cater to various needs of guests and family members.

We believe that the next generation of intelligent systems
will need to possess the ability to understand people in a scene
outside a laboratory, from their utterances, gazes, postures,
and how they interact with the scene and the others around
them. To be truly communicative, an intelligent system needs
to detect if a person is initiating an interaction with it and hold
a meaningful conversation with people in natural language.
However, prior studies on addressee recognition have faced
the following problems.

First, studies on addressee recognition and detection have
focused on simple pre-specified tasks such as playing games,
guiding art experiences, and controlling smart homes, and
have not taken into account the diversity of conversational sit-
uations. For example, the vernissage corpus [Jayagopi et al.,
2013] has 13 sessions of a robot interacting with two people
in an office setting, lasting around 11 minutes. These stud-
ies used a Wizard-of-Oz method to manage the dialog as well
as the robot’s gaze and nodding. Because their scenarios in-
volved a stationary robot, they were able to obtain video and
audio recordings and other sensory data. The downside is the
limited variations in situations in which the conversations oc-
cur. Other studies, such as [Holthaus et al., 2016], assumed
a smart home setting. Again, their conversational situations
were very specific and fixed.

Second, previous studies have mainly focused on gaze and
non-verbal information [van Turnhout et al., 2005], includ-
ing head pose [Johansson et al., 2013]. However, in many
social situations, gaze and head pose may not be sufficient
for addressee recognition and detection. For example, in the
case in which joint attention or shared attention (the shared
focus of two individuals on an object) occurs, the speaker
may not be looking at the addressee when he/she speaks.
Thus, the textual content of utterances may also play a ma-
jor role in addressee recognition [Akhtiamov et al., 2017;
Tsai et al., 2015b; 2015a]. Combining both visual scene in-
formation and spoken utterances for addressee recognition
is difficult, which is what Sheikhi and Odobez [2015] at-
tempted. Their experiments were limited to laboratory dialog
context in which a computer agent acted as an art exhibition
guide interacting with two humans and involved sophisticated
graphical models. In other words, the conversational context
in the experiments was only focused on interactive question
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and answering regarding a few pre-selected artworks as well
as general art topics. By increasing the variety of conversa-
tional contexts, we expect to mitigate the limitations of previ-
ous studies in this regard. Although both visual features and
utterances are helpful in addressee recognition, studies that
use both features have just started to appear in the literature.
We believe much more work needs to be done in multi-modal
addressee recognition.

To address the two concerns above, we created a mock
dataset using a pre-existing image dataset with large varia-
tions in visual scenes by further annotating utterances and
addressees using crowdsourcing. To attend to a large num-
ber of social situations a robot may face, we determined a
trade-off. We have forgone audio and video components of
previous studies and opted to increase the variations in so-
cial situations by creating mock conversations instead of con-
ducting Wizard-of-Oz experiments. The end result was the
creation of our Addressee Recognition in Visual Scenes with
Utterances (ARVSU) dataset. As the image dataset we used
contains gaze annotations, it contains sufficient information
to kick start addressee recognition research in a large num-
ber of social situations. Compared to previous Wizard-of-Oz
studies, our corpus is focused on more day-to-day encoun-
ters. Examples include people talking about food in a cafe-
teria, posing for a photograph in front of a historic site, and
watching a baseball game and talking about it.

We also propose a multi-modal, deep-learning-based
model for addressee recognition incorporating gaze and ut-
terance. Although there have been studies that used deep
learning models for addressee detection using speech, to the
best of our knowledge, we are the first to introduce an end-to-
end deep learning model that combines vision and transcripts
of utterances for addressee recognition. We also empirically
show that exploiting both utterances and images improve the
overall performance of the addressee recognition system.

The paper is organized as follows. In Section 2, we discuss
the related studies. In Section 3, we introduce our dataset,
including its construction and statistics. We then explain our
proposed model in Section 4. We explain the experimental
results in Section 5. Finally, we conclude the paper in Sec-
tion 6.

2 Related Studies
Gaze Prediction
Human gaze is determined as a crucial human cue used to
provide visual interaction and a means of communication in
face-to-face conversations [Jovanovic et al., 2006]. Thus,
gaze information is considered beneficial for addressee recog-
nition. We can think of two settings for the problem of gaze
prediction based on an image. One is predicting the eye-
fixation points from which an observer (or photographer) is
looking at an image. The other is predicting the location at
which a person in an image is looking. We call the latter the
gaze-following problem.

[Recasens et al., 2015] constructed a dataset (the GazeFol-
low dataset) for the gaze-following problem and proposed a
deep-learning-based gaze-prediction model. The images of
the dataset were gathered by concatenating several major im-

age datasets (SUN, MS COCO, Actions 40, PASCAL, Ima-
geNet detection challenge, and Places dataset). This concate-
nation results in a large image collection of 130,339 people in
122,143 images performing diverse activities in many every-
day scenarios. They also created annotations of the eye and
gaze locations of a person in each image by crowdsourcing.
They proposed a model to predict the gaze-fixation point of
the specified person in the image from the full image, head
image of the person, and relative head location in the head
image.

The focus of their work was finding the direction of gazes,
which is quite different from our focus on addressee recog-
nition. However, in face-to-face conversation, the gaze tends
to focus on the addressee. Thus, we decided to exploit pre-
existing gaze annotations in shaping our dataset. Because we
also postulate that utterances may play an important role in
addressee recognition, we have taken the GazeFollow dataset
and annotated likely utterances of people in images and to
whom they may be addressed using the crowdsourcing ser-
vice Amazon Mechanical Turk.

Deep Learning for Addressee Recognition
Although deep learning outperforms traditional methods to
achieve the state-of-the-art results in most topics in artifi-
cial intelligence, studies on addressee recognition by ap-
plying deep learning is limited. Published studies follow-
ing this direction mainly used deep learning models, specif-
ically recurrent neural networks (RNNs), for time-sequence
data. [Pugachev et al., 2017] applied different deep learn-
ing techniques, including a fully connected deep neural net-
work (DNN) and a bidirectional long short-term memory
(BLSTM), for an acoustic modality. While the DNN sur-
passed a traditional classifier in their study, BLSTM per-
formed poorly for this task. In contrast, [Ouchi and Tsuboi,
2016] generated a simulated multi-party conversation corpus
then used an RNN as an encoder model for lexical content
extraction.

Our study, on the contrary, was focused on applying extra-
linguistic information, which is recognized as equivalent to
the speech signal in a spoken-dialog system with 100% con-
fidence, for an addressee-recognition system using multi-
modal data. With this intention, we leverage the power of
crowdsourcing services to create a linguistic corpus on daily-
life conversations from the speakers’ side. At the same time,
we also use the saliency of visual information extracted using
a convolutional neural network (CNN) to estimate human-
eye gaze and use the estimated human gaze together with the
speakers surrounding environments to analyze a mock con-
versation.

CNN and Transfer Learning
The image-recognition performance of CNNs has advanced
rapidly in recent years. As a result, CNNs are now widely
used for various image-recognition tasks as well as other re-
lated tasks. However, training a CNN from scratch on a very
large dataset is extremely time consuming and computation-
ally expensive. Recently, it has been more common to take
a fully trained model on a large-scale dataset and fine-tune
it on a new dataset for a specific task, which is known as
transfer learning [Pan and Yang, 2010]. Transfer learning is
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1. Original image

2. Cropped
speaker image with

head location
annotated

4. Our annotation text-
based utterance

5. Who is the conversational addressee from the view of the man on the left?

3. Gaze

Figure 1: Example of Images We Used in Our Data Collection

known to be very powerful and has been widely applied in
various applications such as object recognition, segmentation,
and retrieval [Oquab et al., 2014] as well as scene classifica-
tion [Donahue et al., 2014]. Similar to these studies, we also
used ImageNet and VGG-Face pre-trained CNNs as feature
extractors for visual feature representation.

3 Dataset
As noted in Section 1, to model interactions between peo-
ple and a robot not limited to indoor settings, we have opted
for creating a mock dataset. In this section, we describe the
data statistics and how we gathered the data for our ARVSU
dataset.

3.1 Scenario Description
As shown in Figure 1, our dataset contains images and anno-
tations from the GazeFollow dataset [Recasens et al., 2015].
The GazeFollow dataset consists of (1) the original image,
(2) cropped speaker image with head location annotated, and
(3) gaze. To create our dataset, we further annotated (4) ut-
terances in texts, and (5) to whom an utterance is addressed.
The objective of our research was to predict (5) the addressee
from the rest of the inputs (1)-(4). In this scenario, a com-
puter agent plays the role of a photographer taking a snapshot
of a conversation (the original image). In other words, given
an image in our dataset, the task for an intelligent system is
to assume a photographer’s point of view and recognize who
the addressee is as the photographer corresponds to a robot in
a multi-party conversation scenario.

Our ARVSU dataset will be released at https:
//research-lab.yahoo.co.jp/en/software/.

3.2 Generation of Simulated Utterances
To create our dataset, we used Amazon Mechanical Turk,
which is a microtask-based crowdsourcing platform in which
requesters post microtasks that have questions to be asked and
workers perform the microtasks.

No. of Utterances Percentage (%)
Line-of-Sight Entities 322,911 46.32
Photographer 87,373 12.53
Monologue/Pondering 165,177 23.69
Others 109,124 15.65
Not Applicable 12,528 1.80
Total 697,113

Table 1: Dataset Statistics

To create our dataset, in short, we asked the following
question to the crowd workers: “There is a person marked
with a red dot in the image. Please imagine that this person
is saying something. If this person speaks something in the
context of this image, (1) to whom is he/she speaking and (2)
what is he/she likely saying?”

The options for choosing the addressee included the fol-
lowing:

a) The photographer of the image
b) People, animals, etc... who are in his/her line of sight
c) Others
d) Himself/herself (monologue, pondering)
e) Not applicable

The crowd workers were instructed to check all that apply.
For the utterances, they were asked to provide a sentence. The
difference between options b and c is whether an addressee
is in the line of sight. Option c includes other people in or
out of the image that are not in the speaker’s line of sight.
Option e is used to remove images without significant human
interaction. The detailed instructions will be released as a part
of the dataset documentation.

3.3 Dataset Analysis
As a result of the corpus-generated procedure described in
Section 3.2, generated utterances are separated into five dis-
tinct classes. Table 1 shows the statistics of our corpus and
dataset in detail. Nearly 50% of the annotated utterances be-
long to the case in which the speaker is interacting with en-
tities in his line-of-sight within given visual scenes. In con-
trast, only 12.53% of utterances are considered addressing the
photographer. The “others” case, in which the speaker is in-
teracting with an addressee not in his line-of-sight, accounts
for over 15% of the utterances. More than 25% of the dataset
falls into non-human-computer interaction, including mono-
logue, pondering, and other non-defined cases.

In our corpus, annotators created addressee labels and ut-
terances at the same time, as we thought that this should im-
prove the dataset’s reliability. Because it is difficult to use
utterances for inter-annotator agreement and addressee labels
are associated with the utterances, we instead took 1% of the
dataset and double checked the annotation using crowdsourc-
ing. It is important to note that 5.5% of checked samples had
utterances that do not correspond well with the situation in the
images. To determine the difficulty of the task, we also asked
crowd workers if the speaker in the image is looking at the
photographer. The results indicate that when the addressee is
the photographer, 89.6% of the cases were when the speaker
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head location
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Figure 2: Network Architecture

is not looking at the photographer. This disagreement be-
tween gaze and addressee makes predicting the photographer
by only using gaze very difficult. On the other hand, for the
non-photographer, only 6.2% of samples were difficult cases.
There is usually only one person in the line-of-sight, but it
can be one person or a group of people that are outside the
line-of-sight.

To ensure the quality of annotation, we also sampled 100
annotations and manually checked their quality. Out of 100
samples, we found 6 samples with obvious errors in addressee
labels. We also labeled addressee labels independently for
100 samples and computed Cohen’s Kappa value, which is
an agreement coefficient that calculates the level at which an-
notators agreed on label assignments beyond what is expected
by chance [Cohen, 1960]. Our lab members labeled line-of-
sight entities and obtained Cohen’s kappa = 0.46, a moder-
ate agreement level for observational studies [Hallgren, 2012;
Bobicev and Sokolova, 2017]. Other labels had a fair agree-
ment level: photographer with kappa = 0.32, monologue with
kappa = 0.34, and others with kappa = 0.29. As about half of
utterances are labeled line-of-sight entities, we would say the
overall agreement of our corpus is moderate.

Because our dataset was artificially created, it is inevitable
to have some potential biases. First, compared to the real
world, a disproportionately large number of utterances seem
to be labeled as monologue. Labels often co-occur as data
are collected in a multi-labeling setting. For example, some
annotators could attach two or more labels to an utterance,
while others could attach just one. Labels could be diffi-
cult to differentiate, especially when line-of-sight seems to
go outside the image. For example, a protagonist is seated
at a dinner table and having dinner. The image shows only
the protagonist and half of the table, and he is facing the
other end of the table. His line-of-sight goes outside the im-
age. If we assume that someone is seated in front of him,
he would be looking at him/her, so the label would be peo-
ple. If that is not the case, he may be having a monologue.
It is sometimes up to the annotator’s imagination to decide
what the label would be. In such cases, utterances may be
a decisive factor in determining the addressee label, and our

corpus to some extent could suffer from a similar problem as
with a visual question-answering corpus, where some ques-
tions are answerable without looking at the image [Antol et
al., 2015b]. This problem with line-of-sight going outside the
image is a difficulty with the gazefollow dataset annotation as
well because the gazefollow dataset always annotates gazes to
be within the image, even though people sometimes are ob-
viously looking outside the image. Despite these limitations,
we believe our dataset provides future opportunities to reduce
biases, for example, by treating samples with a gaze near the
image differently from other images or by having additional
line-of-sight classes and more fine-grained addressee classes.

4 Multi-modal Addressee Recognition
4.1 Model Overview
In this section, we give an overview of our model for ad-
dressee recognition in visual scenes, where the inputs of
the model are human-gaze information estimated from visual
data and annotated utterances. Our proposed model is moti-
vated from intelligent systems that connect natural language
processing and computer vision, such as image captioning
[Vinyals et al., 2015] and visual question and answer [An-
tol et al., 2015a]. Therefore, the network architecture of our
proposed model is composed of three main components, as
illustrated in Figure 2: a saliency-estimation-feature stream
extracted from original images, speaker-appearance-feature
stream extracted from cropped speaker images and annotated
head locations of the assumed speakers, and utterance-based-
feature stream for understanding the conversational context
from lexical information. The two visual-feature streams
are used to estimate the human-gaze direction similar to the
method proposed by [Recasens et al., 2015]. Different from
the original gaze-estimation study, we did not use the gaze
line annotations available in the GazeFollow dataset. The rea-
son is that while most visual scenes in the GazeFollow dataset
only involve interactions within images, we additionally con-
sidered interactions with people outside the visible content of
the images (photographer).

Mathematically, our learning task is formulated as
θ∗ = argmax

θ
p(a|I1, I2, S1, ..., ST ; θ), (1)

where a is the addressee class, I1 denotes the saliency fea-
ture extracted from original images using a pre-trained CNN,
I2 depicts the speaker-appearance features obtained by com-
bining the CNN-extracted feature of cropped speaker images
and the speaker’s head location, and θ represents the model
parameters. The terms S1, ..., ST denote one-hot vectors of
words in an utterance, where T is the number of words in the
utterance.

To model p(a|I1, I2, S1, ..., ST ; θ), we one-by-one formu-
late the model for each modality stream. First, since saliency-
estimation-feature and speaker-appearance-feature are fol-
lowed by a fully connected layer before applying a fusing
step by concatenation in the visual-feature streams, the fused
output of the two visual-feature streams is formulated as

x1 = ReLU(W1I1 + b1) (2)
x2 = ReLU(W2I2 + b2) (3)
xim = concat(x1, x2), (4)
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whereW1,W2 are network parameters, b1, b2 are bias values,
ReLU is a rectified linear unit function given by ReLU(x) =
max(0, x), x is the input, and ”concat” represents a concate-
nate function.

Second, regarding text representation, we then use an
RNN, specifically a long short-term memory (LSTM)
[Hochreiter and Schmidhuber, 1997], which is ubiquitously
used in sequence learning. We explain the fundamentals
of a CNN for visual-feature extraction as well as an LSTM
in the next section. Given one-hot vector representation of
word S1, ..., St, ..., ST of an utterance, we first embedded the
words into a geometric space ut by multiplying St by an em-
bedding matrix Me initialized using Global Vectors for Word
Representation (GloVe) [Pennington et al., 2014]. The em-
bedded vectors ut are then fed into an LSTM network:

xt = LSTM(ut, ht−1), (5)

where ht presents the hidden state at time t, and xt is the
output of sequence modeling that encodes the semantic of the
t-th word in the given utterance. Assume that xu = xT is the
representation vector of an utterance after the LSTM.

A combination of visual-feature streams and a
text-representation stream is then used to model
p(a|I1, I2, S1, ..., ST )

xfu = concat(xim, xu) (6)
p(a|I1, I2, S1, ..., ST ) = softmax(Wfuxfu + bfu),(7)

where Wfu and bfu are network parameters and bias values,
respectively. The term ”softmax” indicates the softmax func-
tion given by softmaxi(v) = evi/

∑
j e
vj , where v is a vector.

4.2 CNN for Visual Feature Extraction
Our model uses the 16-layer VGGNet [Simonyan and Zisser-
man, 2014], which was one of the top performers at the Ima-
geNet Large Scale Visual Recognition Challenge in 2014, as
a feature extractor. The 16-layer VGGNet is composed of 13
convolutional layers and 3 fully connected layers. The out-
put of the fc6 of a 4096-dimensional vector is then chosen
as the extracted feature vector. In this study, the last two
fully connected layers from the original 16-layer VGGNet
were discarded. The same process is applied to both origi-
nal image data and cropped speaker image data. However, to
achieve the best performance, we used VGGNet models that
were trained on different datasets for the saliency-estimation
and speaker-appearance features, which independently play
an important role in our model. In particular, we used the
VGGNet models trained on the ImageNet and VGG-Face
datasets [Parkhi et al., 2015] for saliency-estimation-feature
and speaker-appearance-feature streams, respectively.

4.3 RNN/LSTM for Utterance Understanding
An LSTM is a variant of an RNN that is able to tackle
the problem of vanishing and exploding gradients, resulting
in the ability to handle longer dependencies compared to a
vanilla RNN. A typical LSTM is composed of various gates
with different responsibilities to control input, output, and the
memory behaviors of the network. In this study, we used an
LSTM with input gate it, input modulation gate gt, output

gate ot, and forgetting gate ft. The number of hidden units
ht was 128. At each time step t, the LSTM state ct, ht was
as follows

it = σ(Wixxt +Wihht−1 + bi) (8)
ft = σ(Wfxxt +Wfhht−1 + bf ) (9)
ot = σ(Woxxt +Wohht−1 + bo) (10)
gt = φ(Wcxxt +Wchht−1 + bc) (11)
ct = ft � ct−1 + it � gt (12)
ht = ot � φ(ct), (13)

where σ(x) = (1 + e−x)−1 is a sigmoid function, φ(x) =
(ex − e−x)/(ex + e−x) is a hyperbolic tangent function, �
denotes the element-wise product of two vectors, and W and
b are learnable parameters of the network.

5 Experiments and Discussion
5.1 Experimental Conditions
We conducted experiments to demonstrate the effectiveness
of our proposed model as well as the benefit of our dataset.
We examined the following three models: two unimodal
models visual information only and text-based utterance
only, and our proposed multi-modal model visual informa-
tion and utterance.

The first model uses visual information only; thus, we ad-
dressed the problem of addressee recognition by using the
gaze information estimated from only visual features. This
baseline is used to show the contribution of visual information
to understand the conversational context. The second model
uses text-based utterance information only; thus, only the ut-
terances were used to understand the conversational context
based on the analysis on the semantic meaning of a single
spoken transcript. The third model (proposed model) uses
visual information and text-based utterance. As described
above, our model is composed of visual streams and a text-
based-utterance stream that are expected to leverage both vi-
sual information and utterances for understanding the con-
versational context. The implementation strictly follows the
network architecture described in Section 4.1.

As mentioned in Section 3.3, there are five possible ad-
dressee classes defined in our dataset, namely, “Line-of-Sight
Entities”, “Monologue”, “Photographer”, “Others”, and “Not
applicable”. However, since our experiments were conducted
to address the problem of addressee recognition for simulat-
ing a multi-party conversational scenario, we used the “Pho-
tographer” class as the representation for human-computer
interaction and the “Line-of-Sight Entities” class for the in-
teraction with a specific entity. As one utterance can be
matched with multiple addresses, it is necessary to reorga-
nize the class labels for classification. With this intention,
we first removed all cases of the “Not applicable” class from
the dataset then combined the “Monologue” and “Others”
classes as one unique class under the name “Others” since
the “Monologue” class does not involve interactions and only
the speaker usually exists in the image and the “Others” class
usually involve everyone around the speaker. In short, our
experiments were focused on three objective classes, namely,
“Line-of-Sight Entities”, “Photographer”, and “Others”. The
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No. of Utterances Percentage (%)
Line-of-Sight Entities 313,079 50.86

Photographer 87,373 14.16
Others 215,058 34.94
Total 615,510

Table 2: Addressee Class Statistics

Model Accuracy (%)
Visual information 54.0

Text-based utterance 60.7
Visual information + Utterance (proposed) 62.5

Table 3: Recognition Performance on ARVSU Dataset

statistics of the addressee classes are summarized in Table 2.
The classes in our dataset are highly imbalanced. Specifi-
cally, the utterances belonging to the “Line-of-Sight Entities”
class greatly outnumber that of the “Photographer” class. To
mitigate the problem caused by this imbalance, we applied
the concept of cost-sensitive learning introduced by Gangan-
war [2012] during the training phase. We added class weights
calculated based on the absolute number of utterances in each
class to reduce the loss of minority classes. This is because if
we use the imbalance dataset as it is, a classifier may learn to
ignore minor classes and label everything as a majority class.
Without cost-sensitive learning, the learned classifier may in-
crease the training set accuracy but decrease overall accuracy.

The proposed model was implemented using Keras 1 with
TensorFlow backend. There were 369,306 utterances and cor-
responding images used for training; 123,102 for testing and
the remaining 123,102 as the validation set for adjusting the
classifier. We used GloVe embeddingMe of dimension 100D
pre-trained on Wikipedia 2014 and the Gigaword 5 corpus
[Pennington et al., 2014]. The network was trained using the
stochastic gradient descent algorithm. The learning rate was
set to 0.001 and the batch size was set to 64. For fair com-
parison, the same experimental protocol was applied to all
experiments.

5.2 Experimental Results
We compared our proposed model against the two unimodal
recognition models for addressee recognition, as shown in Ta-
ble 3. The evaluation metric used in our experiments was
classification accuracy; the higher the accuracy, the better the
model’s performance. We report the results at the epoch pro-
ducing the best validation accuracy. The proposed model
significantly outperformed both unimodal recognition mod-
els. This means our model is able to use all modality com-
ponents in the dataset to distinguish class labels. The re-
sults also suggest that utterances are considerably informa-
tive compared to the visual information regarding understand-
ing a conversational context. It is also important to note that
we achieved superior performance with mere concatenation
over the element-wise multiplication suggested by Recasens
et al. [2015]. The result can be explained as the visual and
utterance-based features significantly differ from each other.

1https://github.com/keras-team/keras

Figure 3: Confusion Matrix for Using Our Model on ARVSU
Dataset. Each cell shows number of utterances. The term “LoS
Entities” corresponds to ”Line-of-Sight Entities” class. Average ac-
curacy was 62.5%

To assess the effectiveness of our model more precisely, we
also discuss the evaluation for each class. The confusion ma-
trix for the proposed model is depicted in Figure 3. Our pro-
posed model was especially effective in recognizing “Line-
of-Sight Entities” and “Photographer” classes, which are con-
sidered particularly important in human-computer interac-
tion. Our model achieved an F-score of 71.4 and 40.1% on
“Line-of-Sight Entities” and “Photographer” classes, respec-
tively. However, the text-based-utterance model performed
the best for the “Others” class. We believe that this is a re-
sult of the visual information failing to learn the representa-
tive features for the monologue or pondering situations. To
illustrate the effectiveness of our model, Table 4 includes the
precision, recall, and F-score for each class.

5.3 Discussion
In this section, we present typical examples in which our
model failed to recognize the conversational scenario prop-
erly. The details of each example are given in Figure 4. In
particular, our multi-modal model identified the addressee
in case (a) as “Photographer” while the expected addressee
was “Others”. In other words, the man seems to talk to the
woman next to him based on the inferred scenario from the
utterance, but the actual prediction seems to be overwhelmed
by the visual features. Another interesting case in which our
model could not perform well was when the speaker is look-
ing straight at the photographer but far from the photogra-
pher, as presented in case (b). This problem will be included
in future work to improve the performance of the model. In
cases (c) and (d), we expected our model to recognize the sce-
nario in which a speaker is talking to the photographer, but it
could not do so and misclassified the addressee as entities
in the line-of-sight. The detailed analysis of the experimen-
tal results revealed that our model is unable to distinguish
between the “Photographer” and “Others” classes in many
cases. The reason is that the visual information in the sce-
nario of the speaker interacting with a computer agent and
monologue seems identical from the computer-agent view.
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Experiment Line-of-Sight Entities Photographer Others
Pre. Rec. F1 Pre. Rec. F1 Pre. Rec. F1

Visual information 62.4 73.7 67.6 31.1 39.1 34.6 47.0 31.1 37.4
Text-based utterance 75.2 64.2 69.3 28.3 51.3 36.5 62.4 58.8 60.6

Visual information + Utterance (proposed) 73.1 69.8 71.4 35.2 46.6 40.1 59.8 57.4 58.6

Table 4: Per-class Evaluation Results

Utterance: This plate needs a bit more rice.
Expected addressee: Others
Predicted addressee: Photographer

Utterance: Can I help you guys anything?
Expected addressee: Line-of-Sight Entities
Predicted addressee: Photographer

Utterance: My wife doesn't like to take
pictures while she is eating.
Expected addressee: Photographer
Predicted addressee: Line-of-Sight Entities

Utterance: It looks like my favorite brand is
back in stock.
Expected addressee: Photographer
Predicted addressee: Line-of-Sight Entities

(a) (b)

(c) (d)

Figure 4: Examples Our System Failed to Recognize Properly

All the examples above are considered difficult situations in
real-life conversations, which current intelligent systems are
still struggling to solve.

To scale our work for real-world application, an intelligent
system must be adapted to streams of visual and verbal infor-
mation. To obtain an image and associated utterance, we may
use the speech recognition system proposed by [Gupta et al.,
2017]. In their work, speech recognition improved using the
features obtained from a randomly selected image frame of
video stream during a speech utterance. Because their system
selects an image and produces transcribed speech texts, our
model can plug into their system and use their outputs as our
inputs. We would also need to incorporate human detection
as well as head location detection algorithms, which allows
the system to automatically estimate speaker positions and
head location from original images rather than using anno-
tated positions. In such a system setup, the knowledge of the
addressee at time t−1 can be used in the model for addressee
recognition at time t as well, opening up future research top-
ics.

6 Conclusion
Determining who is being addressed in a conversational sit-
uation involving a computer agent is crucial for intelligent
systems to recognize real-life human social scenes. We in-
troduced the new large mock dataset ARVSU of social visual
scenes with annotated utterances. We also proposed a deep

learning model using multiple processing modalities to solve
the problem of addressee recognition on ARVSU. Our model
is able to learn the representative features for different ad-
dressee objectives from multi-modal input features, including
visual features and text-based utterance features.

Our error analysis revealed that the visual information
in the scenario of the speaker interacting with a computer
agent and monologue frequently seems identical from the
computer-agent view. For future work, to solve this prob-
lem, we will take the distance between computer agent and
speaker into account. This should allow us to reject mono-
logue cases in which the distance is greater than a specific
threshold to prevent misrecognition as a human-computer in-
teraction case. We believe that overcoming these problems
will be a stepping stone for future intelligent systems to fully
recognize real human social scenes.
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