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Abstract

This paper proposes attentive statistics pooling for deep
speaker embedding in text-independent speaker verification. In
conventional speaker embedding, frame-level features are av-
eraged over all the frames of a single utterance to form an
utterance-level feature. Our method utilizes an attention mecha-
nism to give different weights to different frames and generates
not only weighted means but also weighted standard deviations.
In this way, it can capture long-term variations in speaker char-
acteristics more effectively. An evaluation on the NIST SRE
2012 and the VoxCeleb data sets shows that it reduces equal
error rates (EERs) from the conventional method by 7.5% and
8.1%, respectively.

Index Terms: speaker recognition, deep neural networks, at-
tention, statistics pooling

1. Introduction

Speaker recognition has advanced considerably in the last
decade with the i-vector paradigm [1], in which a speech ut-
terance or a speaker is represented in the form of a fixed- low-
dimensional feature vector.

With the great success of deep learning over a wide range
of machine learning tasks, including automatic speech recogni-
tion (ASR), an increasing number of research studies have intro-
duced deep learning into feature extraction for speaker recogni-
tion. In early studies [2, 3], deep neural networks (DNNs) de-
rived from acoustic models for ASR have been employed as a
universal background model (UBM) to provide phoneme pos-
teriors as well as bottleneck features, which are used for, re-
spectively, zeroth- and first-order statistics in i-vector extrac-
tion. While they have shown better performance than conven-
tional UBMs based on Gaussian mixture models (GMMs), they
have the drawback of language dependency [4] and also require
expensive phonetic transcriptions for training [5].

Recently, DNNs have been shown to be useful for extract-
ing speaker-discriminative feature vectors independently from
the i-vector framework. With the help of large-scale training
data, such approaches lead to better results, particularly under
conditions of short-duration utterances. In fixed-phrase text-
dependent speaker verification, an end-to-end neural network-
based method has been proposed [6] in which Long Short-Term
Memory (LSTM) with a single output from the last frame is
used to obtain utterance-level speaker features, and it has out-
performed conventional i-vector extraction.

In text-independent speaker verification, where input utter-
ances can have variable phrases and lengths, an average pool-
ing layer has been introduced to aggregate frame-level speaker
feature vectors to obtain an utterance-level feature vector, i.e.,
speaker embedding, with a fixed number of dimensions. Most
recent studies have shown that DNNs achieve better accuracy
than do i-vectors [7, 8]. Snyder et al. [9] employed an extension

of average pooling, in which what they called statistics pooling
calculated not only the mean, but also the standard deviation of
frame-level features. They, however, have not yet reported the
effictiveness of standard deviaion pooling to accuracy improve-
ment.

Other recent studies conducted from a different perspective
[10, 11] have incorporated attention mechanisms [12]. It had
previously produced significant improvement in machine trans-
lation. In the scenario of speaker recognition, an importance
metric is computed by the small attention network that works
as a part of the speaker embedding network. The importance is
utilized for calculating the weighted mean of frame-level fea-
ture vectors. This mechanism enables speaker embedding to be
focused on important frames and to obtain long-term speaker
representation with higher discriminative power. Such previous
work, however, has been evaluated only in such limited tasks as
fixed-duration text-independent [10] or text-dependent speaker
recognition [11].

In this paper, we propose a new pooling method, called
attentive statistics pooling, that provides importance-weighted
standard deviations as well as the weighted means of frame-
level features, for which the importance is calculated by an at-
tention mechanism. This enables speaker embedding to more
accurately and efficiently capture speaker factors with respect
to long-term variations. To the best of our knowledge, this is
the first attempt reported in the literature to use attentive statis-
tics pooling in text-independent and variable-duration scenar-
ios. We have also experimentally shown, through comparisons
of various pooling layers, the effectiveness of long-term speaker
characteristics derived from standard deviations.

The remainder of this paper is organized as follows: Section
2 describes a conventional method for extracting deep speaker
embedding. Section 3 reviews two extensions for the conven-
tional method, and then introduces the proposed speaker em-
bedding method. The experimental setup and results are pre-
sented in Section 4. Section 5 summarizes our work and notes
future plans.

2. Deep speaker embedding

The conventional DNN for extracting utterance-level speaker
features consists of three blocks, as shown in Figure 1.

The first block is a frame-level feature extractor. The input
to this block is a sequence of acoustic features, e.g., MFCCs
and filter-bank coefficients. After considering relatively short-
term acoustic features, this block outputs frame-level features.
Any type of neural network is applicable for the extractor, e.g., a
Time-Delay Neural Network (TDNN) [9], Convolutional Neu-
ral Network (CNN) [7, 8], LSTM [10, 11], or Gated Recurrent
Unit (GRU) [8].

The second block is a pooling layer that converts variable-
length frame-level features into a fixed-dimensional vector. The
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Figure 1: DNNs for extracting utterance-level speaker features

most standard type of pooling layer obtains the average of all
frame-level features (average pooling).

The third block is an utterance-level feature extractor in
which a number of fully-connected hidden layers are stacked.
One of these hidden layers is often designed to have a smaller
number of units (i.e., to be a bottleneck layer), which forces
the information brought from the preceding layer into a low-
dimensional representation. The output is a softmax layer,
and each of its output nodes corresponds to one speaker ID.
For training, we employ back-propagation with cross entropy
loss. We can then use bottleneck features in the third block as
utterance-level features. Some studies refrain from using soft-
max layers and achieve end-to-end neural networks by using
contrastive loss [7] or triplet loss [8]. Probabilistic linear dis-
criminant analysis (PLDA) [13, 14] can also be used for mea-
suring the distance between two utterance-level features [9, 10].

3. Higher-order pooling with attention

The conventional speaker embedding described in the previous
section suggests the addition of two extensions of the pooling
method: the use of higher-order statistics and the use of at-
tention mechanisms. In this section we review both and then
introduce our proposed pooling method, which we refer to as
attentive statistics pooling.

3.1. Statistics pooling

The statistics pooling layer [9] calculates the mean vector
as well as the second-order statistics as the standard deviation

vector o over frame-level features hy (t = 1,--- ,T).
1z
== h 1
p=z ; ‘ o)
s
o= f;hmht*mu, ©)

where © represents the Hadamard product. The mean vector
(1) which aggregates frame-level features can be viewed as the
main body of utterance-level features. We consider that the
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standard deviation (2) also plays an important role since it con-
tains other speaker characteristics in terms of temporal variabil-
ity over long contexts. LSTM is capable of taking relatively
long contexts into account, using its recurrent connections and
gating functions. However, the scope of LSTM is actually no
more than a second (~100 frames) due to the vanishing gra-
dient problem [15]. A standard deviation, which is potentially
capable of revealing any distance in a context, can help speaker
embedding capture long-term variability over an utterance.

3.2. Attention mechanism

It is often the case that frame-level features of some frames
are more unique and important for discriminating speakers than
others in a given utterance. Recent studies [10, 11] have applied
attention mechanisms to speaker recognition for the purpose of
frame selection by automatically calculating the importance of
each frame.

An attention model works in conjunction with the original
DNN and calculates a scalar score e; for each frame-level fea-
ture

et = v f(Why +b) + k, 3)

where f(-) is a non-linear activation function, such as a tanh or
ReLU function. The score is normalized over all frames by a
softmax function so as to add up to the following unity:

e _expler)

(C))

7 exp(er)

The normalized score a4 is then used as the weight in the
pooling layer to calculate the weighted mean vector

T
[1 = Zathz.
t

(&)

In this way, an utterance-level feature extracted from a
weighted mean vector focuses on important frames and hence
becomes more speaker discriminative.

3.3. Attentive statistics pooling

The authors believe that both higher-order statistics (standard
deviations as utterance-level features) and attention mecha-
nisms are effective for higher speaker discriminability. Hence,
it would make sense to consider a new pooling method, atten-
tive statistics pooling, which produces both means and standard
deviations with importance weighting by means of attention, as
illustrated in Figure 2. Here the weighted mean is given by (5),
and the weighted standard deviation is defined as follows:

T
&= 4|> athiOhi— o f, (6)
t

where the weight «; calculated by (4) is shared by both the
weighted mean fi and weighted standard deviation o. The
weighted standard deviation is thought to take the advantage
of both statistics pooling and attention, i.e., feature representa-
tion in terms of long-term variations and frame selection in ac-
cord with importance, bringing higher speaker discriminability
to utterance-level features. Needless to say, as (6) is differen-
tiable, DNNs with attentive statistics pooling can be trained on
the basis of back-propagation.
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Figure 2: Attentive statistics pooling

4. Experiments
4.1. Experimental settings

We report here speaker verification accuracy w.r.t. the NIST
SRE 2012 [16] Common Condition 2 (SRE12 CC2) and Vox-
Celeb corpora [7]. Deep speaker embedding with our attentive
statistics pooling is compared to that with conventional statis-
tics pooling and with attentive average pooling, as well as with
traditional i-vector extraction based on GMM-UBM.

4.1.1. i-vector system

The baseline i-vector system uses 20-dimensional MFCCs for
every 10ms. Their delta and delta-delta features were appended
to form 60-dimensional acoustic features. Sliding mean normal-
ization with a 3-second window and energy-based voice activity
detection (VAD) were then applied, in that order. An i-vector of
400 dimensions was then extracted from the acoustic feature
vectors, using a 2048-mixture UBM and a total variability ma-
trix (TVM). Mean subtraction, whitening, and length normal-
ization [17] were applied to the i-vector as pre-processing steps
before sending it to the PLDA, and similarity was then evaluated
using a PLDA model with a speaker space of 400 dimensions.

4.1.2. Deep speaker embedding system

We used 20-dimensional MFCCs for SRE12 evaluation, and
40-dimensional MFCCs for VoxCeleb evaluation, for every
10ms. Sliding mean normalization with a 3-second window and
energy-based VAD were then applied in the same way as was
done with the i-vector system.

The network structure, except for its input dimensions, was
exactly the same as the one shown in the recipe ! published in
Kaldi’s official repository [18, 19]. A 5-layer TDNN with ReLU
followed by batch normalization was used for extracting frame-
level features. The number of hidden nodes in each hidden layer
was 512. The dimension of a frame-level feature for pooling
was 1500. Each frame-level feature was generated from a 15-
frame context of acoustic feature vectors.

Pooling layer aggregates frame-level features, followed
by 2 fully-connected layers with ReLU activation functions,
batch normalization, and a softmax output layer. The 512-
dimensional bottleneck features from the first fully-connected

legs/sre16/v2

2254

layer were used as speaker embedding.

We tried four pooling techniques to evaluate the effective-
ness of the proposed method: (i) simple average pooling to pro-
duce means only, (ii) statistics pooling to produce means and
standard deviations, (iii) attentive average pooling to produce
weighted means, and (iv) our proposed attentive statistics pool-
ing. We used ReLU followed by batch normalization for acti-
vation function f (-) in (3) of the attention model. The number
of hidden nodes was 64.

Mean subtraction, whitening, and length normalization
were applied to the speaker embedding, as pre-processing steps
before sending it to the PLDA, and similarity was then evaluated
using a PLDA model with a speaker space of 512 dimensions.

4.1.3. Training and evaluation data

In order to avoid condition mismatch, different training data
were used for each evaluation task w.r.t. SRE12 CC2 and Vox-
Celeb.

For SRE12 evaluation, telephone recordings from SRE04-
10, Switchboard, and Fisher English were used as training data.
We also applied data augmentation to the training set in the fol-
lowing ways: (a) Additive noise: each segment was mixed with
one of the noise samples in the PRISM corpus [20] (SNR: 8, 15,
or 20dB), (b) Reverberation: each segment was convolved with
one of the room impulse responses in the REVERB challenge
data [21], (c) Speech encoding: each segment was encoded with
AMR codec (6.7 or 4.75 kbps). The evaluation set we used was
SRE12 Common Condition 2 (CC2), which is known as a typi-
cal subset of telephone conversations without added noise.

For VoxCeleb evaluation, the development and test sets de-
fined in [7] were respectively used as training data and evalua-
tion data. The number of speakers in the training and evaluation
sets were 1,206 and 40, respectively. The number of segments
in training and evaluation sets were 140,286 and 4,772, respec-
tively. Note that these numbers are slightly smaller than those
reported in [7] due to a few dead links on the official download
server. We also used the data augmentation (a) and (b) men-
tioned above.

We report here results in terms of equal error rate (EER)
and the minimum of the normalized detection cost function,
for which we assume a prior target probability Piq, of 0.01
(DCF10) or 0.001 (DCF10), and equal weights of 1.0 be-
tween misses Ciniss and false alarms C'yq.

4.2. Results
4.2.1. NIST SRE 2012

Table 1 shows the performance on NIST SRE12 CC2. In the
“Embedding” column, average [7, 8] denotes average pooling
that used only means, attention [10, 11] used weighted means
scaled by attention (attentive average pooling), statistics [9]
used both means and standard deviations (statistics pooling),
and attentive statistics is the proposed method (attentive statis-
tics pooling), which used both weighted means and weighted
standard deviations scaled by attention.

In comparison to average pooling, which used only means,
the addition of attention was superior in terms of all evalua-
tion measures. Surprisingly, the addition of standard devia-
tions was even more effective than that of attention. This in-
dicates that long-term information is quite important in text-
independent speaker verification. Further, the proposed atten-
tive statistics pooling resulted in the best EER as well as minD-
CFs. In terms of EER, it was 7.5% better than statistics pooling.



Table 1: Performance on NIST SRE 2012 Common Condition 2.
Boldface denotes the best performance for each column.

Embedding DCF10? DCF10° EER (%)
i-vector 0.169 0.291 1.50
average [7, 8] 0.290 0.484 2.57
attention [10, 11] 0.228 0.399 1.99
statistics [9] 0.183 0.331 1.58
attentive statistics 0.170 0.309 1.47

Table 2: EERs (%) for each duration on NIST SRE 2012 Com-
mon Condition 2. Boldface denotes the best performance for
each column.

Embedding 30s 100s 300s Pool
i-vector 266 109 058 1.50
average [7, 8] 358 207 186 257
attention [10, 11]  3.00 1.58 127 199
statistics [9] 249 125 0.82 1.58
attentive statistics 2.46 1.07 0.80 147

This reflects the effect of using both long-context and frame-
importance. The traditional i-vector systems, however, per-
formed better than speaker embedding-based systems, except
for performance w.r.t. EER. This seems to have been because
the SRE12 CC2 task consisted of long-utterance trials in which
durations of test utterances were from 30 seconds to 300 sec-
onds and durations of multi-enrollment utterances were longer
than 300 seconds.

Table 2 shows comparisons of EERs for several durations
on NIST SRE12 CC2. We can see that deep speaker embedding
offered robustness in short-duration trials. Although i-vector
offered the best performance under the longest-duration con-
dition (300s), our attentive statistics pooling achieved the best
under all other conditions, with better error rates than those of
statistics pooling under all conditions, including Pool (overall
average). Only attentive statistics pooling showed better perfor-
mance than i-vectors on both 30-second trials and 100-second
trials.

4.2.2. VoxCeleb

Table 3 shows performance on the VoxCeleb test set. Here, also,
the addition of both attention and of standard deviations helped
improve performance. As in the SRE12 CC2 case, standard de-
viation addition had a larger impact than that of attention. The
proposed attentive statistics pooling achieved the best perfor-
mance in all evaluation measures and was 8.1% better in terms
of EER than statistics pooling. This may have been because
the durations were shorter than those with SRE12 CC2 (about
8 seconds on average in the evaluation), and speaker embed-
ding outperformed i-vectors, as well. It should be noted that
compared to the baseline performance shown in [7], whose best
EER was 7.8%, our experimental systems achieved much better
performance, even though we used slightly smaller training and
evaluation sets due to lack of certain videos.
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Table 3: Performance on VoxCeleb. Boldface denotes the best
performance for each column.

Embedding DCF102 DCF10° EER (%)
i-vector 0.479 0.595 5.39
average [7, 8] 0.464 0.550 4.70
attention [10, 11] 0.443 0.598 4.52
statistics [9] 0.413 0.530 4.19
attentive statistics 0.406 0.513 3.85

5. Summary and Future Work

We have proposed attentive statistics pooling for extracting
deep speaker embedding. The proposed pooling layer calcu-
lates weighted means and weighted standard deviations over
frame-level features scaled by an attention model. This enables
speaker embedding to focus only on important frames. More-
over, long-term variations can be obtained as speaker character-
istics in the standard deviations. Such a combination of atten-
tion and standard deviations produces a synergetic effect to give
deep speaker embedding higher discriminative power. Text-
independent speaker verification experiments on NIST SRE
2012 and VoxCeleb evaluation sets showed that it reduced EERs
from a conventional method by, respectively, 7.5% and 8.1% for
the two sets. While we have achieved considerable improve-
ment under both short- and long-duration conditions, i-vectors
are still competitive for long durations (e.g., 300s in SRE12
CC2). Pursuing even better accuracy under such conditions is
an issue for our future work.
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