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ABSTRACT 

Disaster response operations are inherently complicated. Despite the complexities, 

uncertainties, and lack of sufficient information about the extent of the damages, disaster 

response facilities must be set up quickly after the occurrence of the disaster. Disaster response 

facility like temporary logistics hub plays a momentous role in increasing the efficiency and 

effectiveness of humanitarian relief operations. Establishment of temporary logistics hubs 

(TLH) requires multitude of decisions be made within a very short span of time while also 

taking account of multiple objectives, multiple actors, need for evaluation of both qualitative 

and quantitative attributes, and consideration of uncertain and time-varying nature of 

parameters. Moreover, the decision on whether to open, how many to open, where to locate, 

when to open, how to allocate open facilities to demand points, and determining the order of 

establishment of TLHs is based purely on the amount and the quality of information available 

during the decision-making time. This necessitates involvement of range of decision-makers 

with diverse background to be involved in the decision making process so as to enable 

synthesizing more and better information.  

This study deals with the establishment of TLHs. The study developed mathematical models, 

decision-making approach involving multiple decision-makers, and has amalgamated 

mathematical models with decision-making approach to enable comprehensive TLH 

establishment decision-making. Firstly, a multi-period multi-objective model with multi-

sourcing is developed to determine the location of the TLHs. A fuzzy factor rating system 

(FFRS) under the group decision-making (GDM) condition is then proposed to determine the 

weights of the objectives when multiple objective and multiple decision-makers exist. Second, 

a possibilistic multi-objective location-allocation model for relief supply and distribution 

considering uncertain and time-varying nature of demand, costs, and available quantities of 

relief, time-varying coverage is developed while also accommodating qualitative attributes 

necessary to determine when and where to establish (TLH) along with their numbers in each 

working period. Finally, a decision support system that considers multiple decision-makers and 

subjective attributes, while also addressing the impreciseness inherent in post-disaster 

decision-making is developed for ordering the establishment of TLHs. To do so, an 

optimization model was combined with a fuzzy multi-attribute group decision-making 

approach.  
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Numerical illustrations were performed for the three models using data from the April 2015 

Nepal earthquake. The methodology developed herein offers managerial insights for post-

disaster decision-making within a short span of time when resources are limited and their 

effective utilization is vital. The optimization results provide useful managerial insights for 

decision-makers by considering the trade-off between two non-commensurable objectives; 

determining the optimal number along with where, when, and in what order to establish TLHs. 

The interview with decision-makers shows the heterogeneity of decision opinions, thus 

substantiating the importance of group decision-making. The results also highlight the 

importance of considering the opinions of multiple actors/decision-makers to enable 

coordination and avoid complication between the growing numbers of humanitarian responders 

during disaster response.  
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CHAPTER 1 Introduction 

 

1.1 Background 

In the recent years, the world has witnessed several devastating disasters and a significant 

growth in human life losses, economic losses, and material damages caused by natural disasters 

such as earthquakes, flood, tsunami, and storm. Disaster management entails all the activities 

taken before, during, and after the disaster with the aim of getting back to normalcy while 

minimizing its impacts. Although knowing what to do, how to do it, and having the resources 

to actually do it helps to increase the chance of survival and limits damages, given the disaster’s 

unpredictability of the occurrence and its corresponding impacts, preparedness and mitigation 

activities often tend to be very costly to implement. Therefore, effective disaster response 

becomes critical to ensure success of disaster management activities.  

Effective disaster salvage requires implementing different disaster response facilities 

immediately after a disaster has occurred. The location of facilities, particularly distribution 

centers, warehouses, medical centers, and shelters, plays a significant role in ensuring the 

success of emergency humanitarian relief operations. From a logistics point of view, an 

effective response to a crisis demands setting up logistics hubs and/or distribution centers in 

appropriate locations. In the pre-disaster stage, facility location planning includes finding 

locations for warehouses, distribution centers, and evacuation centers based on assumed 

scenarios, while in the post-disaster stage, such planning includes locating emergency shelters, 

medical centers, relief distribution centers, and logistics hubs for a particular disaster-affected 

area. 

Of the numerous types of facilities prevalent in humanitarian operations, this study focuses on 

those intended for relief distribution. These facilities can be categorized as permanent or 

temporary based on the length of their operational horizon. Permanent facilities operate before 

the disaster and have long or even infinite operational horizon, whereas temporary response 

facilities only operate once the location of the disaster is known and have a short operational 

horizon. While determining the location for a permanent facility is a strategic decision, doing 

so for temporary facility is a tactical/operational decision with which decision-makers are faced 

after a disaster.  
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In the ideal situation, vulnerable countries should prepare designated spaces for these facilities 

along with safety stockpiles in advance of any disaster occurring, however, the situation in 

reality is often different. Although no specific correlation between investment in disaster 

preparedness and a country’s GDP has been established, developed countries are typically 

better prepared to tackle the consequences of disasters compared with developing nations. If 

we examine the earthquakes that have recently impacted developed countries such as New 

Zealand and Japan, namely the earthquake in Christchurch in 2011 and the Great East Japan 

earthquake in 2011, respectively, although they caused widespread damage, the resulting 

fatality rate was relatively modest (Lubkowski, 2014). By contrast, even relatively moderate 

earthquakes in developing nations still lead to large losses of life. The earthquakes in Haiti in 

2010 and Nepal in 2015 are prime examples (Lubkowski, 2014). 

The lack of advance preparedness in emerging countries suggests the need for an appropriate, 

effective, and efficient response. Moreover, the unpredictability of disasters prevents 

authorities from determining an exact location for emergency facilities beforehand and given 

that permanent facilities alone may be insufficient, emergency temporary facilities become 

especially important in developing countries where disaster preparedness falls short. One 

important feature of these facilities is their short operational horizon (i.e., they are removed 

soon after the response stage is over) (WFP, 2016). Temporary facilities have been deployed 

in recent emergency humanitarian response operations such as the April 2015 Nepal earthquake 

(Figure 1.1) and April 2016 Ecuador earthquake (Figure 1.2). In figure 1.1, rectangular shape 

shows the location of staging areas and circles shows the location of regional logistics hubs. It 

can be observed that Kathmandu and Bharatpur operates as staging area with much bigger 

capacity than the logistics hubs. The different size of the circles represents difference in the 

capacity of the logistics hubs: a bigger circle represents a higher capacity and vice versa. 

Regional logistics hubs in Dhulikhel, Deurali, Chautara, Chariokot, Bidur, and Dhadingbesi 

have capacities in descending order.  
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Figure 1.1: Regional logistics hubs established during Nepal earthquake 2015  

Source: Logistics Cluster, Nepal 2015 

The appropriateness of a logistics hub’s location can determine the success or failure of a 

humanitarian relief operation. However, the unpredictability of disasters makes it difficult to 

ascertain the precise location of logistics hubs beforehand. Moreover, high inventory holding 

costs, as well as limited funds and operating resources often restrict the number of permanent 

facilities. Therefore, the temporary nature of such facilities is an indispensable part of 

humanitarian relief operations (Maharjan and Hanaoka, 2018). A typical location problem 

includes ascertaining the number, spatial location, and the allocation of demand to open 

facilities. On the other hand, locating TLHs during disaster response also requires determining 

the timing and the order of establishment of the facilities when resources are limited. The 

disaster response operation in most emerging countries is resource constrained and requires the 

effective allocation of resources to ensure their effective utilization. During the initial response 

stage of the 2015 Nepal earthquake, the number of mobile storage units available in-country 

was limited, which resulted in several hindrances faced during establishment of regional 
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logistics hubs—including delay in establishment and mobile storage units having insufficient 

capacity. 

 

Figure 1.2: Regional logistics hubs during Ecuador earthquake 2016  

Source: Logistics Cluster, Ecuador 2016 

Selecting where, when, and in what order to locate temporary facilities for emergency 

operations is an important task. On the contrary, response operations are inherently 

complicated. This is often complicated by time-varying and uncertain nature of the disaster 

impact, the growing number of humanitarian actors, prevalence of multiple and often 

conflicting objectives, need to evaluate non-quantitative attributes, and inherent complexity 

and uncertainty of the situation. These factors can significantly affect the overall performance 

of the relief chain network.  

Time-varying nature may arise due to a number of reasons. These reasons include aftershock 

damages, people returning to greater self-sufficiency, beneficiaries moving between different 

areas in hopes of finding greater relief, or unexpected challenges such as outbreak of disease 

epidemics, issues with availability of relief, and the market dynamics induced by the disaster. 

Due to the chaotic situation in the critical period, the information is always incomplete, 

inaccurate and changing over time.  
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Uncertainty may arise due to randomness or/and fuzziness (Pishvaee and Torabi, 2010, 

Pishvaee et al. 2012, and Tofighi et al. 2016). Randomness stems from the random nature of 

data for which, discrete or continuous probability distributions are estimated based on available 

but sufficient objective/historical data. Fuzziness arises due to the impreciseness in predicting 

the parameter value either due to lack of knowledge regarding their exact values i.e., facing 

with epistemic uncertainty about these data (Kabak and Ulengin, 2011, Pishvaee and Torabi, 

2010) or due to information asymmetry. In the context of disaster response operations, 

uncertainty arising due to random nature of disaster can be avoided since the location of disaster 

and demand can be obtained soon after the occurrence of disaster. However, the uncertainty 

arising due to fuzziness may persist long after its occurrence. This type of uncertainty includes 

those data such as demand of relief items, costs, and relief availability. Factors like inefficiency 

in needs assessment, information asymmetry, lack of information, and lack of coordination 

between the responding entities are the major sources of this kind of uncertainty. Moreover, 

depending on the location of disaster occurrence, the districts in need may be situated in remote 

areas, and the disaster site might be in a state of chaos making a complete overview impossible 

to achieve (Thomas and Kopczak, 2005).  

The inclusion of multiple actors is important to build a sense of ownership of the established 

facilities, a lack of which was identified to be one of the bottlenecks in the successful operation 

of regional logistics hubs during the April 2015 Nepal earthquake (WFP, 2016). While the 

humanitarian code of conduct prioritizes minimizing victims’ suffering, the budgetary 

limitations and organizational and environmental constraints creates a trade-off situation. In 

reality, relief organizations commonly plan and execute logistics activities within the confines 

of a limited budget (Cook and Lodree, 2012) highlighting the importance of minimizing 

operational costs where a balance is always sought between the humanitarian and cost based 

objectives.  

In location decision-making, traditional network models take into account quantitative factors 

and aim to minimize the total cost or to maximize profitability or coverage. Non-quantitative 

criteria—such as, manpower qualifications, geographical characteristics, and road networks—

are also important in deciding location. While optimization approaches can be used for 

evaluating quantitative factors, this evaluation of qualitative factors is often accompanied by 

ambiguity and vagueness (Önüt et al. 2010). This is particularly true in the aftermath of a 

disaster, when the environment is chaotic, and there is limited information and time. In the 
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aftermath of a disaster the decision-making process typically involves multiple decision-

makers with varying interests and opinions. Indeed, the growing complexity and uncertainty of 

decision situations make it less and less possible for a decision-maker to consider all relevant 

aspects of a problem, thereby necessitating the participation of multiple experts in the decision-

making process (Ben-Arieh and Z. Chen, 2006). As such, achieving a proper balance among 

them is a significant challenge. 

Essentially, disaster managers have to make myriad of reactive operational decisions to solve 

complex dilemmas with little to no information under immensely stressful conditions as they 

respond to emergencies. Moreover, current guidance suggests that within the humanitarian 

coordination architecture, decisions should be made by a group rather than by individuals 

(IASC, 2009, 2015). As the number of actors involved in disaster response operations has 

continued to grow, a complex network that often struggles to efficiently coordinate efforts has 

emerged (Balcik et al., 2010; Bharosa et al., 2010; Bealt et al., 2016). This highlights the need 

for a simple and inclusive methodology. Under these circumstances, an appropriate decision-

making strategy would require that the resolutions and opinions of a group of decision-makers 

be taken into account when evaluating the subjective and objective attributes in the TLH 

selection process.  

Indeed, Ortuno et al. (2013) concluded the need to use a decision support system incorporating 

optimization tools to enhance applicability in real life. However, existing studies that focus on 

temporary facilities (Afshar and Haghani, 2012; Lin et al., 2012; Khayal et al., 2015; Stauffer 

et al., 2016; Cavdur et al., 2016) formulate their problems as single objective optimization 

problems without concerning for uncertainty arising due to impreciseness. Moreover, the 

amalgamation of optimization models and decision-making approaches with group decision 

theories to determine the location of temporary facilities for emergency operations is also 

lacking in the literature. 

1.2 Research motivation 

With the advent of a disaster, one can only attempt to minimize its impact and corresponding 

damages and suffering caused. Irrespective of the level of preparedness, the inherently 

unpredictable nature of disasters prevent determining the precise location of the response 

facilities beforehand. Moreover, the level of disaster preparedness is non uniform in the 

different parts of the world. The developing and underdeveloped countries lag far behind their 
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developed counterparts. In situations like this, temporary response facilities plays a very 

important role in enhancing the disaster response operations.  

Recent humanitarian disaster response operations have seen growing utilization of temporary 

nature of response facilities for example during the disaster response in Nepal earthquake 2015 

(Figure 1.1) and Ecuador earthquake 2016 (Figure 1.2). This dissertation gains its motivation 

from the April 2015 Nepal earthquake. Having closely observed disaster response operations 

performed by government, national and international humanitarian organizations, community 

organizations religious groups during Nepal earthquake 2015, one thing was for sure that the 

temporary nature of response facilities are very important to facilitate relief distribution to 

affected people/communities. Traditionally, key decisions to make regarding temporary 

response facilities are (1) how many facilities to establish; (2) where to establish; (3) how to 

allocated demand to open facilities. However, due to the dynamics of the situation additional 

aspects regarding (4) how to accommodate multiple decision-makers who may have same or 

varying preferences; (5) how to account for uncertainty arising due to impreciseness; (6) how 

to effectively utilize limited resources etc.  

 

 

 

 

 

 

 

 

 

 

Nepal’s disaster response operations involved establishment of nine hubs in different parts of 

the country and 117 organizations have used the storage service, a total of 37,227 m3 was stored 

in the hubs until the end of September. Number of organizations using the hubs range between 

four in Dhunche to 86 in Kathmandu. Figure 1.3 shows the usage of storage service in 

Figure 1.3: Use of storage services in Dhulikhel hub 

(a) Storage per sector in % of total m3 stored  (b) Top 10 users in terms of m3 stored 

Source: Logistics Cluster, 2015 
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Dhulikhel hub where multiple relief items and multiple organization’s involvement can be 

observed from (a) and (b). However, one of the main shortcoming of the entire operational 

strategy was the time it took to identify the location and set up hubs. The earliest identification 

of the hub location took as long as two weeks (Logistics cluster, 2016). Further, the operation 

of established hubs faced ownership issues because organizations were willing to use but not 

willing to take responsibility of its operation.  

This dissertation aims to address the shortcomings faced during Nepal earthquake and build 

on the existing literature in humanitarian logistics by developing comprehensive models and 

methodologies for making establishment decisions. 

1.3 Temporary logistics hub (TLH) 

Temporary logistic hub is a place designated for short term storing, sorting, consolidating, 

deconsolidating, and distributing emergency relief materials to the final distribution centers. It 

acts as an intermediator between the central warehouse or point of entry and the points of 

distribution (POD). Figure 1.4 shows the positioning of the TLH in the humanitarian relief 

chain. It is established in the response phase of the disaster (especially appropriate in the 

developing countries where the level of disaster preparedness is low). Often mobile storage 

units (MSUs) or movable warehouses (also referred to as WiikHalls or RubbHalls) are used as 

TLHs where hard structures are unavailable or inadequate. Features of temporary logistic hub: 

 Its operational horizon is short, which essentially depends on the scale of disaster, 

severity of its impact, population size, and economic situation of affected areas, 

accessibility issues, and market functionality. 

 TLHs are time-varying in nature which can be opened, closed, and relocated within the 

operational horizon. 

 TLH uses storage units that can be assembled, dissembled, and transported within a 

short period of time without much hassle. 
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Figure 1.4: Structure of humanitarian relief chain 

MSUs can be easily assembled, disassembled, and transported. These mobile storage units are 

fire retardant, waterproof, rot proof, and UV stabilized and are usually costly. MSUs are most 

often used in sizes 10×20 meters to 10×32 meters. Most systems can be erected in 4 meter 

lengths, allowing for customization between these sizes. They are steel or aluminum frame 

(aluminum being much lighter and therefore cheaper for shipment) with heavy polyester cover. 

MSUs should be erected on flat hard earth, on raised elevation to protect against flooding. 

When planning locations, care should be taken that trucks have sufficient access. Pallets should 

be used to raise stored goods off the ground. It is possible to install MSUs with local labor – 

WFP will often provide technical oversight if requested. WFP contractors, and other private 

companies are also options for support in erecting the MSUs. Key features of MSUs can be 

summarized as: 

 Fast set up with three to four personnel without use of lifting equipment or working on 

heights. Figure 1.7 shows schematic of MSU setup. 

 Made of durable aluminum box profiles and hot-dipped galvanized hardware, with 

covers of durable fire retardant and UV resistant translucent PVC fabric and fully HF 

welded for long life. 

 Designed to withstand high winds up to 31 m/s (<110 km/h) and can be used in both 

hot and cold climates. 
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Figure 1.5: Mobile storage units 

MSU transport crates are too large for commercial airlines, so transportation will be via sea or 

large cargo planes. For planning the size of warehouse needed, WFP estimates a  

- 10x24m MSU can store 350-500 metric tons of food goods;  

- 10x32m will hold 500-750 metric tons. 

In this study, we use a 10m x 32m MSU. Different humanitarian organizations have different 

sizing, features and preferences for the type of MSUs they use, figure 1.5 and figure 1.6 shows 

examples of MSUs used by different organizations. Figure 1.6 shows the details of MSU used 

by WFP with dimension and materials. The modularity of MSUs enables ease in capacity 

expansion and reduction since the length of the MSUs can be endlessly extended with addition 

of extra modules. The application of this modularity can be observed from figure 1.1, where 

logistics hubs of different sizes and capacities were established in different locations. In 

addition to having proper vehicle accessibility to the TLHs, it is also important to ensure that 

forklifts (shown in figure 1.8) are available to handle relief goods within the established MSUs. 



11 
 

 

 

 

 

 

 

 

 

 

 

 

Dimensions 

Standard size 6.5 m x 8 m 

Total living area 52 m2 

Main floor 52 m2 

Centre height 3.90 m 

Width 6.50 m 

Ridge height 8.00 m 

Side wall height 2.50 m 

Total size 2.90 m x 3.00 m 

Modular frame Aluminium box profiles 2.70 m – 3.50 m: Hot dipped galvanized steel 

apex base plates and other steel components 

Materials 

Outer tent Roof, wall, gable covers: 700 gsm PVC coated polyester, white, UV 

protected 

Ventilators The gable ends are fitted with high placed large ventilators with 

removable mosquito netting and adjustable rain flap. 

Doors Both gable ends are fitted with lace up doors, 290X300 cm. 

Modularity The length of the shelter can be endlessly extended with modules of 

6.5 x 3 m or 6.5 x4 m 

 

 

Figure 1.6: Details of MSU used by WFP 
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1.4 Aims and objectives 

The aim of this dissertation is to introduce the concept of temporary logistics hubs for effective 

disaster response and answer the questions of where, when, in what order should TLHs be 

established and how to allocate demand to open facilities in the disaster response period. In 

Figure 1.7: Setup of mobile storage units 

Figure 1.8: Forklift used for handling relief materials in mobile storage units 
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doing so, the study aims to develop models that take account of the trade-off relationship 

between different objectives, qualitative attributes, multiple decision-makers, challenges faced 

by the decision-makers during the chaotic and often ambiguous disaster response period. 

To achieve this aim, the following specific objectives are drawn: 

1. To develop a multi-actor multi-objective optimization approach for determining the 

location of TLHs during disaster response and identify if the multi-actor existing in 

disaster management/response will have different preference for different objectives. 

2. To develop a multi-objective optimization model that determines the location and 

allocation of TLHs under epistemic uncertainty in parameters. 

3. To determine the order of establishment of TLHs taking account of quantitative and 

qualitative attributes to ease TLH setting up process post disaster. 

1.5 Scope and limitations of the study 

The study focuses on model development for distribution network design on 

strategic/tactical level decision-making from humanitarian organization’s perspective. The aim 

of this dissertation is to enable TLH establishment decision-making. Whilst it is important to 

account for operational decision-making like last mile distribution, there has been plenty of 

studies already focusing on that. The choice of objectives for model building represent the 

interest and intention from the relief provider’s side (humanitarian organizations) and the 

humanitarian objective. Limitations regarding assumptions are explained in each chapters 

before the model development. 

 This study does not take account of time necessary to reach affected people when 

deciding on the TLH establishment decision. 

 This study considers a single package of relief which weighs 10 kilogram and consists 

up of food, basic medical supplies, and a blanket that is enough to sustain an individual 

for a week. Therefore, prioritization of goods are not considered within the scope of 

this study.  

 The decision-makers are assumed to be homogeneous and therefore have equal 

importance, which might not hold true in real-world disaster operations. Developing a 

method to determine the relative importance of decision makers and incorporating into 

the model is thus a possible extension. 
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 The nature of uncertainty presented in this study accounts only for impreciseness in the 

data. 

 This study does not take account of equity issues. 

1.6 Outlines and approach of the study 

The thesis comprises of six chapters, Figure 1.9 shows the organization, flow, and the 

relationship between chapters of the dissertation. Chapter one introduces the background, the 

concept of TLH, the scope and limitation, and the organization of the dissertation and finally 

highlights the contribution of this study. 

Chapter two reviews the extant of literature on facility location problem (FLP) in humanitarian 

logistics with special focus on (1) single objective FLP, (2) multi-objective FLP, (3) temporary 

FLP, (4) uncertainty based FLP, and (5) multi-criteria FLP aimed for both pre and post-disaster 

operations with special focus on post-disaster operations. We also review decision-making 

approaches and the nature and sources of uncertainty prevalent in humanitarian operations. 

Chapter three answers the question of where to locate TLHs. To do so, we develop a multi-

actor multi-objective optimization approach for locating TLHs during disaster response. The 

model accounts for the time dependent nature of parameters.  The preference of multiple 

actors/decision-makers is identified. A fuzzy factor rating system (FFRS) under group 

decision-making (GDM) condition is proposed to determine the weight of the objectives in a 

multi-objective optimization problem while taking account of multiple decision-makers. 

Chapter four answers the question of where and when to locate the TLHs and how to allocate 

the demand to the open TLHs. In doing so, we develop a credibility based multi-objective 

optimization model that determines the location and allocation of TLHs under epistemic 

uncertainty and time-varying nature of parameters. Pertaining to the time-varying and uncertain 

nature of parameter values, the corresponding impact on the location of TLH is analyzed in 

this chapter.  

Chapter five answers the question of where and in what order TLHs should be established. An 

optimization model with the objective of minimizing total unsatisfied demand is amalgamated 

with a fuzzy multi-attribute group decision-making (FMAGDM) approach that takes account 

of multiple decision-makers’ decision-opinion when evaluating the set of alternatives versus 

selected attributes is proposed to determine the order of establishment of TLHs under resource 
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constrained situation. The impact of heterogeneity of decision-makers is also explored. Though 

we have used a single objective optimization approach for generating the optimal TLH number 

and their spatial location alternatives in this chapter, the multi-objective optimization models 

both the deterministic one and the possibilistic models in chapter 3 and chapter 4 can also be 

used to generate alternatives.  Depending on the actual need of the situation, appropriate 

mathematical model can be used in the first phase. 

Chapter six summarizes the findings and concludes what has been achieved through this 

dissertation. Potential implications for real life location decision-making is also illustrated. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.9: Organization of the dissertation 

CHAPTER 2 

Literature review 

CHAPTER 3: WHERE? 

A multi-actor multi-objective 

optimization approach for locating 

temporary logistics hubs during disaster 

response location problem 

 

CHAPTER 5: WHERE & WHICH ORDER? 

Fuzzy multi-attribute group decision-making for ordering 

the establishment of temporary logistics hubs 

CHAPTER 6 

Summary and Conclusion 

CHAPTER 1 

Introduction 

CHAPTER 3: WHERE & WHEN? 

A credibility based multi-objective 

temporary logistics hub location-

allocation model for relief supply and 

distribution under uncertainty 
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1.7 Contributions of the study 

The contribution of this study is manifold. First, the contribution lays on the exploration of 

different dimensions of TLH location problem. This study answers the question of where, when, 

what order TLHs should be established along with the allocation of the demand to the open 

TLHs. Ordering the establishment of TLHs is a new concept that we have introduced in this 

study. This allows for effective utilization of TLHs under resource constrained situation. Prior 

studies have only focused on where to locate them.  

Second, this study develops deterministic and possibilistic mathematical models that can take 

account of humanitarian and cost based objectives, time-varying and uncertain nature of 

parameter values, and TLH’s short operational horizon.  

Third, the concept of multi-sourcing is introduced. The mathematical model developed in this 

study investigates the impact of single sourcing versus multi-sourcing strategy and therefore 

highlighting its significance. 

Fourth, the study uses a FFRS under GDM to calculate the weight of objectives in a multi-

objective optimization problem. The difficulty in calculating the weight of objectives is one of 

the major challenges preventing the use of the weighted sum method; thus, the application of 

the FFRS under GDM is a novel feature of this study among those focusing on humanitarian 

operations.  

Fifth, this study develops approach based on fuzzy set theory and fuzzy linguistic variables 

which enables dealing with the vagueness and imprecision inherent in evaluating subjective 

and objective attributes in post-disaster decision-making scenarios which involves multiple 

decision-makers.   

Finally, this study shows that amalgamating an optimization model with multi attribute 

decision-making approach enables the evaluation of both subjective and objective attributes, 

and has enhanced applicability to real life scenarios.  
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CHAPTER 2 Literature review 

 

2.1 Chapter overview 

As the entirety of this study revolves around locating ‘temporary’ facilities in the post 

disaster phase, this chapter provides an overview of the published literature relating to the 

research topic which has been outlined from the broad view of the disaster management and 

humanitarian logistics before moving on to the specific topic. Even though the temporary 

nature of facilities brings in further dynamics to the location problem, fundamentally we are 

dealing with FLP, therefore the literature review has explored research concepts and methods 

that are used for locating facilities in humanitarian logistics. In doing so different types and 

aspects of facility location modeling are also explored.  

The second section starts with the general and a brief introduction to disaster and disaster 

management where we explore the significance of disaster response period in humanitarian 

operations. The third section briefs on the role of logistics in ensuring successful humanitarian 

assistance and also brings into perspective the role of facilities within the humanitarian context. 

In the fourth section we review the extant of literature on facility location in humanitarian 

context. In the following three sections we review decision making approaches, the nature, and 

source of uncertainty in humanitarian operations. In section eight we explain the positioning 

of this dissertation in the current literature. The final section summarizes all the sections. 

2.2 Disaster and disaster management 

A disaster is a sudden, calamitous event that seriously disrupts the functioning of a 

community or society and causes human, material, and economic or environmental losses that 

exceed the community’s or society’s ability to cope using its own resources. The advent of the 

disaster prompts for coordinated actions among people and organizations to protect life, 

property, reduce human loss and damage. The field of disaster management deals with these 

kinds of issues. The Red Cross and Red Crescent Society defines disaster management as the 

organization and management of resources and responsibilities for dealing with all 

humanitarian aspects of emergencies, in particular preparedness, response and recovery in 

order to lessen the impact of disasters.  A disaster management life cycle consists of four 

phases: mitigation, preparedness, response, and recovery. Mitigation involves all the 
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preventive activities performed beforehand to comprehend and reduce the risks associated with 

disaster. Examples of mitigation activities includes building codes and zoning, vulnerability 

analyses, and public education. Preparedness focuses on activities as emergency planning, 

construction of emergency operation centers, and prepositioning of emergency supplies in 

anticipation of disasters. Response phase involves coordinated actions like activation of 

emergency plan, search, rescue and evacuation of people, medical care, relief distribution, 

fatality management and all other activities taken during and shortly after the disaster. The 

recovery phase includes all the activities performed to repatriate and restore the systems, people, 

and communities to acceptable level of operation which will eventually bring self-sustainability 

to affected communities. The following figure shows the schematic of the disaster management 

cycle. 

 

 

 

 

 

Irrespective of the type of disaster, most of the sudden onset disasters are unpredictable in terms 

of the time of occurrence, their location, number of people dead, injured or affected. In such 

cases, depending on the scale of the disaster, preparedness alone may not always be sufficient 

which makes response phase one of the most important and critical components of disaster 

management. Response is defined as the actions taken to save lives and prevent further damage 

in a disaster or emergency situation. The aim of disaster response is to provide immediate 

assistance to maintain life, improve health, and support the morale of the affected population. 

Such assistance may range from providing specific but limited aid, such as assisting affected 

people with transport, temporary shelter, and food, to establishing semi-permanent settlement 

in camps and other locations. The main focus in the response phase is on meeting the basic 

needs of the people until more permanent and sustainable solutions can be found. Owing to its 

importance, this study aims to enhance response to disaster or emergency situation. 

Preparedness

Response

Recovery

Mitigation

Figure 2.1: Disaster management cycle 

https://en.wikipedia.org/wiki/Refugee
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2.3 Humanitarian logistics 

Humanitarian logistics is defined as the process of planning, implementing and controlling 

the efficient, cost-effective flow of and storage of goods and materials as well as related 

information, from point of origin to point of consumption for the purpose of alleviating the 

suffering of vulnerable people (Thomas and Mizushima, 2005). Humanitarian logistics deals 

with logistical issues throughout the disaster management system, including various activities 

such as procuring, storing, transporting food, water, medicine, and other supplies as well as 

human resources, necessary machinery and equipment, and the injured people before, during, 

and after disasters have struck (Nikbakhshand Farahani, 2011). Unpredictability of demand (in 

terms of timing, type, and size), suddenly-occurring demand in very large amounts, short lead 

times for a wide variety of supplies, high stakes associated with adequate and timely delivery, 

and lack of resources (supply, people, technology, transportation capacity, and money) are 

among the few of the factors that distinctly highlights the complexity and unique challenge of 

humanitarian logistics compared to commercial logistics (Balcik and Beamon, 2008). 

Logistics is one of the most critical components of successful humanitarian assistance which 

can mean the difference between a successful or failed operation (Van Wassenhove, 2006). 

Therefore, the effectiveness and efficiency of humanitarian logistics operation plays an 

important role in delivering right assistance to the right people at the right time. Though 

humanitarian response is usually improved with focus on preparative activities that aims at 

reducing the procurement and transportation phase in disaster response (Duran et. al. 2007, 

Tomasini and Van Wassenhove 2009) one may argue the economic feasibility of holding huge 

quantities of inventories of food and non-food items in anticipation of unpredictable disasters. 

Therefore, an emphasis on humanitarian logistics is often placed in response to disaster 

(Barbarosoğlu and Arda 2004; Sheu, 2007).  

Logistics operations during the disaster response involves assessment and planning, 

procurement, transport, customs, cold chain, warehousing and inventory management, fleet 

management, distribution, monitoring and evaluation, and quality control (Logcluster, 2018). 

However, the basic task of humanitarian logistics comprises acquiring and delivering 

requested supplies and services at the places and times they are needed, whilst ensuring best 

value for money (IFRC, 2018). The process of acquiring and delivering emergency relief 

supplies and services normally involves movement of emergency relief supplies between 

suppliers/port of origin, central warehouse, local warehouse and to the final demand areas. This 

http://www.ifrc.org/en/what-we-do/logistics/key-logistics-services/
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process generally necessitates procurement, transport (which involves a combination of 

international, national, and local transport), and warehousing and inventory management done 

right. Given the uncertain nature of disasters it is almost impossible to determine the location 

of the local warehouses beforehand which makes the transportation and/or relief distribution 

process a complicated task. A warehouse is simply defined as a planned space for the storage 

and handling of goods and material. In general, warehouses are focal points for product and 

information flow between sources of supply and beneficiaries. However, in humanitarian 

supply chains, warehouses vary greatly in terms of their role and their characteristics 

(Logcluster, 2018). Moreover, appropriate location of warehouses plays a detrimental role in 

the success and failure of a humanitarian operation. 

2.4 Facility location in humanitarian operations 

Location decisions arise in a variety of commercial and humanitarian operations. In either 

cases, the success or failure of both commercial and humanitarian operations depends in part 

on the locations chosen for the facilities from where the operations are carried out. As one of 

the core problems in humanitarian logistics operations, facility location is receiving burgeoning 

attention from both academics and practitioners. Facility location problems deal with selecting 

the placement of facilities (often from a list of integer possibilities) to best meet the demanded 

constraints. More specifically, facility location problems serve to decide where, how many, 

how large, and how should demand for the facilities’ services be allocated to the facilities to 

optimally locate them. The answer to these questions depend intimately on the context in which 

the location problem is being solved and on the objectives underlying the location problem 

(Daskin, 2013).  

Generally speaking, facility location problems can be modeled using different approaches. 

While some studies determine locations based on qualitative and quantitative approaches 

together, some use them separately. Moreover, facility location problems can also be modeled 

as covering problems, P-median models, and P-center models. Irrespective of the modeling 

approach either an exact or a heuristic based solution methodology can be applied. In greater 

detail, facility location problems can be classified based on the length of their operational 

horizon, dynamicity, number of objectives, modelling approaches, and so on. However, within 

the humanitarian context a new classification of facilities can be done based on their role in the 

overall humanitarian operation. Below we explain these classifications in detail: 
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2.4.1 Based on length of operational horizon 

Based on the length of the operational horizon as well as timing of operation, facility 

location models intended for humanitarian operations can be categorized as permanent or 

temporary. Permanent facilities are established and operate before the disaster in the pre-

disaster phase and are known to have long or even infinite operational horizon, whereas 

temporary response facilities only operate once the location of the disaster is known in the post-

disaster phase and have a short operational horizon ranging from few weeks to few months. 

While determining the location for a permanent facility is a strategic decision, doing so for 

temporary facility is a tactical/operational decision with which decision-makers are faced after 

a disaster. Examples of permanent facilities are warehouses and pre-designated evacuation 

centers where inventories of relief materials are held, whereas temporary facilities exist in the 

form of logistics hubs, emergency shelters, medical centers, and evacuation centers. 

2.4.2 Based on state of facilities 

Another popular classification of facility location models can be done based on number of 

periods as static location models and dynamic location models. In static location models, the 

inputs do not depend on time; therefore, it considers only a single period input that is a 

representative of set of inputs. The dynamic location models take account of multiple 

operational periods where we are concerned not only with the question of where to locate 

facilities but also with the question of when to open new facilities or to close existing facilities. 

In the static location models facilities sited are normally fixed whereas in the multi-period or 

dynamic models, the location of the facilities is time-varying hence can change within the 

operational horizon. In other words, in the dynamic models, facilities may be opened, closed 

or moved throughout the planning horizon (Ballou, 1968; Wesolowsky and Truscott, 1975). 

However, in some models of dynamic facility location problems, once a facility is opened it is 

assumed to be available for all future periods (Daskin, 2013). Dynamic FLPs can further be 

categorized as dynamic deterministic and dynamic uncertain models based on the nature of the 

parameters under consideration. 

2.4.3 Based on number of objective 

Based on the number of objectives, facility location models can further be classified as 

single objective or multi-objective location models. Facility location problems in humanitarian 

operations are inherently multi-objective in nature. While the humanitarian code of conduct 
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emphasizes on minimizing human suffering, the donation based humanitarian operation is 

often cost constrained creating a tradeoff situation. Commonly used objectives for facility 

location problems in humanitarian context relates to minimizing cost, time or maximizing 

demand satisfaction or minimizing unsatisfied demand.  

2.4.4 Based on the nature of parameters 

Given the unpredictable nature of disasters, humanitarian operations are often tainted with 

high degrees of uncertainties, subsequently the parameters used for modeling location 

problems can either be deterministic or uncertain. Different studies have used different 

approaches; some studies model the uncertain nature using approaches like stochastic 

programming, robust optimization, or possibilistic programming whereas other studies assume 

the parameters to be deterministic. 

2.4.5 Based on the role/purpose of facilities 

Classifying facilities based on their purpose can be unique to humanitarian operations only. 

Within this context, facilities can be classified as warehouse, evacuation center, emergency 

shelter, and emergency medical center. Warehouse (also logistics hub) serves as a planned 

space for the storage and handling of goods and material (Fritz Institute) and acts as a focal 

point for the flow of information and relief goods between suppliers and beneficiaries. Both 

evacuation center and emergency shelter are planned space for providing temporary shelter to 

the affected people.  Emergency medical center is a place designated for taking care of injured 

people. 

2.5 Single objective FLP 

As one of the most popular approach to FLP, the highest number of studies (eighteen) have 

used this approach to model location problem in humanitarian logistics. Table 2.1 lists the 

studies that have used single objective optimization approach to FLP. From Table 2.1 we can 

observe that almost all the studies modeled FLP considering facilities to be static and a single 

period of operation. Consideration of uncertainty seemed to be popular in this category and 

stochastic optimization using either exact algorithm or heuristic algorithm is applied. In terms 

of objective, minimization of expected cost or costs in general was found to be the objective of 

choice in most cases with few studies maximizing coverage, or minimizing distance. While 

single objective optimization seems to be a preferred approach for FLP targeting pre-disaster 
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phase, Doyen et al. (2012), Ahmadi et al. (2015), Pradhananga et al. (2016), Zokaee et al. 

(2017), and Yahyei and Bozorgi-Amiri (2018) have accounted for both pre-and post-disaster 

phase. 
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Table 2.1: List of single objective optimization based studies on FLP 

S.N Author Year Classification based on Solution 

algorithm 

Approach Phase of 

disaster 

Objectives 

No. of 

period 

State of 

facilities 

Objective Nature of 

parameter 

1 Chang et al. 2007 SP Static SO US H Qn Pre Minimize costs 

2 Balcik & Beamon 2008 SP Static SO US E Qn Pre Maximize total expected demand coverage 

3 Ukkusuri & Yushimito 2008 SP Static SO D E Qn Pre Minimize costs 

4 Rawls & Turnquist 2010 SP Static SO US H Qn Pre Minimize expected costs 

5 Duran et al. 2011 SP Static SO D E Qn Pre Minimize the expected average response 

time 

6 Doyen et al. 2012 SP Static SO US H Qn Pre+Post Minimize total cost 

7 Rawls & Turnquist 2012 MP Static SO US E Qn Pre Minimize the expected costs 

8 Yushimito et al. 2012 SP Static SO D H Qn Pre Maximize the coverage of affected regions 

while minimizing human suffering 

9 Galindo & Batta 2013 SP Static SO D E Qn Pre Minimize total expected cost 

10 Rennemo et al. 2014 SP Static SO US E Qn Pre+Post Maximizes utility 

11 Ahmadi et al. 2015 SP Static SO US E+H Qn Post Minimize costs 

12 Salman and Yucel 2015 SP Static SO US H Qn Post Maximize expected demand coverage 

13 Pradhananga et al. 2016 SP Static SO US E Qn Pre+Post Minimize pre and post disaster costs 

14 Tofighi et al. 2016 SP Static MO US E+H Qn Pre Minimize total cost 

15 Zokaee et al. 2016 SP Static SO UR E Qn Pre+Post Minimize total cost 

16 Baskaya et al. 2017 SP Static SO D E Qn Pre Minimizes average distance travelled 

17 Maharjan & Hanaoka 2017 SP Static SO D E Qn Pre Maximize coverage 

18 Elci & Noyan 2018 SP Static SO UC E Qn Pre Minimize total cost 

19 Yahyaei & Bozorgi-

Amiri 

2018 SP Static SO UR E Qn Pre+Post Minimize total cost 

 
SP: Single period; MP: Multi-period; SO: Single objective; D: Deterministic; US: Uncertain stochastic; UR: Uncertain robust; E: Exact 

algorithm; H: Heuristic algorithm; Qn: Quantitative approach MO: Multiple objective; 



25 
 

Table 2.2: List of multi-objective optimization based studies on FLP 

S.N Author Year Classification based on Solution 

algorithm 

Approach Phase of 

disaster 

Objectives 

No. of period State of 

facilities 

Objective Nature of 

parameter 

1 Tseng et al.  2007 MP Static MO D E Qn Post Minimize total cost  

Minimize total travel time  

Maximize minimum satisfaction 

2 Doerner et al.  2009 SP Static MO D E+H Qn Pre Minisum facility location criterion and 

maximal covering location criterion  

Minimization of tsunami risk  

Minimization of costs 

3 Salmeron & Apte 2010 SP Static MO US E Qn Pre Minimize expected number of casualties  

Minimize expected unmet transfer 

population 

4 Bozorgi-amiri et 

al. 

2013 SP Static MO U E Qn Pre Minimize sum of expected value and 

variance of total cost  

Minimize sum of maximum shortage 

5 Abounacer et al. 2014 SP Static MO D E+H Qn Pre Minimize the total transportation duration  

Minimize the total number of agents  

Minimize the non-covered demand 

6 Barzinpour & 

Esmaeili 

2014 SP Static MO D E Qn Pre Maximize cumulative coverage  

Minimize total cost 

7 Rezaeo-Malek & 

Tavakkoli-

Moghaddam 

2014 SP Static MO UR E Qn Pre Minimize average response time  

Minimize total operational cost 

8 Wang et al. 2014 SP Static MO D H Qn Pre Minimization of the maximum vehicle route 

travelling time  

Minimization of relief distribution cost  

Maximization of the minimum route 

reliability 

9 Bozorgi-amiri 

and Khorsi 

2016 MP Static MO US E Qn Pre+Post Minimizes maximum unsatisfied demand  

Minimize total travel time  

Minimize pre- and post-disaster cost 

10 Yilmaz and 

Kabak 

2016 SP Static MO D E Qn Post Minimizing distance  

Minimizing number of facilities 
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Table 2.2 (contd.): List of multi-objective optimization based studies on FLP 

S.N Author Year Classification based on Solution 

algorithm 

Approach Phase of 

disaster 

Objectives 

No. of period State of 

facilities 

Objective Nature of 

parameter 

11 Haghi et al. 2017 SP Static MO U E+H Qn Pre+Post Maximize response level  

Minimizing total cost 

12 Jha et al. 2017 SP Static MO US H Qn Pre+Post Minimize total cost  

Maximize customer satisfaction 

13 Sahebjamnia et 

al.  

2017 SP Static MO D Simulation Qn Pre Total cost  

Reduce response time 

14 Babaei & 

Shahanaghi 

2017 SP Static MO U E+H Qn Pre Minimize loss or logistic cost  

Maximize chance of demand satisfaction  

Maximize budget 

15 Vahdani et al. 2018 MP Static MO UR H Qn Pre+Post Minimizing total cost  

Minimizing total time  

Maximize route reliability 

16 Tavana et al. 2018 MP Static MO D H Qn Pre+Post Minimize preparedness cost  

Minimize total relief operational cost  

Minimize total operational relief time 

Table 2.3: List of studies focusing on temporary FLP 

S.N Author Year Classification based on Solution 

algorithm 

Approach Phase of 

disaster 

Objectives 

No. of 

period 

State of 

facility 

Objective Nature of 

parameter 

1 Afshar & Haghani 2012 MP Static SO D E Qn Pre Minimize total weighted unsatisfied demand 

2 Lin et al. 2012 MP Static SO D H Qn Post Minimize logistics and penalty costs 

3 Khayal et al. 2015 MP Dynamic SO D E Qn Post Minimize logistics and penalty costs 

4 Cavdur et al. 2016 SP Static SO US E Qn Post Minimize total distance travelled, unmet demand, 

and total number of facilities in terms of cost. 

5 Stauffer et al.  2016 MP Static SO D E Qn Pre+Post Minimizes total vehicular costs over the planning 

period. 

 



27 
 

2.6 Multi-objective facility location problem 

Despite the popularity of single objective optimization models, many studies have used the 

multi-objective approach to model different types of problems within humanitarian logistics. 

Moreover, multiple objectives are a distinguishing feature of humanitarian logistics operations 

unlike in the commercial sector where the minimization of logistics costs is the primary 

motivation. Table 2.2 tabulates the studies which have considered more than one objective 

when determining the location of logistical facilities. From Table 2.2 we can observe that the 

objectives of: (1) minimizing cost; (2) minimizing travel/response time; (3) maximizing 

satisfaction; (4) minimizing unsatisfied demand; (4) maximizing coverage are the different 

types of objectives considered by different studies. Cost can be observed as the most popular 

objective amidst the studies using multi-objective approach to FLP. The objectives of concern 

can broadly be categorized into the cost and the humanitarian objectives. 

Among a total of sixteen studies adopting multi-objective optimization approach to FLP, most 

of the studies (eleven) focus on the pre-disaster stage where the facilities under consideration 

are static whereas, Tzeng et al. (2007), Bozorgi-Amiri and Khorsi, (2016), Haghi et al. (2017), 

Jha et al. (2017), Vahdani et al. (2018), and Tavana et al. (2018) focuses both on the pre- and 

post-disaster stage. While facilities are assumed to be static in almost all the studies, the studies 

focusing on pre- and post-disaster stage considers uncertainty in parameter values. In terms of 

solution algorithm studies have adopted both exact and heuristic algorithm. However, the 

review of these studies reveal that none of the studies using multi-objective approach has 

addressed the temporary FLP. 

Within the genre of multi-objective optimization problem there exists several solution methods. 

The solution methods can broadly be classified into:  

2.6.1 A priori method  

A priori method requires that sufficient preference information is expressed before the solution 

process. Well known examples of a priori methods include scalarization, lexicographic method, 

and goal programming. This method is especially useful when decision-makers are available 

and their preference can be elicited. One disadvantage of this method is that it cannot produce 

all the Pareto optimal solutions. 

2.6.2 A posteriori method 

A posteriori methods aim at producing all the Pareto optimal solutions or a representative 

subset of the Pareto optimal solutions. Most a posteriori methods fall into either one of the 
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following two classes: mathematical programming based a posteriori methods, where an 

algorithm is repeated and each run of the algorithm produces one Pareto optimal solution, and 

evolutionary algorithms where one run of the algorithm produces a set of Pareto optimal 

solutions. The main advantage of evolutionary algorithms, when applied to solve multi-

objective optimization problems, is the fact that they typically generate sets of solutions, 

allowing computation of an approximation of the entire Pareto front. The main disadvantage 

of evolutionary algorithms is their lower speed and the Pareto optimality of the solutions cannot 

be guaranteed. It is only known that none of the generated solutions dominates the others. 

2.7 Temporary facility location problem during disaster response  

In this section we review the studies that have used the term ‘temporary facility/hub’ in 

their studies to provide a state of the art in temporary FLP. The term temporary came into light 

just recently and has been gaining growing attention. Table 2.3 shows summarized review of 

the studies using the term ‘temporary’ for facility location. In the study conducted by Afshar 

and Haghani (2012), temporary facilities receive, arrange, and ship the relief commodities 

through a distribution network during the initial response stage for deployment to lower levels. 

The authors’ model integrated logistics disaster operations by minimizing total weighted 

unsatisfied demand. Their model considers vehicle routing, pickup/delivery schedules, and the 

optimal location of temporary facilities. Lin et al. (2012) define temporary depots as an 

intermediator between the central depot and demand points. They propose a two-phase 

heuristic approach to locate temporary depots and allocate covered demand by minimizing 

logistics and penalty costs. Khayal (2015) develops a network flow model for the dynamic 

selection of temporary distribution facilities and allocation of resources for emergency 

response planning by minimizing logistics and penalty costs. In their study, they allow for the 

transfer of excess resources between temporary facilities operating in different time periods to 

reduce deprivation. 

In Cavdur et al. (2016), temporary disaster response facilities serve disaster victims until central 

disaster response units arrive. The authors develop a two-stage stochastic program for 

allocating temporary disaster response facilities in short-term disaster operations by 

minimizing the total distance travelled, unmet demand, and the cost of facilities. Finally, in 

Stauffer et al. (2016), a single objective dynamic hub location model with the option for 

temporary hubs for managing the vehicle fleet is developed. The model minimizes total 

vehicular costs over the planning period to determine the location of temporary hubs for 
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vehicles. The temporary hub only opens after a mega disaster and operates as a regional hub 

for vehicles if sufficient vehicles are in the disaster location. Nevertheless, it is important that 

a single temporary facility can provide the minimum services for short-term storing, sorting, 

and handling that involves consolidating and deconsolidating emergency relief materials. 

From the review of the studies focusing on temporary FLP, we can conclude that single 

objective optimization using either exact or heuristic algorithm has been a popular research 

direction, however these studies do not to take account of important aspects like the short 

operational horizon, time-varying nature of temporary facilities, inherent uncertainty in 

decision making during disaster response situations, uncertainty arising due to impreciseness, 

and multiple decision-makers prevalent in post-disaster decision-making. 

2.8 Multi-criteria FLP 

Multi-criteria decision making (MCDM) indicates a discipline of operations research that 

considers decision problems in the context of a number of decision criteria (Triantaphyllou et 

al., 1998). Specifically, MCDM includes a series of techniques “aimed at supporting decision-

makers faced with evaluating alternatives taking into account multiple, and often conflictive, 

criteria” (Thokala and Duenas, 2012). Multi-criteria FLP is another approach used for 

determining the location of facilities in humanitarian logistics. Within the context of MCDM, 

multi-attribute decision-making method (MADM) is one popular method used for decision-

making process which involves evaluation of qualitative and quantitative attributes. Of the 

many MADM methods reported in the literature (Saaty, 1980, 2000; Hwang and Yoon, 1981, 

Chen and Hwang, 1992; Yoon and Hwang 1995; Olson, 1996; Triantaphyllou and Sanchez, 

1997; Zanakis et al., 1998; Gal et al., 1999; Triantaphyllou, 2000; Figueira et al., 2005) simple 

additive weighing (SAW), Analytic Hierarchy Process (AHP), Technique for Order Preference 

by Similarity to Ideal Solution (TOPSIS), PROMETHE, ELECTRE are among the few 

important methods that have been frequently applied in decision-making problems. Table 2.4 

lists the studies that uses multi-criteria approach to FLP for determining the location of 

facilities in the humanitarian context. From Table 2.4 we can elicit that AHP is the most popular 

multi-criteria approach used followed by PROMETHE, ELECTRE, TOPSIS, and goal 

programming. While most of the studies focus on the pre-disaster stage Vitoriano et al. (2011) 

and Turgut et al. (2011) develops model for post-disaster stage. The choice of attributes/criteria 

differ based on the context of each study however, cost seems to be common to almost all the 

studies. In terms of the number of decision-makers considered, He et al. (2017) and Timperio 
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et al. (2017) are the only two studies that include more than one decision-maker in the decision-

making process. Nonetheless, these studies neither deal with temporary facility location 

problem nor consider attributes pertinent to these facility’s establishment highlighting the need 

for further studies on this topic. 

Table 2.4: List of multi-criteria FLP studies 

S.N. Author Year Approach MCDM-Method Phase of 

disaster 

Decision 

makers 

Attributes/Criteria 

1 Zhang et al. 2009 Ql AHP Pre N Safety and reliability  

Transportation condition  

Situation of disaster affected area  

Natural environment 

2 Vitoriano et 

al. 

2011 Ql Goal 

programming 

(GAMS+CPLEX) 

Post N Total cost  

Equity  

Priority  

Reliability  

Security 

3 Turgut et al 2011 Ql AHP Post N Cost  

Transportation  

Infrastructure  

Geographical location  

Suitability of climate 

4 Degener et 

al. 

2013 Ql PROMETHEE 

I+II 

Pre S Cost  

Delivery time  

Spatial distance  

Infrastructure  

Climate  

Economic aspects  

Personnel-related aspects 

5 Bozorgi-

Amiri & 

Asvadi  

2015 Ql AHP Pre S Availability  

Risk  

Technical issues  

Cost  

Coverage 

6 Roh et al. 2015 Ql AHP + Fuzzy 

TOPSIS 

Pre M Location  

National stability  

Cost  

Cooperation  

Logistics 

7 He et al. 2017 Ql ELECTRE-II Pre S Traffic condition  

Capacity  

Surrounding environment 

Distance  

Cost 

8 Timperio et 

al. 

2017 Ql Fuzzy AHP Pre M Coverage  

Access to affected zone Risk  

Access to infrastructure  

Access to corridor  

Congestion  

National development plan 

 
N: Not specified; S: Single decision-maker; M: Multiple decision-makers; Ql: Qualitative approach 
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2.9 Decision making during disaster response 

Simply defined, decision-making is a thought process of selecting a logical choice from the 

available options. Decision-making for/during disaster response is a rather complicated task 

faced in the aftermath of a disaster. Numerous decisions ranging from strategic, tactical, and 

operational decision are to be made for preparing and responding to humanitarian emergencies. 

Strategic decisions are usually long-term decisions which includes determining the location of 

permanent warehouses in anticipation of disasters. Tactical decisions are made for an 

operational horizon ranging from medium to long-term, this includes deciding the location of 

temporary hubs, and evacuation centers. Operational decisions are short term decisions made 

for daily or weekly operations, this may include selecting the location of last mile relief 

distribution centers of point of distributions.  

The complexity in making these range of decisions arises due to the growing number of 

humanitarian actors, prevalence of multiple and often conflicting objectives, need for 

evaluating several qualitative and quantitative attributes, and inherent complexity and 

uncertainty of the situation. While prevalence of multiple actors is a distinctive feature of 

humanitarian operations existing studies focusing on facility location problem have not taken 

account of it. However, Roh et al. (2015) discusses about prevalence of multiple decision-

makers in their study and Timperio et al (2017) is one such study which has taken account of 

multiple experts for evaluating location alternatives in their study. Vitoriano et al. (2011) notes 

a lack of attention on development of mathematical models and solution algorithms for 

strategic and tactical decisions in the field of humanitarian logistics. Furthermore, our review 

of studies on FLP in humanitarian logistics shows that only a small number of studies has taken 

account of complexity of decision-making post disaster and the need for including multiple 

decision-makers.  

Humanitarian operations often receives attention and response from diverse group of 

responders coming from different backgrounds. Many a times disaster response sees 

involvement of national government, international communities, nonprofit humanitarian 

organizations, logistics companies, local communities, and religious groups. This diversity 

necessitates studies to take account of both homogeneity and heterogeneity among the 

decision-makers. Therefore, nature of the decision-makers and their decision opinions can lead 

to the generation of four situations:  
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(1) When the decision-makers are homogeneous and their decision opinions are also 

homogeneous 

(2) When the decision-makers are homogeneous but their decision opinions are heterogeneous  

(3) When the decision-makers are heterogeneous but their decision opinions are homogeneous 

(4) When the decision-makers are heterogeneous and their decision opinions are also 

heterogeneous. 

2.10 Group decision making (GDM) 

Group decision making is the process of making a judgement based on the opinion of 

different individuals. A GDM process can be defined as a decision situation where (1) there 

are two or more individuals’ different preferences but the same access to information, each 

characterized by his/her own perceptions, attitude, motivations, and personalities; (2) all 

recognize the existence of a common problem; and (3) all attempt to reach a collective decision 

(Bui, 1987). The inherently multi-actor nature of decision-making during large scale disaster 

can hugely benefit from GDM. The concept of GDM can be used to incorporate multiple 

decision-makers’ decision opinions. While moving from a single decision-maker to a multiple 

decision-maker setting plays an important role in successful decision making, it also introduces 

a great deal of complexity into the analysis. Fuzzy multi-attribute methods are often coupled 

with GDM to address the vagueness and imprecision inherent in location decisions. The GDM 

concept can be applied to the popular MADM techniques like SAW, AHP, and TOPSIS (Rao, 

2007 pp. 38).  

2.11 Uncertainty in humanitarian operations 

Generally, disasters are characterized by a high degree of uncertainty. Oxford Dictionary 

defines uncertainty as the state of being uncertain; Uncertain is defined as not able to be relied 

on; not known or definite. Uncertainties can prevail both in pre-disaster planning stage and the 

post-disaster response phase. In the pre-disaster stage uncertainties arises due to the 

unpredictable nature of disasters, while in the post-disaster stage uncertainties arise due to the 

lack of information, poor quality of information, due to information asymmetry, or due to lack 

of cooperation and coordination between the involved parties. Existing studies on humanitarian 
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operations have considered uncertainties arising in demand, product prices, supply availability, 

affected areas, demand location, and transportation network (Liberatore et al. 2013).  

Uncertainties may arise due to randomness, fuzziness, fuzzy randomness and greyness. From 

the viewpoint of optimization theory, there is no difference among the uncertainties such as 

randomness, fuzziness, fuzzy randomness and greyness except for the arithmetical operations 

on them. Liu (1999) named the optimization theory in uncertain (random, fuzzy, fuzzy random, 

grey, etc.) environments the uncertain programming. Based on the extant of literature 

uncertainty can be modeled in three different approaches: 

2.11.1 Stochastic optimization 

In Stochastic Optimization, the uncertain numerical data are assumed to be random. In the 

simplest case, these random data obey a known in advance probability distribution, while in 

more advanced settings, this distribution is only partially known. Stochastic location models 

assumes scenarios of disaster occurrence and its impact and assumes the values of parameters 

to follow a probability distribution with each possible scenario. The uncertainty here refers to 

the uncertainty associated with the occurrence of disaster and its accompanying impacts in 

terms of affected people, transportation accessibility among other issues. Stochastic location 

models are typically applied for preparedness planning. 

2.11.2 Robust optimization 

Robust optimization is a field of optimization theory that deals with optimization problems in 

which a certain measure of robustness is sought against uncertainty that can be represented as 

deterministic variability in the value of the parameters of the problem itself and/or its solution. 

Robust optimization works with a deterministic, set-based description of the uncertainty. The 

robust optimization approach constructs a solution that is feasible for any realization of the 

uncertainty in a given set. Unlike stochastic location models, robust location models do not 

presume the knowledge of probability distribution of parameters to be preexisting, rather a set 

of possible scenarios are developed/considered. The concept of uncertainty here is similar to 

uncertainty in stochastic location models. Robust location models are also typically applied for 

preparedness planning. 

2.11.3 Fuzzy programming 

Fuzzy programming offers a powerful means of handling optimization problems with fuzzy 

parameters. Fuzzy programming can address issues arising due to epistemic uncertainty. 

https://en.wikipedia.org/wiki/Optimization_(mathematics)
https://en.wikipedia.org/wiki/Uncertainty
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Epistemic uncertainty arises due to lack of knowledge of decision-maker about the actual value 

of parameters. Unlike both stochastic and robust optimization approach, fuzzy programming 

only deals with the impreciseness in the values of the parameters where no presumption 

regarding the scenarios of disasters and probability distribution of parameter values is required. 

This is especially suitable for post-disaster operations. 

Uncertainty in the required data is one of the issues when designing a humanitarian relief chain 

via optimization (Tofighi et al. 2016). Randomness and fuzziness are the two main sources of 

uncertainties (Pishvaeee and Torabi, 2010; Pishvaee et al. 2012; Tofighi et al. 2016). 

Randomness stems from the random nature of data for which, discrete or continuous 

probability distributions are estimated based on available but sufficient objective/historical data. 

Stochastic or robust programming approaches are often used to take account of the randomness 

where the values of the parameters are assumed to follow a probability distribution whenever 

random distributional information is available for input data. This usually requires events to 

repeat hence, it is applicable when historical data is available. Whereas fuzziness arises due to 

the impreciseness in predicting the parameter value either due to lack of knowledge regarding 

their exact values i.e., facing with epistemic uncertainty about these data (Kabak and Ulengin, 

2011; Pishvaee and Torabi, 2010) or due to information asymmetry. In this study, we are 

interested in accounting for epistemic uncertainty. 

Fuzzy decision theories attempt to deal with the vagueness—that is, fuzziness—inherent in the 

subjective or imprecise determination of preferences, constraints, and goals (Yager and Filev, 

1994). In addition to its abundant application in commercial logistics, fuzzy group decision 

making is a popular approach used for facility location problems (cf. Kahraman et al. 2003; 

Chou et al. 2008; and Ertuğrul (2011)). However, their application in humanitarian logistics is 

nominal.  

Table 2.5 shows the list of studies that has taken account of uncertainty in different phases of 

disaster for modeling location problem. From the table, we can observe that accounting for 

uncertainty in parameters is popular among the studies intended for location selection in pre-

disaster phase. Ahmadi et al. (2015), Salman and Yucel (2015), and Cavdur et al. (2016) are 

the only three studies that focuses specifically on post-disaster facility location problem. 

Among the two sources of uncertainty, more often studies have addressed uncertainty arising 

due to randomness (Table 2.5) and therefore have used stochastic or robust approaches to 

account for it. Tofighi (2016) is one such study that has accounted for uncertainty arising due 
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to impreciseness or fuzziness in the post-disaster phase. Tofighi (2016) developed a two-stage 

scenario-based possibilistic-stochastic programming approach to address a two-echelon 

humanitarian logistics network design problem in preparation for potential earthquakes. The 

study aims to minimize distribution time and cost of unmet demand and considers the 

uncertainty that may arise in the pre- and post-disaster phase. The study uses stochastic 

approach to generate disaster scenarios and a possibilistic approach to account for uncertainty 

in parameter values in pre and post-disaster phase. However, the study does not deal with the 

temporary facility location problem which comes into operation in the post-disaster phase. 

Further review of studies listed in Table 2.5 demonstrates that all the studies adopts a purely 

quantitative approach to modeling location problem.   



36 
 

Table 2.5: List of studies taking account of uncertainty for modeling location problem 

S.N Author Year 

Classification based on 
Solution 

algorithm 
Approach 

Phase of 

disaster 
Objectives No. of 

period 
Objective 

Nature of 

parameter 

1 Chang et al.  2007 SP SO US H Qn Pre Minimize costs 

2 Balcik & Beamon  2008 SP SO US E Qn Pre Maximize total expected demand coverage 

3 Rawls & Turnquist  2010 SP SO US H Qn Pre Minimize expected costs 

4 Salmeron & Apte  2010 SP MO US E Qn Pre 
Minimize expected number of casualties  

Minimize expected unmet transfer population 

5 Doyen et al.  2012 SP SO US H Qn Pre+Post Minimize total cost 

6 Rawls & Turnquist  2012 MP SO US E Qn Pre Minimize the expected costs 

7 Bozorgi-amiri et al.  2013 SP MO U Exact Qn Pre 

Minimize sum of expected value and variance of 

total cost   

Minimize sum of maximum shortage 

8 Rennemo et al.  2014 SP SO US E Qn Pre+Post Maximizes utility 

9 

Rezaeo-Malek & 

Tavakkoli-

Moghaddam  

2014 SP MO UR E Qn Pre 
Minimize average response time  

Minimize total operational cost  

10 Ahmadi et al.  2015 SP SO US E+H Qn Post Minimize costs 

11 Salman and Yucel  2015 SP SO US H Qn Post Maximize expected demand coverage 

12 Pradhananga et al.  2016 SP SO US E Qn Pre+Post Minimize pre and post disaster costs 

13 Tofighi et al.  2016 SP MO US E+H Qn Pre Minimize total cost 

14 Zokaee et al.  2016 SP SO UR E Qn Pre+Post Minimize total cost 

15 
Bozorgi-amiri and 

Khorsi  
2016 MP MO US E Qn Pre+Post 

Minimizes maximum unsatisfied demand   

Minimize total travel time  

Minimize pre- and post-disaster cost 
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Table 2.5 (contd.): List of studies taking account of uncertainty for modeling location problem 

S.

N 
Author Year 

Classification based on 
Solution 

algorithm 
Approach 

Phase of 

disaster 
Objectives 

No. of 

period 
Objective 

Nature of 

parameter 

16 Cavdur et al.  2016 TS SO U E Qn Post 
Minimize total distance travelled, unmet demand, 

and total number of facilities in terms of cost. 

17 Haghi et al.  2017 SP MO U E+H Qn Pre+Post 
Maximize response level   

Minimizing total cost 

18 Jha et al.  2017 SP MO US H Qn Pre+Post 
Minimize total cost  

Maximize customer satisfaction 

19 Babaei & Shahanaghi  2017 SP MO U E+H Qn Pre 

Minimize loss or logistic cost  

Maximize chance of demand satisfaction  

Maximize budget 

20 Elci & Noyan  2018 SP SO UC E Qn Pre Minimize total cost 

21 
Yahyaei & Bozorgi-

Amiri  
2018 SP SO UR E Qn Pre+Post Minimize total cost 

22 Vahdani et al.  2018 MP MO UR H Qn Pre+Post 

Minimizing total cost  

Minimizing total time  

Maximize route reliability 
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2.12 Positioning in the current literature 

This dissertation can be positioned in the current literature in temporary facility location 

problem with the following contributions: 

 Firstly, this study provides a new dimension to the TLH location problem by 

incorporating the conflicting objectives, the diverse preferences of multiple decision-

makers, its temporary nature, need for multi-sourcing, uncertainty in parameters, 

quantitative and qualitative attributes, and determining the order of establishment of the 

selected facilities. 

 In Chapter – 3, we develop a multi-period multi-objective optimization model with 

multi-sourcing for the TLH location problem. It uses a FFRS under GDM condition to 

calculate the weight of objectives in a multi-objective optimization problem. The 

difficulty in calculating the weight of objectives is one of the largest challenges 

preventing the use of the weighted sum method; thus, the application of the FFRS under 

GDM is a novel feature of this study among those focusing on humanitarian operations. 

The fuzzy approach uses fuzzy linguistic variables to illicit the preferences of decision-

makers for different objectives. This approach is suitable for multi-actor GDM 

problems given the uncertainty and complexity inherent in decision-making during 

disasters.  

 In Chapter – 4, we develop a multi-objective location-allocation model for relief supply 

and distribution under uncertainty. The uncertainty under consideration is the epistemic 

uncertainty arising due to the impreciseness in predicting the parameter value. A fuzzy 

credibility based chance constrained programming is used to cope with epistemic 

uncertainty of imprecise data by using suitable possibility distribution. The model takes 

account of the time-varying and uncertain nature of parameters and time-varying nature 

of TLH location.  

 In Chapter – 5, we introduce the concept of the order of establishment of TLHs, this 

study develops and implements a three-stage methodology aimed at the effective 

utilization of mobile storage units when their availability is scarce. We show that 

amalgamating an optimization model with the multi-attribute decision-making 

approach enables the evaluation of both subjective and objective attributes, and has 

enhanced applicability to real life scenarios. We illustrate the value of applying fuzzy 

linguistic variables to deal with the vagueness and imprecision inherent in evaluating 
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subjective attributes in post-disaster decision-making that involves multiple decision-

makers.  

 To support the developed methodology and contributions, we implement a numerical 

illustration using data from a real-life disaster—the Nepal earthquake of April 2015.  

2.13 Chapter summary 

In this chapter we reviewed the existing literature on facility location problem within the 

context of humanitarian logistics.  Of the numerous types of facilities prevalent in humanitarian 

operations, we limited our review to studies focusing on facilities intended for relief 

distribution with special attention to temporary facilities. Our review reveals that most of the 

studies focus on the pre-disaster stage highlighting the importance of facilities for enhancing 

preparedness. In term of modelling approach, studies have modeled a single period assuming 

facilities to be static in nature. Contrary to the humanitarian code of conduct which states that 

highest priority should be given to minimizing humanitarian suffering the objective of 

minimizing cost has been the most preferred objective among all the studies we have reviewed.  

From the methodological perspective, we reviewed literatures using both optimization 

approach and MCDM approach to location selection problem and found out that optimization 

is more popular as a methodology compared to MCDM. Amid the studies using optimization 

approach we further classified studies based on the number of objectives and found out that 

both single objective and multi-objective approaches are almost equally popular. In terms of 

solution algorithm both heuristic and exact methods seem to be popular. While the number of 

studies developing models for facilities without specific mentioning of its state is quite huge, 

the number of studies focusing on temporary facilities are quite small. Similarly, the number 

of studies adopting multi-criteria approach to FLP is also limited.  

From the literature review we can conclude that only a limited number of studies focus on 

modeling temporary nature of disaster response facilities. Moreover, none of the studies 

focusing on temporary facilities have incorporated multiple objectives for FLP in humanitarian 

logistics; decision aid models that involve multiple actors are rarely used to address temporary 

FLP; the uncertain nature of parameters has not been taken into account; and the need for 

determining their order of establishment when the resources are limited. According to Kovacs 

and Spens (2007), the typical actors involved in disaster response operations include aid 

agencies, donors, governments, the military, logistics providers, and other non-governmental 
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organizations, which makes the presence of multiple actors another distinctive feature of 

humanitarian logistics operations. From a practical perspective, the many actors involved in 

disaster management must thus be included in location selection.  
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CHAPTER 3 A multi-actor multi-objective optimization approach for 

locating temporary logistics hubs during disaster response 

 

3.1 Introduction 

Multiple objectives are a distinguishing feature of humanitarian logistics operations unlike 

in the commercial sector where the minimization of logistics costs is the primary motivation. 

Multi-objective optimization is capable of handling the non-commensurable nature of different 

types of objectives through three stages: model building, optimization, and decision-making 

(preference articulation). The decision-making step (involving either single or multiple actors) 

can happen either before the optimization (a priori articulation of preferences) or thereafter (a 

posteriori articulation of preferences).  Multiple actors are another differentiating feature of 

disaster response operations. The typical actors involved in disaster response operations ranges 

from large scale aid agencies, donors, governments, the military, logistics providers, other non-

governmental organizations, to very small local community groups.  From a practical 

perspective, the many actors involved in disaster management must thus be included in location 

selection.  

Humans are unsuccessful in making quantitative predictions, whereas they are comparatively 

efficient in qualitative forecasting. Further, humans are more prone to interferences from 

biasing tendencies if they are forced to provide numerical estimates since the elicitation of 

numerical estimates forces an individual to operate in a mode which requires more mental 

effort than that required for less precise verbal statements (Karwowski and Mital, 1986; 

Kahraman et al. 2003). Fuzzy linguistic models permit the translation of verbal expressions 

into numerical ones, thereby dealing quantitatively with imprecision in the expression of the 

importance of each criterion.  While decision-making under conditions of risk and uncertainty 

have been modeled by probabilistic decision theories and by game theories, fuzzy decision 

theories attempt to deal with the vagueness or fuzziness inherent in subjective or imprecise 

determination of preferences, constraints and goals (Yager 1982). 

The vagueness and ambiguity that surrounds decision-making during emergencies often 

increases the complexity of the location selection problem. Hence, different approaches must 

be employed. Among the approaches capable of incorporating multiple actors into the decision-
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making process, the fuzzy factor rating system (FFRS), which is applicable to both individual 

and group decision-making (GDM) (Chou et al., 2008), is an effective method for solving 

problems in a fuzzy group decision environment (Ou and Chou, 2009). Such a fuzzy approach 

is suitable for GDM problems under uncertainty because of the vagueness and imprecision 

inherent in decision-making during emergencies.  

Based on the foregoing, the existing literature on temporary facilities fails to take account of 

the (1) temporary nature, (2) multi-objective nature, or (3) multi-actor nature of disaster 

response facilities. Therefore, to address the gaps in the literature, we develop a multi-actor, 

multi-period multi-objective optimization model with multi-sourcing and a short operational 

horizon to determine the location of temporary logistics hubs (TLHs) in the post-disaster stage. 

The objectives are minimizing total costs and minimizing total unsatisfied demand. We use the 

weighted sum method to solve the multi-objective optimization model and an FFRS under 

GDM to determine the weight of the objectives under the a priori articulation of preferences. 

The FFRS under the GDM condition enables combining the decision opinions of a multitude 

of actors prevalent in disaster relief operations. 

3.2 Fuzzy factor rating system under group decision making 

The factor rating system, which is also known as a multi-factor rating system or scoring 

method, is a popular and easily applied subjective decision-making method under the multi-

attribute decision-making approach (Heragu, 1997; Chou et al., 2008). The chaotic and often 

turbulent nature of disaster management necessitates a simple yet efficient method that includes 

decision-makers’ preferences. Although conventional factor rating system approaches have 

been successfully applied for rating different criteria, these approaches are less effective when 

dealing with the inherent imprecision of linguistic valuation in the decision-making process 

(Liang and Wang, 1991; Chen, 2001; Kahraman et al., 2003; Chou et al., 2008). To overcome 

the shortcomings of traditional approaches, fuzzy set theory, which allows for vague and/or 

imprecise boundaries, provides a mechanism to use fuzziness in the subjective or imprecise 

determination of preferences, constraints, goals, and group decisions (Kahraman et al., 2003; 

Yager, 1982; Ou and Chou, 2009) is integrated with the factor rating system in this study. 

The review of the literature reveals the integration of many concepts and approaches with fuzzy 

set theory to enhance its capability of handling multi-attribute decision-making problems with 

imprecise attributes. While existing studies have used statistical approaches, scaling 
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approaches, and multi-attribute approaches, the weights obtained through multi-attribute 

methods are considered to be more stable than those produced by direct evaluations (Maggino 

and Ruviglioni, 2009). Additionally, a fuzzy approach is more suitable for GDM problems 

given the uncertainty inherent in disaster management operations. The FFRS is thus an 

effective method for solving problems in a fuzzy group decision environment (Ou and Chou, 

2009). 

3.3 Problem description 

The problem under consideration is determining the location of TLHs. Figure 1.4 shows the 

structure of a typical humanitarian supply chain and the positioning of TLHs within. The 

supplies from permanent warehouses or entry points typically come in larger vehicles, which 

might be unable to access affected areas because of partial or complete damage to roads and 

bridges. In the absence of logistics hubs, the congestion created by larger vehicles using 

vulnerable road networks may cause delivery times to increase significantly. In particular, the 

temporary nature of hubs is important in developing countries where infrastructure facilities 

are poor and disaster preparedness usually falls short. The major two decisions regarding 

temporary hubs are to determine (1) their optimal number and (2) location while considering 

the length of their operational horizon. 

Determining the location of TLHs in the immediate aftermath of a disaster is a complicated 

task because of the multi-actor and multi-objective nature of the decision-making process. The 

two objectives considered in this study are minimizing total costs and minimizing total 

unsatisfied demand, which are non-commensurable. The choice of objectives represents an 

attempt to minimize total unsatisfied demand of affected people within the confines of limited 

budget. Our interview with the decision-makers revealed that the humanitarian organization’s 

operations are often carried out within the confines of a limited budget therefore requiring cost 

to be minimized for the entire length of operation while also minimizing total unsatisfied 

demand. Moreover, cost is a function of distance and transportation cost per vehicle per 

kilometer and time is a function of distance and vehicular speed. Although we do not explicitly 

consider time minimization as the model objective, we are basically minimizing distance to 

reach affected areas within the current model formulation. Besides, lack of vehicular speed 

data during the immediate aftermath of disaster prevents using time as an objective. Under the 

given circumstances cost minimization has been used as a proxy for time minimization.  
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Typically, it is impossible for a single organization to meet the demand of all affected people 

in need, as such no single organization can be the sole decision-maker. Therefore, involving 

multiple humanitarian organizations in the disaster response is crucial for making location 

selection decisions. Furthermore, it is also important to consider the time-varying nature of cost 

attributes and demand of affected areas. The time-varying nature of demand is a common 

feature of humanitarian operations, in which, within the operational horizon, costs, available 

resources, and demand may vary (either increase or decrease) in each time period. Several 

factors affect the short operational horizons of TLHs such as the number of people affected or 

injured, location of the demand points, pattern of relief demand, number of houses damaged or 

destroyed, socioeconomic situation of the affected areas, type of disaster, and accessibility 

conditions within and outside the affected area. The main goal here is to identify how long it 

will take for society to return to normal functioning so that the TLHs can be decommissioned 

and made ready for their next disaster response mission. 

How to prioritize the demand points in the affected area is another aspect of the location 

selection problem that arises because of the nature of disaster impact. Disaster impacts are non-

uniform: some areas are highly affected, while other receive only mild effects. This variation 

necessitates the allocation of emergency relief materials to affected areas’ demand points based 

on the severity of disaster impact. Multi-sourcing ensures that the number of TLHs assigned to 

serve an affected area depends on the severity of the disaster impact in that area. The higher 

the disaster impact, the larger is the number of TLHs assigned. The main decision is to 

determine the number of hubs required to supply emergency relief materials, select their 

locations, and allocate demand to open hubs in such a way that the total objective is minimized 

without exceeding the capacity of facilities over the entire planning horizon. 

3.4 Methodology 

3.4.1 Mathematical model formulation 

The proposed multi-period multi-objective TLH location model with multi-sourcing and a 

short operational horizon allows us to accurately capture the changing levels of relief demand 

and costs over the planning horizon. Multi-sourcing helps ensure agility while addressing 

priority needs, which means that even if one of the hubs fails to meet the demand of affected 

areas, another hub will be able to fulfill this demand without distress. Multi-sourcing thus refers 
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to the situation where demand in each affected area can be split between open facilities. The 

operational horizon refers to the length of time the TLH will be functioning. 

We formulate a multi-objective optimization problem that minimizes total costs and total 

unsatisfied demand under time-varying demand, costs, and available units of emergency relief. 

Each district or demand point has an associated demand for emergency relief materials. Along 

the discrete time horizon, demand from the affected zone changes in a known way related to 

changes in the number of affected people and recovery of affected people, as a result of which 

demand can either increase or decrease or be stable. 

The establishment of logistics hubs is required to meet the demand of affected people over the 

entire relief time horizon. Each logistics hub has a known threshold of emergency relief 

supplies that can be supplied. This threshold depends upon the available units of emergency 

relief supplies, which in turn depends on factors such as resource availability, the quality of the 

disaster response, and in addition to the capacity of TLHs. The amount of emergency relief 

materials available in TLHs can be either less than or equal to the capacity of TLHs but cannot 

exceed their capacity.  

Each demand point can be served from one or more TLHs, a decision determined based on the 

severity of the disaster impact and that the demand can exceed supply. The shipment of 

emergency relief materials between supply points, TLHs, and demand points incurs a variable 

transportation cost proportional to the quantity, distance, capacity of vehicles, and time period. 

Further, the establishment of a new facility incurs a fixed opening cost, which represents the 

initial investment for the mobile storage units, procurement cost, cost of leasing land, and cost 

of transporting the mobile storage units from the supply sources to the candidate TLHs. Our 

model is deterministic in that the location of the disaster and affected areas are known before 

the decision to open a TLH is made. A single commodity emergency relief package is 

considered for distribution purpose. The model formulation epitomizes situation more 

prevalent in developing countries where demand usually exceed supply. The following 

subsection provides the mathematical model and its notations, parameters, and variables. 

3.4.1.1 Model assumptions 

 The location of supply points, candidate TLHs, and PODs and the distance between them 

are known. 
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 Two types of vehicle are used. One for relief transportation and other for relief delivery. 

 The updated information in terms of disaster-induced damage conditions and casualties 

associated with each affected area can be obtained during the crucial rescue period. 

 The total demand of affected people is assumed to be changing by time in a known way, 

and can be split or served by one or more facilities. 

 All parameters of the model including cost, relief availability, and demand are variable 

during the planning horizon. 

 Relief materials are limited in availability. 

 TLHs have maximum available units of relief goods at a certain time period. 

 Multiple decision-makers are considered for determining the weight of objectives only. 

3.4.1.2 Nomenclature 

The notations used in the mathematical model are as follows: 

Sets 

T set of time periods 

I set of supply points 

J set of temporary logistic hubs (TLHs) 

K set of affected area demand points 

Parameters 

𝑇𝐶𝑖𝑗𝑡 transportation cost of shipping one unit of the relief package from supply point i to TLH 

j in period t [USD per unit] 

𝑇𝐶𝑗𝑘𝑡 transportation cost of shipping one unit of relief package from TLH j to the affected 

area’s demand point k in period t [USD per unit] 

𝐹𝐶𝑗 Fixed cost of opening a TLH in the candidate location [USD] 

𝑄𝑆𝑖𝑡 maximum available quantity of emergency relief materials at supply point i ∈ I in period 

t [kg] 

𝑄𝐻𝑗𝑡 maximum available quantity of emergency relief materials at TLH j ∈ J in period t [kg] 

𝑑𝑘𝑡 demand of the affected area’s demand point k in period t [kg] 
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P total number of TLHs 

𝑛𝑘𝑡 number of TLHs allocated for demand point 𝑘 in period t 

M  a very large number 

Variables 

𝑟𝑖𝑗𝑡 amount of emergency relief materials shipped from supply point i ∈ I to TLH j ∈ J in 

period t ∈ T 

𝑞𝑗𝑘𝑡 amount of emergency relief materials shipped from TLH j ∈ J to the affected area’s 

demand points k ∈ K in period t ∈ T 

𝑦𝑗 binary variable that equals 1 if the facility at j is selected as a TLH and 0 otherwise 

𝑧𝑗𝑘𝑡 binary variable that equals 1 if TLH 𝑗 serves demand point 𝑘 in period t ∈ T and 0 

otherwise 

3.4.1.3 Formulation 

The multi-objective optimization problem is formulated as follows: 

Minimize,  

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 1: O1 = ∑ 𝐹𝐶𝑗𝑦𝑗 + ∑ ∑ ∑ 𝑇𝐶𝑖𝑗𝑡𝑟𝑖𝑗𝑡𝑡 +𝑗𝑖𝑗 ∑ ∑ ∑ 𝑇𝐶𝑗𝑘𝑡𝑞𝑗𝑘𝑡𝑡𝑘𝑗   (3.1) 

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 2: O2 = ∑ ∑ 𝑑𝑘𝑡𝑡 − ∑ ∑ ∑ 𝑞𝑗𝑘𝑡𝑡𝑘𝑗𝑘      (3.2) 

Constraints, 

∑ 𝑞𝑗𝑘𝑡𝑘 = ∑ 𝑟𝑖𝑗𝑡𝑖      ∀𝑗 ∈  J, 𝑡 ∈  T       (3.3) 

∑ 𝑟𝑖𝑗𝑡𝑗 ≤ 𝑄𝑆𝑖𝑡                                      ∀𝑖 ∈  I, 𝑡 ∈  T      (3.4) 

∑ 𝑟𝑖𝑗𝑡𝑖 ≤ 𝑄𝐻𝑗𝑡    ∀ 𝑗 ∈  J, 𝑡 ∈  T      (3.5) 

∑ 𝑞𝑗𝑘𝑡𝑘 ≤ 𝑄𝐻𝑗𝑡    ∀𝑗 ∈  J, 𝑡 ∈  T      (3.6) 

∑ 𝑦𝑗𝑗 ≤ 𝑃           (3.7) 

∑ 𝑞𝑗𝑘𝑡𝑗 ≤ 𝑑𝑘𝑡   ∀𝑘 ∈  K, 𝑡 ∈  T     (3.8) 

𝑧𝑗𝑘𝑡 ≤ 𝑦𝑗     ∀𝑗 ∈  J        (3.9) 
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∑ 𝑧𝑗𝑘𝑡𝑗 ≤ 𝑛𝑘𝑡    ∀ 𝑘 ∈  K, 𝑡 ∈  T     (3.10) 

𝑞𝑗𝑘𝑡 ≤ 𝑀𝑧𝑗𝑘𝑡    ∀𝑗 ∈  J, 𝑡 ∈  T      (3.11) 

𝑟𝑖𝑗𝑡 ≥ 0         ∀𝑖 ∈  I, 𝑗 ∈  J, 𝑡 ∈  T     (3.12) 

𝑞𝑗𝑘𝑡 ≥ 0      ∀𝑗 ∈  J, 𝑘 ∈  K, 𝑡 ∈  T     (3.13) 

 𝑦𝑗 ∈ {0,1}     ∀𝑗 ∈  J       (3.14) 

 𝑧𝑗𝑘𝑡 ∈ {0,1}   ∀𝑗 ∈  J,  𝑘 ∈  K, 𝑡 ∈  T       (3.15) 

The objective function (3.1) minimizes total costs, which include the fixed cost of opening a 

TLH, transportation cost from the supply point to the TLH, and transportation cost from the 

TLH to the affected area’s demand points. Objective function (3.2) minimizes total unsatisfied 

demand. 

Constraint (3.3) ensures that the flow of emergency relief materials from the supply points to 

TLHs should be equal to the flow from the TLHs to the affected area’s demand points. 

Constraints (3.4) – (3.6) are the availability constraints. Constraint (3.4) ensures that the 

quantity of emergency relief materials moved from the supply points to the TLHs should be 

less than or equal to the maximum available quantity of emergency relief materials in the 

supply point in each period. Similarly, constraints (3.5) and (3.6) ensure that the quantity of 

emergency relief materials moved from the supply points to the TLHs and from the TLHs to 

the affected area’s demand points should be less than or equal to the maximum available 

quantity of emergency relief materials in the TLHs in each period. Constraint (3.7) limits the 

number of opened hubs to P. Constraint (3.8) ensures that the quantity of emergency relief 

delivered to each demand point does not exceed its demand. Constraint (3.9) ensures that a 

demand point is served by the TLH only if that TLH is open. Constraint (3.10) enforces multi-

sourcing, ensuring that each demand point is served by a prespecified number of TLHs. 

Constraints (3.11) ensures emergency relief distribution only between the assigned TLH and 

the demand point. Constraints (3.12) – (3.15) express the nature of the decision variables used 

in the model. 

3.4.2 Solution strategy for the multi-objective TLH location model 
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In our study, we use a priori method for solving multi-objective optimization problem. This 

involves priori articulation of preference of the decision-makers using FFRS under GDM 

which involves four decision-makers. This solution methodology is especially suitable for 

decision-making during the disaster response phase when a decision that is acceptable to all 

the parties involved is essential. Often the decision-makers have to make myriad of reactive 

decisions in response to the disaster in a very short period of time with little information. When 

the preference in terms of weight of the objectives can be elicited from all the decision-makers 

involved, one Pareto optimal solution can be obtained. This helps in minimizing the overall 

decision-making time and building a sense of ownership of the established TLHs. 

The weighted sum approach is a frequently used method for combining different objective 

functions in a multi-objective optimization problem. This approach, also known as the 

scalarization method, minimizes the positively weighted convex sum of the objectives that 

represents a new optimization problem with a unique objective function. The theorem of the 

weighted sum method states that “if x* is a Pareto-optimal solution of a convex multi-objective 

optimization problem, then there exists a non-zero positive weight vector w such that x* is a 

solution.” This theorem suggests that for a convex multi-objective optimization problem, any 

Pareto solution can be found by using the weighted sum method (Miettinen, 1998). The 

solutions obtained by using different weight settings represent the points on the Pareto front, 

meaning that the solutions are Pareto-optimal. The only requirement is the weight factors wi>= 

0 and sum of wi=1. Therefore, we use the weighted sum method in this study. 

The simplicity of using this method to solve multi-objective optimization problems is often 

complicated by the difficulty in determining the weight of the objectives. The weights used 

represent decision-makers’ preferences and priorities, while the relative value of the weight 

reflects the relative importance of the objectives. Typically, infinitely many Pareto-optimal 

solutions exist for a multi-objective problem. Thus, it is often necessary to incorporate 

decision-makers’ preferences for these objectives to determine a single suitable solution. By 

employing methods that incorporate the a priori articulation of such preferences, the user 

indicates his or her preferences before running the optimization algorithm and this 

subsequently allows the algorithm to determine a single solution. Alternatively, with a 

posteriori articulation of preferences, one manually selects a single solution from a 

representation of the Pareto-optimal set (Marler and Arora, 2010). This study focuses on the 

use of the weighted sum method that incorporates the a priori articulation of preferences. 
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Given the multi-actor nature of disaster management, it is necessary that the weight assigned 

to the objectives comply with the preference of multiple decision-makers. When decisions 

made by more than one person are modeled, two differences from the case of a single decision-

maker can be considered: first, the goals of the individual decision-makers may differ such that 

each places a different ordering on the alternatives; second, the individual decision-makers may 

have access to different information upon which to base their decision. Theories known as n-

person game theories deal with both these considerations, team theories of decision-making 

deal only with the second, and group decision theories deal only with the first (Kahraman et al. 

2003). This study focuses on GDM to determine the weight of the objectives. 

A GDM process can be defined as a decision situation where (1) there are two or more 

individuals’ different preferences but the same access to information, each characterized by 

his/her own perceptions, attitude, motivations, and personalities; (2) all recognize the existence 

of a common problem; and (3) all attempt to reach a collective decision (Bui, 1987). The 

concept of GDM is used to incorporate multiple decision-makers’ decision opinions. Fuzzy 

multi-attribute methods are often coupled with GDM to address the vagueness and imprecision 

inherent in location decisions. We use the FFRS under the GDM condition to determine the 

weight of the objectives in the a priori articulation state. This allows us to incorporate multiple 

decision-makers’ decision opinions. 

3.4.3 Fundamentals of fuzzy set theory 

Zadeh (1965) pioneered the use of fuzzy set theory to address problems involving fuzzy 

phenomena. Fuzzy set theory uses approximate rather than precise reasoning (Saaty and Tran, 

2007) and can process data by using partial set membership functions. Fuzzy logic allows 

impersonating ambiguous and uncertain linguistic knowledge and offers a robust framework 

for model designers dealing with systems that contain high uncertainty (Aguilar-Lasserre et al., 

2009). Triangular, trapezoidal, and Gaussian are among the three simplest and most commonly 

used shapes to represent fuzziness. Researchers have proven that triangular and trapezoidal 

shapes perform slightly better than the Gaussian shape because of their computational 

efficiency and the ease of data acquisition (Zimmerman, 2001). While triangular shapes 

represent fuzzy numbers, trapezoidal shapes represent fuzzy intervals. Trapezoidal fuzzy 

numbers are therefore the most widely used form of fuzzy numbers because they can be 

handled arithmetically and interpreted intuitively (Chou et al., 2008). Hence, the linguistic 
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terms assessing scarcely quantifiable variables are represented by trapezoidal fuzzy numbers 

in this study. 

A fuzzy set Ã = (a,  b,  c,  d) on R, a ≤ b ≤ c ≤ d,  is called a trapezoidal fuzzy number if its 

membership function is 

𝜇Ã(𝑥)=

{
 
 

 
 
(𝑥−𝑎)

(𝑏−𝑎)
,        𝑎 ≤ 𝑥 ≤ 𝑏,

1,            𝑏 ≤ 𝑥 ≤ 𝑐,
(𝑥−𝑑)

(𝑐−𝑑)
,        𝑐 ≤ 𝑥 ≤ 𝑑,

0,            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

       (3.16) 

 

 

 

 

 

 

 

Figure 3.1: A trapezoidal fuzzy number 

where 𝑎,  𝑏,  𝑐,  𝑑 are real numbers (Dubois and Prade, 1978; Keufmann and Gupta, 1991). As 

shown in Figure 3.1, the trapezoidal fuzzy number can be denoted by (𝑎,  𝑏,  𝑐,  𝑑). The 𝑥 in the 

interval [𝑏,  𝑐] gives the maximal grade of 𝜇Ã(𝑥)i.e., 𝜇Ã(𝑥)=1; this is the most probable value 

of the evaluation data. The constants c and d are the lower and upper bounds of the available 

areas of the evaluation data, respectively. These constants reflect the fuzziness of the evaluation 

data (Liang, 1999). 

Given two trapezoidal fuzzy numbers, �̃�= (a, b, c, d) and �̃�= (e, f, g, h), the four main 

operations of these two fuzzy numbers can be expressed as follows (Keufmann and Gupta, 

1991; Liang and Wang, 1991; Chen and Hwang, 1992; Chiou et al., 2005): 

1. Addition of two trapezoidal fuzzy numbers ⊕ 

http://www.sciencedirect.com/science/article/pii/S0377221707004754#bib20
http://www.sciencedirect.com/science/article/pii/S0377221707004754#bib20
http://www.sciencedirect.com/science/article/pii/S0377221707004754#bib26
http://www.sciencedirect.com/science/article/pii/S0377221707004754#bib6
http://www.sciencedirect.com/science/article/pii/S0377221707004754#bib9
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�̃� ⊕ �̃� = (a+e, b+f, c+g, d+h), a ≥0, e ≥0      (3.17) 

2. Multiplication of two trapezoidal fuzzy numbers ⊗ 

�̃� ⊗ �̃� = (ae, bf, cg, dh), a ≥0, e ≥0       (3.18) 

3. Multiplication of any real number k and a trapezoidal fuzzy number ⊗ 

𝑘 ⊗ �̃� = (ka, kb, kc, kd), a ≥0, k ≥0       (3.19) 

4. Division of two trapezoidal fuzzy numbers / 

�̃� 

�̃�
 = (

𝑎

ℎ
,
𝑏

𝑔
,
𝑐

𝑓
,
𝑑

𝑒
), a ≥0, e ≥0        (3.20) 

3.4.3.2 Linguistic variables and fuzzy numbers 

In fuzzy set theory, conversion scales are applied to transform linguistic terms into fuzzy 

numbers. Determining the number of conversion scales is generally intuitive: while too few 

conversion scales reduce analytical discrimination capability, too many conversion scales 

make the system overly complex and impractical (Chou et al., 2008). In this study, a scale of 

1–5 is used for the importance weight following Liang (1999). Given the fuzzy nature of this 

weight selection problem, the importance weights of the individual objectives are used as the 

linguistic variables in this study. Table 3.1 lists the linguistic variables and fuzzy numbers used.  

Determination of the conversion scale for the linguistic variables is generally assumed to be 

intuitive: while too few conversion scales reduce analytical discrimination capability, too many 

conversion scales make the system overly complex and impractical. The current study uses a 

scale of 1-5 for the importance weight in the manner employed by Liang and Wang (1991), 

Liang (1999), Yong (2006) and Chou et al. (2008). 

Table 3.1:  Linguistic variables and fuzzy numbers 

 

 

 

 

Linguistic variables Fuzzy numbers 

Very Low (VL) (0,0,0,3) 

Low (L) (0,3,3,5) 

Medium (M) (2,5,5,8) 

High (H) (5,7,7,10) 

Very High (VH) (7,10,10,10) 



53 
 

3.4.4 Algorithm of an FFRS under the GDM condition 

In the following section, we explain the algorithm of the proposed method by using the 

concepts of fuzzy set theory and factor rating system under the GDM condition. The decision-

makers are assumed to act in the best interests of the affected people. The proposed method 

derives its insights from Chou et al. (2008) and Ou and Chou (2009). 

Step 1: Selection of decision-makers 

Under the GDM scenario, multiple decision-makers can be chosen. The choice of decision-

maker also varies case-to-case and country by country. However, the effectiveness of GDM is 

influenced by group size. Yetton and Botter (1983) point out that a group of five, and to a lesser 

extent, seven, is the most effective. A committee of decision-makers can be formed based on 

their overall role in the disaster management activity. The nature of these decision-makers and 

their decision opinions can lead to the generation of four situations: (1) when the decision-

makers are homogeneous and their decision opinions are also homogeneous; (2) when the 

decision-makers are homogeneous but their decision opinions are heterogeneous; (3) when the 

decision-makers are heterogeneous but their decision opinions are homogeneous; and (4) when 

the decision-makers are heterogeneous and their decision opinions are also heterogeneous. 

Step 2: Collecting decision opinions and establishing decision matrices 

The next step is to collect their decision opinions and determine if decision-makers are 

homogeneous or heterogeneous. If the degree of the importance of decision-makers is equal, 

then the group of decision-makers is deemed to be a homogeneous group. 

In a committee of k decision-makers (Dt, t = 1,2,…, k) responsible for assessing n objectives 

(Oj, j=1,2,…, n), the degree of the importance of the decision-makers is It, t = 1,2,…, k, where 

It ∈ [0,1] and ∑ 𝐼𝑡 = 1
𝑘
𝑡=1 . If 𝐼1= 𝐼2=…= 𝐼𝑘= 

1

𝑘
, the group of decision-makers is called a 

homogeneous group; otherwise the group is called a heterogeneous group. 

Step 3: Constructing the aggregated fuzzy rating of the individual objectives 

Subsequently, we construct the aggregated fuzzy rating of the individual objectives. Table 3.1 

shows the linguistic variables and corresponding fuzzy numbers for the decision-makers to 

access the importance of the objectives. Let �̃�𝑗𝑡= (𝑎𝑗𝑡, 𝑏𝑗𝑡 , 𝑐𝑗𝑡 , 𝑑𝑗𝑡), j = 1, 2, …., n; t = 1, 2, 
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….,k, be the linguistic rating given to objectives 𝑂1, 𝑂2,…., 𝑂𝑛  by decision-maker 𝐷𝑡 . The 

aggregated fuzzy rating, �̃�𝑗 = (𝑎𝑗 , 𝑏𝑗, 𝑐𝑗, 𝑑𝑗), of objective 𝑂𝑗 assessed by the committee of k 

decision-makers is defined as 

�̃�𝑗 = (𝐼1⊗ �̃�𝑗1) ⊕ (𝐼2⊗ �̃�𝑗2) ⊕ . . . ⊕ (𝐼𝑘⊗ �̃�𝑗𝑘),                   (3.21) 

where 𝑎𝑗 = ∑ 𝐼𝑡𝑎𝑗𝑡
𝑘
𝑡=1 , 𝑏𝑗 = ∑ 𝐼𝑡𝑏𝑗𝑡

𝑘
𝑡=1 , 𝑐𝑗 = ∑ 𝐼𝑡𝑐𝑗𝑡

𝑘
𝑡=1 , 𝑑𝑗 = ∑ 𝐼𝑡𝑑𝑗𝑡

𝑘
𝑡=1 . 

Step 4: Computing the weight of objectives 

To compute the weight of objectives, defuzzify the fuzzy rating of the individual objectives; 

compute the normalized weights, and construct the weight vector. To defuzzify the rating of 

the fuzzy objectives, the signed distance is adopted. The defuzzification of �̃�𝑗 , denoted as 

d(�̃�𝑗) is therefore given by 

d(�̃�𝑗) = 
1

𝑘
(𝑎𝑗 + 𝑏𝑗 + 𝑐𝑗 + 𝑑𝑗)                                         (3.22) 

The crisp value of the normalized weight for objectives 𝑂𝑗, denoted by 𝑊𝑗, is given by 

𝑊𝑗  = 
𝑑(�̃�𝑗) 

∑ 𝑑(�̃�𝑗) 
𝑛
𝑗=1

,                                                     (3.23) 

where ∑ 𝑊𝑗 = 1
𝑛
𝑗=1 . The weight vector W = [𝑊1,𝑊2, . . . , 𝑊𝑛] is therefore formed. 

This crisp value of the normalized weight of the objectives 𝑂𝑗 can therefore be used as the 

weight of the objectives in the weighted sum approach. 

3.5 Model discussion 

The applicability of the methodology developed in section 3.4 in real life problems is discussed 

here. The methodology was developed being inspired by a real world humanitarian supply 

chain design problem, a mixed integer linear program for a three-echelon, multi-capacitated 

humanitarian supply chain network design is developed. The methodology developed herein 

takes account of several significant factors (1) multiple objectives; (2) multiple actors; (3) 

prioritization of affected areas; (4) short operational horizon for designing the post-disaster 

relief distribution network. Our model captures both the fixed opening cost of establishing a 

TLH and the variable transportation cost of supplying the emergency relief to TLHs and 
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distributing them to the affected area PODs. Scalarization is adopted to solve the multi-

objective optimization model. It is a simple yet effective method which guarantees a Pareto 

optimal solution. Scalarization involves priori articulation of preferences. A FFRS under GDM 

is developed to determine the weight of the objectives.  

There are supply sources, TLHs and affected area PODs in the relief network which is a typical 

network setting. The methodology developed herein is applicable to any situation which 

requires establishment related decision-making involving multiple decision-makers, 

prioritization needs, while considering trade-off between non-commensurable objectives. In 

particular, the proposed methodology can be applied to establishment decision-making related 

to SAR centers, emergency medical centers, general logistics hubs etc. Numerical illustration 

and analysis in Section 3.6 further highlights on the applicability of the methodology for a real 

life disaster case of Nepal earthquake 2015. 

3.6 Numerical illustration and analysis 

To support the usefulness of the proposed model as a decision-making tool for selecting 

the location of TLHs, we evaluate the performance of the model by using disaster data from 

the April 2015 Nepal earthquake. 

3.6.1 April 2015 Nepal earthquake 

On 25 April 2015, a 7.8 magnitude earthquake occurred in Barpak in the Gorkha district, which 

is approximately 78 km northwest of the capital city, Kathmandu. Aftershocks occurred for 

weeks after the initial earthquake. The earthquake resulted in roughly 8,790 deaths and 22,300 

injuries, while some 773,174 houses were destroyed (501,783) or damaged (271,391) (NPC, 

2015). At the height of the emergency, some 188,900 people were temporarily displaced. Of 

Nepal’s 75 districts, 39 were affected and 14 of those were declared severely affected. The 14 

districts prioritized are located in Kathmandu, Bhaktapur, Lalitpur, Makwanpur, Nuwakot, 

Rasuwa, Dhading, Gorkha, Kavrepalanchok, Sindhupalchok, Sindhuli, Dolakha, Ramechhap, 

and Okhaldhunga. Approximately 5.4 million people live in these 14 districts, which are 

located in the western and central regions of Nepal. Of these, 2.8 million people were estimated 

to need assistance.  

The government of Nepal declared a state of emergency in the country on 25 April and called 

upon the international humanitarian community for support. More than 450 aid organizations 
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responded to the emergency (UNOCHA, 2015) by facilitating rescue, evacuation, relief 

distribution, rehabilitation, and recovery. A number of governmental, non-governmental, 

national, and international organizations conducted large-scale operations in the 14 most 

affected districts. The humanitarian supply chain during the immediate aftermath of the 

earthquake faced many challenges such as the lack of vehicles, congestion in the airport, the 

lack of coordination and cooperation, and operational and location issues related to the use of 

regional logistics hubs. Disaster response proved extremely difficult due to the large scale of 

the devastation, huge number of responders, manifold objectives of multiple organizations, 

infrastructural difficulties in accessing affected zones, and poor weather conditions. Apart from 

the inevitable challenges, many criticized the Nepalese government for its lack of preparedness, 

which caused relief supplies to pile up at the airport (The New York Times 2015, Disaster 

Recovery Journal 2015). 

3.6.2 Nature of the data  

In this example, the supply points are the points of entry to Nepal from neighboring 

countries via land and air. We did not consider seaports because Nepal is a landlocked country. 

We selected seven entry points: The Mechi customs office, Jhapa; Biratnagar customs office, 

Morang; Bhairawa customs office, Kapilbastu; Kodari customs office, Sindhupalchok; 

Nepalgunj customs office, Banke; Birgunj customs office, Parsa; and Tribhuwan international 

airport, Kathmandu. We ensured the selected entry points had warehouses in place to handle 

the sudden upsurge in emergency relief materials. The amount of emergency relief materials 

available in the supply points was assumed to be known. Eleven candidates in Dhading, 

Dolakha, Gorkha, Kathmandu, Kavrepalanchok, Makwanpur, Nuwakot, Okhaldhunga, 

Ramechhap, Sindhuli, and Sindhupalchok were selected for locating TLHs. The opening of a 

TLH incurs a fixed opening cost. The capacity of a candidate TLH is restricted by the available 

units of emergency relief materials.  
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Figure 3.2: Location of supply points, candidate TLHs, and demand points 

Among the 14 severely affected districts, 13, namely Bhaktapur, Dhading, Dolakha, Gorkha, 

Kathmandu, Kavrepalanchok, Lalitpur, Makwanpur, Nuwakot, Okhaldhunga, Ramechhap, 

Sindhuli, and Sindhupalchok, were used as the demand points in this study. One district in 

Rasuwa was not considered because of the lack of distance-related data. Figure 3.2 shows the 

spatial location of the supply points, candidate TLHs, and affected areas’ demand points. The 

demand points represent the location of the aggregated demand arising in each district. The 

demand points and candidate hubs overlap with each other. Demand was estimated based on 

the severity of the disaster impact. According to Salmeron and Apte (2010), the degree of 

severity differentiates the demand in each zone. A larger proportion of the population is 

assumed to require relief in major crisis-hit areas compared to crisis-hit areas. Rasuwa, Gorkha, 

Nuwakot, Dhading, Sindhupalchok, Dolakha, and Ramechhap were identified as major crisis-

hit areas and Kavrepalanchok, Sindhuli, Okhaldhunga, Makwanpur, Lalitpur, Bhaktapur, and 

Kathmandu as crisis-hit areas. Similarly, major crisis-hit districts were allocated two TLHs, 

whereas crisis-hit districts were assigned a single TLH. The nature of the demand is assumed 

to be increasing initially and then stagnating after a while. This assumption is in reference to 

the numerical results of Sheu (2010). 
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As discussed earlier, the operational horizon of TLHs is affected by many factors; as such, the 

operational horizon was assumed to be five weeks in this numerical example. We considered a 

single package relief delivery system. A single emergency relief package was assumed to 

weigh 10 kg and include essential items such as meals, a basic medical kit, blankets, baby 

supplies, and clothing. We assumed that a single emergency relief package was sufficient to 

sustain an individual for a week. 

3.6.3 Results 

In this section, we first calculate the weight of the objectives by using an FFRS under the 

GDM condition and then present the results of the optimization model. We ignore the first 72 

hours of critical importance, acknowledging the reality of real-life emergency responses. 

Assuming that TLHs could be established within 72 hours is unrealistic because of the time 

needed and complexity of finding an appropriate location. Hence, our model is valid for the 

response situation after the first 72 hours. The distribution planning is considered for 35 days 

divided into five weekly periods. 

3.6.3.1 Calculating the weight of the objectives 

Step 1: A committee of four decision-makers, D1, D2, D3, and D4, from four humanitarian 

organizations active in disaster management in Nepal is formed. Objective O1 represents 

minimizing total costs and O2 represents minimizing total unsatisfied demand.  

Step 2: Table 3.2 shows homogeneous and heterogeneous decision opinions of the decision-

makers from different humanitarian organizations. From this, two situations can be generated: 

when the decision-makers are homogeneous and when they are heterogeneous. However, in 

this study, we only explore the situation when the decision-makers are homogeneous because 

of the complexity of determining their importance without bias. 

Table 3.2: Importance ratings of the objectives 

Objectives 

 

Decision-makers (Homogeneous) 

D1 D2 D3 D4 

O1 H M H M 

O2 VH VH VH H 
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Step 3: The importance rating of each objective is assessed by using the linguistic variables 

and their respective fuzzy numbers. The aggregated fuzzy rating of the individual objective 

when the decision-makers are homogeneous is constructed (see Table 3.3) by using equation 

(3.21).  

Table 3.3: Aggregated fuzzy ratings of the objectives 

Objectives Decision-makers Aggregated fuzzy 

rating 
D1 D2 D3 D4 

O1 (5, 7, 7, 10) (2, 5, 5, 8) (5, 7, 7, 10) (2, 5, 5, 8) (3.5, 6, 6, 9) 

O2 (7, 10, 10, 10) (7, 10, 10, 10) (7, 10, 10, 10) (5, 7, 7, 10) (6.5, 9.25, 9.25, 10) 

Step 4: The defuzzified values of the aggregated fuzzy rating (Table 3.4) are obtained by using 

equation (3.22) and the crisp value of the normalized weight is calculated by using equation 

(3.23). 

Table 3.4: Defuzzified values of the aggregated fuzzy rating and normalized weights of the 

objectives 

Objectives O1 O2 

Defuzzified value of aggregated fuzzy rating 6.125 8.750 

Normalized weight 0.411 0.588 

3.6.3.2 Optimization results 

The model was coded in Lingo 17.0 Optimization modeling software. All the experiments 

were run on a personal computer with an Intel (R) Core (TM) i3-3220 CPU (3.30 GHz) and 8 

GB of RAM. All the test problems were computed in under 10 minutes. 

To determine the optimal number of TLHs, the model was run without constraint (3.7). The 

model results in eight optimal TLHs with locations in Gorkha, Kathmandu, Kavrepalanchok, 

Makwanpur, Nuwakot, Ramechhap, Sindhuli, and Sindhupalchok to meet the time-varying 

demand over the entire planning horizon. The eight selected TLHs result in the minimum value 

of both objectives over the entire planning horizon. Figure 3.3 shows the spatial location of the 

eight selected TLHs in Nepal. 
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Figure 3.3: Spatial location of the optimal TLHs 

Furthermore, calculations were carried out to understand the impact of the number of TLHs on 

both the cost and the unsatisfied demand objectives. The results in Figure 3.4 show the change 

in cost attributes and total unsatisfied demand with a change in the number of TLHs. Irregular 

nature of results can be observed from the figure when the number of TLH is 5. This might be 

attributed to (1) high transportation cost from TLHs to the PODs; (2) time-varying nature of 

the transportation cost; The study considers transportation cost to be time-varying, therefore an 

initially increasing, then stagnating and gradual decrease in transportation cost is assumed as 

an impact of the disaster. This nature is reflective of the real life situation after Nepal 

earthquake 2015; (3) high level of demand satisfaction with minimum number of TLHs as a 

result of which both the upstream and the downstream transportation cost from TLHs to PODs 

is quite high at this point. High transportation cost at this point may be attributed to high level 

of demand satisfaction with minimum number of TLHs. When the number of TLHs is 5, the 

unsatisfied demand is almost close to its minimum value as a result of which both the upstream 

and the downstream transportation cost from SPs to TLHs and from TLHs to PODs is quite 

high at this point. 
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Figure 3.4 shows that eight TLHs provides the minimum total cost and minimum unsatisfied 

demand; increasing the number of TLHs beyond eight raises the total cost, whereas total 

unsatisfied demand remains the same, perhaps owing to the limited availability of relief 

materials in the TLHs and supply points. Thus, we performed a sensitivity analysis to examine 

the extent to which the available quantity of emergency relief in the TLHs and supply points 

affects costs and demand satisfaction. 

 

Figure 3.4: Change in the cost attributes and unsatisfied demand with a changing number of 

TLHs 

Figure 3.5 shows the location choices when varying the number of TLHs. From the figure we 

can observe that, TLH candidate located in Nuwakot is the most important location as it is 

common to all the solutions which is followed by TLH candidate in Sindhupalchok, 

Kavrepalanchok, Makwanpur, Kathmandu, Gorkha, Sindhuli, Ramechhap, Dhading, 

Okhaldhunga and Dolakha.  
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Figure 3.5: Change in location choices with changing number of TLHs 

Table 3.5: Sensitivity of the available quantity of relief materials in the TLHs 

Table 3.5 shows the results of the sensitivity analysis over the available quantity of 

emergency relief materials in the TLHs. The table illustrates the cost attributes and total 

unsatisfied demand. Each scenario represents an increase in the available units of relief 

materials by 10,000 units in each step. In each scenario, the model resulted in eight optimal 

TLHs. With an increase in the availability of emergency relief materials in the TLHs, the results 

show that total unsatisfied demand decreases at the cost of increased total costs, while the fixed 

cost remains the same. This sensitivity analysis allows us to conclude that keeping the locations 

Scenarios Total unsatisfied 

demand 

(in 1000 units) 

Total cost  Shipping 

cost from 

SP to TLH 

Shipping 

cost from 

TLH to DP 

(in 1000 USD) 

Original  case 512.10 4686.68 1325.65 1053.84 

Scenario I 482.10 4691.15 1324.66 1059.30 

Scenario II 452.10 4693.32 1336.61 1049.52 

Scenario III 422.10 4697.68 1348.48 1042.01 

Scenario IV 392.10 4697.82 1361.19 1029.43 

Scenario V 362.10 4701.76 1375.49 1019.09 
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the same, an increase in the availability in the TLHs decreases total unsatisfied demand and 

increases total cost. This cost can be attributed to increases in downstream transportation costs. 

The sensitivity analysis of the model over the varying quantity of emergency relief materials 

available in the supply points shows no significant reduction in total costs or unsatisfied 

demand upon increasing the available units. 

   

Figure 3.6: Comparison of single-sourcing with multi-sourcing 

Additionally, we investigated the model performance over the multi-sourcing constraint. 

Figure 3.6 shows the model results with and without the multi-sourcing constraint. In both 

cases, the optimal number of TLHs remains the same. While the other input parameters remain 

the same, the results highlight that multi-sourcing reduces total unsatisfied demand with a 

slightly higher cost compared with single-sourcing. This finding indicates the importance of 

multi-sourcing for minimizing total unsatisfied demand. However, the difference seems to be 

not that significant. For the case of the numerical study, we consider the need for multi-sourcing 

only for six major crisis hit affected area PODs located in Gorkha, Nuwakot, Dhading, 

Sindhupalchok, Dolakha, and Ramechhap. Only two TLHs are assigned for major crisis hit 

areas and one for the crisis hit areas as the model setting for first time period which is gradually 

changing over time. This small number of TLH assigned within the concept of multi-sourcing 

might be the reason behind not that significant difference. 
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3.7 Chapter summary  

Deciding on the best location for TLHs to aid humanitarian relief distribution often involves 

more than one decision-maker and the trade-off between multiple objectives. In this study, we 

developed a mathematical model to determine the optimal location for TLHs by using a multi-

objective optimization model with multi-sourcing as well as time-varying demand, cost, and 

capacities. We also proposed an FFRS under the GDM condition to take account of the decision 

opinions of multiple decision-makers. This consideration is important to avoid issues with the 

ownership of the TLHs that may arise because of monopolistic decision-making. The results 

of the questionnaire with humanitarian organizations show the heterogeneous nature of 

decision opinions. Although the humanitarian code dictates that minimizing human suffering 

should be given utmost priority during disaster response, this alone does not necessarily hold 

true. Indeed, humanitarian organizations often have to work under a tight budget, resulting in 

many trade-offs. 

The model proposed herein was implemented by using data obtained from the Nepal 

earthquake in 2015. The results of the optimization model clearly highlight the trade-off 

relationship between minimizing total costs and unsatisfied demand. Emphasizing on 

minimizing costs results in decreased demand satisfaction, whereas emphasizing minimizing 

unsatisfied demand leads to increased costs. Significant TLH locations can be identified by 

varying the number of TLHs. The sensitivity analysis shows the extent to which the available 

quantities of emergency relief items in the TLHs and the supply points influences costs and 

unsatisfied demand. Higher availability in the TLHs increases demand satisfaction at the price 

of increased costs. Additionally, the model was found to be less sensitive to increases in the 

availability of relief materials in the supply points. Further, the analysis of the multi-sourcing 

constraint reveals the reduction in total unsatisfied demand at the cost of increased costs in the 

multi-sourcing setting compared with single-sourcing under the same availability restrictions. 

However, multi-sourcing enables supply chain agility, which is essential during disaster 

response. 
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CHAPTER 4 A credibility based multi-objective temporary logistics hub 

location-allocation model for relief supply and distribution under 

uncertainty 

 

4.1 Introduction 

In the recent years, the world has witnessed several devastating disasters and a significant 

growth in human life losses, economic losses, and material damages caused by the sudden-

onset natural disasters. Given their unpredictable nature, disasters and its impacts are generally 

characterized by a high level of uncertainty. Humanitarian operations concerning sudden onset 

disasters are inherently uncertain both in the disaster preparedness phase and disaster response 

phase. In such case, depending on the scale of the disaster, preparedness alone may not always 

be sufficient which makes response phase one of the most important and critical components 

of disaster management. The main focus in the response phase is on meeting the basic needs 

of the people until more permanent and sustainable solutions can be found. In doing so 

selecting where and when to locate response facilities and how to allocate demand to the open 

facilities is an important task. 

Disaster response operations are inherently complicated. Several factors contributes to the 

complexity faced during the response period; time-varying and uncertain nature of the disaster 

impact, presence of multiple objectives, qualitative attributes, existence of multiple actors are 

some of the major factors. These factors can significantly affect the overall performance of the 

relief chain network. Uncertainty has been one of the biggest challenges faced in humanitarian 

operations. Uncertainty may arise due to randomness or/and impreciseness. Uncertainty may 

relate to knowing the exact location of the disaster or in the values of the parameters like cost, 

transportation time, and demand. Uncertainty in this study refers to epistemic uncertainty 

arising due to lack of knowledge of decision-maker about the actual value hence contributing 

to impreciseness. Multiple objectives are a distinguishing feature of humanitarian operation 

where a balance is always sought between the humanitarian and cost based objectives. 

Additionally, location decision requires evaluation of qualitative attributes like transportation 

accessibility, open space availability, manpower to name a few of them. 
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Despite these complexities related to the post-disaster conditions and lack of sufficient 

information about the extent of the damages, disaster response facilities must be set up quickly 

because of the urgency of the situation. The decision on whether to open a facility or not, where 

to locate them, and how to allocate the demand to the opened facility is purely based on the 

amount and the quality of information available during the decision-making time. The lack of 

sufficient historical data for the uncertain parameters as well as the high computational 

complexity of stochastic programming models make the use of this approach somehow 

impossible and at the same time unreasonable especially in the real life cases (Pishvaee et al. 

2011). On the contrary, fuzzy mathematical programming is a flexible tool for handling 

epistemic uncertainty that comes from lack of knowledge of decision maker about the actual 

value of parameters. 

As the related literature shows, previous works addressing the issue of temporary facility 

location problem do not take account of the time-varying and uncertain nature of the parameters, 

presence of multiple objectives, qualitative attributes, and existence of multiple actors 

simultaneously during the response phase.  

In contrast to conventional approach, where post-disaster challenges are accounted in the pre-

disaster phase (i.e. before the actual occurrence of the disaster) using the scenarios of disasters, 

in this study we focus on determining the location of TLHs by considering actual post disaster 

challenges occurring after the disaster using a credibility based fuzzy chance constrained 

programming while minimizing total cost and maximizing total demand coverage. The 

essential idea of fuzzy chance constrained programming is to optimize some critical value with 

a given confidence level subject to some chance constraints, in a fuzzy environment. 

Essentially, it does not contribute additional uncertainty but requires information on the 

confidence interval and the spread of the symmetrical triangular fuzzy number which in turn 

provides a better way to account for epistemic uncertainty. 

The TLHs considered in this study operate on a tactical level. Therefore, it is important to make 

sure it can cover PODs within the desired proximity while minimizing the total costs. Moreover, 

the TLH location selection model incorporates qualitative aspects like transportation 

accessibility and availability of open space into consideration. The evaluation of these 

qualitative aspects are purely based on the judgement provided by the experts (or decision-

makers) which is often the case in the post-disaster phase. A fuzzy factor rating system under 

group decision-making condition is applied to illicit information from the experts. In summary, 
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this study contributes to the existing literature by developing a credibility based multi-objective 

temporary logistic hub location model for post-disaster relief network design under uncertainty 

which captures both quantitative and qualitative aspects of location modeling.   

4.2 Problem description 

The relief chain network presented in this study is of multi-echelon, single product 

consisting of three layers: (1) supply points which represents all the points of entry to the 

affected country and permanent warehouses, (2) TLHs which acts an intermediator between 

the supply points and the point of distribution (POD), and (3) PODs which represents the 

aggregate demand location for demands arising from one district on a geographical region.  

Figure 1.4 shows the underlying structure of the humanitarian relief chain and positioning of 

the TLH within. The relief supplies enter the country via various points of entry (eg: sea, air, 

land) which are handled and arranged at TLHs and finally distributed to the PODs. Therefore, 

the decision to be made is on tactical level. The location of supply points and PODs are known 

in the post-disaster phase. 

The establishment of TLH is required to distribute emergency relief to the PODs over the entire 

planning horizon. Each TLH has a known limit in the amount of emergency relief that can be 

delivered. Each POD is allowed to receive relief from only one TLH. The shipment of 

emergency relief between supply point, TLH, and POD incurs a variable transportation cost 

proportional to type of vehicle used, the quantity, distance, and the time period of operation. 

Further, establishment of a TLH incurs a fixed operation cost which can represent the cost of 

manpower, utilities, and rent needed to keep the facility operational. Establishment of TLH 

takes place in the beginning of each period. In the immediate aftermath of disaster it is almost 

impossible to determine the precise values of the parameters due to the impreciseness. 

Therefore, these parameters are assumed to be uncertain. Along the discrete and finite time 

horizon, these parameters are changing in a known way. An increase or decrease in especially 

total demand for emergency relief in a particular geographical region may require 

establishment of TLHs to be demand responsive.  

The decisions to be addressed under the given circumstances include determining the locations, 

numbers, their capacities, the sequence of establishment of TLHs and allocation of POD’s to 

open TLHs as well as aggregate relief flow between them. Moreover, when designing a 

humanitarian relief chain it is important to make sure the established facilities can cover the 
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demand areas within stipulated coverage distance while also minimizing total cost. We have 

implemented the concept of time-varying coverage provided by the TLHs. Figure 4.1 shows 

an illustration of the concept of time-varying coverage. For humanitarian operations, as 

important as it is to follow humanitarian code of conduct, one has to acknowledge the fact that 

these operations often operate within the confines of a limited budget. Moreover, qualitative 

aspects like transportation accessibility and open space availability should be considered to 

ensure operational sustainability of the established TLHs. The model formulation epitomizes 

situation more prevalent in developed countries where relief supplies are abundant to meet the 

demand. 

 

 

 

 

 

 

 

 

Where, 

Dt      time varying coverage distance of TLHs in each period 

              location of PODs 

 

4.3 Mathematical model formulation 

4.3.1 Assumptions 

 The demand points, supply points, and the candidate temporary logistic hubs and the 

distance between them are known. 

 The weight capacity of the vehicles used for carrying relief are known. 

Figure 4.1: Illustration of concept of time-varying coverage 
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 Different types of relief are allowed to be loaded in a vehicle to serve the affected 

areas. 

 Information in terms of disaster-induced damage conditions and casualties associated 

with each affected area, can be obtained during the response period but are imprecise. 

 Costs, demand, and available relief parameters are assumed imprecise/fuzzy in nature 

and changing by time in a known way during the entire planning horizon. 

 Relief supplies are available abundantly. 

 

4.3.2 Nomenclature 

The notations used in the mathematical model are as follows: 

Sets 

T set of time periods {t|t= 1, 2, …, e} 

I set of supply points {i|i= 1, 2, …, f} 

J set of temporary logistic hubs {j|j= 1, 2, …, g} 

K set of affected area demand points {k|k= 1, 2, …, h} 

Parameters 

�̃�𝑖𝑗𝑡𝑚 unit transportation cost of shipping emergency relief package from supply point to 

temporary logistics hub in period t for vehicle type m ($/kmcar) 

�̃�𝑗𝑘𝑡𝑚 unit transportation cost of shipping emergency relief package from temporary 

logistics hub to point of distribution in period t for vehicle type m ($/kmcar) 

�̃�𝑗 a constant operational cost of having a TLH open (operating) in location j during 

period t 

�̃�𝑖𝑡  available quantity of relief at supply point i ∈ I in period t 

�̃�𝑗𝑡 available quantity of relief at TLH j ∈ J in period t 

𝑎𝑗𝑘𝑡  a binary parameter equal to 1 if sjk<=Dmax, 0 otherwise 

sjk distance between TLH and POD 

Dmax the maximum coverage distance of TLH j in period t 

�̃�𝑘𝑡 demand at each point of distribution j ∈ J in period t 

P total number of temporary logistic hubs 
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𝛼 confidence level 

𝑇𝑗𝑡   a value representing transportation accessibility in candidate location j in period t  

𝑂𝑗𝑡 a value representing availability of open spaces in candidate location j in period t  

𝑁𝑇 threshold value for transportation accessibility in candidate j  

𝑁𝑂  threshold value for availability of open spaces in candidate j  

Variables 

𝑟𝑖𝑗𝑡 amount of relief packages shipped from supply points i ∈ I to temporary logistics 

hubs j ∈ J in period t ∈ T  

𝑞𝑗𝑘𝑡 amount of relief packages shipped from temporary logistics hubs j ∈ J to affected area 

points of distribution k ∈ K in period t ∈ T 

𝑦𝑗𝑡 binary variable that equals 1 if TLH is open in location j at the beginning of period t 

and 0 otherwise 

𝑥𝑗𝑘𝑡 binary variable that equals 1 if POD k is served by TLH j in period t and 0 otherwise 

𝑧𝑘𝑡            binary variable that will be 1 if TLH 𝑗 covers POD at 𝑘 in time period t and 0 

otherwise 

4.3.3 Formulation 

Minimize, 

 O1 = ∑ �̃�𝑗𝑦𝑗𝑡𝑗 + ∑ ∑ ∑ �̃�𝑖𝑗𝑡𝑚𝑟𝑖𝑗𝑡𝑡 +𝑗𝑖  ∑ ∑ ∑ �̃�𝑗𝑘𝑡𝑚𝑞𝑗𝑘𝑡𝑡𝑘𝑗     (4.1) 

Maximize, 

 O2=∑ �̃�𝑘𝑡𝑧𝑘𝑡𝑘           (4.2) 

Constraints, 

∑ 𝑎𝑗𝑘𝑡𝑦𝑗𝑡𝑗 ≥ 𝑧𝑘𝑡   ∀𝑘 ∈ 𝐾,  𝑡 ∈  𝑇     (4.3) 

∑ 𝑥𝑗𝑘𝑡 = 1𝑗     ∀𝑘 ∈ 𝐾,  𝑡 ∈  𝑇     (4.4) 

ℎ𝑦𝑗𝑡 − ∑ ∑ 𝑥𝑗𝑘𝑡 ≥ 0𝑡𝑘    ∀𝑗 ∈  𝐽,  𝑡 ∈  𝑇     (4.5) 

𝑥𝑗𝑘𝑡 ≤ 𝑦𝑗𝑡    ∀𝑗 ∈  𝐽,  𝑘 ∈  𝐾,  𝑡 ∈  𝑇    (4.6) 
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∑ 𝑞𝑗𝑘𝑡𝑘 = ∑ 𝑟𝑖𝑗𝑡𝑖    ∀𝑗 ∈  𝐽,  𝑡 ∈  𝑇     (4.7) 

∑ 𝑟𝑖𝑗𝑡𝑖 ≤ �̃�𝑖𝑡    ∀𝑗 ∈ 𝐽,  𝑡 ∈  𝑇      (4.8) 

∑ 𝑟𝑖𝑗𝑡𝑗 ≤ �̃�𝑗𝑡    ∀𝑖 ∈  𝐼,  𝑡 ∈  𝑇     (4.9) 

∑ 𝑞𝑗𝑘𝑡𝑘 ≤ �̃�𝑗𝑡    ∀𝑗 ∈ 𝐽,  𝑡 ∈  𝑇                (4.10) 

∑ 𝑦𝑗𝑡𝑗 ≤ 𝑃   ∀𝑗 ∈ 𝐽,  𝑡 ∈  𝑇                 (4.11) 

∑ 𝑞𝑗𝑘𝑡𝑗 ≥ �̃�𝑘𝑡     ∀𝑘 ∈  𝐾,  𝑡 ∈  𝑇     (4.12) 

𝑦𝑗𝑡 = 0,   ∃ 𝑗 ∈ {𝑗: 𝑇𝑗𝑡 ≤ 𝑁𝑇}                    (4.13) 

𝑦𝑗𝑡 = 0,   ∃ 𝑗 ∈ {𝑗: 𝑂𝑗𝑡 ≤ 𝑁𝑂}          (4.14) 

𝑟𝑖𝑗𝑡 ≥ 0        ∀𝑖 ∈  I,  𝑗 ∈  J,  𝑡 ∈  T      (4.15) 

𝑞𝑗𝑘𝑡 ≥ 0     ∀𝑗 ∈  J,  𝑘 ∈  K,  𝑡 ∈  T     (4.16) 

𝑧𝑘𝑡 ∈ {0,1}   ∀ 𝑘 ∈  𝐾,   𝑡 ∈  𝑇     (4.17) 

𝑦𝑗𝑡 ∈ {0,1}    ∀𝑗 ∈  J       (4.18) 

𝑥𝑗𝑘𝑡 ∈ {0,1}   ∀𝑗 ∈  J,  𝑘 ∈  K,  𝑡 ∈  T     (4.19) 

The objective function (4.1) minimizes the total cost which includes a fixed operating cost of 

open TLHs and the transportation cost from supply points to TLHs and from TLHs to the PODs. 

The objective function (4.2) maximizes the total demand coverage. 

Constraint (4.3) is the coverage constraint, it ensures that a POD is covered only when one or 

more TLHs are located within Dmax distance units of POD. Constraint (4) ensures that POD’s 

are served by only one TLH.  Constraint (4.5) guarantee that each selected TLH can deliver to 

several PODs. Constraint (4.6) make sure that demand is allocated to open facilities only. 

Constraint (4.7) is the flow conservation constraint. Constraints (4.8), (4.9), and (4.10) are the 

availability constraints. Constraint (4.11) limits on the maximum number of TLHs that can be 

opened. Constraint (4.12 ensures that all the demand is met. Constraint (4.13) and (4.14) are 

the subjective constraints. These constraints prevent allocating facilities in the neighborhoods 
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whose transportation accessibility, open space availability and disaster vulnerability is below 

the required level. Constraints (4.15), (4.16), (4.17), (4.18), and (4.19) depict the nature of 

decision variables. 

4.4 Solution strategy 

4.4.1 Determine the values of qualitative attributes 

Availability of open spaces and transportation accessibility plays an important role in 

ensuring establishment and operational sustainability of the TLHs. However, determining its 

values to enable quantitative evaluation is a cumbersome task. We use modified version of 

fuzzy multi-attribute group decision-making approach to determine the values of the qualitative 

attributes. The methodology includes five sequential steps starting with (1) selection of 

decision-makers, (2) determining the degree of importance of decision-makers, (3) computing 

the importance weight of the attributes (4) collecting decision opinions to assess candidate 

TLHs with respect to individual attributes and computing the aggregated fuzzy ratings, (5) 

constructing a fuzzy rating matrix, (6) deriving the total fuzzy scores for candidate TLHs and 

(7) computing the crisp values of attributes. The crisp values of the attributes thus computed 

are therefore used as the value representing open space availability and transportation 

accessibility in candidate location j in period t. 

4.4.2 Convert the multi-objective possibilistic model to single objective model  

One of the most popular approach to solving multi-objective optimization involves 

formulating a single objective optimization problem that is related to the multi-objective 

problem by means of a real-valued scalarizing function. Besides the weighted sum method, the 

epsilon constraint method is probably the best known technique to solve multi-objective 

optimization problems (Ehrgott, 2005). The epsilon-constraint method has several advantages 

over the weighing method (for a detailed explanation of the advantages please refer to Mavrotas 

(2009)). In the epsilon constraint method, one of the objective function is optimized using the 

other objective functions as constraints, incorporating them in the constraint part of the model. 

In the ideal situation, the value of the epsilon is determined by the decision-maker. Another 

alternative is to obtain the upper bound by solving the single objective optimization model.  By 

parametrical variation in the right hand side of the constrained objective function the efficient 

solution of the problem can be obtained. For the mathematical model formulated in section 
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4.3.3, epsilon constraint method can be applied either to minimize total cost or to maximize 

total demand coverage while subjecting other objective as a constraint. 

4.4.3 Apply fuzzy chance constrained programming approach to the possibilistic model and 

obtain its crisp equivalent 

The essential idea of fuzzy chance constrained programming is to optimize some critical 

value with a given confidence level subject to some chance constraints in a fuzzy environment. 

Among the three different credibility-based fuzzy mathematical programming models i.e. 

expected value model; chance constrained programming model; and dependent chance 

constrained programming model (see Yang and Liu (2007) for details of three models), we 

employ chance constrained programming model in this study. Chance-constrained 

programming, which was initiated by Charnes and Cooper (1959), offers a powerful means for 

modeling uncertain decision systems. Chance constrained programming is able to control the 

satisfaction degree of chance constraints by adding a constraint for each objective function. 

However, it needs additional information on the ideal value of the objective function to 

determine the right hand side of the added constraints. Inclusion of fuzzy concept in chance 

constrained programming provides a means of allowing the decision-maker to consider 

objectives and constraints in terms of the possibility of their attainment (Liu and Liu, 2002) 

while accounting for the epistemic uncertainty in parameter values.  In doing so, a constraint 

is added for each objective function where the ideal value of the objective function can be 

obtained from the decision-makers involved in the location decision making or by obtaining 

the optimal value of the objective.  

Based on the existing literature there are generally three prominent fuzzy measures to deal with 

the possibilistic chance constraints (Liu, 2009). These include possibility, necessity, and 

credibility measure. The main advantage of these measures is to specify an occurrence degree 

for each fuzzy (i.e. possibilistic) event in the interval [0, 1] with varying optimistic and 

pessimistic attitudes. The possibility measure indicates the possibility (i.e. the most optimistic) 

level of an uncertain event’s occurrence that involves possibilistic parameters. The necessity 

measure shows the corresponding minimum possibility level under the most pessimistic view. 

Meanwhile, the credibility measure represents the certainty degree of occurring an uncertain 

event. Liu (2008) extended the chance-constrained programming to fuzzy decision systems 

using the credibility measure, which is called credibility–based fuzzy chance-constrained 

programming. Credibility measure is self-dual, meaning that if a credibility value of a fuzzy 
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event achieves 1, decision-maker believes the fuzzy event will surely happen. Therefore, it has 

been used to convert the possibilistic chance constraints into their crisp counterparts as it can 

provide results that would be more reliable than possibility and necessity measures (Tofighi et 

al. 2016). 

The possibilistic model developed in Section 4.3.3 can be reformulated by employing 

credibility based fuzzy chance constrained programming in two ways depending on the choice 

of objective. Here we present the reformulation when minimizing total cost as: 

Max 𝑓 ̅          (4.20) 

(4.1) ≡ Cr{∑ �̃�𝑗𝑦𝑗𝑡𝑗 + ∑ ∑ ∑ �̃�𝑖𝑗𝑡𝑟𝑖𝑗𝑡𝑡 +𝑗𝑖  ∑ ∑ ∑ �̃�𝑗𝑘𝑡𝑞𝑗𝑘𝑡𝑡𝑘𝑗 ≥ 𝑓}̅ ≥ 𝛼1  (E1) 

(4.2) ≡ 𝐶𝑟(∑ �̃�𝑘𝑡𝑧𝑘𝑡𝑘 ≥ 𝜀) ≥ 𝛼2       (E2) 

(4.8) ≡ Cr(∑ 𝑟𝑖𝑗𝑡𝑖 ≤ �̃�𝑖𝑡) ≥ 𝛼3   ∀𝑗 ∈ 𝐽,  𝑡 ∈  𝑇    (E3) 

(4.9)  ≡ Cr(∑ 𝑟𝑖𝑗𝑡𝑗 ≤ �̃�𝑗𝑡) ≥ 𝛼3     ∀𝑖 ∈  𝐼,  𝑡 ∈  𝑇  (E4) 

(4.10) ≡ Cr(∑ 𝑞𝑗𝑘𝑡𝑘 ≤ �̃�𝑗𝑡) ≥ 𝛼3     ∀𝑗 ∈ 𝐽,  𝑡 ∈  𝑇   (E5) 

(4.11) ≡ Cr(∑ 𝑞𝑗𝑘𝑡𝑗 ≥ �̃�𝑘𝑡) ≥ 𝛼4     ∀𝑘 ∈  𝐾,  𝑡 ∈  𝑇             (E6) 

⇒ (4.3) – (4.7), (4.11), and (4.13) - (4.19) 

In the above formulation, Cr(. ) Denotes the credibility of the event in ( . ) and 𝛼1, 𝛼2, 𝛼3, and 

𝛼4 are the predetermined confidence levels within which chance constraints should be fulfilled.  

Application of fuzzy measures constitutes conversion of the original possibilistic chance 

constraints to their crisp counterparts. Defuzzification is a method that can be used to covert 

the possibilistic chance constraints to their crisp counterparts. In defuzzification, the fuzzy 

chance constraints are converted to their respective crisp equivalents with respect to the 

predetermined confidence level. Then the equivalent crisp model can be solved using 

traditional solution process. Let us consider a triangular fuzzy parameter ζ = (ζ1, ζ2, ζ3) and a 

real number r. From the definition of possibility, necessity, and credibility measures on fuzzy 

event, these measures about two events, ζ ≤ 𝑟 and ζ ≥ 𝑟 are expressed as: 
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Pos{ζ ≥ r} = {

1,      if 𝑟 ≤ ζ2,
ζ3−𝑟

ζ3−ζ2
,     if ζ2 ≤ 𝑟 ≤ ζ3,

0,      if 𝑟 ≥ ζ3,

      (4.21) 

Pos{ζ ≤ r} = {

1,      if 𝑟 ≥ ζ2,
𝑟−ζ1

ζ2−ζ1
,     if ζ1 ≤ 𝑟 ≤ ζ2,

0,      if 𝑟 ≤ ζ1,

       (4.22) 

Nec{ζ ≥ r} = 1 − Pos{ζ ≥ r}        (4.23) 

Nec{ζ ≥ r} = {

1,      if 𝑟 ≤ ζ1,
ζ2−𝑟

ζ2−ζ1
,     if ζ1 ≤ 𝑟 ≤ ζ2,

0,      if 𝑟 ≥ ζ2,

      (4.24) 

Nec{ζ ≤ r} = {

1,      if 𝑟 ≥ ζ3,
𝑟−ζ2

ζ3−ζ2
,     if ζ2 ≤ 𝑟 ≤ ζ3,

0,      if 𝑟 ≤ ζ2,

       (4.25) 

Cr{ζ ≥ r} =
1

2
(Pos{ζ ≥ r} + Nec{ζ ≥ r})      (4.26) 

i.e. Cr{ζ ≥ r} =

{
 
 

 
 

1,               if 𝑟 ≤ ζ1,
2ζ2−ζ1−𝑟

2(ζ2−ζ1)
,     if ζ1 ≤ 𝑟 ≤ ζ2,

ζ3−𝑟

2(ζ3−ζ2)
,        if ζ2 ≤ 𝑟 ≤ ζ3,

0,               if 𝑟 ≥ ζ3,

     (4.27) 

Similarly, we can also obtain,  

Cr{ζ ≤ r} =

{
 
 

 
 

0,               if 𝑟 ≤ ζ1,
𝑟−ζ1

2(ζ2−ζ1)
,     if ζ1 ≤ 𝑟 ≤ ζ2,

𝑟−2ζ2+ζ3

2(ζ3−ζ2)
,        if ζ2 ≤ 𝑟 ≤ ζ3,

1,               if 𝑟 ≥ ζ3,

      (4.28) 

Pos{ζ ≤ r}, Nec{ζ ≤ r}, and Cr{ζ ≤ r}show the possibility, necessity, and credibility degrees 

to what extent ζ  is not greater than r  respectively. Similarly, Pos{ζ ≥ r} , Nec{ζ ≥ r}, and 

Cr{ζ ≥ r} show the possibility, necessity, and credibility degrees to what extent ζ is not less 

than r respectively. Based on (4.27) and (4.28), it can be proven that that for 𝛼 ≥ 0.5 (see Zhu 

and Zhang, 2009), 
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Cr{ζ ≥ r} ≥ 𝑟⇔𝑟 ≤ (2𝛼 − 1)ζ1 + (2 − 2𝛼)ζ2)     (4.29) 

Cr{ζ ≤ r} ≥ r⇔r ≥ (2 − 2α)ζ2) + (2α − 1)ζ3     (4.30) 

Based on equation (4.29) and (4.30), the above credibility-based fuzzy chance constrained 

model can be converted to the following crisp equivalent model. 

(E1) ≡ (∑ ((2 − 2𝛼2)𝐹𝑗(2) + (2𝛼2 − 1)𝐹𝑗(3))𝑦𝑗𝑡𝑗 + ∑ ∑ ∑ ((2 − 2𝛼2)𝐶𝑖𝑗𝑡(2) +𝑡𝑗𝑖

               (2𝛼2 − 1)𝐶𝑖𝑗𝑡(3))𝑟𝑖𝑗𝑡 +  ∑ ∑ ∑ ((2 − 2𝛼2)𝐶𝑗𝑘𝑡(2) + (2𝛼2 − 1)𝐶𝑗𝑘𝑡(3))𝑞𝑗𝑘𝑡𝑡𝑘𝑗 ) ≥  𝑓̅

                  (4.31) 

(E2) ≡ ∑ ((2 − 2𝛼1)𝑑𝑘𝑡(2) + (2𝛼1 − 1)𝑑𝑘𝑡(3))𝑧𝑘𝑡𝑘 ≥ 𝜀      (4.32) 

(E3) ≡ ∑ 𝑟𝑖𝑗𝑡𝑖 ≤ ((2𝛼3 − 1)𝑄𝑖𝑡(1) + (2 − 2𝛼3)𝑄𝑖𝑡(2)) ∀𝑗 ∈ 𝐽,  𝑡 ∈  𝑇   (4.33) 

(E4) ≡ ∑ 𝑟𝑖𝑗𝑡𝑗 ≤ ((2𝛼3 − 1)𝑄𝑗𝑡(1) + (2 − 2𝛼3)𝑄𝑖𝑡(2))  ∀𝑖 ∈  𝐼,  𝑡 ∈  𝑇 (4.34) 

(E5) ≡ ∑ 𝑞𝑗𝑘𝑡𝑘 ≤ ((2𝛼3 − 1)𝑄𝑗𝑡(1) + (2 − 2𝛼3)𝑄𝑗𝑡(2))  ∀𝑗 ∈ 𝐽,  𝑡 ∈  𝑇  (4.35) 

(E6) ≡ ∑ 𝑞𝑗𝑘𝑡𝑗 ≥ ((2 − 2𝛼4)𝑑𝑘𝑡(2) + (2𝛼4 − 1)𝑑𝑘𝑡(3))  ∀𝑘 ∈  𝐾,  𝑡 ∈  𝑇          (4.36) 

⇒ (4.3) – (4.7), (4.11), and (4.13) - (4.19) 

Taking into account the nature of the problem, all the uncertain parameters are modelled as 

symmetric triangular fuzzy numbers. Use of symmetrical fuzzy numbers allows decision-

makers to choose the spread of the fuzzy number which in turn enables accounting for 

epistemic uncertainty prevalent in predicting the values of the parameters. Symmetric 

triangular fuzzy number can be uniquely defined by �̃� = (ζ𝑠, ζ𝑐) where, ζ𝑠 is the spread value, 

and ζ𝑐  is the center value of �̃�. If all the fuzzy parameters are considered as symmetric 

triangular numbers, equivalent crisp model can be reformulated as, 

(E1) ≡ (∑ ((2 − 2𝛼2)𝐹𝐽
𝑐 + (2𝛼2 − 1)(𝐹𝐽

𝑐 + 𝐹𝐽
𝑠))𝑦𝑗𝑡𝑗 + ∑ ∑ ∑ ((2 − 2𝛼2)𝐶𝑖𝑗𝑡

𝑐 +𝑡𝑗𝑖

               (2𝛼2 − 1)(𝐶𝑖𝑗𝑡
𝑐 + 𝐶𝑖𝑗𝑡

𝑠 ))𝑟𝑖𝑗𝑡 +  ∑ ∑ ∑ ((2 − 2𝛼2)𝐶𝑗𝑘𝑡
𝑐 + (2𝛼2 −  1)(𝐶𝑗𝑘𝑡

𝑐 +𝑡𝑘𝑗

               𝐶𝑗𝑘𝑡
𝑠 ))𝑞𝑗𝑘𝑡) ≥  𝑓 ̅        (4.37) 

(E2) , (E3), (E4), (E5), and (E6) can be formulated similarly. 

⇒ (4.3) – (4.7), (4.11), and (4.13) - (4.19) 
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4.5 Numerical illustration and analysis 

Numerical illustration aims at demonstrating the utility and relevance of the model and 

solution methodology developed above in real life disaster cases. In doing so, this study uses 

April 2015 Nepal earthquake for the numerical illustration. Details of the impacts of the 

earthquake can be referred from chapter 3 section 3.6.1. 

4.5.1 Relief chain configuration 

The study considers seven points of entry (6 land and 1 air) to the country as the supply 

points. A total of 12 districts are selected as candidates for TLH establishment. All the 14 

districts severely affected by the earthquake are considered as the location of PODs. Figure 4.2 

shows the spatial location of the supply points, candidate TLHs, and PODs. An operational 

horizon of 7 periods with each period lasting for a week is considered for conducting the 

response operations. A single package relief delivery system is considered. A single emergency 

relief package is assumed to weigh 10 kg and include essential items such as meals, a basic 

medical kit, blankets, baby supplies, and clothing. It is assumed that a single emergency relief 

package is sufficient to sustain an individual for a week. 
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4.5.2 Nature of input parameters 

In the case of humanitarian relief chain design after disaster, there is an inherent 

impreciseness (i.e. epistemic uncertainty) in the data. This type of uncertainty includes those 

data such as demand of relief item, cost of transportation, accessibility issues, availability 

issues, and situation of road network. Moreover, these data are also time dependent as a result 

of which its value changes based on the changes in response environment. Table 4.1 shows the 

nature of input parameters used in this study. Transportation cost, relief demand, available 

relief in TLHs, and available relief in supply points, and fixed operation costs are considered 

to be changing with time while also enduring uncertainty in its value. The imprecise parameters 

are considered as symmetric triangular fuzzy numbers for which the provided data represents 

the central value of the associated fuzzy number. The fuzzy numbers can then be constructed 

by considering desired spread, whereas the spread itself can be determined by close 

consultation with the experts in decision making. The experts may rely either on available data 

or on their own knowledge or both. And the symmetric triangular fuzzy numbers were 

constructed by considering 15 percent spread in both sides of the central value. For the purpose 

Figure 4.2: Spatial location of supply points, candidate TLHs, and PODs 
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of this numerical illustration the confidence level is considered to be 80 percent within which 

the chance constraints are to be fulfilled. The coverage distance is assumed to gradually 

increase from 100km in the first period to 200km in the seventh period within the operational 

horizon. The operational horizon is considered to be finite and deterministic and coverage is 

assumed to gradually change over time but in a known fashion. 

Table 4.1: Nature of input parameters 

Parameters  Nature 

Transportation cost Dynamic   

(Time varying) 

Uncertain 

 Relief demand 

Available relief in TLHs 

Available relief in  Supply points 

Fixed operation cost 

Operational horizon Finite Deterministic 

 Coverage Dynamic 

(Time varying) 

4.5.3 Results 

We ignore the first 72 hours of disaster response acknowledging the reality of real-life 

emergency response operation. Because of the time needed and complexity of finding an 

appropriate location, assuming that TLHs could be established within 72 hours is unrealistic. 

Hence, our model is valid for the response situation after the first 72 hours. The model was 

coded in Lingo 17.0 Optimization modeling software. All the experiments were run on a 

personal computer with an Intel (R) Core (TM) i5-7500 CPU (3.40 GHz) and 16 GB of RAM. 

All the test problems were computed in under 10 minutes. 

The result shows the optimal number of TLHs that need to be operational in each period along 

with their spatial location for the entire planning horizon and the allocation of the selected 

TLHs to the PODs when minimizing total cost. The values of the qualitative parameters 

(availability of open space and transportation accessibility) is obtained using FMAGDM. A 

comparison of the results of multi-objective optimization with uncertainty in parameters and 

deterministic parameters is also presented. Sensitivity analysis brings light on the impact of the 

parameters on the overall results. 
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Figure 4.3: Optimal location of TLHs considering multiple objectives with uncertainty in 

parameters when minimizing total cost 

Figure 4.3 shows the number, the spatial location, and the sequence of establishment of TLHs 

considering objective of minimizing total cost under uncertainty in relief demand, cost, and 

available relief. In the figure, T1…T7 represents time period of the operational horizon. Among 

the twelve candidates, TLH in Dolakha, Kathmandu, and Sindhuli is selected to operate for 

seven periods and Gorkha, Nuwakot, Okhaldhunga, and Sindhupalchok is selected to operate 

for six periods. Similarly, TLH in Dhading and Makwanpur is selected to operate for five 

periods and TLH in Kavreplanchok is selected to operate for four periods starting from second 

period ending in fifth period. Finally, TLH in Ramechhap is selected to be operational in fourth 

period. The candidate TLH location in Rasuwa is the only candidate that is not selected to be 

operational. One of the possible reasons could be the limited transportation accessibility of 

Rasuwa within and outside the district in real life. A total of 13.76 million demands are covered 

with total cost of 1.058 million USD. 

 



81 
 

Table 4.2: Allocation of relief supplies from supply points to TLHs (in 10,000 kg) 

Supply 

points 
TLH T1 T2 T3 T4 T5 T6 T7 

Tribhuwan 

international 

airport 

Dhading 164.8 143.8 81.9 54.6 54.6   
Kathmandu 632.0 675.2 737.1 764.4 764.4 759.8 415.8 

Okhaldhunga 22.2     33.9  
Sindhuli      25.3 30.5 

Biratnagar Ramechhap   169.0     
Bhairahawa Gorkha 133.0 186.1 226.0 212.7 199.4 139.6  

Tatopani 

Dhading  87.0 194.4 147.2 192.7   
Dolakha 190.9 267.3 155.6 305.4 286.4 200.4 60.1 

Kavrepalanchok  209.5 330.6 246.8 183.6   
Makwanpur 91.7 128.3 155.8 146.7 137.5   
Okhaldhunga 10.1 45.2 54.8 51.6 48.4   
Sindhuli 64.6 90.4 109.8 103.3 96.9 42.5  

Inarwa 

Dhading   3.9 61.9    
Nuwakot 157.3 220.3 267.5 251.7 236.0 338.3  
Sindhupalchok 141.2 197.6 240.0 225.9 211.7 148.2  

Table 4.2 shows the allocation of the emergency relief from supply point to TLHs and Table 

4.3 shows the allocation of TLHs to different PODs in different periods of operation. Given 

the same limit on the available quantities of emergency relief in all the supply points which is 

gradually increasing over time, from Table 4.2 it can be observed that out of seven supply 

points five supply points located in Tribhuwan international airport, Biratnagar, Bhairahawa, 

Tatopani, and Inarwa is selected under the given circumstances to minimize total cost while 

ensuring maximum demand coverage under uncertainty in parameters. Similarly, from Table 

4.3 it can be observed that among twelve candidate TLHs, eleven of them are selected to be 

operational in different periods. Among all the TLHs selected, the one located in Kathmandu 

is serving many PODs. With Kathmandu being the capital of the country it has ease of 

accessibility to many of the affected areas and the results closely approximates reality. 
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Table 4.3: Allocation of relief supplies from TLHs to POD (in 10,000 kg) 

TLH POD T1 T2 T3 T4 T5 T6 T7 

Dhading Dhading 164.8 230.8 280.2 263.7 247.3     

Dolakha 
Dolakha 91.5 128.1 155.6 146.4 137.3 96.1 28.8 

Ramechhap 99.4 139.2   159.0 149.1 104.4 31.3 

Gorkha Gorkha 133.0 186.1 226.0 212.7 199.4 139.6   

Kathmandu 

Bhaktapur 66.4       41.0 69.7 20.9 

Dhading             51.9 

Gorkha             41.9 

Kathmandu 380.2 532.3 646.4 608.4 570.4 399.3 119.8 

Kavrepalanchok 83.3         87.4 26.2 

Lalitpur 102.1 142.9 90.7 156.0 153.1 107.2 32.1 

Makwanpur           96.2 28.9 

Nuwakot             42.9 

Rasuwa             6.7 

Sindhupalchok             44.5 

Kavrepalnchok 

Bhaktapur   93.0 106.3 106.3 58.7     

Kavreplanchok   116.6 141.5 133.2 124.9     

Lalitpur     82.8 7.3       

Makwanpur Makwanpur 91.7 128.3 155.8 146.7 137.5     

Nuwakot 

Dhading           173.1   

Nuwakot 136.1 190.5 231.4 217.8 204.1 142.9   

Rasuwa 21.2 29.7 36.1 34.0 31.9 22.3   

Okhaldhunga Okhaldhunga 32.3 45.2 54.8 51.6 48.4 33.9   

Ramechhap Ramechhap     169.0         

Sindhuli 
Okhaldhunga           10.2   

Sindhuli 64.6 90.4 109.8 103.3 96.9 67.8 20.3 

Sindhupalchok Sindhupalchok 141.2 197.6 240.0 225.9 211.7 148.2   

To illustrate the significance of considering uncertainty in parameter values when modeling 

TLH location-allocation problem, Figure 4.4 shows the model results when minimizing total 

cost while ensuring maximum demand coverage with deterministic parameters. The 

deterministic model results in a total cost of 0.912 million USD with a total coverage of 12.626 

million demands. Comparison of Figure 4.3 and Figure 4.4 revels the dynamics in terms of the 

number and location of TLHs and that incorporation of uncertainty in parameter value leads to 

difference in the number and spatial location of the TLHs. A difference can be seen in the total 

number of TLHs operational in period one, two, four, and five. An increase in hub number can 

be observed in the case with uncertainty in parameters compared to the deterministic parameter 

case.  
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Figure 4.4: Optimal location of TLHs considering multiple objectives with deterministic 

parameters when minimizing total cost 

Table 4.4 elucidates the difference in the number of TLHs operational with and without the 

consideration of uncertainty in parameters. In the figure, T1…T7 represents time period. From 

Table 4.4, it can be observed that the total number of TLHs that should be operational under 

consideration of epistemic uncertainty is larger than the deterministic case. The increase in the 

number of TLHs may be attributed to the demand uncertainty and time-varying nature and may 

as well be pertinent to actual needs in the affected areas. Irrespective of the consideration of 

uncertainty, a gradual growth and then respective decline in the number of TLHs operational 

can also be observed. From this comparison, it can be concluded that inclusion of uncertainty 

in parameter plays an important role in location selection process. 
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Table 4.4: Comparison of the results of multi-objective model with uncertainty in parameters 

and deterministic parameters 

 

Sensitivity analysis has been performed to understand the impact of number of TLHs on total 

cost and demand coverage and the overall network structure. Table 4.5 shows the sensitivity 

of the model results to the number of TLHs. It can be observed that increasing the number of 

TLHs leads to both increase in demand coverage and increase in total cost. Maximum demand 

coverage is obtained with ten hubs operating for seventy periods with a demand coverage of 

13.76 million units and a total cost of 0.112 million USD. If we compare the results of the 

maximum coverage under limit on number of TLHs and under the optimal condition where 

model decides the number and the operational periods, we can observe that total demand is 

covered with lesser number of TLHs and at lower total costs under the optimal condition. 

However, it is worth to note that under the optimal condition the number of TLHs operating is 

varying in each period unlike a fixed number under the constrained situation. This signifies the 

time-varying nature of the TLH establishment and need for time-varying sequencing of the 

establishment process. 

 

 

 

 

 

 

 

 

Model 

objective 

Nature of 

parameters 

Demand 

coverage 

(1000 

units) 

Total cost 

(100 

USD) 

TLH 

operational 

periods 

T1 T2 T3 T4 T5 T6 T7 

Minimize 

total cost 

 

Uncertain 13763.06 10583.46 60 9 10 11 10 10 7 3 

Deterministic 12626.66 9120 56 8 9 11 9 9 7 3 
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Table 4.5: Sensitivity analysis on the number of TLHs 

TLHs Demand 

coverage 

(1000 units) 

Total cost 

(100 USD) 

Fixed 

operating 

cost 

Transportation 

cost from 

supply point to 

TLH 

Transportation 

cost from TLH 

to POD Number 
Operational 

periods 

4 28 13496.91 14150.95 4578 1856.184 5151.725 

5 35 13310.77 12434.37 3815 1594.346 7025.028 

6 42 13496.91 11585.91 4578 1856.184 5151.725 

7 49 13496.91 11260.45 5341 1934.512 3984.941 

8 56 13496.91 11175.34 6104 2248.004 2823.336 

9 63 13656.6 11146.92 6867 2290.011 1989.913 

10 70 13763.06 11188.95 7630 2419.268 1139.677 

11 77 13763.06 11384.63 8393 2590.631 401 

12 84 13763.06 12083.61 9156 2653.928 273.6777 

To further understand the impact of confidence level and spread of the symmetric triangular 

fuzzy numbers on the attainment of objectives, sensitivity analysis was performed. Figure 4.5 

shows the sensitivity analysis on confidence level (α) with 15 percent spread on the 

symmetrical triangular fuzzy number and epsilon constraint for demand coverage at greater 

than or equal to 10 million units. Figure 4.6 shows the sensitivity on the spread of the symmetric 

triangular fuzzy number with 80 percent confidence level and epsilon constraint for demand 

coverage at greater than or equal to 10 million units. From figure 4.5 it can be observed that 

increase in the confidence level leads to increase in both total cost and demand coverage. This 

confidence level ensures the attainment level of the constraints with given degree of confidence. 

Similar trend can be observed from figure 4.6 as well, an increase in the spread of the triangular 

fuzzy number leads to increase in both total cost and total demand coverage. 
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Figure 4.5: Sensitivity analysis on confidence level (α) 

 

Figure 4.6: Sensitivity analysis for spread of symmetric triangular fuzzy number 
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4.5 Chapter summary 

Uncertainty and time-varying nature are the two key features of disaster response 

operations. This time-varying and uncertain nature of the demand and other parameters during 

the disaster response period plays an important role in the overall location selection process 

and the corresponding allocation decisions. Additionally, the time-varying nature of these 

parameters demands the corresponding variation in the location and allocation decisions as 

well. In this study, we have developed a multi-objective mathematical model considering 

uncertain and time-varying nature of parameters while also including the qualitative parameters 

in the quantitative modeling to determine the time-varying locations and the corresponding 

allocation of the TLHs within the operational horizon of seven periods. The mathematical 

model minimizes total cost (operational and transportation cost) while maximizing the demand 

coverage under time-varying coverage distance. Each TLH’s demand coverage is assumed to 

be gradually changing depending on the time of operation which in turn depends on the factors 

like transportation accessibility and available relief. 

The model proposed herein was implemented by using data obtained from the April 2015 Nepal 

earthquake. The results of the optimization model shows the total cost, associated demand 

coverage, number, and spatial location of the TLHs and their corresponding allocations. The 

results of the optimization model also shows that, while the time-varying nature of relief 

demand and the coverage levels of TLH remaining the same, the time periods when the TLHs 

are operational are different under different circumstances of multi-objective uncertain model 

and multi-objective deterministic model. Changes in the location of TLHs was observed with 

the introduction of uncertainty in parameters when compared to the deterministic model. The 

results also show the allocation of emergency relief from supply points to TLHs and from TLHs 

to PODs varying based on time periods and highlights the role of selected supply points and 

TLHs for emergency relief supply and delivery. Inclusion of qualitative attributes in the 

optimization model makes sure that minimum standards are met to enable establishment and 

operation of TLHs in the selected locations.  

Sensitivity analysis provided us with a wider understanding of the impact of limiting number 

of TLHs, confidence level within which objectives and constraints must be fulfilled, the spread 

of the symmetrical triangular fuzzy number on the coverage and cost objectives. It can be 

concluded that increase in these parameters lead to increase in both the demand coverage and 

total cost.  Additionally, the fuzzy factor rating system used under group decision-making 
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condition also enables accommodating multiple decision-makers in the decision-making 

process. Often during the chaotic response period a single decision-maker may not have all the 

information regarding various parameter. Therefore, inclusion of multiple decision-makers in 

obtaining the values of these parameters plays an important role. 
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CHAPTER 5 Fuzzy multi-attribute group decision-making for ordering 

the establishment of temporary logistics hubs 

 

5.1 Introduction 

A typical location problem includes determining how many, where, and how to locate and 

allocate the demand for open facilities. However, disaster response operation in most emerging 

countries is often resource constrained and requires the effective allocation of resources 

(mobile storage units) to ensure their effective utilization. In location decision-making, 

traditional network models take into account quantitative factors and aim to minimize the total 

cost or to maximize profitability or coverage. Non-quantitative criteria—such as, manpower 

qualifications, geographical characteristics, disaster vulnerability, availability of open spaces, 

and road accessibility issues—are also important in deciding location. While optimization 

approaches can be used for evaluating quantitative factors, this evaluation of qualitative factors 

is often accompanied by ambiguity and vagueness (Önüt et al. 2010). This is particularly so in 

the aftermath of a disaster, when the environment is chaotic, and there is limited information 

and time. Moreover, Montibeller and Yoshizaki (2011) state that intangible factors can change 

a network configuration resulting from a mathematical model. 

Furthermore, in the aftermath of a disaster the decision-making process typically involves 

multiple decision-makers with varying interests and opinions. Indeed, the growing complexity 

and uncertainty of decision situations make it less and less possible for a decision-maker to 

consider all relevant aspects of a problem, thereby necessitating the participation of multiple 

experts in the decision-making process (Ben-Arieh and Chen, 2006). As such, achieving a 

proper balance among them is a significant challenge. Essentially, disaster managers have to 

make myriad reactive operational decisions to solve complex dilemmas with little to no 

information under immensely stressful conditions as they respond to emergencies. This 

highlights the need for a simple and inclusive methodology. Under these circumstances, an 

appropriate decision-making strategy would require that the resolutions and opinions of a group 

of decision-makers be taken into account when evaluating the subjective and objective 

attributes in the TLH selection process.  

Within the extant literature, however, there is a general lack of studies that amalgamates 

optimization with a multi-criteria decision-making approach, which enables assessing both 
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qualitative and quantitative aspects, to model location problem. On the one hand, studies using 

an optimization approach to the problem of location selection hardly include qualitative 

attributes. On the other hand, studies focusing on location selection by incorporating qualitative 

attributes barely focus on the temporary nature of disaster response facilities and the need to 

incorporate optimization techniques. There is also a scarcity of studies that concentrate on 

issues related to ordering the establishment of TLHs in addition to their location and allocation 

strategies when the resources are limited. Moreover, few studies focus specifically on 

temporary facilities for relief distribution. Indeed, while the study of Maharjan and Hanaoka 

(2018) has incorporated multiple decision-makers in a multi-objective optimization for TLH 

location selection, it does not consider the order of its establishment. 

In this chapter we address the gaps in the existing literature and aid in the decision-making 

process by developing a methodology that determines the order of establishment of TLHs, and 

which considers location problems in doing so. The proposed methodology operates in three 

stages. The first stage uses an optimization model to determine the number and spatial location 

of the TLHs. In the second stage, a fuzzy factor rating system under group decision-making is 

used to rate the importance of attributes. Finally, in the third stage, a fuzzy multi-attribute group 

decision-making approach is used to determine the order of establishment of selected TLHs. 

As such, this study aims to develop a methodology that determines the order of establishment 

of TLHs that incorporates an optimization model and a multi-criteria decision-making 

approach. The methodology allows evaluating quantitative aspects and several qualitative 

attributes while considering the temporary nature of disaster response facilities under the 

presence of multiple-actors.  

5.2 Fuzzy multi-attribute group decision-making 

Known for its utility in evaluating imprecise attributes, the fuzzy multi-attribute group 

decision-making approach uses fuzzy set theory to deal with the vagueness and imprecision in 

decision-making. It also uses the logic and principle of the simple additive weighing method 

in factor rating systems to derive total scores for individual alternatives, which allows ranking 

by order of preference (Heragu, 1997; Heizer and Render, 2004) in GDM conditions. This 

approach has been proven to be simple but efficient in dealing with qualitative dimensions of 

alternative selection problem by Chou et al. (2008). Furthermore, while we are unsuccessful in 

making quantitative predications, we are comparatively efficient at qualitative forecasting. 

Fuzzy decision theories attempt to deal with the vagueness—that is, fuzziness—inherent in the 
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subjective or imprecise determination of preferences, constraints, and goals (Yager and Filey, 

1994). In addition to its abundant application in commercial logistics, fuzzy group decision 

making is a popular approach used for facility location problems (cf. Kahraman et al., 2003; 

Chou et al., 2008; Ertuğrul, 2011). However, their application in humanitarian logistics is 

nominal.   

5.3 Model formulation 

Consider the occurrence of a large-scale disaster that causes significant infrastructural 

damage and injury and results in large number of affected people. The scale of the disaster will 

attract responses from different humanitarian, governmental and non-governmental 

organizations, as well as local community groups, thereby creating a multi-actor scenario. 

Depending on the scale of the disaster, the number of humanitarian actors can range from a 

few dozens to several hundred. Effective disaster response requires the establishment of TLHs 

that can manage, sort, and store incoming emergency relief materials intended for distribution 

to affected people in different geographical locations immediately after the disaster. In large-

scale disasters, we can assume a situation where the mobile storage units used as TLHs are 

limited in number in the immediate aftermath. To facilitate the response to urgent emergency 

relief demands in affected areas while enabling the effective utilization of scarce mobile storage 

units, this study develops a mechanism to determine the order of establishment of TLHs. 

Based on the aforementioned prerequisites, the methodology for determining the order of 

establishment of TLHs involves: an optimization model, to calculate the number and the spatial 

location of TLHs; a mechanism establishing the importance weight of the subjective attributes; 

and a fuzzy multi-attribute group decision-making approach, to ascertain their order of 

establishment. In the first stage, the optimization model calculates the location alternatives for 

TLHs by minimizing total unsatisfied demand over the entire planning horizon. Moreover, to 

select an appropriate location, several qualitative attributes—including the availability of 

manpower, basic infrastructure facilities, security, and accessibility issues—need to be 

evaluated immediately after a disaster has occurred. While quantitative factors can be modeled 

using optimization techniques, qualitative factors are often difficult to incorporate and evaluate. 

As such, the main purpose of the second mechanism is to synthesize the importance weight of 

the attributes that will be used to evaluate the resulting location alternatives when multiple 

decision-makers exist. Finally, in the third step, the results obtained from the first stage 

optimization model are used as alternatives for subjective evaluation. The last two steps can be 
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operated recursively to accommodate the varying numbers and opinions of decision-makers. 

This methodology is thus a development of that of Maharjan and Hanoaka (2018), and is 

intended to assist decision-makers in the design of emergency logistics plan. The next 

subsection provides the details of each mechanism. 

5.3.1 Selection of location alternatives for TLHs  

This mechanism aims to determine the number and spatial location of TLHs. We have 

formulated an optimization model with the objective of minimizing total unsatisfied demand 

under time-varying demand and changing level of available emergency relief. The proposed 

approach allows us to accurately capture the changing levels of relief demand and supplies 

over the planning horizon. Within this optimization model, the establishment of TLHs is 

required to meet the demand of affected people over the entire relief time horizon. Each district 

or demand point has an associated demand for emergency relief materials. A demand point 

represents the aggregated demands of one district. Along the discrete time horizon, demands 

from the affected zone changes in a known way related to information availability, changes in 

the number of affected people, and the recovery of affected people—and demand can increase, 

decrease, or stagnate as a consequence. The amount of emergency relief materials available in 

TLHs is affected by its capacity, as well as external availability issues. This amount can be less 

than or equal to the capacity of TLHs—that is, it cannot exceed the capacity of TLHs. Our 

model is deterministic—the location and the affected areas of the disaster are known before the 

decision to open a TLH is made. The following section provides further detail of the 

mathematical model, notations, parameters, and variables.  

Nomenclature 

T Set of time periods. 

I Set of supply points. 

J Set of temporary logistic hubs (TLHs). 

K Set of affected area demand points. 

𝑄𝑆𝑖𝑡 Maximum available quantity of emergency relief materials at supply point i ∈ I in 

period t [kg]. 

𝑄𝐻𝑗𝑡 Maximum available quantity of emergency relief materials at TLH j ∈ J in period t [kg]. 

𝑑𝑘𝑡 Demand of the affected area’s demand point k in period t [kg]. 

𝑛𝑘𝑡 Number of TLHs allocated to demand point 𝑘 in period t. 
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M  A very large number. 

𝑟𝑖𝑗𝑡 Amount of emergency relief materials shipped from supply point i ∈ I to TLH j ∈ J in 

period t ∈ T. 

𝑞𝑗𝑘𝑡 Amount of emergency relief materials shipped from TLH j ∈ J to the affected area’s 

DP k ∈ K in period t ∈ T. 

𝑦𝑗 Binary variable that equals 1 if the facility at j is selected as a TLH and 0 otherwise. 

𝑧𝑗𝑘𝑡 Binary variable that equals 1 if TLH 𝑗  serves demand point 𝑘  in period t and 0 

otherwise. 

The optimization problem is formulated as follows: 

Minimize the unmet demand,  

∑ ∑ dktt −∑ ∑ ∑ qjkttkjk    (5.1) 

Constraints,   

∑ qjktk = ∑ rijti   ∀j ∈  𝐽, t ∈  𝑇  (5.2) 

∑ rijtj ≤ QSit  ∀i ∈  𝐼, t ∈  𝑇 (5.3) 

 ∑ rijti ≤ QHjt ∀ j ∈  𝐽, t ∈  𝑇 (5.4) 

∑ qjktk ≤ QHjt   ∀j ∈  𝐽, t ∈  𝑇 (5.5) 

 ∑ yjj ≤ P  (5.6) 

∑ qjktj ≤ dkt  ∀k ∈  𝐾, t ∈  𝑇 (5.7) 

 zjkt ≤ yj ∀j ∈  𝐽  (5.8) 

∑ zjktj ≤ nkt  ∀ k ∈  𝐾, t ∈  𝑇 (5.9) 

 qjkt ≤ Mzjkt ∀j ∈  𝐽, t ∈  𝑇 (5.10) 

 rijt ≥ 0   ∀i ∈  𝐼, j ∈  𝐽, t ∈  𝑇 (5.11) 

qjkt ≥ 0   ∀j ∈  𝐽, k ∈  𝐾, t ∈  𝑇 (5.12) 
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 yj ∈ {0,1}  ∀j ∈  𝐽 (5.13) 

 zjkt ∈ {0,1} ∀j ∈  𝐽,  k ∈  𝐾, t ∈  𝑇  (5.14) 

The objective function (5.1) minimizes total unsatisfied demand. Constraint (5.2) is the flow 

conservation constraint. Constraints (5.3) – (5.5) are the availability constraints. Constraint 

(5.3) ensures that the quantity of emergency relief materials moved from the supply points to 

the TLHs should be less than or equal to the maximum available quantity of emergency relief 

materials in the supply point in each period. Similarly, constraints (5.4) and (5.5) ensure that 

the quantity of emergency relief materials moved from the supply points to the TLHs and from 

TLHs to the demand points of affected areas should be less than or equal to the maximum 

available quantity of emergency relief materials in the TLHs in each period. Constraint (5.6) 

limits the total number of TLHs. Constraint (5.7) ensures that the quantity of emergency relief 

delivered to each demand point does not exceed its demand. Constraint (5.8) ensures that a 

demand point is served by TLH only if the TLH is open. Constraint (5.9) enforces multi-

sourcing, ensuring that each demand point is served by a pre-specified number of TLHs. 

Constraint (5.10) obligates emergency relief distribution only between the assigned TLH and 

the demand point. Constraints (5.11) – (5.14) express the nature of the decision variables used 

in the model. 

5.3.2 Determining the importance weight of attributes 

The main purpose of this stage is to determine the importance weight of the subjective 

attributes used in evaluating TLH location alternatives. In this study, we adapted the “fuzzy 

factor rating system under group decision making condition” to accommodate the calculation 

of the importance weights of subjective attributes. The fuzzy factor rating system under group 

decision-making uses fuzzy logic to account for the inherent vagueness and uncertainty 

associated with decision-making during disaster response. The modified mechanism is 

composed of six sequential steps, explained hereunder. 

Step 1: Selection of attributes. 

Several attributes play an important role in determining the order of establishment of TLHs. In 

this study, the term “attribute” is used to refer to subjective attributes only. The attributes can 

be selected based on a variety of criteria, including the socio-economic situation of the country, 
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the geo-climatic situation, a literature survey, and a review of lessons learned from the reports 

of past disasters. The attributes should be selected so as to ensure the sound utility and 

operational sustainability of the TLHs. 

Step 2: Selection of decision-makers. 

Under the GDM scenario, multiple decision-makers can be chosen. The choice of decision-

makers also varies from case-to-case and country by country. A committee of decision-makers 

can be formed based on their overall role in the disaster management activity. The nature of 

these decision-makers and their decision opinions can lead to the generation of different 

scenarios: (1) when the decision-makers are homogeneous (1.1) their decision opinions are 

homogeneous, or (1.2) their decision opinions are heterogeneous; (2) when the decision-makers 

are heterogeneous (2.1) their decision opinions are homogeneous, or (2.2) their decision 

opinions are heterogeneous. 

Step 3: Determining the degree of importance of decision-makers. 

As such, the next step is to determine if decision-makers are homogeneous or heterogeneous. 

If the degree of the importance of decision-makers is equal, then the group of decision-makers 

is deemed to be a homogeneous group; otherwise the group is deemed heterogeneous. 

In a committee of k decision-makers (Dt, t = 1, 2, …, k) responsible for assessing m alternatives 

(Ai, i=1, 2, …, m), under each of the n attributes (Cj, j=1, 2, …, n), as well as importance of 

attributes, the degree of importance of the decision-makers is It, t = 1, 2 ,…, k, where It ∈ [0,1] 

and ∑ 𝐼𝑡 = 1
𝑘
𝑡=1 . If 𝐼1= 𝐼2=…= 𝐼𝑘= 

1

𝑘
, the group of decision-makers is called a homogeneous 

group; otherwise the group is called heterogeneous group. The importance of each decision-

maker can be determined by interviewing the final decision-maker or based on their role in 

overall disaster management activities. 

Step 4: Collecting decision opinions and computing the aggregated fuzzy weight of individual 

attributes. 

The decision opinions of decision-makers can be obtained using a questionnaire interview or 

in person. The questionnaire uses the linguistic variables outlined in Table 5.1 to enable 

decision-makers to assess the importance of the attributes. The current study uses a scale of 1-

9 for rating in the manner employed by Liang and Wang (1991), Liang (1999), Yong (2006) 
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and Chou et al. (2008). Subsequently, to compute the aggregated fuzzy rating of the individual 

attributes, let �̃�𝑗𝑡= (𝑎𝑗𝑡 , 𝑏𝑗𝑡 , 𝑐𝑗𝑡, 𝑑𝑗𝑡), j = 1, 2, …., n; t = 1, 2, …., k, be the linguistic rating given 

to attributes 𝐶1 , 𝐶2 ,…., 𝐶𝑛  by decision-maker 𝐷𝑡 . The aggregated fuzzy rating, �̃�𝑗  = 

(𝑎𝑗 , 𝑏𝑗 , 𝑐𝑗 , 𝑑𝑗), of attribute 𝐶𝑗 assessed by the committee of k decision-makers is defined as 

W̃j  =  (I1⊗ W̃j1)  ⊕ (I2⊗ W̃j2)  ⊕ . . .⊕ (Ik⊗ W̃jk),   (5.15) 

where 𝑎𝑗 = ∑ 𝐼𝑡𝑎𝑗𝑡
𝑘
𝑡=1 , 𝑏𝑗 = ∑ 𝐼𝑡𝑏𝑗𝑡

𝑘
𝑡=1 , 𝑐𝑗 = ∑ 𝐼𝑡𝑐𝑗𝑡

𝑘
𝑡=1 , 𝑑𝑗 = ∑ 𝐼𝑡𝑑𝑗𝑡

𝑘
𝑡=1 . 

Table 5.1: Linguistic variables and fuzzy numbers for ratings 

Linguistic variables  Fuzzy numbers 

Very poor (0, 0, 0, 20) 

Between very poor and poor (0, 0, 20, 40) 

Poor (0, 20, 20, 40) 

Between poor and fair (0, 20, 50, 70) 

Fair (30, 50, 50, 70) 

Between fair and good (30, 50, 80, 100) 

Good (60, 80, 80, 100) 

Between good and very good (60, 80, 100, 100) 

Very good (80, 100, 100, 100) 

Step 5: Computing the importance weight of attributes. 

To compute the importance weight of attributes, defuzzify the fuzzy rating of the individual 

attributes, compute the normalized weights, and construct the weight vector. To defuzzify the 

rating of the fuzzy attributes, the signed distance is adopted. The defuzzification of �̃�𝑗, denoted 

as d(�̃�𝑗), is therefore given by 

d(W̃j)  =  
1

k
(aj + bj + cj + dj)   (5.16) 

The crisp value of the normalized weight for attributes 𝐶𝑗 , denoted by 𝑊𝑗, is given by 

Wj  =  
d(W̃j) 

∑ d(W̃j) 
n
j=1

,  
 (5.17) 

where ∑ 𝑊𝑗 = 1
𝑛
𝑗=1 . The weight vector W = [𝑊1,𝑊2, . . . , 𝑊𝑛] is therefore formed. 
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The crisp value of the normalized weight of the attributes 𝐶𝑗  can thus be used as the importance 

weight of the attributes. 

5.3.3 Identifying the order of establishment of TLHs 

To facilitate the establishment of TLHs, this stage aims to determine the order in which 

TLHs should be established. To do so, a fuzzy multi-attribute group decision-making approach 

uses the qualitative attributes selected in the second stage to evaluate each TLH location 

alternative obtained from the first stage. The following summarizes the main steps involved in 

this fuzzy multi-attribute group decision-making method. 

Step 1: Obtain the decision-opinions of decision-makers to assess alternatives with respect to 

individual attributes, and obtain aggregated fuzzy ratings. 

To assess the fuzzy ratings of location alternatives with respect to individual attributes, obtain 

the decision-opinions of decision-makers using the linguistic variables outlined in Table 5.1, 

and pool them together to obtain the aggregated fuzzy ratings. An interview questionnaire can 

be used for the rating of alternatives.    

Let �̃�𝑖𝑗𝑡= (𝑜𝑖𝑗𝑡, 𝑝𝑖𝑗𝑡, 𝑞𝑖𝑗𝑡, 𝑟𝑖𝑗𝑡), i = 1, 2, . . . , m; j = 1, 2, . . . , n; t = 1, 2, . . . , k, be the linguistic 

suitability rating assigned to alternatives 𝐴𝑖  for attributes 𝐶𝑗  by decision-maker 𝐷𝑡 . The 

aggregated fuzzy rating �̃�𝑖𝑗  of alternative 𝐴𝑖  for attribute 𝐶𝑗  assessed by the committee of k 

decision-makers is defined as 

x̃ij  =  (I1⊗ x̃ij1)  ⊕ (I2⊗ x̃ij2)  ⊕ . . .⊕ (Ik⊗ x̃ijk),   (5.18) 

This can subsequently be represented and computed as 

�̃�𝑖𝑗= (𝑜𝑖𝑗, 𝑝𝑖𝑗, 𝑞𝑖𝑗, 𝑟𝑖𝑗), i = 1, 2, . . . , m,  j = 1, 2, . . . , n 

where 𝑜𝑖𝑗 = ∑ 𝐼𝑡𝑜𝑖𝑗𝑡
𝑘
𝑡=1 , 𝑝𝑖𝑗 = ∑ 𝐼𝑡𝑝𝑖𝑗𝑡

𝑘
𝑡=1 , 𝑞𝑖𝑗 = ∑ 𝐼𝑡𝑞𝑖𝑗𝑡

𝑘
𝑡=1 , 𝑟𝑖𝑗 = ∑ 𝐼𝑡𝑟𝑖𝑗𝑡

𝑘
𝑡=1 . 

Step 2: Construct a fuzzy rating matrix.  

The fuzzy rating matrix �̃� can be constructed based on fuzzy ratings, and expressed concisely 

in the matrix format  
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�̃� =    

[
 
 
 
 
�̃�11
�̃�21..
.

�̃�𝑚1

�̃�12
�̃�22..
.

�̃�𝑚2

.

...

.

.

     

.

...

.

.

    

�̃�1𝑛
�̃�2𝑛..
.

�̃�𝑚𝑛]
 
 
 
 

 

where �̃�𝑖𝑗, ∀𝑖, 𝑗 is the aggregated fuzzy rating of alternative 𝐴𝑖 with respect to attribute 𝐶𝑗. 

Step 3: Derive the total fuzzy scores for individual alternatives by multiplying the fuzzy rating 

matrix by its respective weight vectors. 

Obtain the total fuzzy score vector by multiplying the fuzzy rating matrix �̃�  by the 

corresponding weight vector W, i.e.,  

F̃  =   M̃ ⊗ WT =  

[
 
 
 
 
x̃11
x̃21..
.

x̃m1

x̃12
x̃22..
.

x̃m2

.

...

.

.

     

.

...

.

.

    

x̃1n
x̃2n..
.

x̃mn]
 
 
 
 

 ⊗ 

[
 
 
 
 
W1

W2..
.
Wn]
 
 
 
 

  

=  

[
 
 
 
 
x̃11⊗W1⊕ x̃12⊗W2⊕⋯⊕ x̃1n⊗Wn

x̃21⊗W1⊕ x̃22⊗W2⊕⋯⊕ x̃2n⊗Wn.
..

x̃m1⊗W1⊕ x̃m2⊗W2⊕⋯⊕ x̃mn⊗Wn]
 
 
 
 

 =  

[
 
 
 
 
f̃1
f̃1.
..
f̃m]
 
 
 
 

 =  [f̃i]m∗1, 

 (5.19) 

 

where 𝑓𝑖 = (𝑠𝑖, 𝑡𝑖 , 𝑢𝑖, 𝑣𝑖 ).        

Step 4: Compute the crisp values using a defuzzification method.  

Defuzzify the fuzzy scores 𝑓1, 𝑓2, . . . , 𝑓𝑚 by using signed distance method. The following 

defuzzification equation is used to determine the crisp total scores of individual locations. 

d(f̃i)  =  
1

4
(si + ti + ui + vi)    i =  1, 2, . . . , m (5.20) 

 where d(𝑓𝑖 ) gives the defuzzified value (crisp value) of the total fuzzy score of location 

alternative 𝐴𝑖.   

Step 5: Determine the order of establishment of the TLHs. 
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Finally, to determine the order of establishment of TLHs, rank the location alternatives based 

on the crisp values. The location alternatives with larger crisp values should be established first, 

followed by the location alternatives with lower values. The higher crisp value indicates the 

better performance of alternatives over the selected attributes. 

5.4 Numerical illustration and analysis 

To support the usefulness of this methodology, a numerical experiment was performed 

using disaster data from April 2015 Nepal earthquake. The detail of the impacts can been 

referred from chapter 3. 

5.4.1 Optimal number and the spatial location of TLHs  

To determine the optimal number and location of TLHs, we considered seven supply points, 

eleven candidate TLHs, and 13 demand points. The optimal solution was achieved by 

minimizing total unsatisfied demand over the entire planning horizon. An operational horizon 

of five weeks was considered with each period lasting one week. We accounted for a single 

package relief delivery system. A single emergency relief package was assumed to weigh 10 

kg and to include essential items such as meals, a basic medical kit, blankets, baby supplies, 

and clothing. We estimated that a single emergency relief package is sufficient to sustain an 

individual for a week. The demand, cost, and available units of relief supplies are assumed to 

be time-varying.  

The model was coded using Lingo 17.0 Optimization modeling software. All the experiments 

were run on a personal computer with an Intel (R) Core (TM) i5-7500 CPU (3.40 GHz) and 16 

GB of RAM. All the test problems were computed in under ten minutes. Under the given 

conditions, the model resulted in a total of six TLHs with locations in Dolakha, Gorkha, 

Kathmandu, Makwanpur, Okhaldhunga, and Sindhupalchok. Figure 5.1 shows the spatial 

location of the selected TLHs on a map of Nepal. 
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Figure 5.1: Spatial location of temporary logistics hubs 

5.4.2. Determining the importance weight of attributes 

Eight attributes were identified through a combination of a survey of the literature on the 

problem of facility location in humanitarian operations, the lessons learnt reports published by 

different entities, as well as information regarding the socio-economic and geo-climatic 

context of Nepal. Table 5.2 lists and describes the selected attributes. 
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Table 5.2: Description of the attributes 

S.N. Attribute Description of the attribute 

1 Availability of open 

spaces  

C1 Determines whether there are open spaces 

available to establish TLHs. 

2 Accessibility via 

road  

C2 Refers to accessibility via road network, and 

determines the ease or difficulty in accessing the 

location by means of trucks, vans, etc. 

3 Accessibility via air  C3 Refers to accessibility issues via helicopters or 

planes. 

4 Security  C4 Denotes the security of the warehouse and related 

facilitates around the selected location. 

5 Availability of 

necessary 

infrastructure  

C5 Refers to the availability of basic infrastructural 

facilities, like electricity, water supply, etc. 

6 Availability of 

skilled manpower 

C6 Refers to the availability of the necessary 

manpower to support proper functioning of TLH 

in the candidate location. 

7 Disaster 

vulnerability of 

selected locations  

C7 Refers to the disaster vulnerability of the selected 

location alternative—for example, whether the 

location is susceptible to secondary disasters. 

8 Proximity to disaster 

affected areas  

C8 Describes how close or far the selected location is 

from the affected areas in need of emergency 

relief. 

A committee of four decision-makers—D1, D2, D3, and D4—from four humanitarian 

organizations active in disaster management in Nepal was formed. The decision-makers 

involved in evaluating the qualitative attributes were assumed to be homogeneous—the degree 

of importance is thus equal for all of the decision-makers.  

Table 5.3 shows the decision-opinions of four decision-makers using the linguistic weighing 

variables. The aggregated fuzzy rating of individual attributes was computed using equation 

(5.15) with reference to fuzzy numbers corresponding to each linguistic variable (Table 3.1). 

The importance weight of the attributes was calculated by defuzzifying the fuzzy numbers 

using the signed distance approach represented by equation (5.16), and the normalized weight 

was calculated using equation (5.17). The aggregated fuzzy weight, crisp values after 

defuzzification, and the normalized weight are shown in Table 5.3.  
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Table 5.3: The importance weight of attributes 

5.4.3 Order of establishment of TLHs 

To determine the order of establishment, we used the six TLHs obtained from the first stage 

as alternatives and evaluated them further using the attributes selected in the second stage by 

applying the fuzzy multi-attribute group decision-making method proposed in third stage.  

 

 

 

 

 

 

 

 

 

 

Attributes D1 D2 D3 D4 Aggregated fuzzy 

weight (AFW) 

Defuzzified 

value of AFW 

Normalized 

AFW 

C
1
 VH VH VH H (6.5, 9.25, 9.25, 10) 8.750 0.147 

C
2
 VH VH H VH (6.5, 9.25, 9.25, 10) 8.750 0.147 

C
3
 M H VH VH (5.25, 8, 8, 9.5) 7.687 0.129 

C
4
 H M H H (4.25, 6.5, 6.5, 9.5) 6.687 0.112 

C
5
 VH H VH M (5.25, 8, 8, 9.5) 7.687 0.129 

C
6
 M VL H M (2.25,4.25, 4.25, 7.25) 4.500 0.076 

C
7
 H VH H H (5.5, 7.75, 7.75, 10) 7.750 0.130 

C
8
 VH VH M H (5.25, 8, 8, 9.5) 7.687 0.129 
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Table 5.4: Decision-makers’ evaluation and fuzzy rating matrix 

Attribute Alternative  D1  D2 D3  D4 Aggregated fuzzy ratings 

C1 

Dolakha F B.P & F B.P & F P (7.5, 27.5, 42.5, 62.5) 

Gorkha B.G & V.G P B.P & F V.G (35, 55, 67.5, 77.5) 

Kathmandu G V.P P G (30, 45, 45, 65) 

Makwanpur V.G P G G (50, 70, 70, 85) 

Okhaldhunga F P B.F & G B.P & F (15, 35, 50, 70) 

Sindhupalchok B.F & G V.P B.P & F G (22.5, 37.5, 52.5, 72.5) 

C2 

Dolakha B.F & G F B.P & F F (22.5, 42.5, 57.5, 77.5) 

Gorkha B.G & V.G G F G (52.5, 72.5, 77.5, 92.5) 

Kathmandu V.G P G G (50, 70, 70, 85) 

Makwanpur B.G & V.G G G G (60, 80, 85, 100) 

Okhaldhunga F B.P & F B.P & F P (7.5, 27.5, 42.5, 62.5) 

Sindhupalchok F F B.P & F G (30, 50, 57.5, 77.5) 

C3 

Dolakha B.P & F V.P B.P & F F (7.5, 22.5, 37.5, 57.5) 

Gorkha V.P P P P (0, 15, 15, 35) 

Kathmandu V.G G G G (65, 85, 85, 100) 

Makwanpur G B.P & F G B.F & G (37.5, 57.5, 72.5, 92.5) 

Okhaldhunga F P B.P & F P (7.5, 27.5, 35, 55) 

Sindhupalchok P V.P P B.P & F (0, 15, 22.5, 42.5) 

C4 

Dolakha G F B.P & F F (30, 50, 57.5, 77.5) 

Gorkha F G B.F & G G (45, 65, 72.5, 92.5) 

Kathmandu B.G & V.G G G G (60, 80, 85, 100) 

Makwanpur B.F & G G B.F & G G (45, 65, 80, 100) 

Okhaldhunga F P F B.P & F (15, 35, 42.5, 62.5) 

Sindhupalchok F B.P & F B.P & F G (22.5, 42.5, 57.5, 77.5) 

C5 

Dolakha G F F B.P & F (30, 50, 57.5, 77.5) 

Gorkha B.F & G B.P & F P F (15, 35, 50, 70) 

Kathmandu B.G & V.G G B.F & G B.F & G (45, 65, 85, 100) 

Makwanpur G G F G (52.5, 72.5, 72.5, 92.5) 

Okhaldhunga F P B.P & F B.P & F (7.5, 27.5, 42.5, 62.5) 

Sindhupalchok B.P & F P P B.F & G (7.5, 27.5, 42.5, 62.5) 

C6 

Dolakha G P B.P & F P (15, 35, 42.5, 62.5) 

Gorkha B.F & G B.P & F P B.P & F (7.5, 27.5, 50, 70) 

Kathmandu V.G G B.F & G B.F & G (50, 70, 85, 100) 

Makwanpur G B.P & F B.P & F B.F & G (22.5, 42.5, 65, 85) 

Okhaldhunga F B.V.P & P B.P & F P (7.5, 22.5, 35, 55) 

Sindhupalchok B.P & F P P B.F & G (7.5, 27.5, 42.5, 62.5) 

C7 

Dolakha B.G & V.G F B.P & F B.P & F (22.5, 42.5, 62.5, 77.5) 

Gorkha F B.F & G B.P & F G (30, 50, 65, 85) 

Kathmandu B.G & V.G G F F (45, 65, 70, 85) 

Makwanpur F G F G (45, 65, 65, 85) 

Okhaldhunga F B.V.P & P F B.P & F (15, 30, 42.5, 62.5) 

Sindhupalchok P B.P & F B.P & F G (15, 35, 50, 70) 
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Table 5.4 (contd.): Decision-makers’ evaluation and fuzzy rating matrix 

Attribute Alternative  D1  D2 D3  D4 

Aggregated fuzzy 

ratings 

C8 

Dolakha B.G & V.G F B.P & F B.P & F (22.5, 42.5, 62.5, 77.5) 

Gorkha G B.F & G F B.G & V.G (45, 65, 77.5, 92.5) 

Kathmandu F G B.F & G F (37.5, 57.5, 65, 85) 

Makwanpur P G F B.F & G (30, 50, 57.5, 77.5) 

Okhaldhunga F B.P & F B.P & F B.P & F (7.5, 27.5, 50, 70) 

Sindhupalchok B.G & V.G B.P & F F V.G (42.5, 62.5, 75, 85) 

The decision-opinion of decision-makers in terms of fuzzy ratings for selected alternatives 

were obtained using the linguistic variables outlined in Table 5.1. Table 5.4 shows the decision-

makers’ evaluations and the aggregated fuzzy ratings computed for each alternative, as well as 

the respective criterion combination using equation (5.18). The fuzzy ratings matrix in Table 

5.5 has been constructed using the aggregated ratings in Tables 5.3 and 5.4. 

Table 5.5: Fuzzy rating matrix 

Attributes Dolakha Gorkha Kathmandu Makwanpur Okhaldhunga Sindhupalchok 

C1 (7.5, 27.5, 42.5, 
62.5) 

(35, 55, 67.5, 77.5) (30, 45, 45, 65) (50, 70, 70, 85) (15, 35, 50, 70) (22.5, 37.5, 52.5, 
72.5) 

C2 (22.5, 42.5, 57.5, 
77.5) 

(52.5, 72.5, 77.5, 
92.5) 

(50, 70, 70, 85) (60, 80, 85, 100) (7.5, 27.5, 42.5, 
62.5) 

(30, 50, 57.5, 77.5) 

C3 (7.5, 22.5, 37.5, 
57.5) 

(0, 15, 15, 35) (65, 85, 85, 100) (37.5, 57.5, 72.5, 
92.5) 

(7.5, 27.5, 35, 55) (0, 15, 22.5, 42.5) 

C4 (30, 50, 57.5, 77.5) (45, 65, 72.5, 92.5) (60, 80, 85, 100) (45, 65, 80, 100) (15, 35, 42.5, 62.5) (22.5, 42.5, 57.5, 
77.5) 

C5 (30, 50, 57.5, 77.5) (15, 35, 50, 70) (45, 65, 85, 100) (52.5, 72.5, 72.5, 
92.5) 

(7.5, 27.5, 42.5, 
62.5) 

(7.5, 27.5, 42.5, 
62.5) 

C6 (15, 35, 42.5, 62.5) (7.5, 27.5, 50, 70) (50, 70, 85, 100) (22.5, 42.5, 65, 85) (7.5, 22.5, 35, 55) (7.5, 27.5, 42.5, 
62.5) 

C7 (22.5, 42.5, 62.5, 
77.5) 

(30, 50, 65, 85) (45, 65, 70, 85) (45, 65, 65, 85) (15, 30, 42.5, 62.5) (15, 35, 50, 70) 

C8 (22.5, 42.5, 62.5, 
77.5) 

(45, 65, 77.5, 92.5) (37.5, 57.5, 65, 
85) 

(30, 50, 57.5, 77.5) (7.5, 27.5, 50, 70) (42.5, 62.5, 75, 85) 

The normalized weight in Table 5.3 and fuzzy ratings in Table 5.5 were combined using 

equation (5.19) to obtain the total fuzzy scores for each location. Table 5.6 shows the resulting 

scores. The crisp values of the total fuzzy scores were obtained using the defuzzification 

equation (5.20), shown in Table 5.6. Finally, the alternatives were ranked based on the 

defuzzified total scores and used to determine the order of establishment of TLHs (Table 5.6). 
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Table 5.6: Aggregated fuzzy number, defuzzified total score, and order of establishment 

Location 

alternatives 

Aggregate fuzzy number Defuzzified total score Order of 

establishment 

Kathmandu (47.21, 66.48, 72.38, 88.76) 68.71 I 

Makwanpur (44.31, 64.31, 71.34, 89.87) 67.46 II 

Gorkha (30.16, 49.51, 60.14, 77.29) 54.27 III 

Dolakha (19.60, 38.96, 52.88, 71.58) 45.76 IV 

Sindhupalchok (19.23, 37.85, 50.46, 69.17) 44.18 V 

Okhaldhunga (10.42, 2940, 43.04, 63.04) 36.48 VI 

The results of the interviews with the decision-makers in Table 5.3 reveals the differences in their 

decision-opinions. While three of the four decision-makers revealed that the availability of open 

spaces is of very high importance, one decision-maker placed comparatively lower importance on 

the same attribute. The decision-opinions of different decision-makers are heterogeneous in 

general—underscoring the importance of considering multiple decision-makers in the evaluation 

process. The normalized aggregated fuzzy weight in Table 5.3 shows that the “availability of open 

spaces” and “accessibility via roads” were perceived as highly important attributes, while the 

“availability of skilled labor” was deemed least important.  

The order of establishment of TLHs can be determined with reference to the defuzzified total scores 

provided in Table 5.6. A higher value of a defuzzified total score means that the selected TLH 

performs better than its alternatives, and should thus be established first to achieve maximum 

effectiveness. Based on the decision-opinions of four decision-makers considered homogeneous, the 

final order of establishment should see the first TLH installed in Kathmandu, followed by 

Makwanpur, Gorkha, Dolakha, Sindhupalchok, and finally Okhaldhunga. The spider chart in Figure 

5.2 illustrates the performance of the selected TLHs over the selected attributes. As seen in Figure 

5.2, the location alternative of Kathmandu performs the best among the six selected TLHs, and 

therefore should be established first. While Kathmandu lags behind other alternatives in terms of 

open space availability, accessibility via roads, and proximity to disaster affected areas, it performs 

better overall.   
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Figure 5.2: Performance of TLHs over all attributes 

In order to understand the importance of including multiple actors and their impact on the overall 

decision-making process, we performed further calculations under different scenarios. Table 5.7 

provides a comparison of the results in terms of variation in the order of establishment under three 

scenarios: single actor, multi-actor homogeneous, and multi-actor heterogeneous. When the decision-

making process is conducted by only one decision-maker, the order of establishment is as follows: 

Kathmandu, Makwanpur, Dolakha, Gorkha, Okhaldhunga, and Sindhupalchok. In the homogenous 

multi-actor scenario, the order of establishment is: Kathmandu, Makwanpur, Gorkha, Dolakha, 

Sindhupalchok, and Okhaldhunga. Meanwhile, in a heterogeneous multi-actor scenario it the order 

is: Kathmandu, Makwanpur, Gorkha, Sindhupalchok, Dolakha, and Okhaldhunga. This highlights 

the importance of considering multiple decision-makers and their influence over the decision-making 

process—as is the case in reality. 
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Table 5.7: Comparison of single and multiple actor scenarios 

Selected locations Order of establishment 

Single-actor Multi-actor 

Homogeneous Heterogeneous 

Dolakha III IV V 

Gorkha IV III III 

Kathmandu I I I 

Makwanpur II II II 

Okhaldhunga V VI VI 

Sindhupalchok VI V IV 

5.5 Chapter summary  

Recently, temporary facilities for disaster response has been receiving growing attention 

from scholars and practitioners alike. However, location selection and ordering are immensely 

complex due to the lack of information, growing number of humanitarian responders, and the 

need to evaluate subjective attributes during the chaotic disaster response period. This study 

has combined an optimization model with fuzzy multi-attribute group decision-making to 

develop a methodology for determining the order of establishment of TLHs. This is a three-

stage process: the multi-period optimization problem determines the number and spatial 

location of TLHs by minimizing the total unsatisfied demand, the fuzzy factor rating system 

calculates the importance weight of subjective attributes, and the fuzzy multi-attribute group 

decision-making method ascertains the order of establishment of the selected TLHs by 

considering eight subjective attributes.  

The proposed methodology was implemented using data obtained from the April 2015 Nepal 

earthquake. Of the eleven candidate locations assumed to fulfill the time-varying demand over 

the entire planning horizon, the optimization model pinpointed six locations: Dolakha, Gorkha, 

Kathmandu, Makwanpur, Okhaldhunga, and Sindhupalchok. Interviews with decision-makers 

revealed the differences in their opinion regarding the prominence of different attributes. This 

difference in decision-opinion was also observed when evaluating the performance of selected 

locations versus the attributes. Further analysis showed that the order of establishment varies 

significantly when the locations are evaluated under different scenarios. In this study, the order 

of establishment under the three scenarios of single actor, homogeneous multiple actors, and 

heterogeneous multiple actors were found to differ considerably. This led us to conclude that 

it is essential to consider real life scenarios when making decisions regarding TLHs. 
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Though we have used a single objective optimization approach for generating the optimal TLH 

number and their spatial location alternatives in this chapter, the multi-objective optimization 

models both the deterministic one and the possibilistic one can also be used to generate 

alternatives.  Depending on the actual need of the situation appropriate mathematical model 

can be used in the first phase. 
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CHAPTER 6 Summary and Conclusion 

 

6.1 Facility location in perspective 

Figure 6.1 shows the facility location problem in perspective. Through this dissertation we 

have addressed a temporary logistics hub establishment problem with a finite horizon with both 

single and multiple objectives considering time-varying uncertain and time-varying 

deterministic nature of parameters using both qualitative and quantitative modeling approach. 

 

Figure 6.1: Facility location problem in perspective 

6.2 Summary and Conclusion 

In the recent years, the field of humanitarian logistics has been receiving burgeoning 

attention from both academics and practitioners. However, review of the extant of literature 

reveals a general lack of studies focusing on temporary logistical facilities that enables 

streamlining post-disaster operations to minimize suffering of affected people. This 

dissertation started with a broader aim of introducing the concept of temporary logistics hubs 

and its significance in post-disaster operation especially focusing on developing countries 

where preparedness lags behind actual needs. In doing so we studied different dimensions of 

TLHs ranging from determining their location, allocation, timing of establishment, and 

ordering of establishment and developed models and methodology for determining them. 

Furthermore, methodologies were also developed to enable evaluation of qualitative and 

quantitative attributes, and decision-making approaches which plays a vital role in enabling 



110 
 

comprehensive analysis of multiple aspects of TLH location problem and its operational 

sustainability. The following sections summaries what has been achieved through each chapter 

in retrospective to the objectives of this study.  

Chapter three – One of the key decisions to make regarding TLHs is to determine and decide 

on where to locate them to achieve desired objective/s. Unlike commercial operations, 

humanitarian operations often have more than one objective which necessitates use of multi-

objective optimization. However, use of this approach requires knowing the weights assigned 

to different objectives which is often complicated. Furthermore, humanitarian response 

operations often requires engagement of wide range of actors ranging from government 

organizations to national and international non-governmental organization, and community 

organizations where the decision-makers have to make myriad of decisions under pressure and 

impreciseness while ensuring agility of relief chain. To address these issues in this chapter we 

developed a multi-objective location model with the objectives of minimizing total cost and 

unsatisfied demand with multi-sourcing feature and a FFRS under GDM. The FFRS under 

GDM is used to determine the weight of objectives which is capable of accommodating 

decision-opinion of multiple decision-makers. The results of the numerical illustration using 

April 2015 Nepal earthquake shows trade off relationship between the two objectives and 

varying decision-opinion of different decision-makers when the decision-makers were 

considered homogeneous. Sensitivity analysis shows higher availability of emergency relief in 

the TLHs increases demand satisfaction at the price of increased costs. Further, the analysis of 

the multi-sourcing constraint reveals the reduction in total unsatisfied demand at the cost of 

increased costs in the multi-sourcing setting compared with single-sourcing under the same 

availability restrictions. Despite the increased cost, multi-sourcing enables supply chain agility, 

which is essential during disaster response. 

Chapter four – Disaster response operations are often carried out immediately after its 

occurrence, during which time the information regarding precise values of the parameters is 

still evolving. The entire decision-making ability/process is tainted with high degree of 

uncertainty. Under these circumstances, knowing not only where and how many TLHs to 

establish, but also when to establish them is necessary while taking account of the uncertainty 

in parameter value. In this chapter we develop a possibilistic multi-objective optimization 

model that determines the location of TLHs and allocation of open TLHs to the demand points. 

The model minimizes total cost while maximizing total demand coverage using epsilon 
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constraint method. A credibility based fuzzy chance constrained programming approach is used 

to account for possibilistic parameters and FMAGDM is used to evaluate availability of open 

spaces and transportation accessibility during the immediate aftermath. The results of the 

numerical illustration shows the location, number of TLHs along with their sequence (timing) 

of establishment and allocation of the open facilities to PODs. Sensitivity analysis provided us 

with a wider understanding of the impact of limiting number of TLHs, confidence level within 

which objectives and constraints must be fulfilled, the spread of the symmetrical triangular 

fuzzy number on the coverage and cost objectives. It can be concluded that increase in these 

parameters lead to increase in both the demand coverage and total cost.  Additionally, the fuzzy 

factor rating system used under group decision-making condition also enables accommodating 

multiple decision-makers in the decision-making process. Often during the chaotic response 

period a single decision-maker may not have all the information regarding various parameter. 

Therefore, inclusion of multiple decision-makers in obtaining the values of these parameters 

plays an important role. 

Chapter five – This chapter introduces the concept of the order of establishment of TLHs. 

Determining the order of establishment plays an important role in ensuring maximum 

utilization of the mobile storage units which are used as TLHs when they are in limited 

availability which is often true during the initial phase of post-disaster operation. Order of 

establishment can be determined after their optimal number, their corresponding spatial 

location and allocation strategies, and their timing of establishment have been determined. It is 

worth noting that the concept introduced in this chapter is almost non-existent in the existing 

literature. From the methodological point of view, often studies have used either optimization 

approach or multi-criteria decision-making approach to deal with location problems. In this 

chapter we attempt to take the benefit obtained by amalgamating an optimization approach 

with multi-criteria decision-making approach where the optimization model determines the 

optimal numbers and locations of TLHs and FMAGDM is used to determine their order of 

establishment. While both the mathematical models developed in chapter three and four can 

determine the optimal number and location of the TLHs we have developed a single objective 

optimization model with the objective of minimizing total unsatisfied demand to determine the 

initial results. FMAGDM approach employed here enables evaluation of qualitative attributes 

affecting the ordering decision while taking account of decision-opinion of multiple decision-

makers in terms of fuzzy linguistic variables. In the numerical illustration, the decision-opinion 

of four decision-makers reveals availability of open spaces and transportation accessibility as 
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the two most important attributes for determining the order of establishment of TLHs. The 

performance of the selected TLHs can also be observed from the results. 

Generally speaking, humanitarian operations should focus on optimizing humanitarian 

objectives as dictated by the humanitarian code of conduct. However, discrepancy can be 

observed in the real life operations where minimizing cost becomes a significant objective. A 

thorough understanding of the impact of the choice of objectives on the location selection is 

desirable in this case. In this dissertation, we have developed three optimization models with 

different objectives with the aim of understanding this. Chapter three has developed a multi-

objective optimization model with the objective of minimizing total cost and total unsatisfied 

demand. Similarly, in chapter four a possibilistic multi-objective model with the objectives of 

maximizing total demand coverage and minimizing total cost is developed. On the contrary, a 

single objective optimization model with the objective of minimizing total unsatisfied demand 

is developed in chapter five. As a summary, in terms of the choice of objectives this dissertation 

has explored location selection with wide range of objectives which can provide managerial 

insights on the impact of choice of objective function on TLH location selection decision.  

In retrospect to the objectives of this dissertation we have developed three different models to 

determine the optimal number, their spatial location, allocation of selected TLHs, and their 

order of establishment while also accounting for features like multi-sourcing, incorporating 

multiple actors in the decision-making process, uncertainty arising due to impreciseness in this 

dissertation. While multi actor approach to optimization modelling is almost insignificant in 

the literature of humanitarian logistics, the interview with the logistics experts from different 

humanitarian organizations revealed difference in their decision opinion highlighting the 

significant of incorporating them in the decision-making process. 

6.3 Comparison of results 

In chapter three, model results of the numerical illustration has selected eight optimal TLHs 

with locations in Gorkha, Kathmandu, Kavrepalanchok, Makwanpur, Nuwakot, Ramechhap, 

Sindhuli, and Sindhupalchok to operate for the entire planning horizon of five periods. In 

chapter four, time-varying locations in eleven candidate TLH locations in Dhanding, Dolakha, 

Gorkha, Kathmandu, Kavrepalanchok, Makwanpur, Nuwakot, Okhaldhunga, Ramechhap, 

Sinduli, and Sindhupalchok are selected for establishment of TLHs within an operational 

horizon of seven periods. Among the twelve candidates, TLH in Dolakha, Kathmandu, and 
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Sindhuli is selected to operate for seven periods and Gorkha, Nuwakot, Okhaldhunga, and 

Sindhupalchok is selected to operate for six periods. Similarly, TLH in Dhading and 

Makwanpur is selected to operate for five periods and TLH in Kavreplanchok is selected to 

operate for four periods starting from second period ending in fifth period. Finally, TLH in 

Ramechhap is selected to be operational only in fourth period. In chapter five, a total of six 

TLHs with locations in Dolakha, Gorkha, Kathmandu, Makwanpur, Okhaldhunga, and 

Sindhupalchok are selected to operate for the entire planning horizon of five periods.  

It is worth to note that, the features of the mathematical model and the objectives of concern 

are different in each chapter, consequently the optimal choice of TLH location and their 

numbers are also different. Although, chapter three and chapter five deals with static nature of 

TLHs and chapter four with time-varying nature, TLH candidate locations in Dolakha and 

Kathmandu are selected to operate for the entire planning horizon in all three chapters which 

signifies the importance of these locations in the overall humanitarian response operation 

irrespective of the choice of objectives and modelling features. However, from the results, it 

can also be concluded that, the choice of objective function and the solution methodology in 

addition to other model features has considerable impact on the location selection decision.    

6.4 Practical implication and applicability 

Based on the insights gained in the course of this dissertation, this section discusses what 

implications the research findings have for the actors/decision-makers for improving 

humanitarian operations. 

 Large scale humanitarian operations usually see involvement of more than one 

actor/stakeholder/decision-maker in real life. However, an inability to accommodate 

the actors in the establishment decision-making may have its consequences. Therefore, 

practical implication of involving multiple decision- maker early in the decision-

making process enables coordination by synthesizing a representative outcome from a 

decision-maker’s judgements. This further helps to develop a sense of ownership of the 

established TLHs and its operations. This sense of ownership is important to maximize 

the utilization of the established hubs while enabling coordination. 

 The application of group decision-making approach also enables minimizing 

discrepancy caused by lack of information of information asymmetry. When the 

decision is made by a group more accurate information can be obtained while reducing 
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redundancy in information and operation. The practical implication of involving 

multiple decision-makers early in the decision making process allows synthesis 

information from more than one decision-maker during the information scarce response 

phase.  

 The trade-off between non-commensurable objectives provides decision-makers with 

ample alternatives and combinations from which to choose when deciding on the 

available quantity of emergency relief goods as well as the number and location of the 

TLHs.  

 The methodology developed herein can provide disaster managers with an effective 

means to ascertain the location sequencing of TLHs under impreciseness in values of 

parameters which is often the case in real life response operations. Time-varying 

location sequencing allows the humanitarian relief chain network to be responsive to 

the changes in the factors pertinent to increasing the efficiency and effectiveness of 

humanitarian operations. 

 When the resources for establishment of TLHs are limited and their effective utilization 

is vital which is often the case in the immediate aftermath of the disaster (eg: after April 

2015 Nepal earthquake) particularly in developing countries where the investment on 

disaster preparedness is minimal, determining the order of establishment of TLHs 

especially useful of the decision-makers who have to make myriad of decisions with 

limited information and time.  

 The evaluation of TLH location alternatives based on the qualitative attributes allows 

for ensuring operational sustainability of the established hubs. Based on the 

performance of TLH over the selected attributes, insightful suggestions can be made to 

strengthen the performance over the weaker attributes.   

 Although, all the numerical illustrations have been performed with earthquake case, the 

models and methodologies developed within the scope of this dissertation have broader 

applicability in real life disaster cases. Especially, the methodology developed in 

Chapter 4 is applicable to moving disaster like floods where time-varying nature of 

TLHs are key to the effectiveness of humanitarian operation.  

6.5 Recommendation for future establishment of TLHs 

In response to Nepal earthquake 2015 nine storage hubs were made available in different 

parts of the country. Specific spatial location of the hubs can be observed in Figure 1.1. Table 
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6.1 shows the name/location of the hubs, date of identification, number of organizations using 

it, volume of relief stored in each hubs. 

Table 6.1: Details of storage hubs during Nepal earthquake 2015 

S.N. Location of storage hubs Date of 

identification 

Number of 

organizations 

Volume of 

relief  (m3) 

1 Kathamndu Pre-established 86 16,110 

2 Gorkha (Deurali) 2015 May 1 47 6,278 

3 Sindhupalchok (Chautara) 2015 May 8 19 3,511 

4 Chitwan (Bharatpur) 2015 May 11 5 1,492 

5 Kavrepalanchok (Dhulikhel) 2015 May 12 15 4175 

6 Dhading (Dhading Besi) NA 12 955 

7 (Nuwakot) Bidur NA 10 1,700 

8 Rasuwa (Dhunche) NA 4 183 

9 Dolakha (Charikot) NA 8 1,904 

Recommendations made for future establishment of TLHs are in reference comparison with 

the actual logistics strategy adopted during Nepal earthquake 2015. Concisely translating the 

findings of this study to practical world and policy implications for future establishment of 

TLHs, the following points were found important to consider: 

1. Response to Nepal earthquake 2015, saw establishment of transit hubs in 

Kavrepalanchok and Chitwan as the first response strategy which later acted as supply 

sources to regional storage hubs in Gorkha, Shindhupalchok, Dhanding, Nuwakot, 

Rasuwa, and Dolakha. In the ideal situation, these hubs should have been established 

as a part of preparedness phase. Doing this could have saved both time, effort, and 

money. 

Therefore, in the context of disaster response operation, special attention needs to be 

paid to strengthen disaster preparedness. This can translate to substantial reduction in 

transportation cost and improvement in overall relief delivery. Disaster preparedness 

can be strengthened by establishing warehousing facilities for storage of emergency 

relief, identifying reliable supply sources and open spaces etc. 

2. The response to Nepal earthquake 2015 can be summarized (Table 6.2) as establishing 

storage hubs in major crisis hit districts except for hubs in Kathmandu, Kavrepalanchok, 



116 
 

and Chitawan. This may severely hinder effectiveness of the overall response operation. 

Therefore, future establishment decision-making should aim at avoiding ad hoc 

decision-making and adopt a systematic approach.  

Table 6.2: Summary of the TLH selection 

 

 

 

 

3. The significance of objective selection for distribution network design was 

demonstrated by the varying numbers and corresponding spatial locations of TLHs with 

the varying types of objectives (Table 6.2). Therefore, it is desirable to determine 

mutually acceptable objective/s in the preparedness phase. The choice of objectives 

may vary conditional to the nature of disaster and type of decision-making entities 

involved. 

4. One of the main shortcoming faced in the operation of storage hubs during Nepal 

earthquake is the problem of ownership of the established hubs. Organizations were 

only found to be interested in using the storage hubs but not taking the responsibility of 

ensuring its operation. The interview with the decision-makers clearly illustrate 

difference in their decision-opinions. Therefore, future establishment decisions should 

focus on incorporating multiple decision-makers in location decision-making. 

5. Future establishment of TLHs should focus on determining appropriate order of 

establishment. Nepal earthquake faced challenges with actual operation of established 

hub due to lack of sufficient and relevant equipment and handling capacities like 

forklifts. Although, detailed information on how long did it take for the problem to be 

solved, it determining the order of establishment of TLJs becomes instrumental in the 

successful operation of those established.  
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6. Establishment of TLHs needs be addressed in holistic view including quantitative and 

qualitative criteria incorporating multiple actors to ensure effective utilization and 

sustainable operation of TLHs. Depending on the scale of disasters, response operations 

are often beyond the capability of single entity. Moreover, response operations in 

developing countries frequently face epistemic uncertainty. Incorporation of multiple 

actors can lead to possible reduction in accuracy, information asymmetry with 

enhanced cooperation. 

6.6 Scope of future work 

The scope of the future work is geared towards addressing the limitation encountered in the 

conduct of this study. Though the concept, methodological development, and findings of this 

dissertation contribute to the body of the literature, based on the insights gained in the course 

of the study, the following specific topics lend themselves to future research. 

Operational horizon: The length of disaster response operation plays an important role in 

determining the operational horizon of TLHs. However, determining the exact duration is a 

cumbersome task which depends on factors like economic status of the country/region, level 

of development, severity of disaster etc. Future research could focus on determining the exact 

length of operational horizon. This may enable efficient and effective utilization of mobile 

storage units in case of multiple disaster cases. 

Importance of decision-makers: Real life decision-making involves active participation of 

more than one decision-makers. These decision-makers may have varying degree of 

importance based on their hierarchy and/or knowledge. Developing a method to determine the 

relative importance of decision-makers and incorporating it into the model is thus a possible 

extension.  

Confidence level: As the complexity of the response operation is growing, determining the 

desired confidence level to ensure optimum service is of great value. Future researchers could 

examine in greater detail the nature of the confidence level used in chapter four and possible 

method to elicit its value. 

Level of uncertainty: The level of uncertainty in the parameter values in our current study 

(chapter four) is represented by the spread of the symmetric triangular fuzzy number which has 

been assumed to be 15 percent. However, it is quite challenging to determine its precise value 
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and its nature (time-varying or not). A coordinated approach with constant participation of 

decision-maker could be a possible avenue to further research on this topic. 

Accounting for uncertainty: There is an extant of literature in humanitarian logistics using 

stochastic or robust approach to model uncertainty. However, the nature of uncertainty 

prevalent in post-disaster stage is often ignored. Through this study an attempt has been made 

to account for uncertainty arising due to impreciseness using possibility distribution. Future 

research could explore this avenue by developing/employing other approaches to account for 

this type of uncertainty. 
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APPENDIX  

APPENDIX A 

Transportation cost from supply points to candidate TLHs per km per vehicle (in USD) 

 Supply 

points 

Candidate 

TLHs  
T1 T2 T3 T4 T5 T6 T7 

TIA DHA 0.167 0.167 0.155 0.149 0.143 0.143 0.143 

  DOL 0.267 0.267 0.248 0.238 0.228 0.228 0.228 

  GOR 0.290 0.290 0.269 0.259 0.249 0.249 0.249 

  KTM 0.010 0.010 0.009 0.009 0.008 0.008 0.008 

  KAV 0.051 0.051 0.047 0.046 0.044 0.044 0.044 

  MAK 0.014 0.014 0.013 0.012 0.012 0.012 0.012 

  NUW 0.163 0.163 0.151 0.145 0.139 0.139 0.139 

  OKH 0.155 0.155 0.144 0.138 0.133 0.133 0.133 

  RAM 0.414 0.414 0.384 0.369 0.354 0.354 0.354 

  RAS 0.243 0.243 0.226 0.217 0.209 0.209 0.209 

  SIN 0.257 0.257 0.238 0.229 0.220 0.220 0.220 

  SIND 0.290 0.290 0.269 0.259 0.249 0.249 0.249 

KAKAD DHA 1.070 1.070 0.994 0.956 0.917 0.917 0.917 

  DOL 0.831 0.831 0.772 0.742 0.712 0.712 0.712 

  GOR 1.172 1.172 1.088 1.047 1.005 1.005 1.005 

  KTM 0.937 0.937 0.870 0.837 0.803 0.803 0.803 

  KAV 0.837 0.837 0.777 0.747 0.717 0.717 0.717 

  MAK 0.933 0.933 0.866 0.833 0.800 0.800 0.800 

  NUW 0.782 0.782 0.726 0.698 0.670 0.670 0.670 

  OKH 1.058 1.058 0.983 0.945 0.907 0.907 0.907 

  RAM 0.661 0.661 0.613 0.590 0.566 0.566 0.566 

  RAS 1.154 1.154 1.071 1.030 0.989 0.989 0.989 

  SIN 0.717 0.717 0.666 0.641 0.615 0.615 0.615 

  SIND 0.600 0.600 0.557 0.536 0.514 0.514 0.514 

BIRAT DHA 0.925 0.925 0.859 0.826 0.793 0.793 0.793 

  DOL 0.684 0.684 0.635 0.611 0.586 0.586 0.586 

  GOR 1.027 1.027 0.954 0.917 0.880 0.880 0.880 

  KTM 0.792 0.792 0.735 0.707 0.679 0.679 0.679 

  KAV 0.692 0.692 0.642 0.618 0.593 0.593 0.593 

  MAK 0.745 0.745 0.692 0.665 0.638 0.638 0.638 

  NUW 0.635 0.635 0.590 0.567 0.544 0.544 0.544 

  OKH 0.913 0.913 0.848 0.816 0.783 0.783 0.783 

  RAM 0.514 0.514 0.477 0.459 0.440 0.440 0.440 

  RAS 0.990 0.990 0.919 0.884 0.849 0.849 0.849 

  SIN 0.570 0.570 0.530 0.509 0.489 0.489 0.489 

  SIND; 0.453 0.453 0.420 0.404 0.388 0.388 0.388 
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BHAIRA DHA 0.545 0.545 0.506 0.487 0.467 0.467 0.467 

  DOL 0.937 0.937 0.870 0.837 0.803 0.803 0.803 

  GOR 0.368 0.368 0.342 0.329 0.316 0.316 0.316 

  KTM 0.541 0.541 0.502 0.483 0.464 0.464 0.464 

  KAV 0.582 0.582 0.541 0.520 0.499 0.499 0.499 

  MAK 0.531 0.531 0.493 0.474 0.455 0.455 0.455 

  NUW 0.384 0.384 0.357 0.343 0.329 0.329 0.329 

  OKH 0.610 0.610 0.566 0.544 0.522 0.522 0.522 

  RAM 0.939 0.939 0.872 0.838 0.805 0.805 0.805 

  RAS 0.592 0.592 0.550 0.529 0.508 0.508 0.508 

  SIN 0.825 0.825 0.766 0.737 0.707 0.707 0.707 

  SIND 0.708 0.708 0.657 0.632 0.606 0.606 0.606 

TATOPANI DHA 0.380 0.380 0.353 0.340 0.326 0.326 0.326 

  DOL 0.192 0.192 0.178 0.172 0.165 0.165 0.165 

  GOR 0.504 0.504 0.468 0.450 0.432 0.432 0.432 

  KTM 0.227 0.227 0.211 0.203 0.195 0.195 0.195 

  KAV 0.169 0.169 0.157 0.151 0.144 0.144 0.144 

  MAK 0.221 0.221 0.206 0.198 0.190 0.190 0.190 

  NUW 0.372 0.372 0.346 0.333 0.319 0.319 0.319 

  OKH 0.367 0.367 0.340 0.327 0.314 0.314 0.314 

  RAM 0.504 0.504 0.468 0.450 0.432 0.432 0.432 

  RAS 0.457 0.457 0.425 0.408 0.392 0.392 0.392 

  SIN 0.347 0.347 0.322 0.310 0.297 0.297 0.297 

  SIND 0.380 0.380 0.353 0.340 0.326 0.326 0.326 

NEPALGUNJ DHA 0.994 0.994 0.923 0.887 0.852 0.852 0.852 

  DOL 1.439 1.439 1.336 1.285 1.233 1.233 1.233 

  GOR 0.868 0.868 0.806 0.775 0.744 0.744 0.744 

  KTM 1.041 1.041 0.966 0.929 0.892 0.892 0.892 

  KAV 1.084 1.084 1.006 0.968 0.929 0.929 0.929 

  MAK 1.037 1.037 0.963 0.926 0.889 0.889 0.889 

  NUW 0.884 0.884 0.821 0.789 0.758 0.758 0.758 

  OKH 0.984 0.984 0.914 0.879 0.843 0.843 0.843 

  RAM 1.439 1.439 1.336 1.285 1.233 1.233 1.233 

  RAS 1.049 1.049 0.974 0.937 0.899 0.899 0.899 

  SIN 1.325 1.325 1.230 1.183 1.136 1.136 1.136 

  SIND 1.207 1.207 1.121 1.078 1.035 1.035 1.035 

INARWA DHA 0.447 0.447 0.415 0.399 0.383 0.383 0.383 

  DOL 0.557 0.557 0.517 0.497 0.477 0.477 0.477 

  GOR 0.398 0.398 0.369 0.355 0.341 0.341 0.341 

  KTM 0.537 0.537 0.499 0.480 0.460 0.460 0.460 

  KAV 0.557 0.557 0.517 0.497 0.477 0.477 0.477 
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  MAK 0.531 0.531 0.493 0.474 0.455 0.455 0.455 

  NUW 0.116 0.116 0.107 0.103 0.099 0.099 0.099 

  OKH 0.496 0.496 0.460 0.443 0.425 0.425 0.425 

  RAM 0.680 0.680 0.632 0.607 0.583 0.583 0.583 

  RAS 0.939 0.939 0.872 0.839 0.805 0.805 0.805 

  SIN 0.443 0.443 0.411 0.396 0.380 0.380 0.380 

  SIND 0.333 0.333 0.309 0.298 0.286 0.286 0.286 
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APPENDIX B 

Transportation cost from TLHs to PODs per km per vehicle (in USD) 

 Candidate 

TLHs 

  

PODs  

  

T1 T2 T3 T4 T5 T6 T7 

1.4*G(T1) 1.4*C(T1) 1.3*C(T1) 1.2*C(T1) 1.2*C(T1) 1.2*C(T1) 1.2*C(T1) 

DHA BKT 1.386 1.305 1.468 1.223 1.223 1.223 1.223 

  DHA 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

  DOL 3.083 2.902 3.265 2.721 2.721 2.721 2.721 

  GOR 1.273 1.198 1.348 1.123 1.123 1.123 1.123 

  KTM 1.160 1.092 1.228 1.023 1.023 1.023 1.023 

  KAV 1.669 1.571 1.767 1.473 1.473 1.473 1.473 

  LTP 1.245 1.171 1.318 1.098 1.098 1.098 1.098 

  MAK 2.263 2.130 2.396 1.997 1.997 1.997 1.997 

  NUW 0.877 0.825 0.929 0.774 0.774 0.774 0.774 

  OKH 6.308 5.937 6.679 5.566 5.566 5.566 5.566 

  RAM 4.088 3.847 4.328 3.607 3.607 3.607 3.607 

  RAS 1.559 1.468 1.651 1.376 1.376 1.376 1.376 

  SIN 4.597 4.326 4.867 4.056 4.056 4.056 4.056 

  SIND 2.404 2.263 2.546 2.122 2.122 2.122 2.122 

DOL BKT 1.697 1.597 1.797 1.498 1.498 1.498 1.498 

  DHA 3.083 2.902 3.265 2.721 2.721 2.721 2.721 

  DOL 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

  GOR 5.276 4.965 5.586 4.655 4.655 4.655 4.655 

  KTM 1.924 1.810 2.037 1.697 1.697 1.697 1.697 

  KAV 1.414 1.331 1.498 1.248 1.248 1.248 1.248 

  LTP 1.839 1.731 1.947 1.622 1.622 1.622 1.622 

  MAK 2.999 2.822 3.175 2.646 2.646 2.646 2.646 

  NUW 2.857 2.689 3.025 2.521 2.521 2.521 2.521 

  OKH 7.058 6.643 7.473 6.228 6.228 6.228 6.228 

  RAM 1.004 0.945 1.063 0.886 0.886 0.886 0.886 

  RAS 3.542 3.333 3.750 3.125 3.125 3.125 3.125 

  SIN 5.346 5.032 5.661 4.717 4.717 4.717 4.717 

  SIND 1.386 1.305 1.468 1.223 1.223 1.223 1.223 

GOR BKT 2.164 2.037 2.291 1.909 1.909 1.909 1.909 

  DHA 1.273 1.198 1.348 1.123 1.123 1.123 1.123 

  DOL 5.276 4.965 5.586 4.655 4.655 4.655 4.655 

  GOR 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

  KTM 1.938 1.824 2.052 1.710 1.710 1.710 1.710 

  KAV 2.447 2.303 2.591 2.159 2.159 2.159 2.159 

  LTP 2.023 1.904 2.142 1.785 1.785 1.785 1.785 

  MAK 2.037 1.917 2.157 1.797 1.797 1.797 1.797 

  NUW 1.655 1.558 1.752 1.460 1.460 1.460 1.460 

  OKH 6.096 5.737 6.455 5.379 5.379 5.379 5.379 

  RAM 4.866 4.579 5.152 4.293 4.293 4.293 4.293 

  RAS 2.342 2.204 2.479 2.066 2.066 2.066 2.066 
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  SIN 4.385 4.127 4.643 3.869 3.869 3.869 3.869 

  SIND 3.182 2.995 3.370 2.808 2.808 2.808 2.808 

KTM BKT 0.226 0.213 0.240 0.200 0.200 0.200 0.200 

  DHA 1.160 1.092 1.228 1.023 1.023 1.023 1.023 

  DOL 1.924 1.810 2.037 1.697 1.697 1.697 1.697 

  GOR 1.938 1.824 2.052 1.710 1.710 1.710 1.710 

  KTM 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

  KAV 0.509 0.479 0.539 0.449 0.449 0.449 0.449 

  LTP 0.099 0.093 0.105 0.087 0.087 0.087 0.087 

  MAK 1.103 1.038 1.168 0.973 0.973 0.973 0.973 

  NUW 0.962 0.905 1.018 0.849 0.849 0.849 0.849 

  OKH 5.177 4.872 5.481 4.568 4.568 4.568 4.568 

  RAM 2.928 2.756 3.100 2.583 2.583 2.583 2.583 

  RAS 1.756 1.653 1.859 1.549 1.549 1.549 1.549 

  SIN 3.479 3.275 3.684 3.070 3.070 3.070 3.070 

  SIND 1.245 1.171 1.318 1.098 1.098 1.098 1.098 

KAV BKT 0.283 0.266 0.300 0.250 0.250 0.250 0.250 

  DHA 1.669 1.571 1.767 1.473 1.473 1.473 1.473 

  DOL 1.414 1.331 1.498 1.248 1.248 1.248 1.248 

  GOR 2.447 2.303 2.591 2.159 2.159 2.159 2.159 

  KTM 0.509 0.479 0.539 0.449 0.449 0.449 0.449 

  KAV 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

  LTP 0.424 0.399 0.449 0.374 0.374 0.374 0.374 

  MAK 1.584 1.491 1.677 1.398 1.398 1.398 1.398 

  NUW 1.443 1.358 1.528 1.273 1.273 1.273 1.273 

  OKH 5.643 5.311 5.975 4.980 4.980 4.980 4.980 

  RAM 2.419 2.276 2.561 2.134 2.134 2.134 2.134 

  RAS 2.129 2.004 2.254 1.879 1.879 1.879 1.879 

  SIN 3.932 3.701 4.163 3.469 3.469 3.469 3.469 

  SIND 0.735 0.692 0.779 0.649 0.649 0.649 0.649 

MAK BKT 1.301 1.225 1.378 1.148 1.148 1.148 1.148 

  DHA 2.263 2.130 2.396 1.997 1.997 1.997 1.997 

  DOL 2.999 2.822 3.175 2.646 2.646 2.646 2.646 

  GOR 2.037 1.917 2.157 1.797 1.797 1.797 1.797 

  KTM 1.103 1.038 1.168 0.973 0.973 0.973 0.973 

  KAV 1.584 1.491 1.677 1.398 1.398 1.398 1.398 

  LTP 1.160 1.092 1.228 1.023 1.023 1.023 1.023 

  MAK 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

  NUW 2.065 1.944 2.186 1.822 1.822 1.822 1.822 

  OKH 4.059 3.821 4.298 3.582 3.582 3.582 3.582 

  RAM 4.003 3.767 4.238 3.532 3.532 3.532 3.532 

  RAS 2.741 2.580 2.902 2.418 2.418 2.418 2.418 

  SIN 2.348 2.210 2.486 2.072 2.072 2.072 2.072 

  SIND 2.320 2.183 2.456 2.047 2.047 2.047 2.047 

NUW BKT 1.160 1.092 1.228 1.023 1.023 1.023 1.023 
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  DHA 0.877 0.825 0.929 0.774 0.774 0.774 0.774 

  DOL 2.857 2.689 3.025 2.521 2.521 2.521 2.521 

  GOR 1.655 1.558 1.752 1.460 1.460 1.460 1.460 

  KTM 0.962 0.905 1.018 0.849 0.849 0.849 0.849 

  KAV 1.443 1.358 1.528 1.273 1.273 1.273 1.273 

  LTP 1.047 0.985 1.108 0.924 0.924 0.924 0.924 

  MAK 2.065 1.944 2.186 1.822 1.822 1.822 1.822 

  NUW 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

  OKH 6.110 5.751 6.470 5.391 5.391 5.391 5.391 

  RAM 3.861 3.634 4.088 3.407 3.407 3.407 3.407 

  RAS 0.683 0.642 0.723 0.602 0.602 0.602 0.602 

  SIN 4.413 4.153 4.673 3.894 3.894 3.894 3.894 

  SIND 2.178 2.050 2.306 1.922 1.922 1.922 1.922 

OKH BKT 5.361 5.045 5.676 4.730 4.730 4.730 4.730 

  DHA 6.308 5.937 6.679 5.566 5.566 5.566 5.566 

  DOL 7.058 6.643 7.473 6.228 6.228 6.228 6.228 

  GOR 6.096 5.737 6.455 5.379 5.379 5.379 5.379 

  KTM 5.177 4.872 5.481 4.568 4.568 4.568 4.568 

  KAV 5.643 5.311 5.975 4.980 4.980 4.980 4.980 

  LTP 5.219 4.912 5.526 4.605 4.605 4.605 4.605 

  MAK 4.059 3.821 4.298 3.582 3.582 3.582 3.582 

  NUW 6.110 5.751 6.470 5.391 5.391 5.391 5.391 

  OKH 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

  RAM 8.062 7.588 8.536 7.114 7.114 7.114 7.114 

  RAS 6.797 6.397 7.197 5.997 5.997 5.997 5.997 

  SIN 2.758 2.596 2.920 2.434 2.434 2.434 2.434 

  SIND 6.379 6.004 6.754 5.628 5.628 5.628 5.628 

RAM BKT 2.702 2.543 2.860 2.384 2.384 2.384 2.384 

  DHA 4.088 3.847 4.328 3.607 3.607 3.607 3.607 

  DOL 1.004 0.945 1.063 0.886 0.886 0.886 0.886 

  GOR 4.866 4.579 5.152 4.293 4.293 4.293 4.293 

  KTM 2.928 2.756 3.100 2.583 2.583 2.583 2.583 

  KAV 2.419 2.276 2.561 2.134 2.134 2.134 2.134 

  LTP 2.843 2.676 3.010 2.508 2.508 2.508 2.508 

  MAK 4.003 3.767 4.238 3.532 3.532 3.532 3.532 

  NUW 3.861 3.634 4.088 3.407 3.407 3.407 3.407 

  OKH 8.062 7.588 8.536 7.114 7.114 7.114 7.114 

  RAM 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

  RAS 4.549 4.281 4.816 4.014 4.014 4.014 4.014 

  SIN 6.351 5.977 6.724 5.604 5.604 5.604 5.604 

  SIND 2.390 2.250 2.531 2.109 2.109 2.109 2.109 

RAS BKT 1.843 1.734 1.951 1.626 1.626 1.626 1.626 

  DHA 1.559 1.468 1.651 1.376 1.376 1.376 1.376 

  DOL 3.542 3.333 3.750 3.125 3.125 3.125 3.125 

  GOR 2.342 2.204 2.479 2.066 2.066 2.066 2.066 
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  KTM 1.756 1.653 1.859 1.549 1.549 1.549 1.549 

  KAV 2.129 2.004 2.254 1.879 1.879 1.879 1.879 

  LTP 1.732 1.630 1.834 1.528 1.528 1.528 1.528 

  MAK 2.741 2.580 2.902 2.418 2.418 2.418 2.418 

  NUW 0.683 0.642 0.723 0.602 0.602 0.602 0.602 

  OKH 6.797 6.397 7.197 5.997 5.997 5.997 5.997 

  RAM 4.549 4.281 4.816 4.014 4.014 4.014 4.014 

  RAS 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

  SIN 5.089 4.789 5.388 4.490 4.490 4.490 4.490 

  SIND 2.865 2.696 3.033 2.528 2.528 2.528 2.528 

SIN BKT 3.649 3.434 3.864 3.220 3.220 3.220 3.220 

  DHA 4.597 4.326 4.867 4.056 4.056 4.056 4.056 

  DOL 5.346 5.032 5.661 4.717 4.717 4.717 4.717 

  GOR 4.385 4.127 4.643 3.869 3.869 3.869 3.869 

  KTM 3.479 3.275 3.684 3.070 3.070 3.070 3.070 

  KAV 3.932 3.701 4.163 3.469 3.469 3.469 3.469 

  LTP 3.508 3.301 3.714 3.095 3.095 3.095 3.095 

  MAK 2.348 2.210 2.486 2.072 2.072 2.072 2.072 

  NUW 4.413 4.153 4.673 3.894 3.894 3.894 3.894 

  OKH 2.758 2.596 2.920 2.434 2.434 2.434 2.434 

  RAM 6.351 5.977 6.724 5.604 5.604 5.604 5.604 

  RAS 5.089 4.789 5.388 4.490 4.490 4.490 4.490 

  SIN 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

  SIND 4.668 4.393 4.942 4.118 4.118 4.118 4.118 

SIND BKT 1.018 0.958 1.078 0.899 0.899 0.899 0.899 

  DHA 2.404 2.263 2.546 2.122 2.122 2.122 2.122 

  DOL 1.386 1.305 1.468 1.223 1.223 1.223 1.223 

  GOR 3.182 2.995 3.370 2.808 2.808 2.808 2.808 

  KTM 1.245 1.171 1.318 1.098 1.098 1.098 1.098 

  KAV 0.735 0.692 0.779 0.649 0.649 0.649 0.649 

  LTP 1.160 1.092 1.228 1.023 1.023 1.023 1.023 

  MAK 2.320 2.183 2.456 2.047 2.047 2.047 2.047 

  NUW 2.178 2.050 2.306 1.922 1.922 1.922 1.922 

  OKH 6.379 6.004 6.754 5.628 5.628 5.628 5.628 

  RAM 2.390 2.250 2.531 2.109 2.109 2.109 2.109 

  RAS 2.865 2.696 3.033 2.528 2.528 2.528 2.528 

  SIN 4.668 4.393 4.942 4.118 4.118 4.118 4.118 

  SIND 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
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APPENDIX C 

Distance from supply point to candidate temporary depots (in kilometers) 

 

 

APPENDIX D 

Distance from candidate temporary depots to point of distribution (in kilometers) 

 

Dhading Dolakha Gorkha Kathmandu Kavrepalanchok Makwanpur Nuwakot Okhaldhunga Ramechhap Rasuwa Sindhuli Sindhupalchok

DHA DOL GOR KTM KAV MAK NUW OKH RAM RAS SIN SIND

1 TIA 85 136 148 5 26 83 79 211 131 124.15 148 83

2 Kakadbhitta, Jhapa 546 424 598 478 427 399 540 337 366 588.71 306 467

3 Biratnagar, Morang 472 349 524 404 353 324 466 262 291 505.16 231 393

4 Bhairahawa, Kapilbastu 278 478 188 276 297 196 311 479 421 302.09 361 354

5 Tatopani, sindhupalchok 194 98 257 116 86 190 187 257 177 233.37 194 83

6 Nepalgunj, Banke 507 734 443 531 553 451 502 734 676 535.33 616 609

7 Inarwa, Parsa 228 284 203 274 284 59 253 347 226 479.31 170 326

Candidate temporary logistics hubs

S.N. Supply Points

Bhaktapur Dhading Dolakha Gorkha Kathmandu KavrepalanchokLalitpur Makwanpur Nuwakot OkhaldhungaRamechhapRasuwa Sindhuli Sindhupalchok

1 Dhading 98 0 218 90 82 118 88 160 62 446 289 110.24 325 170

2 Dolakha 120 218 0 373 136 100 130 212 202 499 71 250.4 378 98

3 Gorkha 153 90 373 0 137 173 143 144 117 431 344 165.56 310 225

4 Kathmandu 16 82 136 137 0 36 7 78 68 366 207 124.15 246 88

5 Kavrepalanchok 20 118 100 173 36 0 30 112 102 399 171 150.54 278 52

6 Makwanpur 92 160 212 144 78 112 82 0 146 287 283 193.78 166 164

7 Nuwakot 82 62 202 117 68 102 74 146 0 432 273 48.26 312 154

8 Okhaldhunga 379 446 499 431 366 399 369 287 432 0 570 480.56 195 451

9 Ramechhap 191 289 71 344 207 171 201 283 273 570 0 321.6 449 169

10 Rasuwa 130.27 110.24 250.4 165.56 124.15 150.54 122.47 193.78 48.26 480.56 321.6 0 359.77 202.55

11 Sindhuli 258 325 378 310 246 278 248 166 312 195 449 359.77 0 330

12 Sindhupalchok 72 170 98 225 88 52 82 164 154 451 169 202.55 330 0

Point of distributionCandidate temporary 

logistics hubsS.N.
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APPENDIX D 

Coverage of PODs by TLHs 

 

TLHs 

  

PODs 

 

Distance 

T1 T2 T3 T4 T5 T6 T7 

100KM 150KM 175KM 200KM 

DHA Bhaktapur 98 1 1 1 1 1 1 1 

  Dhading 0 1 1 1 1 1 1 1 

  Dolakha 218 0 0 0 0 0 0 0 

  Gorkha 90 1 1 1 1 1 1 1 

  Kathmandu 82 1 1 1 1 1 1 1 

  Kavrepalanchok 118 0 0 1 1 1 1 1 

  Lalitpur 88 1 1 1 1 1 1 1 

  Makwanpur 160 0 0 0 0 1 1 1 

  Nuwakot 62 1 1 1 1 1 1 1 

  Okhaldhunga 446 0 0 0 0 0 0 0 

  Ramechhap 289 0 0 0 0 0 0 0 

  Rasuwa 110.24 0 0 1 1 1 1 1 

  Sindhuli 325 0 0 0 0 0 0 0 

  Sindhupalchok 170 0 0 0 0 1 1 1 

DOL Bhaktapur 120 0 0 1 1 1 1 1 

  Dhading 218 0 0 0 0 0 0 0 

  Dolakha 0 1 1 1 1 1 1 1 

  Gorkha 373 0 0 0 0 0 0 0 

  Kathmandu 136 0 0 1 1 1 1 1 

  Kavrepalanchok 100 1 1 1 1 1 1 1 

  Lalitpur 130 0 0 1 1 1 1 1 

  Makwanpur 212 0 0 0 0 0 0 0 

  Nuwakot 202 0 0 0 0 0 0 0 

  Okhaldhunga 499 0 0 0 0 0 0 0 

  Ramechhap 71 1 1 1 1 1 1 1 

  Rasuwa 250.4 0 0 0 0 0 0 0 

  Sindhuli 378 0 0 0 0 0 0 0 

  Sindhupalchok 98 1 1 1 1 1 1 1 

GOR Bhaktapur 153 0 0 0 0 1 1 1 

  Dhading 90 1 1 1 1 1 1 1 

  Dolakha 373 0 0 0 0 0 0 0 

  Gorkha 0 1 1 1 1 1 1 1 

  Kathmandu 137 0 0 1 1 1 1 1 

  Kavrepalanchok 173 0 0 0 0 1 1 1 

  Lalitpur 143 0 0 1 1 1 1 1 

  Makwanpur 144 0 0 1 1 1 1 1 

  Nuwakot 117 0 0 1 1 1 1 1 

  Okhaldhunga 431 0 0 0 0 0 0 0 

  Ramechhap 344 0 0 0 0 0 0 0 
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  Rasuwa 165.56 0 0 0 0 1 1 1 

  Sindhuli 310 0 0 0 0 0 0 0 

  Sindhupalchok 225 0 0 0 0 0 0 0 

KTM Bhaktapur 16 1 1 1 1 1 1 1 

  Dhading 82 1 1 1 1 1 1 1 

  Dolakha 136 0 0 1 1 1 1 1 

  Gorkha 137 0 0 1 1 1 1 1 

  Kathmandu 0 1 1 1 1 1 1 1 

  Kavrepalanchok 36 1 1 1 1 1 1 1 

  Lalitpur 7 1 1 1 1 1 1 1 

  Makwanpur 78 1 1 1 1 1 1 1 

  Nuwakot 68 1 1 1 1 1 1 1 

  Okhaldhunga 366 0 0 0 0 0 0 0 

  Ramechhap 207 0 0 0 0 0 0 0 

  Rasuwa 124.15 0 0 1 1 1 1 1 

  Sindhuli 246 0 0 0 0 0 0 0 

  Sindhupalchok 88 1 1 1 1 1 1 1 

KAV Bhaktapur 20 1 1 1 1 1 1 1 

  Dhading 118 0 0 1 1 1 1 1 

  Dolakha 100 1 1 1 1 1 1 1 

  Gorkha 173 0 0 0 0 1 1 1 

  Kathmandu 36 1 1 1 1 1 1 1 

  Kavrepalanchok 0 1 1 1 1 1 1 1 

  Lalitpur 30 1 1 1 1 1 1 1 

  Makwanpur 112 0 0 1 1 1 1 1 

  Nuwakot 102 0 0 1 1 1 1 1 

  Okhaldhunga 399 0 0 0 0 0 0 0 

  Ramechhap 171 0 0 0 0 1 1 1 

  Rasuwa 150.54 0 0 0 0 1 1 1 

  Sindhuli 278 0 0 0 0 0 0 0 

  Sindhupalchok 52 1 1 1 1 1 1 1 

MAK Bhaktapur 92 1 1 1 1 1 1 1 

  Dhading 160 0 0 0 0 1 1 1 

  Dolakha 212 0 0 0 0 0 0 0 

  Gorkha 144 0 0 1 1 1 1 1 

  Kathmandu 78 1 1 1 1 1 1 1 

  Kavrepalanchok 112 0 0 1 1 1 1 1 

  Lalitpur 82 1 1 1 1 1 1 1 

  Makwanpur 0 1 1 1 1 1 1 1 

  Nuwakot 146 0 0 1 1 1 1 1 

  Okhaldhunga 287 0 0 0 0 0 0 0 

  Ramechhap 283 0 0 0 0 0 0 0 

  Rasuwa 193.78 0 0 0 0 0 0 1 

  Sindhuli 166 0 0 0 0 1 1 1 

  Sindhupalchok 164 0 0 0 0 1 1 1 
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NUW Bhaktapur 82 1 1 1 1 1 1 1 

  Dhading 62 1 1 1 1 1 1 1 

  Dolakha 202 0 0 0 0 0 0 0 

  Gorkha 117 0 0 1 1 1 1 1 

  Kathmandu 68 1 1 1 1 1 1 1 

  Kavrepalanchok 102 0 0 1 1 1 1 1 

  Lalitpur 74 1 1 1 1 1 1 1 

  Makwanpur 146 0 0 1 1 1 1 1 

  Nuwakot 0 1 1 1 1 1 1 1 

  Okhaldhunga 432 0 0 0 0 0 0 0 

  Ramechhap 273 0 0 0 0 0 0 0 

  Rasuwa 48.26 1 1 1 1 1 1 1 

  Sindhuli 312 0 0 0 0 0 0 0 

  Sindhupalchok 154 0 0 0 0 1 1 1 

OKH Bhaktapur 379 0 0 0 0 0 0 0 

  Dhading 446 0 0 0 0 0 0 0 

  Dolakha 499 0 0 0 0 0 0 0 

  Gorkha 431 0 0 0 0 0 0 0 

  Kathmandu 366 0 0 0 0 0 0 0 

  Kavrepalanchok 399 0 0 0 0 0 0 0 

  Lalitpur 369 0 0 0 0 0 0 0 

  Makwanpur 287 0 0 0 0 0 0 0 

  Nuwakot 432 0 0 0 0 0 0 0 

  Okhaldhunga 0 1 1 1 1 1 1 1 

  Ramechhap 570 0 0 0 0 0 0 0 

  Rasuwa 480.56 0 0 0 0 0 0 0 

  Sindhuli 195 0 0 0 0 0 0 1 

  Sindhupalchok 451 0 0 0 0 0 0 0 

RAM Bhaktapur 191 0 0 0 0 0 0 1 

  Dhading 289 0 0 0 0 0 0 0 

  Dolakha 71 1 1 1 1 1 1 1 

  Gorkha 344 0 0 0 0 0 0 0 

  Kathmandu 207 0 0 0 0 0 0 0 

  Kavrepalanchok 171 0 0 0 0 1 1 1 

  Lalitpur 201 0 0 0 0 0 0 0 

  Makwanpur 283 0 0 0 0 0 0 0 

  Nuwakot 273 0 0 0 0 0 0 0 

  Okhaldhunga 570 0 0 0 0 0 0 0 

  Ramechhap 0 1 1 1 1 1 1 1 

  Rasuwa 321.6 0 0 0 0 0 0 0 

  Sindhuli 449 0 0 0 0 0 0 0 

  Sindhupalchok 169 0 0 0 0 1 1 1 

RAS Bhaktapur 130.27 0 0 1 1 1 1 1 

  Dhading 110.24 0 0 1 1 1 1 1 

  Dolakha 250.4 0 0 0 0 0 0 0 
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  Gorkha 165.56 0 0 0 0 1 1 1 

  Kathmandu 124.15 0 0 1 1 1 1 1 

  Kavrepalanchok 150.54 0 0 0 0 1 1 1 

  Lalitpur 122.47 0 0 1 1 1 1 1 

  Makwanpur 193.78 0 0 0 0 0 0 1 

  Nuwakot 48.26 1 1 1 1 1 1 1 

  Okhaldhunga 480.56 0 0 0 0 0 0 0 

  Ramechhap 321.6 0 0 0 0 0 0 0 

  Rasuwa 0 1 1 1 1 1 1 1 

  Sindhuli 359.77 0 0 0 0 0 0 0 

  Sindhupalchok 202.55 0 0 0 0 0 0 0 

SIN Bhaktapur 258 0 0 0 0 0 0 0 

  Dhading 325 0 0 0 0 0 0 0 

  Dolakha 378 0 0 0 0 0 0 0 

  Gorkha 310 0 0 0 0 0 0 0 

  Kathmandu 246 0 0 0 0 0 0 0 

  Kavrepalanchok 278 0 0 0 0 0 0 0 

  Lalitpur 248 0 0 0 0 0 0 0 

  Makwanpur 166 0 0 0 0 1 1 1 

  Nuwakot 312 0 0 0 0 0 0 0 

  Okhaldhunga 195 0 0 0 0 0 0 1 

  Ramechhap 449 0 0 0 0 0 0 0 

  Rasuwa 359.77 0 0 0 0 0 0 0 

  Sindhuli 0 1 1 1 1 1 1 1 

  Sindhupalchok 330 0 0 0 0 0 0 0 

SIND; Bhaktapur 72 1 1 1 1 1 1 1 

  Dhading 170 0 0 0 0 1 1 1 

  Dolakha 98 1 1 1 1 1 1 1 

  Gorkha 225 0 0 0 0 0 0 0 

  Kathmandu 88 1 1 1 1 1 1 1 

  Kavrepalanchok 52 1 1 1 1 1 1 1 

  Lalitpur 82 1 1 1 1 1 1 1 

  Makwanpur 164 0 0 0 0 1 1 1 

  Nuwakot 154 0 0 0 0 1 1 1 

  Okhaldhunga 451 0 0 0 0 0 0 0 

  Ramechhap 169 0 0 0 0 1 1 1 

  Rasuwa 202.55 0 0 0 0 0 0 0 

  Sindhuli 330 0 0 0 0 0 0 0 

  Sindhupalchok 0 1 1 1 1 1 1 1 
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APPENDIX F 

Lingo code for model in Chapter 5 
!Two objective model, minimizing costs and mzximizing total demand 

coverage;   

!TIME = T1, T2, T3, T4, T5, T6, T7;  

 

MODEL: 

          

SETS: 

 

 SUPPLY; 

  

 TEMPDEPOT: F;  

 

 DEMANDPT; 

   

 TIME; 

     

 SPXTP(SUPPLY, TIME): SCAP; 

  

 TDXTP(TEMPDEPOT, TIME):TCAP, y;   

   

 DPXTP(DEMANDPT, TIME):  DEM, z, NSUP;  

        

 XLINK( TEMPDEPOT, DEMANDPT, TIME): x; 

  

 ZLINK(TEMPDEPOT, DEMANDPT,TIME):COEFF;  

 

 SPXTDXTP( SUPPLY, TEMPDEPOT, TIME):C1, R; 

 

 TDXDPXTP(TEMPDEPOT, DEMANDPT, TIME):C2, Q;  

 

ENDSETS 

 

 

DATA: 

    

   SUPPLY = TIA Kakad Birat Bhaira Tatopani Nepalgunj Inarwa; 

! Supply Point capacities; 

     SCAP = 900 900 900 900 900 900 900 

  950 950 950 950 950 950 950 

  1100 1100 1100 1100 1100 1100 1100 

  1200 1200 1200 1200 1200 1200 1200 

  1100 1100 1100 1100 1100 1100 1100 

  1000 1000 1000 1000 1000 1000 1000 

  1000 1000 1000 1000 1000 1000 1000; 

 

 

TEMPDEPOT = DHA DOL GOR KTM KAV MAK NUW OKH RAM RAS SIN

 SIND; ! The distn centers; 

        F = 100 100 100 100 100 100 100 100 100 100 100

 100; 

 

 

 TCAP =750 750 750 750 750 750 750 750 750 750 750

 750 

  810 810 810 810 810 810 810 810 810 810 810

 810 
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  840 840 840 840 840 840 840 840 840 840 840

 840 

  840 840 840 840 840 840 840 840 840 840 840

 840 

  830 830 830 830 830 830 830 830 830 830 830

 830 

  820 820 820 820 820 820 820 820 820 820 820

 820 

  820 820 820 820 820 820 820 820 820 820 820

 820; 

 

 

! Shipping costs  from Supply point to Candidate temporary logistic hubs in 

each period; 

 C1= @OLE('E:\IJDRR_Credibility_2018.04.24.xlsx', '_CC1'); 

  

!Listing the name and number of PODs (Demand nodes) which is 13 in our 

case; 

 DEMANDPT=  BKT DHA DOL GOR KTM KAV LTP MAK NUW OKH RAM

 RAS SIN SIND;  

 

      DEM=  @OLE('E:\IJDRR_Credibility_2018.04.24.xlsx', '_DD'); 

 

 COEFF=@OLE('E:\IJDRR_Credibility_2018.04.24.xlsx', '_COEFF1'); 

 

  C2=   @OLE('E:\IJDRR_Credibility_2018.04.24.xlsx', '_C22'); 

 

!Confidence level;  

 a=0.8;                    

       

!Spread of Triangular fuzzy number; 

 m=0.3;                

ENDDATA 

 

 

!The objective is to calculate maximum coverage attainable over the entire 

planning horizon; 

[OBJ] MIN = TCT; 

 TCT = FXT + SPT + SPD; 

 FXT = @SUM(TDXTP(J,P): (F(J)*(1-m+2*m*a)*y(J,P))); 

 SPT = @SUM(SPXTDXTP( I,J,P): (C1(I,J,P)*(1-m+2*m*a)*R(I,J,P))); 

 SPD = @SUM( TDXDPXTP( J,K,P): (C2(J,K,P)*(1-m+2*m*a)*Q(J,K,P))); 

 

 

!CONSTRAINTS; 

CVR>=10000; 

CVR =@SUM(DPXTP(K,P): (DEM(K,P)*(1-m+2*m*a))*z(K,P));  

!Coverage constraint; 

@FOR(TIME(P): 

 @FOR(DEMANDPT(K): 

  @SUM(TEMPDEPOT(J):COEFF(J,K,P)*y(J,P))>=z(K,P) 

 ) 

); 

 

! Supply Constraints at SP I; 

 @FOR(TIME(P): 

  @FOR(SUPPLY(I): 

 @SUM(TEMPDEPOT(J): R(I,J,P)) <= (SCAP(I, P)*(1+m-2*m*a)) 

 ) 

); 
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! Aggregate capacities at each TLH J; 

@FOR(TIME(P): 

 @FOR(TEMPDEPOT(J):  

 @SUM(SUPPLY(I): R(I,J,P)) <= (TCAP(J,P)*(1+m-2*m*a)*y(J,P)) 

 ) 

); 

  

@FOR(TIME(P): 

 @FOR( TEMPDEPOT(J):  

 @SUM(DEMANDPT(K): Q(J,K,P)) <= (TCAP(J,P)*(1+m-2*m*a)*y(J,P)) 

 ) 

); 

 

! TD balance (inbound = outbound)constraints for Commodities at TLH J; 

@FOR(TIME(P): 

  @FOR(TEMPDEPOT(J): 

 @SUM(SUPPLY(I): R(I,J,P)) = @SUM(DEMANDPT(K): Q(J,K,P)) 

 ) 

); 

 

!Demand constraints; 

@FOR(TIME(P): 

 @FOR(DEMANDPT(K):  

 @SUM(TEMPDEPOT(J): Q(J,K,P)) >=(DEM(K,P)*(1-m+2*m*a)) 

 ) 

); 

 

! Ensures POD'S are served by only one TLH in time period P; 

@FOR(TIME(P): 

 @FOR(DEMANDPT(K): 

  @SUM(TEMPDEPOT(J): x(J,K,P))= 1 

 ) 

); 

 

!Ensure each TLH can deliver to several PODs; 

@FOR(TIME(P): 

 @FOR(TEMPDEPOT(J): 

  @SUM(DEMANDPT(K):X(J,K,P))<=14*y(J,P) 

 ) 

); 

 

!Ensure demand is allocated to open facilities only; 

@FOR(TIME(P): 

 @FOR(TEMPDEPOT(J): 

  @FOR(DEMANDPT(K):x(J,K,P)<=y(J,P) 

 ) 

) 

); 

 

@For( TDXTP(J,P):@BIN(y(J,P))); 

 

@For( DPXTP(K,P):@BIN(Z(K,P))); 

 

@FOR( XLINK(J,K,P): @BIN(x(J,K,P))); 

 

@FOR (SPXTDXTP(I,J,P):R(I,J,P) >=0); 

 

@FOR (TDXDPXTP(J,K,P):Q(J,K,P) >=0); 

 

DATA: 

@TEXT() = ' '; 
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@TEXT() = 'Solution to Uncertainty MOO Problem'; 

@TEXT() = "Total cost=    ", TOTCOST; 

 

@TEXT() = ' '; 

@TEXT() = "OPEN TLH: TLH Opened in Period"; 

@TEXT() = "TLH Period"; 

@TEXT() = @WRITEFOR(TDXTP(J,P)|y(J,P)#GT#0:'    ', TEMPDEPOT(J),' ', 

TIME(P),'  ',y(J,P),@NEWLINE(1)); 

 

@TEXT() = ' '; 

@TEXT() = "Shipment: SP to TLH"; 

@TEXT() = "SP TLH Period"; 

@TEXT() = @WRITEFOR(SPXTDXTP(I, J, P)|R(I, J, P)#GT#0:'    ',SUPPLY(I),'   

', TEMPDEPOT(J),'   ', TIME(P),'   ',R(I, J, P),@NEWLINE(1)); 

 

@TEXT() = ' '; 

@TEXT() = "Shipment: TLH to DP"; 

@TEXT() = "TLH DP Period"; 

@TEXT() = @WRITEFOR(TDXDPXTP(J,K,P)|Q(J,K,P)#GT#0:'    ',TEMPDEPOT(J),'   

', DEMANDPT(K),'   ', TIME(P),'   ',Q(J,K,P),@NEWLINE(1)); 

@TEXT() = ' '; 

 

ENDDATA 

 

END 

  

 

 

 

 

 


