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Abstract:  The linear quadratic regulator (LQR) is widely used in active structural controls (ASCs). However, at the 
present stage, the influence of the design parameters (LQR weighing matrices) on the vibration characteristics of the control 
system has not been explicitly expressed. In particular, the estimation of the required control force has not been conducted. 
Therefore, the LQR weighting matrices are mainly selected by trial and error, making it very difficult to design a control 
system that achieves the desired performance. To solve this problem, an equivalent model of the single degree of freedom 
active model (structure with active control) is constructed, using which, a calculation method for the weighing matrices that 
does not require a trial and error approach to satisfy the desired control performance is proposed. Thereafter, the concept of 
a transitional response spectrum under a specific earthquake wave, which is widely used in structural design, is promoted 
as a control force spectrum that can be used to estimate the maximum control force. Finally, the design of a passive base 
isolation (PBI) reactor is discussed as an example, and the performance-oriented design method for the PBI structure 
combined with ASC is proposed that simultaneously satisfies the limitation conditions of the responses and control force.   

 
 
1.  INTRODUCTION 

 

To minimize damages to superstructures due to violent 

earthquakes and to resume operation immediately after 

earthquakes, in Japan, the use of passive base isolation (PBI) 

structures increased sharply after the great Hanshin 

earthquake (Y. Tanaka et al., 2011). At present, the PBI 

structure is widely used globally, not only in public buildings 

and high-rise apartments, but also in major constructions (G. 

P. Warn et al., 2012). Applying the PBI structure to nuclear 

power stations is a topic of worldwide research (S. Ryu et al., 

2013, N. Takemi et al., 2013, A. S. Whittaker et al., 2014, H. 

Asano et al., 2014 and M. Kumar et al., 2017). However, by 

the end of 2017, there were no instances of nuclear power 

stations using the PBI structure in Japan (T. Hiraki et al., 

2017). A possible reason for this is that though the PBI 

structure can decrease the absolute acceleration response on 

superstructures, it is difficult to control the displacement 

response within the allowable range, because the natural 

period of the PBI layer is relatively long (M. Kumar et al., 

2017). To solve this problem, the authors conducted research 

on the PBI structure combined with active structural control 

(ASC) (Y. Chen et al., 2018 and K. Miyamoto et al., 2018). 

The linear quadratic regulator (LQR) is a widely used method 

in ASC controller design. The controller designed by LQR 

ensures asymptotic stability and minimizes control energy (A. 

Preumont et al., 2008). Thus, LQR is suitable for vibration 

control, and is widely used in ASCs (F. Casciati et al., 2012 

and S. Korkmaz et al., 2011). 

In conventional structural design, by using the response 

spectra of earthquake waves, it is possible to estimate the 

maximum responses of the model, without the need of 

numerical simulations. If the equivalent natural period and 

equivalent damping ratio of the ASC model can be described 

theoretically, the response spectrum can be used at the 

controller design stage, and the controller design can be 

simplified. However, at the present stage, using the LQR 

weighing matrices as parameters of LQR design, the effects 

on the equivalent natural period and the equivalent damping 

ratio of the control system are ambiguous. Hence the LQR 

weighing matrices are chosen using a trial and error approach, 

to achieve the desired control performance (A. Preumont et 

al., 2008). To solve this problem, T. Fujii et al. considered the 

single degree of freedom (SDOF) semi-active structural 

control system as a research topic, and theoretically clarified 

the influence of the LQR weighing matrices on the vibration 

characteristics of the control system (T. Fujii et al., 2013). 

However, the model used in T. Fujii et al. did not consider the 

structural internal damping, thus limiting its fields of 

application, making it incompatible with the model of the PBI 

structure combined with ASC. On the other hand, V. K. 

Elumalai et al. considered the SDOF magnetic levitation 
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system as a research topic, and the paper proposed an 

algebraic method for calculating the LQR weighing matrices, 

which achieves the equivalent natural angular frequency and 

equivalent damping ratio (V. K. Elumalai et al., 2017). 

However, V. K. Elumalai et al. did not investigate the impact 

of specific factors on control system vibration characteristics, 

making it difficult to use the proposed method in ASC design. 

Moreover, when ASC is applied in construction, the required 

control input can be significantly large, as expected. It is 

therefore necessary to deduce the theoretical equation that can 

be used to theoretically estimate the maximum control force. 

In this paper, the performance-oriented design method is 

proposed that simultaneously satisfies the limitation 

conditions of the responses and control force. Moreover, it 

requires neither trial and error nor numerical simulations, 

which simplifies the controller design. 

The equivalent model (Figure 1(b)) of the active model 

(Figure 1(a)), considering structural internal damping, is 

constructed. The influence of the design parameters 

(weighing matrices) on the structural characteristics (stiffness 

coefficient and damping coefficient) and vibration 

characteristics (natural period and damping ratio) is 

theoretically clarified. A calculation method for the LQR 

weighing matrices is proposed by using the constructed 

equivalent model to achieve the desired equivalent natural 

period and equivalent damping ratio. Furthermore, a new 

spectrum of a specific earthquake wave called the control 

force spectrum is proposed, which can be used to estimate the 

necessary maximum control force at the controller design 

stage. This makes it possible to calculate the weighing 

matrices for the design of the controller, which 

simultaneously satisfy the limitation conditions of responses 

and control force. Moreover, it requires neither trial and error 

nor numerical simulations. The remainder of the paper is 

organized as follows. 

The mathematical modeling of the SDOF active model 

is presented in Section 2. Section 3 presents the construction 

of the equivalent model of the active model, considers the 

influence of the weighing matrices on the structural 

characteristics of the equivalent model, and details the 

calculation method for the weighing matrices. A control force 

spectrum is proposed in Section 4. In Section 5, a controller 

design method for the PBI structure with ASC that 

simultaneously satisfies the limitation conditions of responses 

and control force is proposed. Section 5 also presents a 

discussion of the design of the PBI type reactor as an example, 

to confirm the validity of the proposed design method. 

 

 

 

 

 

2.  DESIGN OF CONTROL SYSTEM 

 
Given that it is necessary to solve the algebraic Riccati 

equation (ARE), the structure is assumed to be an SDOF 

model. The dynamics of an SDOF control system are 

described by the following equation: 

)()()()()( 00 tutdtxktxctxm    (1) 

where m is the mass; c0 is the damping coefficient; k0 is the 

stiffness coefficient of the structure, which is defined by (2) 

and (3); x(t), d(t), and u(t) are the response displacement, 

disturbance force, and control force, respectively. 
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(3) 

where T0 is the natural period of the structure, and 0 is the 

damping ratio. 

The state-space representation of (1) is 

)()()()( tuBtdBtAztz ud 
 (4) 

where z(t) is a state vector, A is a system matrix, Bu is input 

matrices for u(t), Bd is input matrices for d(t), which is defined 

by (5). 
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Figure 2 presents the block diagram of the control system 

used in this study. 

 

 

 

 

 

 

 

 

 

 

 

The feedback control law 

)()( tzKtu P 
 (6) 

is used, where KP is the state-feedback gain that is designed 

using the LQR method, which determines the state-feedback 

gain by minimizing the following performance index: 





0

TT ))()()()(( dttQututQztzJ
 

(7) 

where R (> 0) is the weighing matrix for the control force, and 

Q is the weighing matrix (semi-positive) defined by 

k c
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(a) Active model (b)    Equivalent model
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Figure 1  SDOF model with active control 
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Thus, KP is defined as 

PBRK uP
T1  (9) 

where P is a semi-positive symmetrical solution of the 

following ARE: 

0T1T   QPBRPBPAPA uu
 (10) 

 

 

3.  EQUIVALENT MODEL 

 
3.1  solution of the ARE 

Given that the solution of the ARE is a symmetrical 

matrix, it is written as 
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Substituting (5), (8), and (11) into (10) yields 
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Rewriting (12) yields 
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Expanding (13) yields 
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The elements of the P matrix, such as p11, p12, and p22 are 

obtained using the ARE in (10): 
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Moreover, given that P is a semi-positive matrix, it yields 
2
1222112211 ,0,0 ppppp   (18) 

Finally, p12 and p22 are defined as 
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0
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From (17) and (19), the analytical solution of the ARE 

can be obtained using the SDOF model. 

 

3.2  Construction of the equivalent mode 

Substituting (5c) and (11) into (9) , KP is 
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where KP1 and KP2 are 
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Substituting (20) and (5a) into (6) yields the control force: 
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Substituting (22) into (1) gives the vibration equation of the 

equivalent model: 
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where keq and ceq represent the stiffness coefficient and 

damping coefficient of the equivalent model and are defined 

by the following equation. 
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From (24a), it can be seen that keq is dependent on k0, q1, 

and R. When q1=0, the value of keq is equal to k0. When q1 is 

increased, the value of keq increases. When the value of R is 

sufficiently large, the value of keq approaches k0. 

From (24b), it can be seen that ceq is dependent on c0, k0, 

m, q1, q2, and R. When q1=q2=0, the value of ceq is equal to c0. 

When q1 or q2 is increased, the value of ceq increases. However, 

the influence of q1 on ceq is smaller than that of q2, given that 

q1 is in the double route. When the value of R is sufficiently 

large, the value of ceq approaches c0. 

As is commonly known, the natural angular frequency 

eq, natural period Teq, and damping ratio eq of the equivalent 

model are 

m
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In addition, the control force of the equivalent model can be 

obtained by the difference between (1) and (23). 

)()()()()( eq0eq0 txcctxkktu   (26) 

From (26), the control force of the equivalent model can 

be calculated using the responses of the equivalent model and 

k0, keq, c0 and ceq. 

Solving (24a) and (24b), the elements of Q, such as q1 

and q2, can be determined by 

Rkkq )( 2
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Furthermore, if the control system is represented in a 

controllable canonical form, (27) is identical to that proposed 

by V. K. Elumalai et al. 

The calculation procedure of the LQR weight selection 

method is summarized below. 

Step 1. Specify the natural period and damping ratio of the 

structure (T0 and 0), and calculate the value of k0 and 

c0 using (2) and (3). 

Step 2. Specify the desired natural period and damping 

ratio of the control system (Teq,tar and ζeq,tar), and 

calculate the value of keq,tar and ceq,tar using (2) and (3). 

Step 3. Arbitrarily assign a value to R. Even if the value of 

R is arbitrary, it does not affect the control system in 

this design procedure. 

Step 4. Substitute keq,tar, k0, and R into (27a), and calculate 

q1 in the weighing matrix Q. 

Step 5. Substitute ceq,tar, m, k0, c0, R, and q1 calculated in 

Step 4 into (27b), and calculate q2 in the weighing 

matrix Q. If q2 ≥ 0, use the calculated values of q1 and 

q2 to design the control system. If q2<0 because the 

semi-positive limitation of Q cannot be satisfied, go 

back to Step 2 and review Teq,tar or ζeq,tar. 

Figure 3 presents the flowchart for the calculation 

method of the weighing matrices. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.  CONTROL FORCE SPECTRUM 

 
This section presents the calculation of the theoretical 

formula for the maximum necessary control force, and the 

proposal of the control force spectrum. 

From (24a) and (24b), when q1=0, the equivalent 

stiffness coefficient keq and equivalent damping coefficient ceq 

are expressed by the following equations: 
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Therefore, at q1=0, the equivalent natural angular frequency 

ωeq, the equivalent natural period Teq, and the equivalent 

damping ratio ζeq are given by the following equations, 

respectively: 

0eq    (29a) 

0eq TT   (29b) 
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From (28), it can be seen that by setting q1 = 0, the 

equivalent damping ratio ζeq can be adjusted without changing 

the equivalent natural period Teq from initial natural period T0 . 

By substituting (28a) into (26), the following equation can be 

Figure 3  Flowchart of caculate procedure 
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obtained: 

)()()( eq0 txcctu   (30) 

Furthermore, by dividing (30) by the weight of the model m, 

the shear force coefficient of the control force Cu can be 

obtained. 
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where g is the gravitational acceleration. Therefore, the shear 

force coefficient of the maximum necessary control force 

Cu,peak can be calculated using the following equation: 
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where SV (T0 ,ζeq) is the value of the response velocity 

spectrum when the equivalent natural period is T0 and the 

equivalent damping ratio is ζeq . Moreover, by substituting 

c0=2ζ0ω0m and ceq=2ζeqω0m into (32), the shear force 

coefficient spectrum of the control force (control force 

spectrum) is 
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 (33) 

From (33), by setting q1=0, the control force spectrum SC 

is calculated without using a time domain numerical 

simulation. By the velocity response spectrum of the 

earthquake wave SV, it is possible to evaluate the magnitude 

of the control force. Moreover, if the initial natural period T0 

and the equivalent damping ratio ζeq are fixed, the maximum 

control force is proportional to the initial damping ratio ζ0.  

 

 

5.  CONTROLLER DESIGN METHOD FOR PBI 

STRUCTURE WITH ASC 

 
In this section, a controller design method for the PBI 

structure with ASC, which can satisfy response limitations 

and control force limitations simultaneously, is proposed 

using the weighing matrices calculation formulas (27) and the 

control force spectrum (33). Moreover, the design of the PBI 

type reactor with ASC is considered as an example, to confirm 

the validity of the design method. 

 

5.1  Design method 

Step 0. Specify the following:  

mass of structure m  

earthquake used in design procedure  

limitation of response displacement xlim  

limitation of response velocity limx  

limitation of response absolute acceleration 

limg}{ xx    

limitation of initial damping ratio (passive damper) 

ζ0,lim  

limitation of shear force coefficient of control force 

Cu,lim 

Step 1. Select the equivalent model (equivalent natural 

period Teq and equivalent damping ratio ζeq) that 

satisfies the limitation conditions of the responses 

(displacement, velocity, and acceleration) in Step 0, 

From the response spectrum. 

Step 2. Using the control force spectrum (33) of the 

earthquake wave used in the design procedure, select 

the model that satisfies the limitation of the shear force 

coefficient of the control force Cu,lim and the limitation 

of the initial damping ratio ζ0,lim , from the equivalent 

models selected in Step 1. Specify the initial damping 

ratio ζ0 of the equivalent model. 

Step 3. Arbitrarily assign a value to R, set q1=0, and 

calculate q2 using (27b) for the selected models.  

Step 4. Calculate the state feedback gain KP by (9), using 

the weighing matrices Q and R determined in Step 3. 

Step 5. Confirm if the designed controller satisfies the 

limitation conditions, using a time domain numerical 

simulation. 

 

5.2  Design example 

An artificial earthquake wave is used, specifically, Art 

Hachinohe (phase characteristic: Hachinohe 1968 EW), 

which has a pseudo velocity response spectrum pSV of 200 

cm/s (ζ=0.05) in the region after the corner period 0.64 s 

(Figure 4). In addition, the disturbance force d(t) is calculated 

by the following equation: 

)()( txmtd g
  (34) 

The structure is a PBI reactor building, and the mass of 

the structure is approximately 3.7×108 kg (S. Ryu et al., 2013). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
Figure 4  Art Hachinohe wave 

 

(b)  Pseudo velocity response spectrum 

 

(a)  Accelerogram 
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Step 0. Limitation conditions: 

   xlim = 40 cm 

   cm/s150lim x  

   2
limg cm/s300}{  xx   

   ζ0,lim = 0.1 

   Cu,lim = 0.1 

Step 1. Figure 5 presents the relationship between SD and 

SA of Art Hachinohe, and Figure 6 presents the SV of 

Art Hachinohe. Given that the reduction in responses 

is not expected even if the equivalent attenuation 

factor is set to 0.4 or more, the equivalent attenuation 

factor was examined up to 0.4. Table 1 presents the six 

models satisfying the response limitation conditions 

of Step 0. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Step 2. Using (33), Figure 7 presents the relationship 

between the initial damping ratios ζ0 and peak shear 

force coefficient of control force Cu,peak of the six 

models selected in Step 1 and the maximum shear 

force coefficients of the control force Cu,peak. From 

Figure 7, only the model with the equivalent natural 

period Teq=2.5 s and equivalent damping ratio ζeq=0.2 

satisfies the limitation condition of the initial damping 

ratio of ζ0,lim and shear force coefficient of the control 

force Cu,lim. Moreover, the model with the initial 

damping ratio ζ0=0.05 has a relatively less passive 

damper, and is therefore a passive-damper sensitive 

model (Model 1). The model with the initial damping 

ratio of ζ0=0.1 has a relatively low control force, and 

is therefore a control-force sensitive model (Model 2). 

In addition, to realize the equivalent model with the 

equivalent damping ratios of 0.3 and 0.4, it is 

necessary to increase Cu,lim or ζ0,lim. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Step 3. Fixing R=1 and q1=0, calculate q2 using (27b). 

Table 2 presents q2 calculated using (27b). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Step 4. Table 3 presents the state feedback gain KP of 

Models 1 and 2, calculated using (21). 

Step 5. Figure 8 presents the responses (displacement x, 

velocity limx , and absolute acceleration limg}{ xx   ) 

and the shear force coefficient of the control force Cu 

of Models 1 and 2.

Figure 5  Relationship between SD and SA 

 

Figure 6  Velocity response spectrum 

 
Table 1  Peak responses of selectable models 

 

Figure 7  Relationship between ζ0 and Cu 

 

Table 2  Parameters of models 

 

Table 3  Parameters of models 
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From the design example, the following results were 

obtained: 

(1) From Figures 8(a)-(c), it can be seen that Models 1 

and 2 satisfy all the limitation conditions of Step 0. 

The validity of the proposed design method can 

therefore be confirmed. 

(2) From Figures 8(a)-(c), it can be seen that the 

responses of Models 1 and 2 are identical. It can 

therefore be confirmed that the equivalent natural 

period Teq and equivalent damping ratio ζeq are the 

same for Models 1 and 2. 

(3) From Figure 8(d), it can be seen that the maximum 

shear force coefficient of the control force of Model 

1 is larger than that of Model 2. This is because the 

initial damping ratio of Model 1 (ζ0=0.05) is smaller 

than that of Model 2 (ζ0=0.10). 

 

 

6.  CONCLUSIONS 

 
In this study, an equivalent model of an active model 

with a controller designed using an LQR was constructed for 

an SDOF model. This paper also presents the calculation 

method for determining the weighing matrices to satisfy the 

desired equivalent natural period Teq and equivalent damping 

ratio ζeq, using the constructed equivalent model. Furthermore, 

in this paper, the control force spectrum is proposed, which 

can be used estimate the maximum necessary control force. 

This makes it possible to design a controller that satisfies the 

limitation conditions of the responses and maximum control 

force without trial and error, by using the conventional 

response spectrum of an earthquake. In the numerical design 

example of the PBI type reactor building with ASC, the 

validity of the proposed design method is verified. This study 

clarified the following points: 

(1) The analytic solution of the ARE used in the LQR can 

be obtained for SDOF model with damping 

coefficient, and the influence of the weighing matrices 

on vibration characteristics can be theoretically 

demonstrated. 

(2) By constructing an equivalent model, which has the 

same natural period and damping ratio as the active 

model, it is possible to evaluate the peak responses of 

the active model without the need of numerical 

simulations, by using the response spectrum of an 

earthquake wave. It is therefore possible to calculate 

the weighing matrices that satisfy the desired 

responses. 

(3) In this paper, a control force spectrum that can be used 

to estimate the required maximum control force for a 

specific earthquake wave was proposed. By using the 

proposed control force spectrum, the required 

maximum control power can be estimated at the 

controller design stage, without the need of numerical 

simulations. 
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