
論文 / 著書情報
Article / Book Information

題目(和文)

Title(English) Application-Specific Instruction-Set Processor Architectures for
Embedded Vision

著者(和文) XIAOShanlin

Author(English) Shanlin Xiao

出典(和文) 学位:博士(学術),
 学位授与機関:東京工業大学,
 報告番号:甲第10709号,
 授与年月日:2017年12月31日,
 学位の種別:課程博士,
 審査員:一色 剛,上野 修一,髙橋 篤司,原 祐子,中原 啓貴,伊藤 和人

Citation(English) Degree:Doctor (Academic),
 Conferring organization: Tokyo Institute of Technology,
 Report number:甲第10709号,
 Conferred date:2017/12/31,
 Degree Type:Course doctor,
 Examiner:,,,,,

学位種別(和文) 博士論文

Type(English) Doctoral Thesis

Powered by T2R2 (Tokyo Institute Research Repository)

http://t2r2.star.titech.ac.jp/

Application-Specific Instruction-Set

Processor Architectures for

Embedded Vision

Department of Communications and Computer Engineering
Tokyo Institute of Technology

Shanlin Xiao

September 2017

Application-Specific Instruction-Set

Processor Architectures for

Embedded Vision

Shanlin Xiao

Advisor: Professor Tsuyoshi Isshiki

Department of Communications and Computer Engineering
Tokyo Institute of Technology

This dissertation is submitted for the degree of
Doctor of Philosophy

September 2017

Acknowledgements

First and foremost, I would like to express my gratitude and thanks to my
advisor, Prof. Tsuyoshi Isshiki, for giving me the opportunity to do a Ph.D.
study on such an interesting topic, and for his support during my Ph.D. career.
He has been a great mentor. Without his guidance, encouragement and intuitive
ideas, this thesis would not have been completed.

I would like to extend my gratitude to Prof. Hiroaki Kunieda and Assis-
tant Prof. Dongju Li for sharing their knowledge with me and for providing
suggestions on my research. I also grateful to Prof. Shuichi Ueno, Prof. Atsushi
Takahashi, Associate Prof. Yuko Hara, Associate Prof. Hiroki Nakahara and
Prof. Kazuhito Ito for serving on my defense committee.

It’s impossible to mention everyone that has helped me over the years, but
I would like to extend special thanks to Ms. Miwa Tashiro and Ms. Yumiko
Kondo for their help and support throughout my stay in the laboratory.

Also, I would like to thank all the members of Isshiki laboratory for their
support and assistance, including Dr. Hao Xiao, Dr. Zhiqiang Hu, Ms. Lily
Tiong Yu Wen, Dr. Hsuan-Chun Liao, Mr. Yang Li, Mr. Pipat Methavanitpong,
Ms. Nabilah Shabrina, Mr. Ikumi Endo, Mr. Koshiro Date, Mr. Keitarou
Kojima, Mr. Kazuki Zenba, and Mr. Mustafa Abdul-Halim Yassin.

Finally, my greatest thanks to my parents, wife, and daughter, for their love,
encouragement, and support. No matter where I am, the family is always my
motivation moving forward.

ii

Publication

Journal papers

1. Shanlin Xiao, Tsuyoshi Isshiki, Dongju Li, Hiroaki Kunieda, “Design of
an Application Specific Instruction Set Processor for Real-Time Object De-
tection Using AdaBoost Algorithm,” IEICE Transactions on Fundamentals,
Vol. E100-A, No. 07, pp. 1384-1395, July. 2017.

2. Shanlin Xiao, Tsuyoshi Isshiki, Dongju Li, Hiroaki Kunieda, “HOG-
Based Object Detection Processor Design Using ASIP Methodology,”
IEICE Transactions on Fundamentals, Vol. E100-A, No.12, pp. - , Dec.
2017.

Conference papers

1. Shanlin Xiao, Tsuyoshi Isshiki, Dongju Li, Hiroaki Kunieda, “An Effi-
cient Embedded Processor for Object Detection Using ASIP Methodology,”
2016 IEEE 27th International Conference on Application-specific Systems,
Architectures and Processors (ASAP), pp. 225-226, London, England,
July 2016.

2. Shanlin Xiao, Dongju Li, Hiroaki Kunieda, Tsuyoshi Isshiki, “Design of
an Efficient ASIP-Based Processor for Object Detection Using AdaBoost
Algorithm,” 2016 7th International Conference of Information and Com-
munication Technology for Embedded Systems (IC-ICTES), pp. 96-99,
Bangkok, Thailand, Mar. 2016.

iii

Abstract

Computer vision has been utilized to enable many applications and will affect
many aspects of human life in the era of big data. Object detection is an
essential and expensive process in almost all the computer vision systems. It
involves the acquisition, processing, analysis, and understanding of real-world
visual information. Standard off-the-shelf embedded processors are hard to meet
the trade-offs among performance, power consumption, and flexibility required
by object detection applications.

The Application-Specific Instruction-set Processor (ASIP) emerges as a pro-
mising solution to balance the performance/power/flexibility trade-offs. This
approach combines a software programmable processor and application-specific
hardware components. The functional units of ASIPs can execute in parallel
and utilize special registers for internal communication. ASIPs can offer better
performance and energy characteristic than GPPs/DSPs. The control of functi-
onal units in an ASIP is not fixed but taken over by an instruction decoder
and a program. ASIPs can provide higher flexibility than ASICs. However,
these benefits, in turn, involve a high-cost development flow. The traditional
development of ASIP is a very demanding and complex task involving instruction
set, micro-architecture, RTL, compiler, and debugger design.

The motivation of this dissertation is to study an efficient ASIP design
methodology and to provide a design framework to support the ASIP-based
embedded vision processor design. The design framework is based on an Ar-
chitecture Description Language (ADL) and provides the processor architect
with a seamless design flow that covers the software interface with an open
source vision library, hardware/software partition, ASIP programming model,

iv

hardware/software co-simulation and RTL implementation. Furthermore, on
the basis of analyzing the vision algorithms, we provide some design considerati-
ons/guidelines to help the processor architect in designing an efficient embedded
vision processor. Our thinking includes algorithms consideration, applications
understanding, architecture consideration, and design reuse consideration.

To fully demonstrate the efficiency of the proposed framework and our thin-
king on vision processor design, we develop two ASIPs for embedded vision
using the proposed framework as reference implementations. The algorithms
are Haar-like features with AdaBoost classifier and Histogram of Oriented Gra-
dients (HOG) features with Support Vector Machine (SVM) classifier. In the
two ASIPs, we state the hardware/software partition principle, exploit the
hardware-friendly object detection algorithms, perform the hardware/software
co-design, and apply the design reusability to improve the design efficiency.
The Single Instruction Multiple Data (SIMD) architecture is adopted for fully
exploiting data-level parallelism inherent to the target algorithm. Multiple data
reuse strategies are introduced to minimize the data movement and improve
the power efficiency. Finally, the throughput, area, and power consumption
estimation are carried out based on the synthesis results. The experimental
results show that the ASIPs achieve 13x to 63x speed-up compared to its baseline
processor. When compared with commercial GPP/DSP, the ASIPs have 7x to
113x better throughput, show 10x to 750x better area efficiency and 6x to 184
better power efficiency. Furthermore, the ASIPs show comparable performance
with hard-wired designs.

Keywords: ASIP, design methodology, computer vision, object detection,
machine learning.

v

Contents

List of Figures ix

List of Tables xiii

Terminology xiv

1 Introduction 1
1.1 Background . 1
1.2 Motivation . 4
1.3 Contribution . 5
1.4 Thesis Organization . 7

2 Background of Embedded Vision Techniques 8
2.1 Embedded Vision Applications 8
2.2 Machine Learning for Object Detection 10

2.2.1 Vision Pipeline . 10
2.2.2 Object Detection . 11

2.3 Overview of Feature Extraction Algorithm 12
2.3.1 Harris Corner . 13
2.3.2 Scale-Invariant Feature Transform (SIFT) 13
2.3.3 Speeded Up Robust Features (SURF) 15
2.3.4 Oriented FAST and Rotated BRIEF (ORB) 16
2.3.5 Convolutional Neural Networks (CNN) 16

2.4 Hardware Architecture . 17

vi

Contents

2.5 Summary . 20

3 ASIP Design Methodology 21
3.1 Design Challenges . 21
3.2 Application-Specific Instruction-set Processors (ASIPs) 22
3.3 Traditional Processor Design Flow 23
3.4 ASIP Design Methodology . 24

3.4.1 ASIP Design Framework 24
3.4.2 Hardware/Software Co-design 26
3.4.3 Software Interface . 27
3.4.4 ASIP Programming Interface 27

3.5 Design Considerations . 28
3.5.1 Algorithm Consideration 29
3.5.2 Understanding the Application 30
3.5.3 Architecture Consideration 31
3.5.4 Design Reuse Consideration 32

3.6 Summary . 33

4 Object Detection Processor with Haar-like Feature and Ada-
Boost Classifier 35
4.1 AdaBoost-Based Learning Algorithm 35
4.2 Algorithm Analysis . 39

4.2.1 Hot Spots Identification 39
4.2.2 Memory Bottleneck . 40
4.2.3 Parallelism Analysis . 46

4.3 Object Detection Processor Architecture 47
4.3.1 ASIP Architecture . 47
4.3.2 Custom Hardware Component 49
4.3.3 Instruction Set Extensions 53

4.4 Experimental Results . 53
4.5 Related Work . 57
4.6 Summary . 59

vii

Contents

5 Object Detection Processor with HOG Feature and SVM Clas-
sifier 60
5.1 Histogram of Oriented Gradients 60

5.1.1 Gradient Computation 60
5.1.2 Histogram Generation and Block Normalization 61
5.1.3 SVM Classification . 63

5.2 Hardware-Friendly HOG Algorithm 64
5.2.1 Cell-Based Scanning Method 64
5.2.2 On-The-Fly SVM Calculation 65
5.2.3 HOG Algorithm Simplification 65
5.2.4 Performance Evaluation 69

5.3 Architecture of Vision Processor 71
5.3.1 ASIP Architecture . 71
5.3.2 Custom Hardware Component 74
5.3.3 Instruction Set Extensions 77

5.4 Experimental Results . 78
5.5 Related Work . 82
5.6 Summary . 83

6 Conclusion and Future Works 85
6.1 Conclusion . 85
6.2 Future Works . 87

Bibliography 89

viii

List of Figures

1.1 Trillion sensors visions [1]. 2
1.2 Global mobile devices and connections growth [2]. 3
1.3 The programmable accelerator design discontinuity [3] 4

2.1 Embedded vision applications: (a) Advanced Driver Assistance
Systems (ADAS); (b) Video surveillance; (c) Game machine; (d)
Robotics. 9

2.2 Vision pipeline. 11
2.3 General flow for object detection. 12
2.4 Feature extraction algorithm. 13
2.5 DoG pyramid generation in SIFT. 14
2.6 Speeded Up Robust Features (SURF) descriptor generation. . . 15
2.7 Oriented FAST and rotated BRIEF (ORB) descriptor generation. 15
2.8 A representative CNN architecture – LeNet5 [4]. 16
2.9 Hardware architecture with different levels of efficiency and flexi-

bility. 17
2.10 Intel Pentium 4 processor microarchitecture [5]. 18
2.11 TI TMS320C64x+ block diagram [6]. 19
2.12 ASIP architecture for connected labeling in embedded vision [7]. 20

3.1 Traditional processor design flow. 23
3.2 ASIP design methodology. It contains two design chains: har-

dware design chain and software design chain. 25
3.3 Hardware software co-design. 26

ix

List of Figures

3.4 An example of special instruction customization: (a) Instruction
format. (b) C code of image gradient computation. (c) Archi-
tecture description language for the new special instruction. (d)
Call new special instruction in C code. (e) Generated machine
code. 28

3.5 Architecture of baseline processor. A 32-bit RISC processor with
four stage pipelines: fetch, decode, execute and write back stage. 31

4.1 Cascade structure of AdaBoost algorithm. Each stage contains a
small number of weak classifiers. The structure can quickly reject
non-object like sub-windows in early stages. 36

4.2 Examples of Haar-like features. These features are consisted of
black and white rectangles. 36

4.3 (a) Basic concept of integral image. Pixel P contains sum of all
the shaded pixels. (b) An example of integral image generation.
A 3x3 image and its integral image. 37

4.4 (a) Feature computation over image. Step from left to right, from
top to down. (b) Rectangle sum calculation. Sum of rectangle R
can be calculated using the corner integral image values of the
rectangle: P4-P3-P2+P1. 37

4.5 Classification procedure of AdaBoost Algorithm. Value I, value
II, threshold and stage threshold were determined during the
machine learning training phase. 38

4.6 Distribution of workload among AdaBoost algorithm. The highest
computational task, Run Classifier function, takes almost 80% of
the total cycle counts. 40

4.7 Sub-window upscaling method and image downscaling method. . 43
4.8 ROC curves of feature upscaling method and image downscaling

method. 44
4.9 Execution rate of each cascade stage. Note that the execution

rate of early stages is much higher than latter stages. 46

x

List of Figures

4.10 Available parallelism in AdaBoost algorithm. 47
4.11 Overall architecture of the proposed ASIP. 49
4.12 Pipelined cumulative row sum calculation architecture. 50
4.13 Integral image calculation architecture. 50
4.14 Integral image extraction architecture. 51
4.15 Performance gain under different parallelism. 51
4.16 Hardware resource utilization rate under different parallelism. . 51
4.17 Haar-like feature value calculation architecture. 52
4.18 Sample of frontal face detection results. Images affected by

illumination, noise and with different rotation of faces. 56

5.1 (a) Basic concept of cell and block. The detection window is
divided into non-overlapping 8x8 pixels spatial regions called
cells. The size of detection window is 64x128 pixels. It consists
8x16 cells. Every 2x2 cells form a block. (b) HOG descriptor
generation. The orientation is divided into 9-bins in the range of
0◦ −360◦. Each cell generates a 9-bin histogram. HOG descriptor
is a 3780-D vector. (c) HOG-based object detection flow. 61

5.2 (a) Window-based scanning method. Two kinds of overlapping:
detection windows overlapping and blocks overlapping. (b) Cell-
based scanning method. No cell overlapping between neighboring
cells. 63

5.3 Memory bandwidth requirements analysis. Only blocks overlap-
ping is considered in window-based method. 64

5.4 Basic idea of on-the-fly SVM calculation. A block feature belongs
to 105 detection windows maximally. The pedestrian image is
from [8]. 66

5.5 Histogram bin calculation without the actual value of gradient
orientation. Note that θi and θj are constants. In this example,
the pixel is assigned to bin 2. 67

xi

List of Figures

5.6 PR curves of window-based scanning method and cell-based
scanning method (INRIA dataset). 70

5.7 PR curves of window-based scanning method and cell-based
scanning method (MIT dataset). 71

5.8 HOG algorithm profiling result. The top-5 computationally in-
tensive functions take 99.96% of the total cycle counts. 72

5.9 Overall architecture of the proposed ASIP. The ASIP engine
consists of five special functional units: Gradient Computation
(GDC), Magnitude and Angle Calculation (MA), Histogram Ge-
neration (HTG), Block Normalization (BKN), and SVM Classifi-
cation (SC) unit. 72

5.10 Block diagram of cell histogram generation. It is a 4-way archi-
tecture. Each PE is an 8-way SIMD architecture. 73

5.11 Each cell belongs to four blocks maximally. TL, TR, BL and
BR represents top-left, top-right, below-left and below-right,
respectively. 74

5.12 Architecture of processing element. 75
5.13 Behavior of each block. 75
5.14 Architecture of block normalization. 76
5.15 Architecture of on-the-fly SVM classification. The classification

PE handles seven blocks of MAC operations. 77

6.1 Multi-ASIP based embedded vision processor. 88

xii

List of Tables

4.1 Number of weak classifiers in each stage 42
4.2 Special instruction in the proposed ASIP (AdaBoost) 53
4.3 Cycle counts comparison for AdaBoost algorithm on baseline

processor and proposed ASIP 55
4.4 ASIP implementation results (AdaBoost) 55
4.5 Comparison with software implementations on embedded proces-

sors (AdaBoost) . 56
4.6 Performance comparison with previous works (AdaBoost) 57

5.1 Parameters of HOG algorithm 68
5.2 Optimized fixed-point bit-width 69
5.3 Special instruction in the proposed ASIP (HOG) 78
5.4 Cycle counts comparison for HOG algorithm on baseline processor

and proposed ASIP . 79
5.5 ASIP implementation results (HOG) 80
5.6 Throughput for different video standards 80
5.7 Comparison with software implementations on embedded proces-

sors (HOG) . 81
5.8 Performance comparison with hard-wired designs (HOG) 82

xiii

Terminology

ADL Architecture Description Language

ALU Arithmetic Logic Unit

ASIC Application Specific Integrated Circuit

ASIP Application Specific Instruction-set Processor

CISC Complex Instruction Set Computer

CNN Convolutional Neural Network

CPU Central Processing Unit

DLP Data Level Parallelism

DMA Direct Memory Access

DSP Digital Signal Processor

FPGA Field Programmable Gate Array

GPP General Purpose Processor

GPR General Purpose Register

GPU Graphics Processing Unit

HDL Hardware Description Language

HLS High-Level Synthesis

xiv

Terminology

HOG Histogram of Oriented Gradients

ISA Instruction Set Architecture

MAC Multiply Accumulate

MPSoC Multi-Processor System-on-Chip

ORB Oriented FAST and Rotated BRIEF

PE Processing Element

PR Precision-Recall

RISC Reduced Instruction Set Computer

ROC Receiver Operating Characteristic

SIFT Scale Invariant Feature Transform

SIMD Single Inctruction Multiple Data

SoC System-on-Chip

SRAM Static Random Access Memory

SURF Speeded Up Robust Features

SVM Support Vector Machine

TCT Tight Coupled Thread

VLIW Very Long Instruction Word

xv

Chapter 1

Introduction

1.1 Background

The microprocessor has become a ubiquitous part of the world today. More
advanced features are created and integrated with the modern microprocessors.
Intelligent vision processing becomes one of the required features in the era of
big data. The background and motivation of this dissertation are demonstrated
as follows.

• The ever-growing visual data.

This is the era of big data. Hundreds of Zettabytes (1021 bytes) of data is
created every year; Petabytes (1015 bytes) of data is generated per second [9].
The data volumes are exploding, more data has been created in the past two
years than before in the history of human race [10].

The video is perhaps the biggest of the big data. It takes over 70% of today’s
Internet traffic [2]. For example, over 800 million hours of video is collected
every day for video surveillance in 2015 [11]. With the exponential growth in the
use of sensors (as shown in Figure 1.1, 10 billion in 2013, 1 trillion are expected
by 2020 [1]) and connected devices (6.4 billion in 2016, 20.8 billion are expected
by 2020 [12]), the visual data is in the trend of ever-growing.

• The increasing computer vision applications.

1

1.1 Background

Figure 1.1 Trillion sensors visions [1].

In many visual applications, it would be desirable to extract the meaningful
information from visual input using computer vision algorithms. Computer vi-
sion brings together image processing, machine learning, and pattern recognition
to enable the machine to analyze, understand, and respond to the scenes.

Computer vision has been utilized to enable many different applications and
will affect many aspects of human life. In home applications, vision technology
plays an important role in the smart home and smart building. It can be used for
security, presence detection, detecting unusual events, and remote monitoring
etc. In industry, vision technology is applied to streamlining waste haulage. In
agriculture, vision technology is being used for selectively harvest crops. In
medicine, vision technology is used to prevent heart failure. Computer vision
will be everywhere.

• The shifting application focus.

2

1.1 Background

0

2

4

6

8

10

12

2015 2016 2017 2018 2019 2020

B
il
li
o
n
s
 o

f
D

e
v
ic

e
s

PCs (2%, 2%) Tablets (2%, 3%)

Nonsmartphones (50%, 21%) M2M (8%, 26%)

Phablets (6%, 8%) Smartphones (32%, 40%)

Figure 1.2 Global mobile devices and connections growth [2].

The application focus is shifting from desktop to individual and mobile
devices. In 2015, global mobile devices and connections are up to 7.9 billion.
More than half a billion (563 million) of them were added in 2015 [2]. Globally,
as shown in Figure 1.2, mobile devices and connections will grow to 11.6 billion
by 2020 at a CAGR (Compound Annual Growth Rate, CAGR) of 8 percent. By
2020, there will be 8.2 billion hand-held or personal mobile-ready devices [2].

• The shifting design paradigm.

Programmable accelerators are gaining popularity in embedded systems. The
Application-Specific Instruction-set Processor (ASIP) emerges as an attractive
hardware/software co-design solution [13, 14, 7, 15]. Figure 1.3 shows the
relationship of design abstraction and design productivity. Unlike the traditional
RTL design methodology, in which the basic design entity is the Finite State
Machine (FSM), the HW/SW co-design approach is to replace these FSMs with
programmable processing elements.

The ASIP-based processor becomes an attractive design point for two main
reasons. First, programmability can lower the cost and risk of RTL design.
Software features are added to the design flow. Making a change to software is
cheaper and faster than that to hardware. Functionality can be constructed in an
iterative approach, and problems can be fixed as soon as they are found. Second,

3

1.2 Motivation

switching

Transistor

logic

Gate

RTL

Register

Transfer

FSMs

Design Abstraction

SW

SW

Models

Embedded

Software

algorithms

HW

data path

ADL

Processing

Elements
D

e
s

ig
n

 P
ro

d
u

c
ti

v
it

y

Figure 1.3 The programmable accelerator design discontinuity [3]

programmable systems can improve the design productivity. The architect can
build up a more complex system in a shorter time based on a coarser block
datapath other than a state machine. since the Instruction Set Architecture
(ISA) and the clock rate characterize the performance and behavior of a datapath.
Programmers can reliably predict the performance and behavior of a software
application using computer science instead of physics.

1.2 Motivation

These trends are attracting the focus and interests from both academia and
industry to explore Application-Specific Instruction-set Processors (ASIPs) for
the emerging computer vision applications. However, the traditional development
of ASIP is a very demanding and complex task involving instruction set, micro-
architecture, RTL, compiler, and debugger design.

The motivation of this research is to study an efficient ASIP design met-
hodology and to provide a complete design framework to support ASIP-based
embedded vision processor design. The design framework is based on an Archi-

4

1.3 Contribution

tecture Description Language (ADL) and provides the processor architect with
a seamless design flow that covers the SW interface with an open source vision
library, HW/SW partition, ASIP programming model, HW/SW co-simulation,
and RTL implementation. Furthermore, on the basis of analyzing the vision
algorithms, we provide some design considerations/guidelines to help the proces-
sor architect in designing an efficient embedded vision processor. Our thinking
include algorithms consideration, applications understanding, architecture con-
sideration, and design reuse consideration. As reference implementations, we
demonstrate the effectiveness of the proposed framework using two real-life
applications, Haar-like features with AdaBoost classifier and Histogram of Orien-
ted Gradients (HOG) features with Support Vector Machine (SVM) classifier
for object detection.

1.3 Contribution

The contribution of this dissertation is summarized as follows.

1. A complete framework is proposed to support the ASIP-based
embedded vision processor design.

The proposed design framework covers from the high-level ASIP program-
ming model to the low-level micro-architecture. It is aimed to facilitate the
application-to-architecture mapping at the architect level. To expedite the
design cycle, our ASIP design methodology is integrated with high-level ab-
straction Architecture Description Language (ADL) and commercial design tool.
The framework also provides an interface with open source computer vision
library, for easily maintain the evolution of vision algorithms.

2. Some design thinking are provided as references for vision proces-
sor architects.

5

1.3 Contribution

These thinking include algorithms consideration, applications understanding,
architecture consideration, and design reuse consideration.

3. A thorough analysis on representative object detection techniques
and the proposed hardware-friendly object detection algorithms.

We conduct a comprehensive study on several representative object detection
techniques, especially the ones using hand-crafted features with machine learning
classifiers, e.g. Haar-like features with AdaBoost classifier and HOG features
with SVM classifier. The study aims to identify the computational intensive
tasks, extract the key computationally tasks, and exploit the data locality
properties within the algorithm. The thorough analysis establishes a solid
foundation for the design of object detection processors.

We careful reschedule the dataflow within the AdaBoost-based learning
algorithm and HOG-based algorithm. The new dataflow is aimed at reducing
the memory bandwidth requirements and redundant computations. Also, the
simplified AdaBoost algorithm and HOG algorithm are introduced to minimize
the hardware costs and reduce the mathematical complexity. The modified
algorithms are evaluated on several popular faces and human datasets. The
evaluation results show that the modified algorithms still maintain the high
accuracy as well as the original algorithms.

4. As demonstrations, we show the effectiveness of the proposed fra-
mework using two real-life applications, Haar-like features with Ada-
Boost classifier and Histogram of Oriented Gradients (HOG) features
with Support Vector Machine (SVM) classifier for object detection.

Two synthesized ASIP-based processors are designed and implemented for
AdaBoost algorithm and HOG algorithm. To meet the real-time requirements,
we propose several special functional units to accelerate the computationally
intensive tasks in these object detection algorithm. The special functional units
include integral image calculation array, pipeline Haar-like feature computation,
and parallel histogram generation etc. To achieve low-power consumption, an

6

1.4 Thesis Organization

efficient classifier data storage mechanism for AdaBoost and on-the-fly SVM clas-
sification are proposed to minimize the data movement. With proper application-
to-architecture mapping, the proposed ASIPs achieve high throughput in a small
area, power, and energy footprint.

A full comparison between the proposed ASIP and the conventional embed-
ded processors and hard-wired designs is carried out in terms of performance,
area, and power consumption. The proposed ASIP exhibits an advantage in
terms of both chip area-efficiency and power-efficiency when compared to em-
bedded processors, and shows a competitive computational performance when
compared to hard-wired designs. To the best of our knowledge, there is no
similar work for AdaBoost algorithm and HOG algorithm using ASIP design
methodology so far.

1.4 Thesis Organization

The rest of this dissertation is organized as follows.
Chapter 2 introduces the background knowledge of embedded vision techniques
and the conventional hardware architecture of vision processing engine.
Chapter 3 demonstrates the proposed ASIP design framework for embedded
vision and our considerations on vision processors design.
Chapter 4 focus on the design and evaluation of the object detection processor
with Haar-like features and AdaBoost classifier.
Chapter 5 is dedicated to the design and evaluation of the object detection
processor with HOG features and SVM classifier.
Chapter 6 concludes the thesis, with future work perspectives.

7

Chapter 2

Background of Embedded Vision
Techniques

2.1 Embedded Vision Applications

Computer vision is a discipline that studies the acquisition, processing, analysis,
and understanding of real-world visual information [16]. It began in the late
1960s but has made recent rapid progress owing to the advances of technology
in both computing and computer vision theory [17].

Embedded systems are computer systems with dedicated functions within
mechanical or electrical systems [18]. They range from portable devices like
mobile phones and tablets to large stationary installations such as factory con-
trollers and video surveillance, and are often constrained by real-time computing,
power consumption, and cost.

Embedded vision is a technology that incorporates practical computer vision
capabilities into embedded devices to create widely deployable applications
through visual means. This field is gaining popularity in home, industry,
agriculture, and medical applications etc. Figure 2.1 shows some embedded
vision applications.

8

2.1 Embedded Vision Applications

(a) (b)

(c) (d)

Figure 2.1 Embedded vision applications: (a) Advanced Driver Assistance
Systems (ADAS); (b) Video surveillance; (c) Game machine; (d) Robotics.

In the following, we give a brief introduction of some specific embedded
vision applications, including object detection, Advanced Driver Assistance
Systems (ADAS), video surveillance, and gesture recognition.

Object detection: Object detection is a common and essential process in
almost all the computer vision systems. It requires analyze a scene and recognize
all of the constituent objects [16]. Furthermore, the outputs of object detection
might serve as inputs of object tracking or object recognition etc. Popular
applications include face detection, pedestrian detection, vehicle detection,
and traffic sign detection etc. In some vision applications, some sort of object
detection steps are required in the processing flow. For example, corner detection
is usually applied in a movement tracking application to identify some key points
in an image and then looks for them in subsequent frames.

ADAS: Advanced Driver-Assistance Systems (ADAS) are aimed to enhance
the vehicle systems to improve safety and offer better driving [19, 20]. To avoid

9

2.2 Machine Learning for Object Detection

collisions and accidents, the system provide techniques that alert the driver to
potential problems. ADAS relies on multiple data sources and techniques, such
as pedestrian, lane, vehicle, traffic sign, cyclist, and animal detection in the
path of the vehicle.

Video surveillance: Video surveillance is the monitoring of behavior and
activities through the visual mean for the purpose of protecting people. With
the growing numbers of surveillance cameras and IP cameras, video surveillance
systems are becoming more and more popular. Sending large amounts of visual
information collected by video surveillance systems to the cloud would require
high network bandwidth. Extracting the meaningful visual information and
only transmitting the interesting cases, e.g., frames with detected human, for
further analysis is an efficient way to ease the network traffic.

Gesture recognition: Gesture recognition enables humans using simple ge-
stures to communicate or interact with the devices without physically touching
them. Currently, gesture recognition focus in the hand gesture recognition and
emotion recognition. It is gaining popularity in the field of consumer electronics
and industrial. For consumer electronics, such as gaming and virtual reality, ge-
sture recognition provide a direct and natural way to interact with the machine.
For industrial applications, gesture recognition is a better choice to control
machines while touching them might be dangerous or impractical.

2.2 Machine Learning for Object Detection

2.2.1 Vision Pipeline

Although vision applications are many and varied, the vision system follows
more or less the same flow to analyze and process the visual data. This flow
is called vision pipeline as shown in Figure 2.2. The vision pipeline consist of
four major steps: image pre-processing, Region-of-Interest (ROI) extraction,
extracted ROI processing, and decision making. In the image pre-processing

10

2.2 Machine Learning for Object Detection

Preprocessing Extracting ROI
Decision

Making

§ Noise reduction

§ Color space conversion

§ Image scaling

§ Gamma correction

Processing of

Extracted ROI

§ Object detection

§ Feature extraction

§ Background subtraction

§ Image segmentation

§ Object recognition

§ Object tracking

§ Feature matching

§ Motion analysis

§ Match/no match

§ Flag events

Figure 2.2 Vision pipeline.

step, algorithms are with regular computations and simple data-level parallelism.
In the following steps, the computation becomes irregular with complex data
structures and data-level parallelism. At the end of the pipeline, the processing
becomes standard and common.

2.2.2 Object Detection

Object detection is at the heart of nearly all the computer vision systems.
Figure 2.3 shows the general flow for object detection. The flow is based on
machine learning techniques aiming at specific object recognition tasks. It
typically consists of low-complexity pre-processing, versatile feature extraction,
and classification with trained classifiers. In the image pre-processing stage, it
usually involves color space conversion, image scaling, illumination adjustment
and histogram equalization for successive input frames.

Feature extraction is the process of extracting key characteristics of an
image. Typical image features include edges, lines, corners, shapes, and intensity
gradients etc. A high quality feature should be invariant to viewpoint, scale,
orientation, illumination, and noise. Feature extraction quality usually related
with the algorithm’s computational demand. In the next section, we give an
introduction to various features for object detection.

As for classification, several popular classifiers are developed, such as boosting
[21], Support Vector Machine (SVM) [22], and K-nearest neighbor [23], which
are based on machine learning techniques. These techniques use previous data
to predict information of the new data. The classifier is divided into supervised

11

2.3 Overview of Feature Extraction Algorithm

Pre-processing

M
ax

Classification
Feature

Extraction

Image Pyramid

Illumination

Adjustment

Haar-like Feature

HOG Feature

Boosting Classifier

SVM Classifier

Image Detected

Object

Figure 2.3 General flow for object detection.

or unsupervised category. AdaBoost is a supervised learning algorithm based on
decision trees. The AdaBoost classifier combines a set of weak learner decision
trees to improve the accuracy of classification [21]. SVM is also a supervised
learning algorithm used to classify feature descriptors. The SVM classifier
creates the maximum distance (margin) from two classes to achieve superior
classification performance [22]. Details about the AdaBoost classifier and SVM
classifier will be introduced in Section 4.1 and Section 5.1, respectively.

2.3 Overview of Feature Extraction Algorithm

In this section, we introduce various well-known feature extractions from low
quality but efficient Harris Corner detector to high quality and computationally
intensive Convolutional Neural Networks (CNN). Figure 2.4 shows the evolution
of feature extraction algorithms. Note that details of Haar-like feature and
Histogram of Oriented Gradients (HOG) feature are not include in this section,
but introduced in Section 4.1 and Section 5.1, respectively.

12

2.3 Overview of Feature Extraction Algorithm

Time

C
y

cl
e

co
u

n
t

sc
a

le

SIFT

HOG

SURF

HARRIS

CNN

ORB
LBP

1990s 2000s 2010s

HAAR

Figure 2.4 Feature extraction algorithm.

2.3.1 Harris Corner

The history of image features originates from the corner detection. Corners in an
image are regions with large variations. The basic idea of corner detection is to
find the variations by looking at intensity values within a small window. Harris
corner [24] is one of the widely used corner detector. It finds the difference in
intensity in all directions using a rectangle window or Gaussian window and
considers the small shifts by applying Taylor Expansion. This allow the Harris
corner detector being robust to rotations. However, Harris corner detector is
not scale-invariant. Corner detection is frequently used in motion detection,
video tracking, image mosaicing, and object recognition.

2.3.2 Scale-Invariant Feature Transform (SIFT)

Scale-invariant Feature Transform (SIFT) [25] is used to detect and describe
local features in an image. SIFT descriptor is invariant to scaling, orientation,
illumination variation, and affine distortion. It is widely used in applications
including object recognition, tracking, image stitching, and robotic navigation.

13

2.3 Overview of Feature Extraction Algorithm

F
ir

st
 o

ct
av

e

N
ex

t
o
ct

av
e

Scale

Scale

Gaussian

Difference of

Gaussian (DoG)

Figure 2.5 DoG pyramid generation in SIFT.

SIFT descriptor is generated through two steps, feature points detection
and description. The detection stage is to locate the feature points, while
the description stage is to characterizes the feature. In the first stage, SIFT
generates an image pyramid using iterative Gaussian blurring. Then, the
Difference-of-Gaussian (DoG) images are taken from two adjacent Gaussian-
blurred images per octave. Figure 2.5 shows the generation of DoG pyramid in
SIFT. The candidate feature points are taken as maxima/minima of the DoG
pyramid that occur at adjacent scales. In the second stage, the descriptor is
formed by computing the gradient at each pixel in a small region (e.g., 16x16
window) around of detected feature points. To reduce the effects of contrast and
illumination variations, the generated 128-D vector is normalized unit length as
the final SIFT descriptor.

14

2.3 Overview of Feature Extraction Algorithm

DescriptorSortDetector

Integral Image

Response Map

Calculation

Maxima 3x3x3

& Interpolate

Sort According to

Levels and Regions

Integral Sum

Build 64 Sum

Descriptor

Image SURF

Descriptor

Figure 2.6 Speeded Up Robust Features (SURF) descriptor generation.

Pyramid Harris
Non-max

Suppress

Oriented

BRIEF
FAST

ORB

Descriptor

Image

Figure 2.7 Oriented FAST and rotated BRIEF (ORB) descriptor generation.

2.3.3 Speeded Up Robust Features (SURF)

Speeded Up Robust Features (SURF) [26] are well-known feature extraction and
partly inspired by Scale-Invariant Feature Transform (SIFT) descriptor. Similar
to SIFT, SURF is also scale-invariant and rotation-invariant. It generates a
smaller feature descriptor than SIFT with less computation. SURF descriptors
have been utilized to locate and recognize objects, such as faces or human, to
track objects and to extract points of interest.

SURF uses a Hessian-based measure and operates in a scale space to find
the feature point locations. Figure 2.6 indicates the SURF descriptor generation.
To speed up the feature extraction, integral images are introduced for image
convolutions. For different scales, the algorithm apply multiple sizes of box
filters (e.g., sizes with 9x9, 15x15, 21x21, 27x27) to find the interest points.
Then, a non-maximum suppression is applied to filter the strongest signal in a
3×3×3 neighborhood area. Finally, the feature descriptor is generated basing
on the sum of Haar wavelets response, which is gradient-like computations, for
an oriented region.

15

2.3 Overview of Feature Extraction Algorithm

Convolutions ConvolutionsSubsampling Subsampling Full connection

INPUT

32x32

C1: feature maps

6@28x28

S2: f. maps

6@14x14

C3: f. maps 16@10x10

S4: f.maps 16@5x5

F5: 120 F6: 84 F7: 10

Figure 2.8 A representative CNN architecture – LeNet5 [4].

2.3.4 Oriented FAST and Rotated BRIEF (ORB)

Oriented FAST and rotated BRIEF (ORB) detector [27] is a fast robust local
feature detector, which builds on the FAST keypoint detector and BRIEF
(Binary Robust Independent Elementary Features) descriptor. It is developed
for a fast and efficient alternative to SIFT or SURF.

Figure 2.7 shows the generation of ORB descriptor. ORB modifies FAST
detector as scale invariant to find keypoints at each scale of the image pyramid.
Once the keypoints are detected, ORB apply Harris corner measure to find
top N points among the detected keypoints based on a threshold. To improve
the rotation invariance, ORB utilizes the intensity centroid to compute the
orientation of image patch. Then, BRIEF descriptors are computed on the
rotated patch. The output binary string is referred as an ORB descriptor.

2.3.5 Convolutional Neural Networks (CNN)

A Convolutional Neural Network (CNN) consists of multiple computation layers.
These computation layers are typically divided into three categories: convo-
lutional layers, pooling layers, and fully-connected layers. A representative
CNN architecture is shown in Figure 2.8. A convolutional layer applies filers on
input images or input feature maps from the previous layer to extract visual
characteristics or essential information and generate a higher-level abstraction
as the output feature maps. The convolutional layer performs high-dimensional
convolutions with highly intensive computation. Each convolutional layer is

16

2.4 Hardware Architecture

Performance efficiency

A
p
p
li

ca
ti

o
n
 f

le
x
ib

il
it

y

Reconfigurable

ASIC

GPP

DSP

ASIP

ASIC

Control
circuit

Arithmetic
circuit

Arithmetic
circuit

Control
circuit

Figure 2.9 Hardware architecture with different levels of efficiency and flexibility.

usually followed by a pooling layer, which downsamples the output feature
maps of the previous convolutional layer. Finally, fully-connected layers are
introduced for classification purposes. To achieve superior performance, modern
CNNs have the tendency to deploy a deep hierarchy of layers.

2.4 Hardware Architecture

The hardware architecture for vision applications falls into the category of Gene-
ral Purpose Processors (GPPs), Digital Signal Processors (DSPs), Application-
Specific Instruction-set Processors (ASIPs), Application Specific Integrated
Circuits (ASICs), and reconfigurable ASICs. The relationship of performance
efficiency and application flexibility among GPPs, DSPs, ASIPs, ASICs and
reconfigurable ASICs is shown in Figure 2.9.

The state-of-the-art GPPs are equipped with many advanced hardware
techniques, e.g. multi issue ALU, out-of-order execution logic, and complicated
branch prediction mechanism, to deliver higher performance. Intel Pentium 4 is
a classical processor with many features of today’s GPPs. Figure 2.10 shows the
Intel Pentium 4 processor microarchitecture. Pentium 4 features hyper pipeline
technology, which enables the software to run in a very deep instruction pipeline

17

2.4 Hardware Architecture

Front-End BTB

(4K Entries)

Instruction

TLB / Prefetcher

Instruction Decoder

Trace Cache BTB

(512 Entries)

Trace Cache

(12K µops)

Microcode

ROM

µop Queue

Allocator / Register Renamer

Memory µop Queue

Memory Scheduler

Integer / Floating Point µop Queue

Fast Slow / General FP Scheduler Simple FP

Integer Register File / Bypass Network

AGU

Load

Address

AGU

Store

Address

2x ALU

Simple

Instr.

2x ALU

Simple

Instr.

Slow ALU

Complex

Instr.

FP Register / Bypass

FP

MMX

SSE

SSE2

FP

Move

L1 Data Cache (8Kbyte 4-way)

L2 Cache

(256K Byte

8-way)

48GB/S

Quad

Pumped

3.2 GB/s

Bus

Interface

Unit

64-bits

256 bits

System

Bus

Figure 2.10 Intel Pentium 4 processor microarchitecture [5].

(20 stages) to achieve an industry-leading clock rate. Pentium 4 supports a
new range of clock speeds. For higher performance, the frequently used ALU
instructions can be executed at double the core clock. GPPs have the best
application flexibility, but with the lowest performance efficiency against other
types of hardware architecture.

Figure 2.11 depicts the architecture of TI TMS320C64x+ [5]. TMS320C64x+
is an 8-way VLIW DSP with a two-level memory architecture. It has independent
instruction memory and data memory. The architecture contains two identical
datapaths, each of which contains 32 32-bit general-purpose registers and four
functional units (L: arithmetic unit; S: branch unit; M: multiply unit; D:
load/store unit). The instruction fetch, instruction dispatch, and instruction
decode units can deliver up to eight 32-bit instructions to the functional units
every clock cycle. The execution of the instruction depends on the predication
condition. The instruction set architecture contains instructions to accelerate
the DSP applications and video applications.

Application-Specific Instruction-set processors (ASIPs) are processors in
which the instruction set and hardware logic that customized toward certain

18

2.4 Hardware Architecture

Data Path B

Unified

Memory

Controller

(UMC)

Program Memory Controller (PMC)

Instruction Fetch

SPLOOP Buffer

16 / 32-Bit Instruction Dispatch

Instruction Decode

Data Path A

Data Memory Controller

(DMC)

Interrupt &

Exception Controller

Power Control

D2 M2 S2 L2

Register File B

L1D Cache / SRAM

External

Memory

Controller

(EMC)

L2

Cache /

SRAM IDMA

L1P Cache / SRAM

L1 S1 M1 D1

Register File A

Figure 2.11 TI TMS320C64x+ block diagram [6].

applications. They combine the performance efficiency of a dedicated hardware
and the flexibility of a software programmable processor. As shown in Figure
2.9, ASIPs can offer better performance and lower power consumption than
GPPs/DSPs and provide higher flexibility than ASICs. Figure 2.12 gives
an example of vision ASIP. The ASIP is designed for connected components
labeling in embedded vision [7]. In [7], the parallel image slicing algorithms
are analyzed. Then, a highly specialized processor architecture is proposed to
execute thresholding, labeling and feature extraction. In the ASIP, a customized
memory, special functional units, and the related special instructions are added
to speed up the connected components labeling.

Application-Specific Integrated Circuit (ASIC) is an integrated circuit custo-
mized for a specific application. The functional units can execute in parallel or
in a deep pipeline fashion and utilize special registers for internal communication.
Therefore, the ASIC can offer the best datapath efficiency. However, the fixed

19

2.5 Summary

Figure 2.12 ASIP architecture for connected labeling in embedded vision [7].

control of the functional units make the ASIC with the worse flexibility. Even
though some reconfigurable ASICs integrate more hardware resource, such as
multiplexers, arithmetic logics and control registers, to lift the flexibility of
ASIC approach. But the design cost is too high with a very limited flexibility.

2.5 Summary

In this chapter, we introduce the background knowledge of embedded vision
techniques for two main parts. The first part shows the object detection based on
machine learning fundamentals, including feature extraction and classification.
Several features such as Harris corner, SIFT, SURF, ORB, and CNN are
introduced. In the second part, we introduce the hardware architecture for
vision applications. The pros and cons of GPPs, DSPs, ASIC, and ASIPs are
discussed.

20

Chapter 3

ASIP Design Methodology

3.1 Design Challenges

With the rapid advance of technology, microprocessors are gaining more and
more powerful computing capability. However, design and implement of a
computer vision processor remain a very challenging task. The main challenges
of vision processor design include:

• High performance: Vision applications are typically sophisticated and
quite diverse with parallel and specialized input, such as image sensors
and 2D/3D cameras. They have extremely high computation require-
ments. For example, to construct an image pyramid for a VGA image
(640x480 pixels) in the image pre-processing step, it requires 10-15 million
instructions. When the real-time constraints are taken into consideration,
the computation is up to 300-450 millions of instruction per second. Furt-
hermore, the processing in the later of the vision pipeline would requires
more computation for the advanced but complex vision tasks. A high per-
formance computation engine with high memory bandwidth are necessary
to meet the high computation demanding.

• Low power: To run these computationally intensive algorithms on mobile
devices, it demands low power as a critical requirement. A mobile device is

21

3.2 Application-Specific Instruction-set Processors (ASIPs)

typically powered by batteries. Higher power consumption would require
a large capacity battery. It comes with higher heat dissipation, leading to
complex cooling systems with expensive packaging.

• Flexibility: Embedded vision applications are quite diverse and con-
stantly evolving. It requires a certain degree of programmability to ease
the maintenance, debugging, and refinement of the applications. The
programmability makes contribution on improving the productivity and
reduce the time-to-market pressure.

3.2 Application-Specific Instruction-set Proces-

sors (ASIPs)

The Application-Specific Instruction-set Processor (ASIP) is based on processor
architecture. It combines a software programmable processor and application-
specific hardware components. The design focus of an ASIP is aimed at specific
performance and specific flexibility with low costs for solving problems in a
specific domain.

Compared with General Purpose Processors (GPPs), Digital Signal Proces-
sors (DSPs) and Application-Specific Integrated Circuits (ASICs), Application-
Specific Instruction-set Processors (ASIPs) emerge as promising solutions to offer
the trade-offs between performance, power and flexibility requirements required
by vision applications. ASIPs are processors in which the instruction set and
hardware logic that customized toward certain applications. Similar to ASICs
approach, functional units of ASIPs can execute in parallel and utilize special
registers for internal communication. Therefore, ASIPs can provide data-path
efficiency closeness to ASICs and better performance than GPPs/DSPs. Similar
to GPPs/DSPs approach, the control of functional units is not fixed but taken
over by an instruction decoder and a program. This enables them adaptable
for different applications or variations of an algorithm. Thus, ASIPs can offer
higher flexibility than ASICs. Also, owing to the highly utilized and dedicated

22

3.3 Traditional Processor Design Flow

Instruction Set Design Micro-architecture Design RTL Design

IA Simulator Development CA Simulator Development

Assembler & Linker Debuger

Compiler Design

Verification

SoC Integration

SW Development

Time

Figure 3.1 Traditional processor design flow.

data-paths with relatively low control overhead, ASIP becomes one of the most
energy efficient solutions for programmable vision applications. Furthermore,
from an application developer’s perspective, the programmability offers shorter
time-to-market with a lower risk.

3.3 Traditional Processor Design Flow

The design of a processor is a very demanding and complex task, which re-
quires the design of the instruction set, micro-architecture, RTL, and a set of
development tools, such as a simulator, an assembler, a linker, and a compiler.
It is expensive to develop and maintain these development tools even for the
specialist. Figure 3.1 shows the traditional processor design flow. The design is
processed in sequence. The points of this design flow are summarized as below.

• RTL-based architecture design and optimization are time-consuming and
expensive.

• Manually design of simulators is complex, tedious, and error-prone.

• The features of compilers are not clear in the architecture definition phase.

• The discontinuities exist between tools and models.

• Verification, software development, and SoC integration happen at the end
of the design phase. It is too late to expose the performance bottlenecks
in this stage.

23

3.4 ASIP Design Methodology

This high-cost and inefficient design flow is unacceptable today, with the
ever-growing complexity of SoC design and the time-to-market pressure.

3.4 ASIP Design Methodology

In order to facilitate the implementation of the ASIP-based processor for embed-
ded vision applications, an efficient design methodology is necessary. Currently,
there are two general ways for ASIP implementation. One is template processor
based design with Hardware Description Language (HDL); Another is the cus-
tom architecture with Architecture Description Language (ADL). In the former
approach, the design of an ASIP is through combining a template processor
with some specialized modules. These modules are included in the component
library. MeP [28] is one of these examples. This approach contributes to lower
the design complexity and shorter the turnaround cycle. However, the fixed
architecture of the template processor provided by the library would result in
a lower design flexibility. In the latter approach, the processor architecture is
captured at a higher level abstraction, which would reduce the design efforts
and make the verification simpler. LISA [29] and nML [30] are good examples
of this approach. Even though the ADL provides a higher level abstraction,
ASIP design starts from scratch is still less efficient.

In our view, combining the template processor-based approach and ADL-
based approach can bring in a more efficient ASIP design flow. In this section,
we introduce our ASIP design methodology and the proposed design framework.
Our ASIP design flow combines Architecture Description Language (ADL) based
design and template processor based design.

3.4.1 ASIP Design Framework

Figure 3.2 shows our ASIP design methodology. It contains two design chains:
hardware (HW) design chain and software (SW) design chain. The High-Level
Synthesis (HLS) tool is at the heart of the design methodology. The dotted
box represents the basic step of ASIP design, and the dark rectangle indicates

24

3.4 ASIP Design Methodology

C CodeProcessor Model

Verification

Algorithm

Application with

Custom Instruction

C Compiler Assembly Code

Executable File

Assembler

& Linker
RTL

Instruction Set

Simulator

SystemC

Model

Baseline

Processor
Library

HLS Tool

RTL Simulation

(e.g. FPGA, ASIC)

Special

Functional Unit

Architectural

Exploration

R
efin

em
en

t GenerateGenerate Generate Generate

Generate

HW Design Chain SW Design Chain

Basic Step

Generated File

Figure 3.2 ASIP design methodology. It contains two design chains: hardware
design chain and software design chain.

software development tool which automatically generated by HLS tools, e.g.,
Synopsys ASIP Designer [31].

Before the ASIP design starts, we capture the algorithms (see Section 4.2
and Section 5.2) in C using custom models and libraries such as OpenCV [32],
which is an open source library for computer vision applications. Also, the
algorithms are refined to use fixed-point data arithmetic.

After the hot spots are identified, the time critical codes are moved from the
baseline processor (See Section 3.5.3) to a special functional unit (See Section
4.3.2 and Section 5.3.2). In this stage, we use the nML processor description
language [30] to model ASIP architecture (See Section 4.3.1 and Section 5.3.1),
which can capture a wide spectrum of processor architecture. The hardware
customizations typically include adding pipeline stages, special registers, or
local memories, adding special functional units and associated acceleration
instructions (See Section 4.3 and Section 5.3). Based on these architecture
description, the HLS tools can automatically generate a software development
kit. It consists of a C compiler, assembler, linker, instruction set simulator, and
SystemC model. With these tools, the new special instructions (See Section 4.3.3
and Section 5.3.3) are called from the software, and the modified algorithm is
executed and tested effectively. Also, the ASIP model is translated automatically

25

3.4 ASIP Design Methodology

ASIP design inputs

Early HW/SW partition

ASIP integration and verification

Processor architecture

specification

Microarchitecture

design

HW acceleration

Processor HW

implementation

Instruction set

specification

Instruction set

simulator

Instruction set

simulation

Application SW

implementation

function to instruction

function to subroutine

function to instruction

function to subroutine

Figure 3.3 Hardware software co-design.

into Register-Transfer Level (RTL) code. This allows for fast feedback on the
clock frequency, gate count, and power consumption. With these feedback
information, we can easily refine and optimize the ASIP architecture.

3.4.2 Hardware/Software Co-design

The ASIP is a device that combines hardware and software. The hardware
and software of an ASIP are tightly related to accommodating the applications.
Therefore, HW/SW co-design methodology is necessary for designing an ASIP. In
an ASIP design, hardware implementation means the design of new instructions
performing a specific function; software implementation means that a specific
function is designed as a subroutine using the available instructions. HW/SW
co-design moves functions or tasks between software and hardware to satisfy
the design requirements.

Figure 3.3 shows our ASIP HW/SW co-design flow. The HW/SW co-
design starts from design space exploration down to the ASIP integration and

26

3.4 ASIP Design Methodology

verification. At the very beginning of an ASIP design, applications are carefully
analyzed. On the basis of the analysis, an instruction set architecture and the
allocations of functions to hardware or software can be proposed. The most
used functions will be assigned to hardware; while the seldom used functions
are implemented as software subroutines.

3.4.3 Software Interface

To further facilitate the ASIP design for embedded vision, the proposed ASIP
design framework provides a software interface with an open source computer
vision library (OpenCV) [32], which includes many low-level vision and machine
learning algorithms for a wide range computer vision application development.
In our ASIP design framework, the software shares the same primitive data
type (e.g., points, size, rectangles and scalar tuples etc.), data structure, and
matrix structure with the OpenCV framework. This allows us quickly to add
and optimize functions to follow the evolution of the vision algorithms.

3.4.4 ASIP Programming Interface

To further explain the ASIP design flow, the detail of our ASIP programming
interface is given in Figure 3.4. Figure 3.4 (a) shows the instruction format
of our ASIP. The instruction length is fixed to be 32-bit. It contains six
programmable fields: (i) opcode fields (opcode_1, opcode_2), which are required
by instruction decoder for instruction types identification; (ii) register fields
(reg_dst, reg_src1, reg_src2), which indicate three optional registers (two
source registers and one destination register) for operands of the instruction; (iii)
immediate value field (imm7), which is a 7-bit immediate number or reserved
for identifying types of special instructions. Figure 3.4 (b)-(e) demonstrate an
example to customize a special instruction, diffv, which performs image gradient
computation. Figure 3.4 (b) describes the C code of image gradient computation.
The architecture description language (nML) for the special instruction (diffv)

27

3.5 Design Considerations

opcode_1

(5 bit)

reg_dst

(5 bit)

opcode_2

(5 bit)

reg_src1

(5 bit)

reg_src2

(5 bit)

imm7

(7 bit)

for(int x = paddingTL.width; x < width –

 paddingBR.width; x++)

{

 int x1 = x - paddingTL.width;

 dbuf[x] = imgPtr[x1+1] - imgPtr[x1-1];

 dbuf[width + x] = nextPtr[x1]-prevPtr[x1];

}

for(int x = paddingTL.width; x <= width –

 paddingBR.width - 16; x+=16)

{

 int x1 = x - paddingTL.width;

 uint8x16* pr = (uint8x16*)&imgPtr[x1+1];

 uint8x16* pl = (uint8x16*)&imgPtr[x1-1];

 uint8x16* pd = (uint8x16*)&nextPtr[x1];

 uint8x16* pu = (uint8x16*)&prevPtr[x1];

 int16x16* p0 = (int16x16*)&dbuf[x];

 int16x16* p1 = (int16x16*)&dbuf[width + x];

// call new instruction in C code

 int16x16 d0 = diffv_(*pr, *pl);

 int16x16 d1 = diffv_(*pd, *pu);

 *p0 = d0;

 *p1 = d1;

}

...

opn diffv_opn()

{

 action {

 stage EX:

 VB2 = gradVO0 =diffv(gradVIa=VBb0a,

 gradVIb=VBb0b)@grad; }

 syntax : "diffv " "VB2, VBb0a, VBb0b";

 image :"00011"::"xxxxx"::"00010"::

 "xxxxx"::"xxxxx"::"00"::"00110";

}

v16w16 diffv(v16w08 a, v16w08 b)

{

 v16w16 r;

 for (int32_t i = 0; i < 16; i++)

 r[i] = (w16)(a[i] - b[i]);

 return r;

}

promotion int16x16 diffv_(uint8x16, uint8x16)

 = v16w16 diffv(v16w08, v16w08);

(a)

(b)

(c)

(d) (e)

Figure 3.4 An example of special instruction customization: (a) Instruction
format. (b) C code of image gradient computation. (c) Architecture description
language for the new special instruction. (d) Call new special instruction in C
code. (e) Generated machine code.

is given in Figure 3.4 (c). In Figure 3.4 (d), the new custom instruction is called
in the application C code. Figure 3.4 (e) shows the generated machine code.

3.5 Design Considerations

To demonstrate the efficiency of our ASIP design framework, we carried out
two embedded vision processor designs using the proposed framework. The
algorithms are the Haar-like feature with AdaBoost classifier and HOG feature

28

3.5 Design Considerations

with SVM classifier. These algorithms are two representative object detection
algorithms. The former one is efficient for face detection, while the latter one is
popularly used for pedestrian detection. Face detection and pedestrian detection
are the active research fields in object detection study. These two algorithms
are with different computation and memory access patterns. Even though the
difference exists, we can find different levels of design reuse in the two ASIPs
design. The efficient and practical of our ASIP design methodology can be
revealed through the two ASIPs design. This is our original intention to provide
two design references. In this section, we will introduce our thinkings on vision
processors design.

3.5.1 Algorithm Consideration

In Section 2.3, we give an overview of feature extraction algorithms. There
are two kinds of features: hand-crafted features and learned features. The
hand-crafted features were designed by experts in the field by a hand-crafted
flow; while the learned-features were directly learned from the training data
and the whole system is trained through an end-to-end approach. There are
many popular hand-crafted features, such as Histogram of Oriented Gradients
(HOG) and Scale-Invariant Feature Transform (SIFT). These features are image
gradient-based features and motivated by the observation that pedestrians are
sensitive to edges (i.e., gradients) in an image. For the learned-features, they
are used in a form of machine learning known as deep learning. Convolutional
Neural Network (CNN) is a well-known learned-feature used in image and vision
processing field.

Compared with learned-features, hand-crafted features show a higher energy
efficiency with a reduced performance accuracy. One of the reasons is hand-
crafted features required less amount of computation and data movement.
Compared with hand-crafted features, learned-features offer better accuracy on
a variety of tasks. They map the input into a higher dimensional space. The high
accuracy comes at the cost of high computational complexity. No-free-lunch

29

3.5 Design Considerations

theorem from machine learning field indicates that any learning techniques
cannot perform universally better than another learning technique [33]. For
example, Neural networks prone to over-fitting and perform worse than a linear
classifier (e.g., SVM) in the classification of linearly-separable data. Therefore,
we should not search for a generous algorithm, but a suitable algorithm under
the constraints of a specific application.

In this research, we focus on the hand-crafted features. We applied two
representative algorithms, the Haar-like feature with AdaBoost classifier and
HOG feature with SVM classifier, to our ASIP design framework. The former
one is on behalf of the decision trees based algorithms. The latter one is on behalf
of the image gradient based algorithms; it robust to variations in illumination
and noise. Both algorithms can be applied to multiple object detection, such
as the face, pedestrian, vehicle, and traffic sign detection [34–38] etc. But the
Haar-like feature is efficient for face detection, while HOG feature is efficient for
pedestrian detection.

The common features of the above algorithms can be used to construct other
state-of-the-art algorithms. For example, the integral image calculation within
AdaBoost algorithm is also the fundamental of Speeded Up Robust Features
(SURF). The image gradient computation is the necessary step to generate the
SIFT feature. Further, the HOG descriptor is the basis of Deformable Parts
Models (DPM) algorithm, which is the best hand-crafted feature based object
detection technique so far.

3.5.2 Understanding the Application

Understanding the application means design space exploration at the system level.
The first step in our ASIP design flow is the application design space exploration.
The data structure, computation pattern, memory access pattern, and the
opportunities of parallelization are exploited and analyzed before the ASIP
design. In Section 4.2 and Section 5.2, we perform the Design Space Exploration
(DSE) to understand the vision applications. Based on the profiling information,

30

3.5 Design Considerations

PC

P
ro

g
ra

m
 M

em
o

ry

Instruction

Decoder

D
a

ta
 M

em
o

ry

pdata

paddr

Pipeline Hazard Unit

FE Stage EX Stage

+
ALU

32 bit
MUX

4

M
U
X

Branch

Control

M
U
X

M
U
X

M
U
X

M
U
X

M
U
X

raddr

waddr

32x32 GPR

M
U
X

DC Stage WB Stage

wdata

rdata

bypass

br.addr

br.addr & br.active

br.active

Figure 3.5 Architecture of baseline processor. A 32-bit RISC processor with
four stage pipelines: fetch, decode, execute and write back stage.

the critical path in the algorithm, the function coverage, the performance
requirements, and the early hardware/software partition are available.

3.5.3 Architecture Consideration

The microarchitecture of the vision processors is based on in-house TCT proces-
sor [39], which is a 32-bit Harvard architecture RISC processor. Other starting
point architectures, such as a VLIW, were considered. For VLIW architecture,
the compiler design cost and software design cost could be higher. Without
a very good compiler knowledge, it would be troublesome to select the VLIW
architecture. By contrast, the RISC features the simple and short instructions,
which can reduce the power and area of the instruction decoder. Also, this
feature can significantly reduce design and verification complexity.

The TCT processor architecture is shown in Figure 3.5. TCT processor
contains four stage pipelines, local instruction and data memories, 32 general
purpose registers, integer multiplier and multi-cycle integer divider. The four
pipeline stages are instruction fetch (FE) stage, instruction decode (DC) stage,
execute and memory access (EX) stage and write back (WB) stage. Pipeline
hazard unit is adopted to handle the data hazard problems. TCT processor has
been shown to have comparable performance to that of ARM9 processor [40].

31

3.5 Design Considerations

In the proposed ASIP (See Section 4.3.1 and Section 5.3.1), TCT processor
handles task controlling and data transmission between special function unit
and memory, while special function unit dealing with intensive computation
tasks. The architectures of the proposed ASIP are introduced in Section 4.3
and Section 5.3.

We observe that the data are organized and operated in a symmetric manner
in most feature extraction techniques. For these operations, the data-level
parallelism can be more efficient than the instruction-level parallelism of the
traditional scalar instructions. The focus of the vision processor design would
be data-level parallelism. In the two reference ASIP designs, we introduce
Single-Instruction Multiple-Data (SIMD) architecture to exploit the data-level
parallelism. As shown in Section 4.4 and Section 5.4, the SIMD architecture can
result in 21x speed-up for Haar-like feature value calculation and 101x speed-up
for cell histogram generation.

Low power design is to minimize the dynamic power and the static power.
Eliminating redundant operations is to minimize the dynamic power; while
reducing the circuit size is to minimize the static power. In a modern processor,
the data movement consumes more power than computation [41]. In order
to achieve power efficient vision processing, we need to exploit dataflows to
support parallel processing with minimal data movement or design efficient
memory architecture to minimize the memory transaction. A mix data storage
mechanism (See Section 4.2.2), cell-based histogram generation (See Section
5.2.1), and on-the-fly SVM classification (See Section 5.2.2) are introduced to
reduce the memory transaction and enable low power consumption.

3.5.4 Design Reuse Consideration

Reusability is a key principle need to considered in hardware design. Maximize
the design reuse can lower the design cost and make the design more practical.
We show the different levels of design reusabilities in the two ASIP designs (See
Section 4.3 and Section 5.3). the first level is the reuse of baseline processor

32

3.6 Summary

architecture. The baseline processor, TCT processor, serves as a template
processor in our design methodology. In Section 4.3.1, the ASIP shares the
same instruction and data memory with TCT processor and the pipeline is
extended to accommodate the applications. In Section 5.3.1, the ASIP the
same instruction, data memory, and pipeline with the baseline processor. The
well-verified baseline processor provides a solid foundation for the ASIP design.
The second level is the reuse of the CPU-enhancing instructions. Zero over-
head loop controlling instructions (See Section 4.3.3 and Section 5.3.3), which
minimizes the loop controlling overhead, are introduced in both ASIPs. The
minimum/maximum value selection and conditional move instructions are also
such kinds of instructions. These CPU-enhancing instructions are not limited
in the two reference ASIPs and can be applied to all the ASIP-based processors.
The third level is the reuse of customized HW blocks. Figure 2.3 illustrates the
general flow for object detection. In the image pre-processing step, color space
conversion, image pyramid, and illumination normalization are common features
used in nearly all the object detection algorithms. The customized instructions
(rgb2gray, hzip/vtip and sqrtv) for these functions can be reused for other object
detection algorithms. The functional blocks introduced in the two reference
ASIPs can also be applied to many of the hand-crafted feature based vision
algorithms. For example, the integral image is an important and convenient
approach to accelerate the feature computation in vision algorithms. It can
be used to compute the Haar-like feature in AdaBoost-based object detection
algorithm, and also can be used to compute the Speeded Up Robust Features
(SURF) in the corresponding detection occasions. The gradient computation is
a common operation for image gradient based features, such as HOG feature
and SIFT feature.

3.6 Summary

In this chapter, we introduce the traditional processor design flow. Then,
we demonstrate our ASIP design methodology and the proposed ASIP design

33

3.6 Summary

framework. The proposed framework is based on ADL and a baseline processor, it
contains a hardware/software co-design chain. Finally, we give our consideration
about the ASIP design, including the algorithm consideration, architecture
consideration, and design reuse consideration.

34

Chapter 4

Object Detection Processor with
Haar-like Feature and AdaBoost
Classifier

4.1 AdaBoost-Based Learning Algorithm

The object detection method using AdaBoost as part of a learning algorithm
was first proposed by Viola and Jones [42]. In order to select the most prominent
features among a large number of features, AdaBoost makes use of a small
number of weak classifiers, which are used for a single visual feature extraction
and then boosted to construct a strong classifier. Moreover, the cascade of
strong classifiers makes classification procedure even more efficient. The cascade
structure is shown in Figure 4.1. This simple-to-complex cascade structure,
which follows the principle of coarse-to-fine search [43], can quickly reject the
non-object like samples and spend more computation time on more object
promising region.

The most popular weak classifiers used with AdaBoost algorithm are Haar-
like features. Examples of Haar-like features are shown in Figure 4.2. These
features consist of several black and white rectangles. They can be viewed as
filters that can detect the presence or absence of certain visual information,

35

4.1 AdaBoost-Based Learning Algorithm

Stage0 Stage1 StageN
Pass Pass Object

Reject RejectReject

Sub-window

Cascade of stage classifiers

Figure 4.1 Cascade structure of AdaBoost algorithm. Each stage contains a
small number of weak classifiers. The structure can quickly reject non-object
like sub-windows in early stages.

2 Rectangles 3 Rectangles 4 Rectangles

Figure 4.2 Examples of Haar-like features. These features are consisted of black
and white rectangles.

e.g., an edge or a line feature, in an image. The computation of Haar-like
features involves calculating the difference of brightness between black and
white rectangle regions. If the difference exceeds a feature threshold, the
weak classifier returns true. Otherwise, the weak classifier outputs false. This
approach is used to determine if an edge or a line feature exists in the image or
not.

To calculate sum of the pixel value (brightness) in black and white rectangles
in a rapid manner, a concept of the integral image was introduced.

II(x, y) =
∑

x′ ≤x,y′ ≤y

I(x′
, y

′) (4.1)

where I(x, y) and II(x, y) are pixel values of the original image and integral
image, respectively. Each pixel location (x, y) in the integral image holds the

36

4.1 AdaBoost-Based Learning Algorithm

P

x

y

o

Integral Image

1 2 3

4 5 6

7 8 9

1 3 6

5 12 21

12 27 45

(a) (b)

Figure 4.3 (a) Basic concept of integral image. Pixel P contains sum of all the
shaded pixels. (b) An example of integral image generation. A 3x3 image and
its integral image.

R

P1 P2

P3 P4

(a) (b)

0x
1x

0y

1y

Figure 4.4 (a) Feature computation over image. Step from left to right, from top
to down. (b) Rectangle sum calculation. Sum of rectangle R can be calculated
using the corner integral image values of the rectangle: P4-P3-P2+P1.

sum of all the pixel values to the left and above that location in the original
image [42]. Figure 4.3 illustrates the concept of the integral image.

R(x0, y0, x1, y1) =
∑

x0≤x′ ≤x1,y0≤y′ ≤y1

I(x′
, y

′)

=
∑

x′ ≤x1,y′ ≤y1

I(x′
, y

′) −
∑

x′ ≤x1,y′ ≤y0

I(x′
, y

′)

−
∑

x′ ≤x0,y′ ≤y1

I(x′
, y

′) +
∑

x′ ≤x0,y′ ≤y0

I(x′
, y

′)

= II(x1, y1) − II(x1, y0) − II(x0, y1) + II(x0, y0)

(4.2)

37

4.1 AdaBoost-Based Learning Algorithm

feature sum

= value II

feature sum

= value I

stage sum =

∑ (feature sum)

last feature in stage ?

stage sum > stage

threshold

reject

sub-window

End

last stage

in cascade ?

next

stage

Start

calculate

integral image

calculate the weighted

rectangle sum in feature

∑ (weighted rectangle

sum) > threshold

next

feature

true false

true

true

true

false

false

false

Figure 4.5 Classification procedure of AdaBoost Algorithm. Value I, value II,
threshold and stage threshold were determined during the machine learning
training phase.

As shown in (4.2), sum of pixel values in rectangle R(x0, y0, x1, y1), the region
between (x0, y0) and (x1, y1), can be computed through two additions and two
subtractions using four corner integral image values of the rectangle. The basic
idea of feature sum calculation is shown in Figure 4.4.

38

4.2 Algorithm Analysis

For AdaBoost algorithm, the detection is performed on a rectangle region
of the original image, which called a sub-window. The detection algorithm
scans the entire image with the sub-window to detect an object. The size of
sub-window can vary with applications. For example, Viola and Jones used 24
x 24 pixels of sub-window for face detection. For objects in the image which are
larger than the sub-window, Viola and Jones scale the sub-window to detect
large-sized objects [42].

After calculation and accumulation of all the Haar-like features in a stage, a
stage threshold is used to determine if the processing flow advances to the next
stage or not. The classification procedure of AdaBoost algorithm is shown in
Figure 4.5. The input of the algorithm is a detected image and a pre-trained
cascade classifier data. The output is the found locations of each detected object
and a scale value which represents how large or small the object was.

4.2 Algorithm Analysis

4.2.1 Hot Spots Identification

As a starting point, we use OpenCV [32] to develop the detection program
for software profiling, to find the most critical computation in the AdaBoost
algorithm. The classifier data originates in OpenCV, which includes 22 cascade
stages with a total number of 2135 weak classifiers. These classifier data are
pre-trained by fixed size frontal faces (20 x 20 pixels). Table 4.1 shows the
number of Haar-like features in each stage. Figure 4.6 reports the profiling
result.

To further find the bottleneck of AdaBoost algorithm, we make a deep
analysis of Run Classifier function, which performs Haar-like feature values cal-
culation. It takes almost 80% of the processing time. Algorithm 1 demonstrates
the pseudo code of Run Classifier function. The main loop (lines 1-24) processes
a sub-window at a time. The inner loop (lines 2-20) of Run Classifier function
is the kernel computing Haar-like feature values. To deal with all the weak

39

4.2 Algorithm Analysis

6.48 6.68
1.62

78.98

6.24

0

20

40

60

80

100

Grey Scale

Conversion

Integral

Image

Set

Classifier

Run

Classifier

Others

% of processing

Figure 4.6 Distribution of workload among AdaBoost algorithm. The highest
computational task, Run Classifier function, takes almost 80% of the total cycle
counts.

classifiers within a sub-window and all the sub-windows within an input frame,
the inner for loop repeats tens of thousands of times that makes it becomes
the time critical codes. The bottleneck comes from two aspects. One is the
limited memory bandwidth between the classifier module and memories, which
store integral image and classifier data. Another is the repeated rectangle sum
calculation operations.

For our object detection engine, we focus on implementing the most com-
putationally intensive parts on ASIP: grey scale conversion, image scaling,
integral image calculation and Haar-like feature value calculation. All other
computations are performed in pure software.

4.2.2 Memory Bottleneck

4.2.2.1 Image Scaling

Generally, in sliding windows approach, there are two methods to detect large-
sized objects: sub-window upscaling and input image downscaling. Figure 4.7
demonstrates the two image scaling methods. Viola and Jones suggest enlarging

40

4.2 Algorithm Analysis

Algorithm 1 Pseudo code of Run Classifier function
Input: Integral image and classifier data

1: for all stages do
2: for all weak classifiers do
3: Load classifier data for 1st rectangle;
4: Load integral image for 1st rectangle;
5: Compute 1st weighted rectangle sum;
6: Load classifier data for 2nd rectangle;
7: Load integral image for 2nd rectangle;
8: Compute 2nd weighted rectangle sum;
9: if has_3rd_rectangle then

10: Load classifier data for 3rd rectangle;
11: Load integral image for 3rd rectangle;
12: Compute 3rd weighted rectangle sum;
13: end if
14: Accumulate the weighted rectangle sum;
15: if sum < classifier threshold then
16: Set stage sum to a pre-trained value;
17: else
18: Set stage sum to another pre-trained value;
19: end if
20: end for
21: if stage sum < stage threshold then
22: Return current stage number;
23: end if
24: end for

the sub-window [42]. Since Haar-like features only contain black and white
rectangles, sub-window upscaling linearly would not result in losing of data.
However, for the sub-window upscaling method, data access to the integral
image would become a bottleneck, due to the memory bandwidth. One potential
solution is employing the input image downscaling method, keeping the sub-
window in a fixed-size and storing the integral image values in register arrays.
Note that such approach might affect the detection rate.

Thus, we evaluate the detection rate of image downscaling method and make
a comparison with the sub-window upscaling method. For image scaling, we
use bilinear interpolation algorithm [44], in which the pixel value in the new
image is generated from four closest neighborhood pixel values of the computed

41

4.2 Algorithm Analysis

Table 4.1 Number of weak classifiers in each stage

Stage
of Weak
Classifiers

Stage
of Weak
Classifiers

Stage
of Weak
Classifiers

0 3 8 56 16 140
1 16 9 71 17 160
2 21 10 80 18 177
3 39 11 103 19 182
4 33 12 111 20 211
5 44 13 102 21 213
6 50 14 135

Total 2135
7 51 15 137

pixel location. The detection is performed on MIT + CMU frontal faces image
data set [45]. This data set contains 130 images with 507 labeled frontal faces.
Both downscale and upscale factors are set to 1.2.

The experimental result is shown in Figure 4.8. The graph shows the Receiver
Operating Characteristic (ROC) curves of image downscaling and sub-window
upscaling methods. The ROC curve shows a relationship of detection rate
against false positive rate at different threshold settings [46]. The detection
rate is the number of accurately detected objects divide by the number of
labeled objects. The false positive rate is the number of incorrectly detected
sub-windows divide by the total number of sub-windows scanned.

In Figure 4.8, the solid line and the dotted line indicate ROC curves of the
sub-window upscaling method and image downscaling method using bilinear
interpolation, respectively. In the lower false positive rate region, image downs-
caling method shows better detection rate than sub-window upscaling method,
while in the higher false positive rate region, sub-window upscaling method
gains superior performance. However, the performance gap between them is
small. The fact indicates that image downscaling method would not affect the
detection performance too much and still maintain a considerable detection
rate.

42

4.2 Algorithm Analysis

Layer 0

Layer 1

Layer N

Detecting Window

Layer 0

Detecting Window

Layer 1

Layer N

(b) Image Downscaling(a) Feature Upscaling

Figure 4.7 Sub-window upscaling method and image downscaling method.

4.2.2.2 Integral Image Calculation

When applying image downscaling method, an integral image is generated for
each scanned sub-window. These operations are both memory and computa-
tion intensive, due to the overlapping of sub-window resulting in reloading of
input pixels and redundant arithmetic operations. Consequently, an efficient
computation approach is necessary.

Once the integral image values are stored in register arrays, a benefit of
utilizing the integral image of current sub-window to calculate the integral image
of next sub-window is available. This is based on the fact that the first h − 1
rows of next sub-window integral image can be computed:

Î(x, y) = Ĩ(x + 1, y), for 1 ≤ x ≤ h − 1 (4.3)

43

4.2 Algorithm Analysis

Figure 4.8 ROC curves of feature upscaling method and image downscaling
method.

ÎI(x, y) =
x,y∑

i=1,j=1
Î(i, j) =

x+1,y∑
x′ =2,y′ =1

Ĩ(x′
, y

′)

=
x+1,y∑

x′ =1,y′ =1

Ĩ(x′
, y

′) −
y∑

y′ =1

Ĩ(1, y
′)

= ĨI(x + 1, y) − ĨI(1, y)

(4.4)

where Ĩ(x, y) and ĨI(x, y) are pixel value and integral image value of current
sub-window, respectively. Î(x, y) and ÎI(x, y) are the pixel value and integral
image value of next sub-window, respectively. The last row of the next integral
image can be computed:

S(y) =
y∑

j=1
Î(h, j) (4.5)

44

4.2 Algorithm Analysis

ÎI(h, y) =
h−1,y∑

i=1,j=1
Î(i, j) +

y∑
j=1

Î(h, j)

= ĨI(h, y) − ĨI(1, y) + S(y)
(4.6)

where S(y) is the cumulative row sum of row h of next sub-window. (4.4) and
(4.6) imply that the integral image of next sub-window can be calculated in
following steps. First, subtracting first row from all the remaining rows in
register array which stores integral image; Second, shifting one row up in the
register array; Third, computing cumulative row sum of the new input row;
Last, adding the cumulative row sum to the row next to last to form the last
row of register array.

4.2.2.3 Execution Rate of Cascade Stages

To find out which part of classifier data is memory accessing intensive, we
conduct an experiment on testing the execution rate of each cascade stage.
The experimental conditions are the same as described in Section 4.2.2.1. The
result is shown in Figure 4.9. The graph shows that execution rate of classifiers
in earlier stages is much higher than latter stages. Note that the execution
rate of the first stage is 1, which means the weak classifiers in the first stage
are always been executed. The average number of weak classifiers applied to
a sub-window is 47.8, 75.0% of them belongs to the first 5 stages. Keeping
the most frequently used data in registers is an effective way to reduce the
data transfer time. From Table 4.1, note that early stages contain fewer weak
classifiers. The fact indicates that we can store first few stages in registers at
an affordable hardware resource price. In this paper, classifier data of the first 5
stages is stored in register files instead of memory for high-speed processing.

45

4.2 Algorithm Analysis

Figure 4.9 Execution rate of each cascade stage. Note that the execution rate
of early stages is much higher than latter stages.

4.2.3 Parallelism Analysis

AdaBoost algorithm exhibits a mass of parallelism at different levels, including
both coarse-grained and fine-grained parallelism. Figure 4.10 illustrates the
available parallelism.

• Image pyramid level: To detect large-sized objects, detection is performed
on each image layer. The processing of each image layer can be executed
in parallel.

• Image partition level: Large input images can be divided into several
partitions. The computation of each partition is independent and can be
processed simultaneously.

• Weak classifiers level: In AdaBoost algorithm, as shown in Table 4.1, there
are tens or hundreds of weak classifiers in each stage. A total of weak
classifiers are several thousands. These weak classifiers are independent
and can be processed in parallel.

46

4.3 Object Detection Processor Architecture

I. Image pyramid

II. Image partition III. Weak classifiers

IV. Arithmetric and

logic operations

Figure 4.10 Available parallelism in AdaBoost algorithm.

• Arithmetic operations level: The calculation of Haar-like features are per-
formed on different data with the same operation. Thus, these operations
can be executed concurrently.

The parallelization schemes of image pyramid and image partition belong to
course-grained parallelism, while the parallelization schemes of weak classifiers
and arithmetic operations belong to fine-grained parallelism. Considering that
a single processor is not suitable for exploiting course-grained parallelism, we
devote to exploiting fine-grained parallelism in this paper.

4.3 Object Detection Processor Architecture

4.3.1 ASIP Architecture

This section presents overall architecture of the proposed ASIP and data transfer-
ring between memory and ASIP engine. Figure 4.11 illustrates a block diagram
of the proposed ASIP architecture. The main custom hardware components
are vector registers, a register array, storage elements for classifier data and

47

4.3 Object Detection Processor Architecture

ASIP engine, which are shown with darked blocks in Figure 4.11. To increase
the parallelism, the pipeline of the proposed ASIP is extended to seven stages
(FE: fetch stage, DC: decode stage, EX1−EX5: five execute stages). ASIP
engine includes integral image calculation (IIC) unit, Haar-like feature value
calculation (HFVC) unit, color space conversion (CSC) unit and image resize
(RSZ) unit. IIC unit includes hardware component for integral image extraction
(IIE) and cumulative row sum (CRS) calculation. IIC unit can perform under
two modes: initial mode and update mode. The initial mode uses only input
pixels to compute the integral image, while the update mode makes use of
the integral image of current sub-window to calculate the integral image of
next sub-window. Thus, there are two kinds of inputs for ASIP engine: input
image and integral image. The input image is stored in data memory. A single
memory access returns a 32-bit value, which includes four-pixel values. IIC unit
utilizes these inputs (through interface in0) to compute integral image values
and saves (through interface out0) the integral image values to integral image
register arrays. 20 x 20 x 17 bit is needed to store the entire integral image
of a sub-window (20 x 20 pixels). When in update mode, ASIP engine reads
integral image through interface in1 (340 bit) and writes the updated integral
image through interface out1 (340 bit). To perform Haar-like feature values
calculation, integral image values are directly loaded from integral image register
arrays (through interface in2). CSC unit and RSZ unit load pixels through
interface in3 (64 bit) and save the outputs through interface out2 (64 bit).

According to the analysis in Section 4.2.2.3, classifier data of first 5 stages
is stored in register files for high-speed processing, while the others are stored
in memory. These classifier data serve as input address of the integral image
register arrays. To support 8-way integral image value extraction in parallel,
the width of the interface is 8x32 bit. Note that since the size of the rectangle
is constrained by the size of sub-window (20 x 20 pixels), 32 bit is enough to
hold the rectangle information (left-corner position, width, and height).

48

4.3 Object Detection Processor Architecture

Program
Memory

Vector
Registers

Branch
Control

ALU

Data
Memory

PC

Register Array
(20x20x17bit)

ASIP
EngineIIC

HFVC

CSC RSZ

IIE

CRS

Instruction
Decoder

Classifier Data

Register Files
(256bit)

DMv
(256bit)

in1

in2

out0

out1

Load/
Store

32x32
GPR

in0

FE EX1 EX2DC EX3 ~ EX5

out2
in3

Figure 4.11 Overall architecture of the proposed ASIP.

4.3.2 Custom Hardware Component

In this section, we introduce special function units to accelerate integral image
calculation and Haar-like feature value calculation.

Figure 4.12 shows the architecture for cumulative row sum calculation. The
architecture consists of five full adder trees and a line buffer. The full adder trees
compute the cumulative row sum for each row of sub-window. The line buffer
stores intermediate cumulative row sum. The cumulative row sum calculation is
based on a five-stage pipeline to be operated at a high clock frequency. Figure
4.13 describes a block diagram of the integral image calculation architecture.
The integral image update process is presented in Section 4.2.2.2.

Since the integral image values of a sub-window are stored in register arrays,
it is possible to access all integral image values simultaneously. Figure 4.14
illustrates the integral image value extraction architecture. It mainly contains
a 2-D register array, row multiplexers, column multiplexers and line buffers.
The architecture firstly reads (x0, y0, w, h) which represents the top-left corner
position and the size of a rectangle in a feature. The bit with of x0, y0, w and
h is 8bit. Then, the row multiplexer selects two rows of the integral image

49

4.3 Object Detection Processor Architecture

5-stage pipeline

Data

Mem

20x17bit

 adder tree

adder tree

 adder tree

adder tree

4 pixels

adder tree

Line buffer

To register

array

Figure 4.12 Pipelined cumulative row sum calculation architecture.

II(0, w-1)II(0,0) II(0,1)

II(1, w-1)II(1,0) II(1,1)

II(h-2, w-1)II(h-2,0) II(h-2,1)

II(h-1, w-1)II(h-1,0) II(h-1,1)

Parallel Subtractors

Parallel Adders

Cumulative Row Sum

out

out

in

in

in

in

Figure 4.13 Integral image calculation architecture.

from register array using (y0, y0 + h). Next, based on the selected two rows
integral image, the column multiplexer extracts integral image values at four
corners of the rectangle using (x0, x0 + w). After that, these integral values are
sent to Haar-like feature calculation unit. There are eight sets of row-column
multiplexers in the architecture, which can handle eight rectangles at a time.

The repeated arithmetic operations are known to be suitable for parallel
processing architectures [47]. SIMD is one of the most suitable architecture for
exploiting data-level parallelism. In this paper, SIMD architecture is introduced
to accelerate the Haar-like feature value calculation.

50

4.3 Object Detection Processor Architecture

8X

m
u
x

Register

Array

b
u
ff

er m
u
x

0y

hy 0

0x wx 0

b
u
ff

er

m
u
x

m
u
x

m
u
x

m
u
x

8X8X

II0

II1

II2

II3

Figure 4.14 Integral image extraction architecture.

1
1.77

3.12

5.29

7.91

10.16

0

2

4

6

8

10

12

Original ASIP 2 way

SIMD

4 way

SIMD

8 way

SIMD

16 way

SIMD

Figure 4.15 Performance gain under different parallelism.

100 99.39 98.66 97.05 92.03
84.45

74.13

0

20

40

60

80

100

1 2 4 8 16 32 64

U
ti

li
za

ti
o
n

(%

)

Parallelism

Figure 4.16 Hardware resource utilization rate under different parallelism.

51

4.3 Object Detection Processor Architecture

>

left

right

thresstage

0p 1p 2p3p

ic

HFVC

>

SIMD

thresC

true/false

5
-stag

e p
ip

elin
e

Figure 4.17 Haar-like feature value calculation architecture.

To find out how many ways of SIMD is reasonable for Haar-like feature
calculation, we evaluate the performance gain under different parallelism. The
result of performance gain comparison is shown in Figure 4.15. As can be seen,
when applying wider SIMD, the expected speed up can be obtained. Compared
to the pure software implementation, 1.7x speed-ups can be obtained by ASIP
with custom instructions. For 16-way SIMD with custom instructions, the
speed-ups can achieve 10x.

However, due to the unbalanced structure of the cascade classifier structure,
higher data-level parallelism may induce lower hardware resource utilization.
The comparison of hardware resource utilization under different data-level
parallelism is shown in Figure 4.16. For example, if the first stage contains 9
features, for 1-parallelization, the hardware utilization rate is 100%. However,
for 2-parallelization, the utilization rate becomes 90%. Moreover, the chip
area cost increases as the parallelization increases. In this design, to guarantee
the hardware resource utilization rate can achieve over 95%, an 8-way SIMD
architecture is adopted for Haar-like feature value calculation.

52

4.4 Experimental Results

Table 4.2 Special instruction in the proposed ASIP (AdaBoost)

Type Special Instructions Function Description

A
do Zero overhead loop

min/max minimum/maximum value selection
selz/seln Conditional move

B
rgb2gray Color space conversion
hzip/vtip Image resize

C

viic Integral image calculation
vvarc Variance calculation
viie Integral image value extraction

vhfvc Haar-like feature value calculation
vreginit Set classifier data registers

The custom hardware component for Haar-like feature calculation is shown
in Figure 4.17. The input is from the integral image extraction unit.

4.3.3 Instruction Set Extensions

To accelerate the AdaBoost algorithm on an ASIP, the associated acceleration
instruction need to be added as well as special function units. Table 4.2 shows
an overview of the special instructions for the proposed ASIP. The custom
instructions include three categories: Type A, e.g. do instruction, which allows
performing fast looping and can be applied to most of C applications; Type B,
e.g. rgb2gray, hzip and vtip instruction, which performs color space conversion
and image resizing, are widely used in digital image processing; Type C, e.g.
viic and vhfvc instruction, which performs integral image and Haar-like feature
calculation, are customized for object detection using AdaBoost algorithm.

4.4 Experimental Results

This section presents results obtained for implementation of the proposed ASIP
described in Section 4.3. The results indicate that the proposed ASIP is

53

4.4 Experimental Results

competitive with implementations based on other hardware architectures, e.g.
general purpose embedded processors, DSPs and ASICs.

In the proposed ASIP, all the architecture customizations were implemented
using nML [30], which is a high-level architecture description language. This is
aimed to shorten the development time of ASIPs.

Our ASIP is synthesized using a 90nm standard CMOS technology under
worst case conditions with Synopsys Design Compiler [48]. The implementation
results are summarized in Table 4.4. The ASIP can achieve a maximum clock
frequency of 250MHz, with a silicon area of 1.91mm2. The power consumption
is estimated to be 198mW [49]. The maximum performance is 32fps on VGA
video with 91% detection accuracy (with 5x10−6 false positive rate, shown in
Figure 4.8) when the image scale factor is set to 1.2.

For comparison purpose, simulation results for the proposed ASIP are
presented, but also for a pure software implementation of the algorithm running
on baseline RISC processor. Table 4.3 shows the cycle counts comparison for
the AdaBoost algorithm on the baseline processor and the proposed ASIP. The
results presented here were obtained from cycle-accurate simulations performed
using the Synopsys ASIP Designer [31]. Utilizing all the special function units
presented in Section 4.3, the resulting speed-ups are 30x for integral image
calculation of a sub-window (20 x 20 pixels) in initial mode, 303x in update
mode, 21x for Haar-like feature values calculation. Compared to the optimized
pure software implementation of AdaBoost algorithm on baseline RISC processor,
the number of total cycle counts could be reduced by a factor of 13.7x using the
proposed ASIP.

Figure 4.18 shows parts of the detection results. The target object is frontal
human face. The detection is performed on MIT + CMU faces data set [45].
The shown results are tested on the images affected by illumination and noise
and the ones with different rotation of faces.

Table 4.5 shows the comparison with software implementations of AdaBoost
algorithm when mapping on different embedded processors. Application executed
by ARM946 [50] is compiled by ARM C Compiler and evaluated under ARM

54

4.4 Experimental Results

Table 4.3 Cycle counts comparison for AdaBoost algorithm on baseline processor
and proposed ASIP

Function Baseline Processor ASIP Speed-UP
Integral Image 3333 111 30.6x
Integral Image Update 3333 11 303.4x
Run Classifier 83,173,439 3,852,962 21.5x
Color Space Conversion 6,825,759 664,099 10.2x
Image Resize 10,506,970 1,777,624 5.9x
Total Cycle Counts 105,304,390 7,652,396 13.7x

Table 4.4 ASIP implementation results (AdaBoost)

Parameter ASIP
Technology 90nm
Frequency 250MHz

Supply Voltage 1.0V
Area 1.91 mm2

Power Consumption 198mW
Image Resolution VGA(640x480)

Image Scale Factor 1.2
Frames per Second 32
Detection Accuracy 91%

RealView Development Suite (RVDS) environment [56]. Application executed
by TMS320C64+ [51] is compiled by TI Compiler with level 3 optimization and
evaluated under TI Code Composer Studio (CCS) environment [57]. Compared
with software implementations on ARM946, our ASIP shows 32x, 10x and 6.8x
better throughput, area efficiency, and power efficiency, respectively. Compared
with TMS320C64+, our ASIP has 7x, 224x and 18.8x more throughput, area
efficient and power efficient, respectively.

Table 4.6 shows the comparison with previous hardware implementations,
which use the AdaBoost algorithm for object detection. Compared with [52],
[54], our ASIP shows better throughput. Compared with [55], our frame rate

55

4.4 Experimental Results

Figure 4.18 Sample of frontal face detection results. Images affected by illumi-
nation, noise and with different rotation of faces.

Table 4.5 Comparison with software implementations on embedded processors
(AdaBoost)

Parameter
ARM946E-S

[50]
TMS320C64+

[51]
TCT

Processor
Proposed

ASIP
Technology 90nm 90nm 90nm 90nm
Frequency 441MHz 625MHz 250MHz 250MHz

Area
0.613mm2

(w/o cache)
64mm2 a

(with cache)
0.108mm2

(w/o cache)
1.91mm2

(w/o cache)
Power

Consumption
41.9mW 562.5mW 5.6mW 198mW

Cycle Counts 439,221,618 128,896,336 105,304,390 7,652,396
Frame Rate 1.00fps 4.84fps 2.38fps 32fps

Area Efficiency
(fps/KGates)

0.0046 0.00021 0.621 0.0471

Power Efficiency
(mW/fps)

41.9 116.2 2.35 6.19

a Chip area is estimated from the PBGA package.

is not an advantage, but the performance is competitive by taking the image
resolution into account. Compared with hard-wired designs [52],[53],[54],[55],
our ASIP has 12.4x, 0.88x, 4.1x and 31x more area efficiency, respectively.

56

4.5 Related Work

Table 4.6 Performance comparison with previous works (AdaBoost)

Parameter
Hanai
[52]

Tsai
[53]

Hiromoto
[54]

Kyrkou
[55]

This Work

Technology 90nm 40nm 65nm 65nm 90nm
Frequency 54MHz 220MHz 160.9MHz 800MHz 250MHz

Gate Count
(2NAND)

525K a 1340K 2600K b 22M a 680K

Image
Resolution

320x240 640x480 640x480 320x240 640x480

Frame Rate 8fps 72fps 30fps 133fps 32fps
Detection
Accuracy

81% 90% 92.8% 95% 91%

Area Efficiency
(fps/KGates)

0.0038 c 0.0537 0.0115 0.00152 c 0.0471

a Gate count is estimated from the number of transistors.
b Gate count is estimated from the number of LUTs and register bits.
c For comparison, the resolution is up-scaled to VGA.

Moreover, compared with hard-wired designs, our ASIP with a programmable
RISC processor, which can be reused by other algorithms, while the hard-wired
design hardly applies to other applications.

4.5 Related Work

The AdaBoost-based learning algorithm shows high performance in detection
speed and accuracy [42]. However, the computational cost still remains too high
to support embedded applications. In order to achieve faster detection, some
works on hardware implementation have been proposed [52, 53, 58, 54, 55].

A versatile recognition processor was proposed in [52]. Three techniques in
the architecture and circuit level were introduced to handle the cascade classifier
and the Haar-like features. A classifier data cache was introduced to reduce
on-chip SRAM size. A Haar-like feature coordinates decoder was used to reduce

57

4.5 Related Work

the on-chip SRAM size and access. A Haar-like feature value extractor was
proposed to improve throughput. For QVGA image, the proposed processor
achieves frame rate of 8fps. However, it is difficult to meet the requirement of
real-time object detection.

Tsai et al. [53] proposed a vision processor for versatile automotive applica-
tions. Similar to [52], a classifier data compression technique, which supports
non-tilted Haar-like feature types, was adopted to reduce on-chip memory size.
Also, a 4-bank on-chip classifier memory was used to reduce memory bandwidth
and classifier data access. To improve the throughput, four Haar-like feature
values were calculated in parallel.

Cho et al. [58]. chose a FPGA as a target device instead of an ASIC. They
used hardware design techniques such as input image scaling, integral image
generation for each sub-window instead of the whole input image, pipelined
processing, as well as triple classifier processing in parallel to accelerate the
processing speed of the proposed face detection system. For VGA video, the
detection rate can achieve 15fps. However, they do not mention the detection
accuracy of the proposed system.

A hybrid execution model incorporating parallel processing with sequential
processing modules was presented in [54]. The early stages of the cascade
classifier is executed in parallel, which are frequently used in the algorithm,
while the subsequent stages are mapped to sequential processing modules.
However, upon different training data set, experiments need to be conducted to
split the parallel and sequential stages every time.

Kyrkou et al. [55] proposed a parallel classification engine using a systolic
array implementation approach. This architecture can parallelize integral image
computation and be applied to different application scenarios by training different
classifiers. Also, they used both image downscaling and sub-window upscaling
to perform multi-scale detection. However, such an approach would result in a
high consumption of hardware resource.

58

4.6 Summary

4.6 Summary

In this chapter, we proposed an ASIP-based processor for object detection using
AdaBoost-based learning algorithm. This approach utilizes Haar-like features
as weak classifiers for pattern classification to determine the existence of an
object. The main contributions of this work are threefold. First, the most com-
putational intensive arithmetic function and the memory bandwidth bottleneck
are identified by thorough analysis of the detection algorithm. Second, Single
Instruction Multiple Data (SIMD) architecture is adopted to fully exploiting
data-level parallelism within the algorithm. An efficient integral image and
Haar-like feature calculation architecture is proposed to improve the throug-
hput. Also, an efficient classifier data storage mechanism is introduced to meet
the built-in nature, coarse-to-fine search approach, of the AdaBoost algorithm.
Third, with proper application-to architecture mapping, the proposed ASIP
exhibits an advantage in terms of both chip area efficiency and power efficiency
when compared to embedded processors, and shows better chip area efficiency
when compared to hard-wired designs.

59

Chapter 5

Object Detection Processor with
HOG Feature and SVM
Classifier

5.1 Histogram of Oriented Gradients

This section gives an overview of the original HOG-based object detection
algorithm. In the HOG algorithm, sliding window approach is applied to detect
objects. HOG features are collected over the detection window. There are
two computation elements (cell and block) in HOG feature extraction. Figure
5.1 (a) illustrates the relationship of cell, block and detection window. The
detected image is divided into 8x8 pixels spatial regions called cells. Every
2x2 cells form a block. The HOG descriptor is extracted from the overlapping
blocks within a detection window and then passed to a pre-trained linear SVM
classifier for object/non-object classification [59]. Details about HOG algorithm
are described as below.

5.1.1 Gradient Computation

The input image is converted to a gradient image with a simple centered 1-D
mask [−1, 0, 1]. Image gradients are computed as below.

60

5.1 Histogram of Oriented Gradients

Cell: 8x8 pixels

B
in

 0

B
in

 1

B
in

 2

B
in

 3

B
in

 4

B
in

 5

B
in

 6

B
in

 7

B
in

 8

Cell 0 Cell 1 Cell 2 Cell 3

b0

b4

b6 b1

b7

b8

b3

b5

b2

b3

b7b0

b4

b1

b8

b6

b2

b5

HOG & SVM

Non-max

suppression

SVM

classification

Block

normalization

Histogram

generation

Mag & angle

calculation

Gradient

computation

8 cells

1
6
 c

el
ls

block0

Block: 2x2 cells

cell

Detection window

Gradient
Cell Histogram: 9-bin

Block Histogram: 36-D vectorHOG Descriptor: 3780-D vector

Cell Binning

block1

Grey scale

conversion
Image resize

(a) (b)

(c)

Cell 0 Cell 1

Cell 2 Cell 3

Figure 5.1 (a) Basic concept of cell and block. The detection window is divided
into non-overlapping 8x8 pixels spatial regions called cells. The size of detection
window is 64x128 pixels. It consists 8x16 cells. Every 2x2 cells form a block.
(b) HOG descriptor generation. The orientation is divided into 9-bins in the
range of 0◦ − 360◦. Each cell generates a 9-bin histogram. HOG descriptor is a
3780-D vector. (c) HOG-based object detection flow.

fx = f(x + 1, y) − f(x − 1, y)

fy = f(x, y + 1) − f(x, y − 1)
(5.1)

where f(x, y) is the pixel value of the input image at position (x, y). fx and fy

are horizontal gradient and vertical gradient, respectively. Then, for each pair
of fx and fy, the magnitude m(x, y) and orientation θ(x, y) can be given as

m(x, y) =

√
f 2

x + f 2
y

θ(x, y) = arctan fy

fx

(5.2)

5.1.2 Histogram Generation and Block Normalization

Within a cell, each pixel calculates a weighted vote, and the votes are accu-
mulated into orientation bins. Figure 5.1 (b) shows the binning diagram. The
orientation is divided into 9 bins in the range of 0◦ − 360◦. The weighted vote

61

5.1 Histogram of Oriented Gradients

is calculated according to the difference between the gradient orientation and
the histogram bin edge. The voting weight is written as

α = b · θ

π
− floor(b · θ

π
− 0.5) (5.3)

where b is 9, the total histogram bins of a cell. To reduce aliasing, both values
of two neighboring bins are updated. The updated values are given as

mcurrent = m × (1 − α)

mnext = m × α
(5.4)

where mcurrent and mnext are updated values for current bin and next bin,
respectively. Also for anti-aliasing, votes of each cell are bilinearly interpolated
to the neighboring cells. Furthermore, a Gaussian spatial window is applied to
each pixel before accumulating orientation votes. Thus, the final votes can be
written as

vote0 = weightgauss × weightip × mcurrent

vote1 = weightgauss × weightip × mnext

(5.5)

where weightgauss and weightip are Gaussian spatial weight and bilinearly
interpolation weight, respectively.

To reduce the impact of local variances in illumination and foreground-
background contrast, the block histograms are normalized as

V⃗ = v⃗√
||v⃗||2 + ε2

(5.6)

where ||v⃗||2 (||v⃗||2 = v2
1 + v2

2 + ... + v2
36) is the energy of block histogram v⃗ and ε

is a small constant to avoid division by zero.
A 36-D feature is obtained from four cell histograms within one block. For

a 64x128 pixels detection window, all normalized histograms from 105 blocks
are concatenated together, generating a 3780-D HOG descriptor. Figure 5.1 (b)
illustrates the HOG descriptor generation.

62

5.1 Histogram of Oriented Gradients

frame

Detection Window

Row Raster Scan

Overlapping

Window 0

Window 1

frame

Cell

Row Raster Scan

Block

Cell 0 Cell 1

Cell

No Overlapping!

(a) (b)

Block 0

Block 1
Overlapping

Figure 5.2 (a) Window-based scanning method. Two kinds of overlapping:
detection windows overlapping and blocks overlapping. (b) Cell-based scanning
method. No cell overlapping between neighboring cells.

5.1.3 SVM Classification

Finally, the HOG descriptor is passed to a linear SVM classifier for final classifi-
cation. The SVM classifier creates the maximum distance (margin) from two
classes to achieve superior classification performance [22]. The final output can
be written as

s = W⃗ × V⃗ + s0 (5.7)

where W⃗ is the pre-trained SVM coefficients, s0 is an offset. The classification
output s is referred as a score, and then is compared with a threshold to make a
decision whether or not a detection window contains an object. The HOG-based
object detection flow is shown in Figure 5.1 (c).

63

5.2 Hardware-Friendly HOG Algorithm

Window-based scanning method:

#blocks/frame x block size x color depth x frame rate

= 4661 x (16 x 16) x 8 x 30

= 0.29 [Gbps]

Cell-based scanning method:

frame size x color depth x frame rate

= (640 x 480) x 8 x 30

= 0.074 [Gbps]

0.29

0.074

0

0.05

0.1

0.15

0.2

0.25

0.3

Window-based

scanning

Cell-based

scanning

M
e
m

o
ry

 B
a
n

d
w

id
th

 [
G

b
p

s]

Figure 5.3 Memory bandwidth requirements analysis. Only blocks overlapping
is considered in window-based method.

5.2 Hardware-Friendly HOG Algorithm

5.2.1 Cell-Based Scanning Method

Figure 5.2 (a) depicts the window-based scanning method used in original HOG
algorithm. The detection window scans the entire input frame in row raster
scanning manner. The window stride is 8 pixels (cell width or height) in both
horizontal and vertical direction. Within each detection window, HOG feature
is extracted from the overlapping blocks. Two kinds of overlapping come with
window-based scanning approach: detection windows overlapping and blocks
overlapping. These overlapping result in a high memory bandwidth requirement,
as well as an extra on-chip memory.

Consequently, a data reuse scheme is desirable to reduce the memory band-
width requirement. In this work, we adopt cell-based scanning method for object
detection. Figure 5.2 (b) shows the cell-based scanning method. HOG features
are collected from cell-based scanning approach. In contrast to window-based
scanning method, no cell overlapping occurs between neighboring cells.

To better understand the benefit of cell-based scanning method. We analysis
the memory bandwidth requirements for both scanning methods. For window-
based scanning method, the detection window overlapping can be eliminated

64

5.2 Hardware-Friendly HOG Algorithm

by an on-chip memory. Thus, we only consider the block overlapping in the
analysis. Figure 5.3 gives the analysis result. The window-based approach
requires a memory bandwidth of 0.29 Gbps for VGA input, while cell-based
approach requires 0.074Gbps. A 4x memory bandwidth reduction is available
with the cell-based method. This is owing to cell sharing for block histogram
generation, which can avoid reloading pixels for the next block.

5.2.2 On-The-Fly SVM Calculation

In window-based scanning method, HOG features are extracted from 105 blocks
within a detection window. Then, the HOG features are multiplied with the
corresponding SVM weights and accumulated as the output score. In this work,
an on-the-fly SVM calculation approach is carried out. Once the HOG feature
of a block is extracted, it is immediately used for partial score computation
so that it is never buffered or recomputed. This approach can reduce on-chip
memory. Figure 5.4 shows the basic idea of on-the-fly SVM calculation. A
block feature is shared with 105 detection windows maximally, but at different
positions within each window. For example, in Figure 5.4, the block feature is
the first feature for Window B and the 105th feature for Window A. The block
feature is multiplied and accumulated with the SVM weights of each window
that enclose that block (e.g., Window N). All computations required that block
HOG feature must be completed before discarding it.

5.2.3 HOG Algorithm Simplification

This section presents the simplified HOG algorithm for hardware implementa-
tion. To reduce mathematical complexity and minimize the hardware cost, the
following techniques are introduced in this work.

• Gradient magnitude calculation using bitwise verification method [60] and
histogram bin computation without actual gradient orientation.

• Approximation weighted voting for orientation and spatial anti-aliasing.

65

5.2 Hardware-Friendly HOG Algorithm

Window A

Window N

Window B

Block

105th feature of

window A

1st feature of

window B

frame

Figure 5.4 Basic idea of on-the-fly SVM calculation. A block feature belongs to
105 detection windows maximally. The pedestrian image is from [8].

• Block histogram normalization with a fast inverse square root calculation.

5.2.3.1 Gradient Computation

As shown in (5.2), square root operation is required for gradient magnitude
calculation. However, the square root is expensive in hardware implementation.
In this work, a bitwise verification method [60] is adopted for low-cost imple-
mentation to approximate m(x, y). This method is a variation of the traditional
"subtract and shift" division algorithm [61]. For an unsigned 32-bit integer,
16 iterations are needed to find the approximation of the square root. Each
iteration can be carried out by shifts and adds only, requiring no multiplications.

For orientation binning, since the orientation is simply applied to select
the histogram bin, the actual orientation is not necessary to compute. As
shown in Figure 5.5, the boundary (e.g., θi and θj) of each bin is known as
constants. Therefore, histogram bin can be computed through the simple
inequality discriminant rather than the complex actual orientation calculation.

66

5.2 Hardware-Friendly HOG Algorithm

b0

b1

b2
b3

b4b5
b6

b7

b8

i

j

x

y

ji
f

f
 tantantantan

jxyix fff tantan

xf

yf

Figure 5.5 Histogram bin calculation without the actual value of gradient
orientation. Note that θi and θj are constants. In this example, the pixel is
assigned to bin 2.

5.2.3.2 Histogram Generation

To reduce aliasing, magnitudes are bilinearly interpolated between the neighbo-
ring bins in both orientation and position [59]. For orientation anti-aliasing,
the vote is a function of the gradient magnitude and the orientation at the
pixel (shown in (5.4)). However, according to Section 5.2.3.1, θ(x, y) is not
calculated accurately. Therefore, in this paper, α in (5.4) is set to a reasonable
constant (0.5) for weighted magnitude calculation. For spatial anti-aliasing,
the weighted vote is computed through a bilinear interpolation method and
Gaussian weighting method (shown in (5.5)). Since both the interpolation
weight and Gaussian weight are fixed values at a certain position. To reduce
the multiplications for weighting, the weights are approximated to a fixed value,
which can be expressed as a power of two. Thus, a low-cost bit shift operations
can replace the expensive multiplications for anti-aliasing.

67

5.2 Hardware-Friendly HOG Algorithm

Table 5.1 Parameters of HOG algorithm

Algorithm Parameter Specification
Detection window size 64 x 128 pixels
Cell size 8 x 8 pixels
Block size 16 x 16 pixels
Window stride 8 pixels, vertically and horizontally
Block stride 8 pixels, vertically and horizontally
of orientation bins 9 bins (0◦ − 360◦)
Normalization method L2-norm
SVM weights and threshold Default value in OpenCV
Size of HOG descriptor 3780=(7x15 blocks)x(2x2 cells)x(9 bins)

5.2.3.3 Block Normalization

According to Section 5.1.2, the block normalization is done by dividing the 36-D
block histogram by its energy (L2-norm). To avoid square root and division
operations, Newton’s method is introduced to approximate the inverse square
root [62]. The approximation value is obtained by the iteration calculation as
below.

di+1 = di · (3 − d2
i · ||v⃗||2)/2 (5.8)

where di+1 is the approximation value of 1/
√

||v⃗||2 + ε2. One iteration consists
of three multiplications, a subtraction and a shift operation. The initial value d0

is important to reduce the number of iterations. In this paper, we use the magic
number (i.e. 0x5f3759df) [63] to obtain d0. The initial value can be expressed as

d0f = 0x5f3759df − (||v⃗||2f >> 1) (5.9)

where d0f and ||v⃗||2f are values of d0 and ||v⃗||2 in IEEE 754 format, respectively.
With the proper initial value, only one iteration of Newton’s method can yield
a approximation value with adequate accuracy.

68

5.2 Hardware-Friendly HOG Algorithm

Table 5.2 Optimized fixed-point bit-width

Parameter Sign Integer Fraction
Gradient 1 8 0
Gradient magnitude 0 9 0
Gradient orientation 0 4 0
Cell histogram 0 12 0
HOG feature 0 0 8
SVM coefficient 1 0 7
Classification buffer 1 3 10

5.2.4 Performance Evaluation

Note that the simplification might affect the detection rate of HOG algorithm.
Therefore, in this section, we evaluate the detection rate of simplified HOG
algorithm with cell-based scanning method and make a comparison with the
original HOG algorithm with window-based scanning method. As a starting
point, we use OpenCV [32] to develop the detection program. Table 5.1 summa-
rizes the parameters used in both HOG algorithms. The optimized fixed-point
bit-width for simplified HOG algorithm is shown in Table 5.2. The detection is
performed on INRIA pedestrian image dataset [8] and MIT pedestrian dataset
[64]. The INRIA dataset contains 288 positive images (include 1126 person)
and 453 negative images. The labeled person is usually standing against a wide
variety variations. The MIT dataset contains 924 images (include 924 person).
The labeled pedestrian is in front or back views with a limited range of poses.

The experimental result is shown in Figure 5.6. The graph shows the
precision and recall curves of the modified HOG algorithm and the original
HOG algorithm. The PR curve shows a relationship of precision against recall
at different threshold settings [46]. Precision and recall are defined as

precision = TP

TP + FP

recall = TP

TP + FN

(5.10)

69

5.2 Hardware-Friendly HOG Algorithm

Figure 5.6 PR curves of window-based scanning method and cell-based scanning
method (INRIA dataset).

where TP , FP and FN are true positives, false positives, and false negatives,
respectively. True positives and false positives are the numbers of items correctly
or incorrectly labeled as the positive class. False negatives are items incorrectly
labeled as the negative class. Thus, precision is defined as a proportion of
detected windows that are objects, and recall means the proportion of objects
that are detected [65].

In Figure 5.6 and Figure 5.7, the solid line, and the dashed line indicate PR
curves of modified HOG algorithm and original HOG algorithm, respectively.
Figure 5.6 and Figure 5.7 shows the PR curves on INRIA pedestrian dataset and
MIT pedestrian dataset, respectively. In the lower recall region, the simplified
HOG algorithm shows better precision, while in the higher recall region, the
original HOG algorithm exhibits superior precision. This performance gap is
very small. Thus, the simplified HOG algorithm with optimized fixed bit width
would not decrease the performance of HOG algorithm.

70

5.3 Architecture of Vision Processor

Figure 5.7 PR curves of window-based scanning method and cell-based scanning
method (MIT dataset).

5.3 Architecture of Vision Processor

5.3.1 ASIP Architecture

As a first step, we profiled the detection program on the baseline processor, to
find the most critical computation in HOG algorithm. Without specification, in
the rest of the paper, HOG algorithm refers to the modified algorithm described
in Section 5.2 and baseline processor refers to TCT processor. Figure 5.8
reports the profiling result. The top-5 computationally intensive functions take
99.96% of the total cycle counts. For our object detection engine, we focus on
implementing the most computationally intensive functions on ASIP: gradient
computation, magnitude and orientation calculation, histogram generation,
block histogram normalization and SVM classification. All other computations
are performed in pure software.

This section presents the overall architecture of the proposed ASIP and the
data transferring between the ASIP engine and the memory. Figure 5.9 shows a

71

5.3 Architecture of Vision Processor

3.26

19.97

28.04

1.82

46.87

0.04
0

10

20

30

40

50

Gradient Mag &

Angle

Histogram Norm SVM Others

% of processing

Figure 5.8 HOG algorithm profiling result. The top-5 computationally intensive
functions take 99.96% of the total cycle counts.

ASIP
Engine

MA

Program
Memory

VR
(v8w32)

Branch
Control

ALU

Data
Memory

PC

Instruction
Decoder

out0
out1

Load/
Store

32x32
GPR

in0

FE EX WBDC

out2
in3

SC

BKN
MAG

HTGGDC

ANG

VR
(v16w16)

VR
(v16w08)

Special Register
(BKR0~BKR3)
(v36uint16 x 4)

srr0
srr1
srr2
srr3

srw0
srw1
srw2
srw3

in1
in2

Special
Register
(v6int14)

srw4

srr4

Figure 5.9 Overall architecture of the proposed ASIP. The ASIP engine consists
of five special functional units: Gradient Computation (GDC), Magnitude and
Angle Calculation (MA), Histogram Generation (HTG), Block Normalization
(BKN), and SVM Classification (SC) unit.

block diagram of the proposed ASIP. The main custom hardware components
are vector registers (VR) for Single Instruction Multiple Data (SIMD) operation,
special registers for internal data communication and an ASIP engine. The
ASIP engine consists of five special functional units: gradient computation
(GDC) unit, magnitude, and angle calculation (MA) unit, histogram generation

72

5.3 Architecture of Vision Processor

Block0 Block1

Block2 Block3

PE PE

PE PE

PE

PE

PE

PE

B
lo

ck
 h

isto
g
ra

m

n
o
rm

a
liza

tio
n

In
term

ed
ia

te cell

h
isto

g
ra

m
 m

em
o
ry

In
term

ed
ia

te cell

h
isto

g
ra

m
 m

em
o
ry

PE

PE

PE

PE

PE

PE

PE

PE

In
itia

l v
a
lu

e =
 0

Magnitude & Bin

Figure 5.10 Block diagram of cell histogram generation. It is a 4-way architecture.
Each PE is an 8-way SIMD architecture.

(HTG) unit, block normalization (BKN) unit and SVM classification (SC) unit.
The special functional units are controlled by the instruction decoder and a
program, sharing the same pipeline with the baseline processor.

To increase the parallelism, a mass of SIMD operations are adopted in the
special functional units. These multiple data are loaded through interface in1
(8x32 bit), in2 (16x16 bit) and in3 (16x8 bit), and stored through interface out1
(8x32 bit) and out2 (16x16 bit). For GDC unit, a single memory access returns
a 128-bit data, which includes 16-pixel values. GDC unit utilizes these inputs
(through interface in3) to compute the gradients and saves the outputs (through
interface out2) to the memory. The MA unit supports 16-way magnitude and
orientation calculation. Gradients are loaded through in2. After computation,
each pair of magnitude and orientation values are packed into a single 32-bit
integer. Sixteen pairs of magnitude and orientation values are stored in memory
(through interface out1, two cycles).

The HTG unit is an 8-way SIMD architecture. One memory access returns
256-bit (through interface in1) value, which consists eight pairs of magnitude

73

5.3 Architecture of Vision Processor

Cell Cell Cell

Cell Cell Cell

Cell Cell Cell

Block0 Block1

Block2 Block3

TL TR

BL BR

Block of four cells

Figure 5.11 Each cell belongs to four blocks maximally. TL, TR, BL and BR
represents top-left, top-right, below-left and below-right, respectively.

and orientation values. Each pair of magnitude and orientation generates two
votes. These votes are voted to four blocks. Four special registers (BKR0,
BKR1, BKR2 and BKR3, v36uint16) are customized for block histogram
accumulation. The HTG unit utilizes interfaces (srr0 − srr3 and srw0 − srw3)
to access the special registers. For BKN unit, two inputs loads through in0 and
srr3, the block energy are stored in memory (through interface out0, 32 bit)
and the normalized block histogram is saved to BKR3 (through interface srw3).
To perform SVM classification, SVM coefficients (through interface in2) and
the block histogram (through interface srr3) are multiplied and accumulated.
The special register (v6int14) is used for buffering the intermediate results.

5.3.2 Custom Hardware Component

In this section, we introduce the special functional units to accelerate histogram
generation, block histogram normalization, and SVM classification.

Figure 5.10 shows the architecture of histogram generation. For one cell is
belong to four blocks maximally (as shown in Figure 5.11), a 4-way architecture
is applied for histogram generation to reduce the interaction between different
cells. Note that each cell could be in one of the four positions of a block. As
shown in Figure 5.11, TL, TR, BL, and BR represents the position of a cell
at top-left, top-right, below-left and below-right of a block, respectively. To

74

5.3 Architecture of Vision Processor

PE

Binning

Vector Adder

MUX

<<

Magnitude & Bin

9-bin cell histogram

Register File

Initial value

Weighted vote

8-way

SIMD

Figure 5.12 Architecture of processing element.

Load initial value

form Block1

Cell histogram

generation

Output cell histogram

to block normalization

Load initial value

form Block1

Load initial value

form RAM

Cell histogram

generation

Output cell histogram

to block0

Load initial value

form RAM

Load initial value

form Block3

Cell histogram

generation

Output cell histogram

to RAM

Load initial value

form Block3

Load initial value

(0)

Cell histogram

generation

Output cell histogram

to block2

Load initial value

(0)
Time

Block0

Block1

Block2

Block3

Figure 5.13 Behavior of each block.

generate 4-cell histograms in parallel, each way of block architecture consists of
4 processing elements (PEs). Each PE performs weighted voting and binning
to generate the cell histogram. Figure 5.12 demonstrates the architecture of
the PE. The PE contains a shifter, a vector adder, and a register file. Through
the shifter, the weighted vote is generated from the input magnitude. Then,
the weighted vote is accumulated to generate the cell histogram. Furthermore,
to increase the parallelism, each PE is an 8-way SIMD architecture, which
can process one row of cell histogram generation. In Figure 5.10, the solid
arrow indicates the data flow of histogram generation unit, while the dashed
arrow represents the initial value loading. Block 0 and Block 2 read the initial
value from the neighboring blocks (Block 1 and Block 3). Block 1 reads the

75

5.3 Architecture of Vision Processor

BKN
F

as
t

In
v
er

se

S
q
u
ar

e
R

o
o
t

MUX

Special register

(BKR3)

Block

Accumulation

Block

Multiplication

DEMUX

block energy

36-D block
histogram

36-D HOG
feature

Figure 5.14 Architecture of block normalization.

initial value from memory, while Block 3 loads zero as the initial value. When
finished the histogram generation, Block 0 sends the block histogram to the
block histogram normalization unit. Figure 5.13 shows the behavior of each
block.

Figure 5.14 shows the architecture of block histogram normalization. The
BKN unit contains a block multiplication module, a block accumulation module,
and a fast inverse square root (FISR) module. The block multiplication module
along with the block accumulation module computes the block energy (sum of
the squares of block histogram). Then, the block energy is used for normalized
coefficient calculation through the FISR module. Newton’s method is applied to
approximate the inverse square root of the block energy (as discussed in Section
5.2.3.3). When the normalized coefficient is available, the block multiplication
module is reused to normalize the block histogram. The normalized 36-D HOG
feature is then stored in the special register (BKR3).

76

5.3 Architecture of Vision Processor

PE

MAC

0

MAC

1

MAC

5

MAC

6

SVM coefficients memory

Intermediate results register buffer

In
te

rm
ed

ia
te

re
su

lt
s

m
em

o
ry

Block feature

In
te

rm
ed

ia
te

re
su

lt
s

m
em

o
ry

Figure 5.15 Architecture of on-the-fly SVM classification. The classification PE
handles seven blocks of MAC operations.

Figure 5.15 presents the architecture of SVM classification. It mainly consists
of a classification PE and a register buffer. The classification PE handles seven
blocks of MAC operation (since the detection window includes seven blocks in
the horizontal direction). Each MAC unit consists of multipliers and adders
to compute the sum of the dot product of block feature and SVM coefficients.
To exploit the data locality and minimize the data movement between the
classification PE and the memory, the intermediate results of MAC operations
are stored in the register buffer. The initial value of each MAC unit is from the
previous MAC unit or memory. After MAC operation, MAC unit outputs the
result to the register buffer or memory.

5.3.3 Instruction Set Extensions

To speed-up the HOG algorithm, the ASIP needs to add the associated accele-
ration instruction as well as special functional units. The special instructions in
the proposed ASIP are summarized in Table 5.3.

77

5.4 Experimental Results

Table 5.3 Special instruction in the proposed ASIP (HOG)

Special Instructions Function Description
do Zero overhead loop
min/max Minimum/maximum value selection
selz/seln Conditional move
diffv Gradient computation
atanv Orientation calculation
magv Magnitude computation
sqrtv Square root calculation
hist Cell histogram generation
bknorm Block histogram normalization
i2f/f2i/fmul/fsub Fast inverse square root calculation
svmpe SVM calculation

5.4 Experimental Results

In this section, we present the experimental results of ASIP design and make
a comparison with other hardware architectures, e.g. in-house TCT processor,
commercial embedded processors, and hard-wired designs.

In this work, we implemented the ASIP architecture customizations using
nML language [30], which is a high-level architecture description language aiming
to shorten the development time of ASIP design. The customizations were
added to the base instruction set architecture of the TCT processor [39]. The
HDL code for the proposed ASIP was generated using Synopsys ASIP designer
[31] based on the nML description.

The ASIP was synthesized with Synopsys Design Compiler [48] using TSMC
90nm low power standard CMOS technology. Table 5.5 summarizes the im-
plementation results. Our ASIP is able to achieve an operating frequency of
200MHz. The silicon area of the proposed ASIP is 1.31mm2, and the power
consumption is estimated to be 47.8mW [49] (include dynamic and leakage
power consumption at gate level). The throughput of the ASIP is 42fps on VGA
video (estimation based on the processor frequency and the total cycle counts).

78

5.4 Experimental Results

Table 5.4 Cycle counts comparison for HOG algorithm on baseline processor
and proposed ASIP

Function Baseline Processor ASIP Speed-UP
Gradient computation 9,825,298 474,281 20.7x
Magnitude &
Orientation computation

60,210,747 399,280 150.8x

Histogram generation 84,537,585 833,776 101.4x
Block normalization 5,481,731 86,428 63.4x
SVM classification 141,292,456 2,896,986 48.8x
Total cycle count 301,469,649 4,783,417 63x

The cycle count is a meaningful performance comparison metric since it
could better reflect the efficiency of hardware to perform certain calculations
while being independent of the architecture clock frequency. In Table 5.4, cycle
counts comparison for the modified HOG algorithm on the baseline processor
and the proposed ASIP is presented. The listed cycle counts are obtained
from cycle-accurate simulations performed using the Synopsys ASIP Designer
[31] on VGA video. The proposed ASIP outperforms the baseline processor
by a factor that ranges between 20.7x and 150.8x for the five functions. For
histogram generation, block histogram normalization and SVM classification,
the resulting speed-ups are 101.4x, 63.4x and 48.8x, respectively. With the
proposed ASIP, 98.4% of the total cycle counts are reduced. Compared to the
pure software implementation of HOG algorithm on baseline RISC processor,
the total speed-up is 63x. Furthermore, we performed the detection on different
standard videos. The cycle counts and throughput are summarized in Table 5.6.

To better evaluate the efficiency of the proposed ASIP, we make a comparison
with software implementations of HOG algorithm when mapping on different
embedded processors. We choose throughput, area efficiency, and power effi-
ciency as the main comparison metrics. The comparison is shown in Table 5.7.
The application executed by ARM968 is compiled by ARM C Compiler and eva-
luated under ARM RealView Development Suite (RVDS) environment [56]. The

79

5.4 Experimental Results

Table 5.5 ASIP implementation results (HOG)

Parameter ASIP
Technology 90nm
Frequency 200MHz
Supply Voltage 1.0V
Area 1.31 mm2

Power Consumption 47.8mW
Image Resolution VGA (640x480 pixels)
Throughput 42fps

Table 5.6 Throughput for different video standards

Standard Resolution Cycle Count Throughput
QVGA 320x240 pixels 1,167,793 171fps
VGA 640x480 pixels 4,783,417 42fps
SVGA 800x600 pixels 7,527,679 26.6fps
1080HD 1920x1080 pixels 32,628,137 6.1fps

application executed by TMS320C64+ is compiled by TI Compiler with level 3
optimization and evaluated under TI Code Composer Studio (CCS) environment
[57]. Our ASIP takes the least cycle counts to perform the HOG algorithm.
This is not surprising because the ASIP integrates dedicated functional units
for HOG algorithm. For the main comparison metrics, specifically, the proposed
ASIP is 113x better in throughput, 36x better in area efficiency, and 122x better
in power efficiency than ARM968 when executing HOG algorithm. Compared
with TMS320C64+, our ASIP shows 15x, 750x and 184x better throughput,
area efficiency, and power efficiency, respectively. Moreover, compared with the
baseline processor, the proposed ASIP has a factor of 18.5x increased in the
chip area, but with 63x throughput improvement.

Furthermore, a comparison with previous hardware implementations is shown
in Table 5.8. These implementations are all hard-wired designs targeted on
FPGA or ASIC, which use HOG feature for object detection. Compared with

80

5.4 Experimental Results

Table 5.7 Comparison with software implementations on embedded processors
(HOG)

Parameter
ARM968E-S

[69]
TMS320C64+

[51]
TCT

Processor
Proposed

ASIP
Technology 90nm 90nm 90nm 90nm
Frequency 470MHz 625MHz 200MHz 200MHz

Area
0.42mm2

(w/o cache)
64mm2 a

(with cache)
0.071mm2

(w/o cache)
1.31mm2

(w/o cache)
Power

Consumption
51.7mW 562.5mW 4.1mW 47.8mW

Cycle Counts 1,274,040,121 233,921,254 301,469,649 4,783,417
Frame Rate 0.37fps 2.67fps 0.66fps 42fps

Area Efficiency
(fps/KGates)

0.0025 0.00012 0.026 0.090

Power Efficiency
(mW/fps)

139.73 210.67 6.21 1.14

a Chip area is estimated from the PBGA package.

[54] and [66], our ASIP shows better area efficiency/power efficiency. Since
the MAC operations are expensive in SVM classification. In [67], they used
AdaBoost rather than SVM as the classifier, thus to reduce the chip area.
To process the 1080HD video in real-time, [68] used a dual-core architecture
for parallel HOG feature extraction. Compared with [67] and [68], our area
efficiency/power efficiency is not an advantage, but our uniprocessor based
ASIP still shows a comparable performance, especially, when the technology is
taken into account. Moreover, the proposed processor maintains the flexibility
of ASIPs for integration of evolving algorithms, while hard-wired designs are
hardly adapted for integrating new features in the algorithm.

81

5.5 Related Work

Table 5.8 Performance comparison with hard-wired designs (HOG)

Parameter
Hiromoto

[54]
Negi
[67]

Mizuno
[66]

Takagi
[68]

This Work

Technology 65nm 65nm 60nm 65nm 90nm
Frequency 167MHz 44.85MHz 40MHz 42.9MHz 200MHz

Gate Count
(2NAND)

330K a 200K a 460K a 502K 464K

Power
Consumption

N/A N/A 196.9mW 99.5mW 47.8mW

Image
Resolution

320x240 640x480 800x600 1920x1080 640x480

Frame Rate 38fps 62.5fps 72fps 30fps 42fps
Area Efficiency
(fps/KGates)

0.0288 b 0.3125 0.2446 b 0.4034 b 0.090

Power Efficiency
(mW/fps)

N/A N/A 1.75 b 0.491 b 1.14

a Gate count is estimated from the number of LUTs and register bits.
b For comparison, the resolution is scaled to VGA.

5.5 Related Work

Most of the implementations of HOG-based object detection are on GPU
platforms [70–72]. In [72], the HOG feature extraction on GPU achieves 100
fps for VGA video (640x480 pixels). However, GPU implementations consume
significant power (e.g., Nvidia GeForce GTX 780 consumes 250W [73]), which
cannot meet the low power requirement of embedded applications.

To balance the throughput and power consumption trade-offs, FPGA-based
implementations have been proposed for real-time applications [74, 75, 54, 67, 66].
A hybrid FPGA-GPU architecture was proposed in [74]. HOG feature extraction
was implemented on a FPGA and a CPU, while SVM classification was performed
on a GPU. It achieved 10fps for SVGA (800x600 pixels) video. In [75], the effects
of reduced bit-width on the performance of HOG algorithm was evaluated using

82

5.6 Summary

full-image evaluation methodology. Also, a hybrid FPGA-CPU architecture
was proposed, and the computationally intensive parts of HOG algorithm were
implemented on FPGA.

The entire HOG-based detector implemented on FPGA was proposed in
[67]. A stream processing approach for the histogram generation was proposed
to improve the throughput. AdaBoost classifier instead of SVM classifier was
adopted to shorter the classification time. Similar to [67], a stream processing
approach for histogram generation was used in [66]. Also, they presented a
simultaneous SVM calculation architecture for fast classification. The object
detector can achieve 72fps for SVGA video.

To minimize the power consumption, [68] and [76] chose ASICs as the
hardware architecture. In [68], they used a dual-core architecture for parallel
feature extraction. It can achieve 30fps for 1080HD video (1920x1080 pixels)
with 99.5mW power consumption. In [76], they used reduced bit-width (4 bit) for
SVM weights to reduce the cost of multiply and accumulate (MAC) operations. It
can achieve 60fps for 1080HD video with 45.3mW power consumption. Although
these implementations can provide powerful computing capability with low
power consumption for object detection, they cannot offer the required flexibility,
especially when new characteristics are needed to add in the application.

5.6 Summary

In this chapter, we proposed an ASIP-based processor for embedded vision
with the Histogram of Oriented Gradients (HOG) algorithm. This algorithm
generates a HOG descriptor from detection window with grids of overlapping
blocks and combines with a Support Vector Machine (SVM) for classification to
determine the existence of an object. The main contributions of this work are
a) hardware algorithm co-design: Cell-based scanning approach with on-the-fly
SVM calculation architecture are employed to reduce memory bandwidth requi-
rements and redundant computations. Simplified HOG algorithm is introduced
to minimize the hardware costs and reduce the mathematical complexity without

83

5.6 Summary

losing reliability. b) hardware-software co-design: With multiple parallelization
techniques, the proposed ASIP exhibits an advantage in terms of both chip area
efficiency and power efficiency when compared to embedded processors, and
shows a competitive computational performance when compared to hard-wired
designs. The proposed processor maintains the flexibility of ASIPs for a fast
integration of evolving algorithms with an effective and a low-cost development
flow.

84

Chapter 6

Conclusion and Future Works

6.1 Conclusion

The Application-Specific Instruction-set Processor (ASIP) is gaining popularity
in the development of high-performance applications, with the ability to balance
the performance-power-flexibility trade-offs. This thesis aims to study an effi-
cient ASIP design methodology and to provide a complete framework to support
the design of ASIP-based processors. The contribution of this dissertation is
summarized as follows.

1. A complete framework is proposed to support the ASIP-based
embedded vision processor design.

The proposed design framework covers from the high-level ASIP program-
ming model to the low-level micro-architecture. It is aimed to facilitate the
application-to-architecture mapping at the architect level. To expedite the
design cycle, our ASIP design methodology is integrated with high-level ab-
straction Architecture Description Language (ADL) and commercial design tool.
The framework also provides an interface with open source computer vision
library, for easily maintain the evolution of vision algorithms.

85

6.1 Conclusion

2. Some design thinking are provided as references for vision proces-
sor architects.

These thinking include algorithms consideration, applications understanding,
architecture consideration, and design reuse consideration.

3. A thorough analysis on representative object detection techniques
and the proposed hardware-friendly object detection algorithms.

We conduct a comprehensive study on several representative object detection
techniques, especially the ones using hand-crafted features with machine learning
classifiers, e.g. Haar-like features with AdaBoost classifier and HOG features
with SVM classifier. The study aims to identify the computational intensive
tasks, extract the key computationally tasks, and exploit the data locality
properties within the algorithm. The thorough analysis establishes a solid
foundation for the design of object detection processors.

We careful reschedule the dataflow within the AdaBoost-based learning
algorithm and HOG-based algorithm. The new dataflow is aimed at reducing
the memory bandwidth requirements and redundant computations. Also, the
simplified AdaBoost algorithm and HOG algorithm are introduced to minimize
the hardware costs and reduce the mathematical complexity. The modified
algorithms are evaluated on several popular faces and human datasets. The
evaluation results show that the modified algorithms still maintain the high
accuracy as well as the original algorithms.

4. As demonstrations, we show the effectiveness of the proposed fra-
mework using two real-life applications, Haar-like features with Ada-
Boost classifier and Histogram of Oriented Gradients (HOG) features
with Support Vector Machine (SVM) classifier for object detection.

Two synthesized ASIP-based processors are designed and implemented for
AdaBoost algorithm and HOG algorithm. To meet the real-time requirements,
we propose several special functional units to accelerate the computationally
intensive tasks in these object detection algorithm. The special functional units

86

6.2 Future Works

include integral image calculation array, pipeline Haar-like feature computation,
and parallel histogram generation etc. To achieve low-power consumption, an
efficient classifier data storage mechanism for AdaBoost and on-the-fly SVM clas-
sification are proposed to minimize the data movement. With proper application-
to-architecture mapping, the proposed ASIPs achieve high throughput in a small
area, power, and energy footprint.

A full comparison between the proposed ASIP and the conventional embedded
processors and hard-wired designs is carried out in terms of performance, area,
and power consumption. The proposed ASIP exhibits an advantage in terms
of both chip area-efficiency and power-efficiency when compared to embedded
processors, and shows a competitive computational performance when compared
to hard-wired designs. To the best of our knowledge, there is no similar work
for AdaBoost algorithm and HOG algorithm using ASIP design methodology so
far.

6.2 Future Works

In this research, we propose a complete framework for ASIP-based vision
processor design and demonstrate the efficiency of the proposed framework
using two real-life applications, Haar-like features with AdaBoost classifier and
histogram of oriented gradients (HOG) features with Support Vector Machine
(SVM) classifier for object detection. For the future work, we will focus on
extending the ASIP design methodology to more widely used applications and
integrating the ASIP design methodology with the multiprocessor system-on-chip
(MPSoC) design.

First, we notice that many vision algorithms, such as the Histogram of
Oriented Gradients (HOG) features, Scale-Invariant Feature Transform (SIFT),
and Speeded Up Robust Feature (SURF), contains abundant common or similar
operations. These common features can be described in high-level functional
blocks or low-level computational operations. A single ASIP is able to support
these common features through a reconfigurable datapath.

87

6.2 Future Works

Local Interconnect

TCT

Processor
DMA & I/O

ASIP 1 ASIP 2 ASIP n

Dedicated Interconnect (FIFOs)

SRAM

Figure 6.1 Multi-ASIP based embedded vision processor.

Second, the increasing video definition (e.g., Ultra-High-Definition, or 4K)
and the evolving state-of-the-art computer vision algorithms (e.g., RCNN [77],
Fast RCNN [78], Faster RCNN [79], YOLO [80], and SSD [81]) are bring in
a heavy computation and mass of data movement for mobile and embedded
platforms. ASIP-based MPSoC platforms are an attractive design solution to
provide powerful computing capability and energy efficiency with relative low
design cost for the future vision applications. Figure 6.1 shows a multi-ASIP
based vision processor. We will focus on the improvement of ASIP design
framework to support the ASIP-based MPSoC design.

88

Bibliography

[1] Rob van der Meulen. For a Trillion Sensor Road Map.

[2] Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update,

2015–2020, Feb. 2016.

[3] Andrew Christopher Mihal. Deploying concurrent applications on hetero-

geneous multiprocessors. PhD thesis, University of California, Berkeley,

2006.

[4] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-

based learning applied to document recognition. Proceedings of the IEEE,

86(11):2278–2324, 1998.

[5] Glenn Hinton, Dave Sager, Mike Upton, Darrell Boggs, et al. The micro-

architecture of the Pentium® 4 processor. In Intel Technology Journal,

2001.

[6] Texas Instruments. TMS320C64x/C64x+ DSP CPU and instruction set

reference guide. 2005.

[7] Juan Fernando Eusse, Rainer Leupers, Gerd Ascheid, Patrick Sudowe,

Bastian Leibe, and Tamon Sadasue. A flexible ASIP architecture for

connected components labeling in embedded vision applications. In 2014

Design, Automation and Test in Europe Conference and Exhibition (DATE),

pages 1–6, 2014.

89

Bibliography

[8] INRIA Person Dataset. http://pascal.inrialpes.fr/data/human/, 2015.

[9] Cisco Global Cloud Index: Forecast and Methodology, 2015–2020, June

2016.

[10] Bernard Marr. Big Data: 20 Mind-Boggling Facts Everyone Must Read.

[11] Josh Woodhouse. Big, big, big data: higher and higher resolution video

surveillance.

[12] Rob van der Meulen. Gartner Says 6.4 Billion Connected Things Will Be

in Use in 2016, Up 30 Percent From 2015.

[13] K. Keutzer, S. Malik, and A. R. Newton. From ASIC to ASIP: the next

design discontinuity. In 2002 IEEE International Conference on Computer

Design (ICCD), pages 84–90, Freiburg, Germany, Sept. 2002.

[14] Paolo Ienne and Rainer Leupers. Customizable Embedded Processors:

Design Technologies and Applications. Morgan Kaufmann Publishers Inc.,

San Francisco, USA, 2007.

[15] Nico Mentzer, Guillermo Payá-Vayá, and Holger Blume. Analyzing the

performance-hardware trade-off of an ASIP-based SIFT feature extraction.

Journal of Signal Processing Systems, 85(1):83–99, 2016.

[16] Richard Szeliski. Computer Vision: Algorithms and Applications. Springer,

2010.

[17] Scott Krig. Computer Vision Metrics: Survey, Taxonomy, and Analysis.

Apress, 2014.

[18] Steve Heath. Embedded Systems Design. Newnes, 2002.

[19] Willie D Jones. Building safer cars. IEEE Spectrum, 39(1):82–85, 2002.

90

http://pascal.inrialpes.fr/data/human/

Bibliography

[20] David Geronimo, Antonio M Lopez, Angel D Sappa, and Thorsten Graf.

Survey of pedestrian detection for advanced driver assistance systems. IEEE

transactions on pattern analysis and machine intelligence, 32(7):1239–1258,

2010.

[21] Robert E Schapire. The strength of weak learnability. Machine learning,

5(2):197–227, 1990.

[22] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine

learning, 20(3):273–297, 1995.

[23] Thomas Cover and Peter Hart. Nearest neighbor pattern classification.

IEEE transactions on information theory, 13(1):21–27, 1967.

[24] Chris Harris and Mike Stephens. A combined corner and edge detector. In

Alvey vision conference, volume 15, pages 10–5244, 1988.

[25] David G Lowe. Object recognition from local scale-invariant features. In

1999 IEEE International Conference on Computer Vision (ICCV), volume 2,

pages 1150–1157, 1999.

[26] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. SURF: speeded up

robust features. 2006 European Conference on Computer Vision (ECCV),

pages 404–417, 2006.

[27] Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary Bradski. ORB:

An efficient alternative to SIFT or SURF. In 2011 IEEE International

Conference on Computer Vision (ICCV), pages 2564–2571, 2011.

[28] Atsushi Mizuno, Kazuyoshi Kohno, Ryuichiro Ohyama, Takahiro Tokuyoshi,

Hironori Uetani, Hans Eichel, Takashi Miyamori, Nobu Matsumoto, and

Masataka Matsui. Design methodology and system for a configurable

media embedded processor extensible to VLIW architecture. In 2002 IEEE

International Conference on Computer Design (ICCD), pages 2–7, 2002.

91

Bibliography

[29] Andreas Hoffmann, Oliver Schliebusch, Achim Nohl, Gunnar Braun, Oliver

Wahlen, and Heinrich Meyr. A methodology for the design of application

specific instruction set processors (ASIP) using the machine description

language LISA. In 2011 IEEE/ACM International Conference on Computer

Aided Design (ICCAD), pages 625–630, 2001.

[30] Andreas Fauth, Johan Van Praet, and Markus Freericks. Describing in-

struction set processors using nML. In Proc. 1995 European Design and

Test Conference, pages 503–507, Paris, France, Mar. 1995.

[31] ASIP Designer, Synopsys Inc. http://www.synopsys.com/, 2015.

[32] Open Computer Vision Library. http://opencv.org/, 2014.

[33] David H Wolpert. The lack of a priori distinctions between learning

algorithms. Neural computation, 8(7):1341–1390, 1996.

[34] P. Viola, M. J. Jones, and D. Snow. Detecting pedestrians using patterns

of motion and appearance. In 2003 IEEE International Conference on

Computer Vision (ICCV), pages 734–741, Nice, France, Oct. 2003.

[35] Cristiano Premebida, Gonçalo Monteiro, Urbano Nunes, and Paulo Peixoto.

A lidar and vision-based approach for pedestrian and vehicle detection and

tracking. In 2007 IEEE Intelligent Transportation Systems Conference,

pages 1044–1049, Bellevue, USA, Sept. 2007.

[36] R. Timofte, K. Zimmermann, and L. V. Gool. Multi-view traffic sign de-

tection, recognition, and 3d localisation. In 2009 Workshop on Applications

of Computer Vision (WACV), pages 1–8, Snowbird, USA, Dec. 2009.

[37] Oscar Déniz, Gloria Bueno, Jesús Salido, and Fernando De la Torre. Face

recognition using histograms of oriented gradients. Pattern Recognition

Letters, 32(12):1598–1603, 2011.

92

http://www.synopsys.com/
http://opencv.org/

Bibliography

[38] Yuteng Zhou, Zhilu Chen, and Xinming Huang. A pipeline architecture

for traffic sign classification on an FPGA. In 2015 IEEE International

Symposium on Circuits and Systems (ISCAS), pages 950–953, Lisbon,

Portugal, May 2015.

[39] Mohammad Zalfany Urfianto, Tsuyoshi Isshiki, Arif Ullah Khan, Dongju

Li, and Hiroaki Kunieda. A Multiprocessor SoC Architecture with Efficient

Communication Infrastructure and Advanced Compiler Support for Easy

Application Development. IEICE Trans. Fundamentals, E91-A(4):1185–

1196, Apr. 2008.

[40] Hao Xiao, Tsuyoshi Isshiki, Arif Ullah Khan, Dongju Li, Hiroaki Kunieda,

Yuko Nakase, and Sadahiro Kimura. A low-cost and energy-efficient multi-

processor system-on-chip for UWB MAC layer. IEICE Trans. Inf. & Syst.,

E95-D(8):2027–2038, Aug. 2012.

[41] Rehan Hameed, Wajahat Qadeer, Megan Wachs, Omid Azizi, Alex Solo-

matnikov, Benjamin C Lee, Stephen Richardson, Christos Kozyrakis, and

Mark Horowitz. Understanding sources of inefficiency in general-purpose

chips. In ACM SIGARCH Computer Architecture News, volume 38, pages

37–47, 2010.

[42] Paul Viola and Michael Jones. Rapid object detection using a boosted

cascade of simple features. In 2001 IEEE Computer Society Conference on

Computer Vision and Pattern Recognition (CVPR), pages 511–518, Kauai,

USA, Dec. 2001.

[43] Francois Fleuret and Donald Geman. Coarse-to-Fine Face Detection. In-

ternational Journal of computer vision, 41(1-2):85–107, 2001.

[44] Rafael C. Gonzalez and Richard E. Woods. Digital Image Processing (3rd

Edition). Prentice-Hall, Inc., Upper Saddle River, USA, 2006.

93

Bibliography

[45] H. A. Rowley, S. Baluja, and T. Kanade. Neural Network-Based Face De-

tection. IEEE Transactions on Pattern Analysis and Machine Intelligence,

20(1):23–38, Jan. 1998.

[46] K. H. Brodersen, C. S. Ong, K. E. Stephan, and J. M. Buhmann. The

binormal assumption on precision-recall curves. In 20th International

Conference on Pattern Recognition (ICPR), pages 4263–4266, Istanbul,

Turkey, Aug. 2010.

[47] John L Hennessy and David A Patterson. Computer Architecture: A

Quantitative Approach. Elsevier, 2011.

[48] Design Compiler, Synopsys Inc. http://www.synopsys.com/, 2016.

[49] Power Compiler, Synopsys Inc. http://www.synopsys.com/, 2016.

[50] ARM946E-S, ARM Inc. http://www.arm.com/, 2016.

[51] TMS320C64+, Texas Instruments Inc. http://www.ti.com/, 2016.

[52] Yuya Hanai, Yuichi Hori, Jun Nishimura, and Tadahiro Kuroda. A versatile

recognition processor employing Haar-like feature and cascaded classifier.

In 2009 IEEE International Solid-State Circuits Conference (ISSCC), pages

148–149, San Francisco, USA, Feb. 2009.

[53] Y. M. Tsai, T. J. Yang, C. C. Tsai, K. Y. Huang, and L. G. Chen. A 69mW

140-meter/60fps and 60-meter/300fps intelligent vision SoC for versatile

automotive applications. In 2012 Symposium on VLSI Circuits (VLSIC),

pages 152–153, Honolulu, USA, June 2012.

[54] Masayuki Hiromoto, Hiroki Sugano, and Ryusuke Miyamoto. Partially

parallel architecture for adaboost-based detection with haar-like features.

IEEE Transactions on Circuits and Systems for Video Technology, 19(1):41–

52, Jan. 2009.

94

http://www.synopsys.com/
http://www.synopsys.com/
http://www.arm.com/
http://www.ti.com/

Bibliography

[55] C. Kyrkou and T. Theocharides. A Flexible Parallel Hardware Architecture

for AdaBoost-Based Real-Time Object Detection. IEEE Transactions on

Very Large Scale Integration Systems, 19(6):1034–1047, June 2011.

[56] RealView Development Suite, ARM Inc. http://www.arm.com/, 2016.

[57] Code Composer Studio, Texas Instruments Inc. http://www.ti.com/, 2016.

[58] Junguk Cho, Shahnam Mirzaei, Jason Oberg, and Ryan Kastner. FPGA-

Based Face Detection System Using Haar Classifiers. In Proc. ACM/SIGDA

international symposium on Field Programmable Gate Arrays (FPGA 2009),

pages 103–112, Monterey, USA, Feb. 2009.

[59] Navneet Dalal and Bill Triggs. Histograms of oriented gradients for human

detection. In 2005 IEEE Computer Society Conference on Computer Vision

and Pattern Recognition (CVPR), volume 1, pages 886–893, San Diego,

USA, June 2005.

[60] James Ulery. Computing integer square roots. www.azillionmonkeys.com/

qed/ulerysqroot.pdf, 2016.

[61] David A Patterson and John L Hennessy. Computer Organization and

Design: The Hardware/Software Interface. Elsevier, 2009.

[62] David H. Eberly. 3D Game Engine Design: A Practical Approach to

Real-Time Computer Graphics. Morgan Kaufmann, 2006.

[63] Chris Lomont. Fast inverse square root. Tech-315 nical Report, page 32,

2003.

[64] MIT pedestrian Dataset. http://cbcl.mit.edu/software-datasets/

PedestrianData.html, 2015.

95

http://www.arm.com/
http://www.ti.com/
www.azillionmonkeys.com/qed/ulerysqroot.pdf
www.azillionmonkeys.com/qed/ulerysqroot.pdf
http://cbcl.mit.edu/software-datasets/PedestrianData.html
http://cbcl.mit.edu/software-datasets/PedestrianData.html

Bibliography

[65] David Martin Powers. Evaluation: from precision, recall and F-measure

to ROC, informedness, markedness and correlation. Journal of Machine

Learning Technologies, 2(1):37–63, 2011.

[66] K. Mizuno, Y. Terachi, K. Takagi, S. Izumi, H. Kawaguchi, and M. Yoshi-

moto. Architectural study of HOG feature extraction processor for real-time

object detection. In 2012 IEEE Workshop on Signal Processing Systems

(SiPS), pages 197–202, Quebec City, Canada, Oct. 2012.

[67] K. Negi, K. Dohi, Y. Shibata, and K. Oguri. Deep pipelined one-chip FPGA

implementation of a real-time image-based human detection algorithm. In

2011 International Conference on Field-Programmable Technology (FPT),

pages 1–8, New Delhi, India, Dec. 2011.

[68] Kosuke Mizuno, Kenta Takagi, Yosuke Terachi, Shintaro Izumi, Hiroshi

Kawaguchi, and Masahiko Yoshimoto. A sub-100mW dual-core HOG acce-

lerator VLSI for parallel feature extraction processing for HDTV resolution

video. IEICE Trans. Electronics, 96(4):433–443, 2013.

[69] ARM968E-S, ARM Inc. http://www.arm.com/, 2016.

[70] T. Machida and T. Naito. GPU & CPU cooperative accelerated pedestrian

and vehicle detection. In 2011 IEEE International Conference on Computer

Vision Workshops (ICCV Workshops), pages 506–513, Barcelona, Spain,

Nov. 2011.

[71] Li Zhang and R. Nevatia. Efficient scan-window based object detection

using GPGPU. In 2008 IEEE Computer Society Conference on Computer

Vision and Pattern Recognition Workshops (CVPR Workshops), pages 1–7,

Anchorage, USA, June 2008.

[72] Rodrigo Benenson, Markus Mathias, Radu Timofte, and Luc Van Gool.

Pedestrian detection at 100 frames per second. In 2012 IEEE Conference

96

http://www.arm.com/

Bibliography

on Computer Vision and Pattern Recognition (CVPR), pages 2903–2910,

Providence, USA, June 2012.

[73] GeForce GTX 780, Nvidia Inc. http://www.nvidia.com/, 2016.

[74] Sebastian Bauer, Sebastian Köhler, Konrad Doll, and Ulrich Brunsmann.

FPGA-GPU architecture for kernel SVM pedestrian detection. In 2010

IEEE Computer Society Conference on Computer Vision and Pattern

Recognition Workshops (CVPR Workshops), pages 61–68, San Francisco,

USA, June 2010.

[75] Xiaoyin Ma, Walid A Najjar, and Amit K Roy-Chowdhury. Evaluation

and acceleration of high-throughput fixed-point object detection on FP-

GAs. IEEE Transactions on Circuits and Systems for Video Technology,

25(6):1051–1062, 2015.

[76] Amr Suleiman and Vivienne Sze. An energy-efficient hardware implemen-

tation of HOG-based object detection at 1080HD 60 fps with multi-scale

support. Journal of Signal Processing Systems, 84(3):325–337, 2016.

[77] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich

feature hierarchies for accurate object detection and semantic segmenta-

tion. In 2014 IEEE conference on computer vision and pattern recognition

(CVPR), pages 580–587, 2014.

[78] Ross Girshick. Fast R-CNN. In 2015 IEEE International Conference on

Computer Vision (ICCV), pages 1440–1448, 2015.

[79] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster R-CNN:

Towards real-time object detection with region proposal networks. In

Advances in neural information processing systems (NIPS), pages 91–99,

2015.

97

http://www.nvidia.com/

Bibliography

[80] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only

look once: Unified, real-time object detection. In 2016 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), pages 779–788, 2016.

[81] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott

Reed, Cheng-Yang Fu, and Alexander C Berg. SSD: Single shot multibox

detector. In 2016 European Conference on Computer Vision (ECCV), pages

21–37, 2016.

98

