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Abstract

It is generally accepted that the large satellites around gas planets formed out of the gas

disks, the circumplanetary disks (CPDs), which accompanied the planets’ formation. Pre-

vious works showed that if enough satellitesimals (km-sized bodies) exist in the disk, satel-

lites with the current satellites’ mass can form by two-body collisions. A problem with

this scenario, however, is the formation of satellitesimals. Unless CPDs features pressure

reversals, the progenitor dust grains will not have had the time to conglomerate, because

of the strong radial drift. Moreover, gas gap structures formed by the planets must prevent

the dust from flowing into CPDs. An alternative idea to get the material of satellites is

planetesimal-capture. However, the growing planets and the gas gaps push out the plan-

etesimals from the feeding-zones and the capture rates decrease. Therefore, how to get

the material is a big issue in satellite formation research. Another problem is difficulty in

reproducing the characteristics of the satellites simultaneously and consistently. In the case

of the Galilean (Jovian) satellites, there are a lot of studies about the characteristics but they

can only explain a part of them and contradict each other in part.

First, we investigated the possibility that satellitesimals form in-situ in CPDs. We cal-

culated the radial distribution of the surface density and representative size of dust particles.

They grow by mutual collisions and drift toward the planet in with a continuous supply of

gas and dust from the parent PPD. In order for the particles to form satellitesimals, the

growth must take place faster than they fall onto the planet. We found that this radial drift

barrier is overcome if the particles can grow larger than the size which their Stokes number

(stooping time normalized by the Kepler-time) is greater than unity. This condition is the

same with that of planetesimal formation in PPDs. We also found that the satellitesimals

can form (i.e. the above condition is achieved) if the ratio of the dust to gas accretion

rates into CPDs is larger than unity. The dust-to-gas ratio must be lower than unity in

general, our results suggest that the in-situ satellitesimal formation via particle sticking is
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viable only under an extreme condition. However, satellitesimals may form episodically or

locally in special conditions, for example, the dust vertical diffusion is weak and the gas

surface density is low, predicted in some recent hydrodynamical simulations.

We then constructed a new alternative scenario for the origin of the Galilean satellites

which can form the satellites even in the material scarcity. In our new scenario, two kinds

of small amount of solid material are supplied to the CPD; mm-sized dust particles and

km-sized planetesimals. The captured planetesimals accrete the particles drifting toward

Jupiter (i.e. pebbles) so effectively that the planetesimals can grow to satellites before the

disk disappears thanks to strong gravitational focusing and aerodynamic drag. However, the

growth timescale is longer than that of classical formation scenarios, we invoked an inner

disk truncation radius to halt their migration. Other parameters were tuned for the model to

match physical, dynamical, compositional, and structural constraints of the Galilean satel-

lites. In contrast to the previous scenarios, our new “slow-pebble-accretion” scenario then

reproduced most of the important characteristics simultaneously and consistently; (1) the

mass of all the Galilean satellites, (2) the orbits of Io, Europa, and Ganymede captured in

mutual 2:1 mean motion resonances, (3) the ice mass fractions of all the Galilean satel-

lites, and (4) the unique ice-rock undifferentiated Callisto and the other three differentiated

satellites. However, only Callisto’s orbit could not be reproduced but it was also captured

in resonance with Ganymede’s one.

We found that the in-situ satellitesimal formation in CPDs is very difficult. There-

fore, we built a new formation scenario especially for the Galilean satellites, using drifting

pebbles instead of satellitesimals. However, our simulations are simplified and, in real-

ity, satellitesimals originated from special conditions may contribute to satellite formation.

Therefore, we should investigate satellite formation processes including both satellitesi-

mals and pebbles as a next step. Future measurements of the D/H ratio in H2O ice of the

Galilean satellites by JUICE mission may be able to find out which accretion mechanism

was actually dominant. We are now also working on 2-D orbital simulations of the satel-

lites to investigate the resonance capture to solve the problem of Callisto’s orbit because we

have only carried out simple 1-D simulations. The origin of the large Saturnian satellites
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should also be investigated. Our discussion about satellitesimal formation can be applied

to the Saturnian system. However, more explanations for the long orbital periods of the

satellites will be needed for applying the new Galilean satellite formation scenario to the

Saturnian system. General satellite formation will be an attractive research area in future.

In particular, satellite formation associated with the evolution of the planets’ envelope will

be important. Finally, observations of exomoons will open the way to statistical general

satellite formation studies.
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Chapter 1 Introduction

1.1 Satellites

Over 400 years ago, Galileo Galilei discovered four heavenly bodies nearby Jupiter and

realized the possibility that planets other than Earth also have satellites. Since then, scien-

tists have found a lot of satellites around Mars, Jupiter, Saturn, Uranus, Neptune, and other

smaller bodies. Nowadays, their eyes are watching outside of the solar system to find “ex-

omoons”, satellites rotating around exoplanets. Here, we briefly summarize the findings of

the satellites.

1.1.1 Satellites in the Solar System

In this thesis, we focus on the satellites around gas planets. Jupiter, Saturn, and Uranus

have large prograde satellites. The satellite-to-planet mass ratios are about 10−4 for all the

three systems. Neptune also has a large satellites, Triton, but it is retrograde. Saturn has

some mid-sized icy satellites and all the gas planets have many small satellites. Figure 1.1

roughly shows the size and orbits of the satellites. The basic data of the satellites is shown

in Table 1.1.

We mainly focus on the four large Jovian satellites called “Galilean satellites” in this

thesis. The properties of the satellites are well known because of the observation by the

Galileo mission (NASA, 1989-2003). The inner three satellites, Io, Europa, and Ganymede,

are captured in mutual 2:1 mean motion resonances. The satellites’ ice mass fractions in-

crease with their distance from Jupiter: Io is dry, Europa consist of 8% ice, while Ganymede

and Callisto have ice mass fractions of about 50%. These values were estimated from the

gravity measurements by the mission (Sohl et al., 2002). Io is the most active body and

considered to be completely differentiated to metallic core and rocky mantle by the strong

1
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Figure 1.1: Satellites around the gas planets in the solar system. The distance scale is in
terms of the respective planet’s Hill radius (RH,J ≈ 750 RJ, RH,S ≈ 1100 RS, RH,U ≈ 2740 RU,
and RH,N ≈ 4900 RN). Planetary rings are denoted by solid lines and are labeled when
possible. The centrifugal radius is denoted by a bold dashed line. Dotted lines correspond
to positions of interest in Mosqueira & Estrada (2003a). This picture is cited from Fig.1 in
(Mosqueira & Estrada, 2003a).
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Table 1.1: Satellites around the Gas Planets (Mosqueira & Estrada, 2003a)

Distance [RP] Radius [km] Density [g cm−3] Mass [1026 g] µd [10−4]
Jupiter 71492 1.326 18980 9.5
Io 5.905 1,821 3.53 0.894 0.47
Europa 9.937 1,565 2.97 0.48 0.25
Ganymede 14.99 2,634 1.94 1.4823 0.78
Callisto 26.37 2,403 1.85 1.0776 0.57
Leda* 155.2 5 ? ? ?
Himalia* 160.6 85 ? ? ?
Lysithea* 163.9 12 ? ? ?
Elara* 164.2 40 ? ? ?
Saturn 60330 0.687 5684.6 2.9
Mimas 3.075 199 1.12 3.7×10−4 6.5×10−4

Enceladus 3.945 249 1.00 6.5×10−4 1.1×10−3

Tethys 4.884 529 0.98 6.1×10−3 0.01
Dione 6.256 560 1.49 0.011 0.019
Rhea 8.736 764 1.24 0.023 0.04
Titan 20.25 2,575 1.88 1.3457 2.4
Hyperion 24.55 185×113 ? ? ?
Iapetus 59.03 720 1.0 0.016 0.028
S/2000 S5* 187.3 10 ? ? ?
S/2000 S6* 189 16 ? ? ?
Phoebe* 214.5 115×105 ? ? ?
Uranus 25559 1.318 868.32 0.44
Puck 3.36 77 ? ? ?
Miranda 5.08 240×233 1.2 6.59×10−4 7.6×10−3

Ariel 7.48 581×578 1.67 0.0135 0.16
Umbriel 10.4 585 1.4 0.0117 0.13
Titania 17.05 790 1.71 0.0353 0.41
Oberon 22.8 760 1.63 0.0301 0.35
Caliban* 280.5 30 ? ? ?
Stephano* 309 10 ? ? ?
Sycorax* 477.9 60 ? ? ?
Neptune 24766 1.638 1024.3 0.51
Proteus 4.75 218×201 ? ? ?
Triton* 14.32 1,353 2.05 0.215 2.1
Nereid 222.6 170 ? ? ?

* Retrograde satellite
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Io Europa

Ganymede Callisto

Figure 1.2: Estimated interiors of the Galilean satellites. Io has a metallic core and
a rocky mantle. Europa has a rocky core and icy mantle. In this picture, it is as-
sumed that a metallic core is also differentiated from the rocky core. A liquid water
layer also exists under Europa’s icy crust. Ganymede is completely differentiated to a
metallic core, rocky core, and Icy mantle. Moreover, this satellite is also estimated to
have a liquid water layer under its icy crust. On the other hand, Callisto should be
only partially melted. This picture is modified from “JPL release PIA01082 (NASA/JPL,
https://photojournal.jpl.nasa.gov/catalog/pia01082)”.

tidal heating from Jupiter (Peale et al., 1979). Europa is also considered to be differenti-

ated to rocky core and icy mantle and has liquid ocean under its icy crust because water

plumes from the satellite’s surface were directly observed by Hubble Space Telescope in

2012 (Roth et al., 2014). However, no evidence of the metal-rock differentiation of the

core has discovered. On the other hand, Ganymede has a magnetic field of internal origin

suggesting a magnetic dynamo by the convective motion of at least partially molten core

(Kivelson et al., 1996). Uniquely, Callisto features an only partially differentiated internal

structure in the observations of the interior moment (e.g. Schubert et al., 2004). Figure 1.2

shows the estimated internal structures of the Galilean satellites and Table 1.1 represents

the summary of the characteristics of the Galilean system.
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Table 1.2: Detailed Properties of the Galilean Satellites (e.g. Schubert et al., 2004)
Io Europa Ganymede Callisto

Moment-of-interior factor 0.37685 0.346 0.3105 0.3549
Orbital period [days] 1.769 3.551 7.155 16.689
Eccentricity 0.0041 0.0101 0.0006 0.007
Resonance w/ inner one - 2:1 2:1 no
Ice mass fraction (estimate) 0.00 0.08 0.45 0.56
Differentiation (estimate) melted (metal/rock) melted (rock*/ice) melted (metal/rock/ice) partially melted

* The state of the core is still unknown.

1.1.2 Exomoons

Recently, observations of exomoons have been tried to succeed. For example, a transit sur-

vey of 284 Kepler planetary candidates range from Earth- to Jupiter-sized and from about

0.1 to 1.0 au in separation was carried out but it detected no moons (Teachey et al., 2017).

This is consistent with the predictions that moons should be lost during the migration of the

planets due to shrinking Hill sphere (Namouni, 2010) or capture into a so-called evection

resonance (Spalding et al., 2016). On the other hand, a new observation of a candidate

exomoon associated with Kepler-1625b was presented (Teachey & Kipping, 2018). The

planet is about three Jupiter mass and the moon is about one Neptune mass. The mass

ratio between the planet and moon is 10−2, 100 times larger than Jovian, Saturnian, and

Uranian systems. Micro-lensing should be another effective way to observe exomoons but

no candidates have been observed (Liebig & Wambsganss, 2010; Hwang et al., 2018).

1.2 Circumplanetary Disks

It is considered that a gas accretion disk forms around a planet in its rapid gas accretion

phase as a by-products of the accretion from the parent protoplanetary disk. This disk is

called a “circumplanetary disk (CPD)” or e.g. the “circum-Jovian disk (CJD)” for the disk

around Jupiter. One of the strong ways to investigate the disk is numerical hydrodynamic

simulations. Historically, 2-D isothermal simulations were calculated first (Lubow et al.,

1999; D’Angelo et al., 2002), and then 3-D simulations (e.g. Machida et al., 2008). Figure

3.3 shows the schematic gas flow structure around the planet calculated by a 3-D isothermal

hydrodynamic simulation in Tanigawa et al. (2012). Accreted gas flows into the planet’s
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Hill sphere not from its mid-plane but from high altitude. On the mid-plane, the gas flows

outward and goes out from the Hill sphere through the Lagrangian points, L1 and L2. Such

an outflow structure on the mid-plane has been also shown in the results of the numeri-

cal simulations by Machida et al. (2008); Szulágyi et al. (2014); Fung & Chiang (2016);

Szulágyi et al. (2016, 2017); Szulágyi (2017). Gressel et al. (2013) has calculated global

3-D magnetohydrodynamic (MHD) simulations of accreting planets embedded in proto-

planetary disks (PPDs) and has shown that the flow structure is almost the same with the

results of the previous simulations; the inflow is from high altitude and the outflow is on

the mid-plane.

The condition for formation of CPDs has not been cleared well. Circumplanetary mate-

rial has an envelope structure if the central planet mass is small and the envelope becomes

a disk when the planet grows heavy. However, Szulágyi et al. (2016) has shown that the en-

velope structure keeps its form as long as the gas temperature is high. On the other hand, if

the envelope becomes cold, a CPD may form even if the planet mass is not large (⪅ 20 M⊕).

A radiative 3-D hydrodynamical simulation has shown that if the surface temperature of the

planet is cold (150K), a CPD forms Szulágyi et al. (2018). Wang et al. (2014) also showed

that the disk can form in the case of isothermal simulations. On the other hand, (Ayliffe &

Bate, 2009) showed that the disk can not form even in the case of isothermal simulations.

1.3 Classical Satellite Formation Scenarios

The formation scenarios for the large satellites around Jupiter and Saturn have been in-

vestigated a lot. It has been generally believed that the satellites formed in CPDs during

the planets’ gas accretion phases (e.g. Canup & Ward, 2006). On the other hand, Crida

& Charnoz (2012) argues that the Saturnian mid-sized satellites have formed from an-

cient massive ring material spreading beyond the Roche radius. The origin of the satellites

around Uranus and Neptune is still controversial; in-situ formation in the CPDs, spreading

ancient rings’ material, giant impacts, and dynamically captures of some bodies after the

planets’ formation (e.g. Stevenson, 1984; Agnor & Hamilton, 2006; Canup & Ward, 2006;
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Figure 1.3: Schematic picture of the flow structure of circumplanetary disks. This flow
structure is based on the results of 3-D numerical simulations in Tanigawa et al. (2012).
The black solid curves represent the gas flow direction. The gas penetrating into the shock
surface changes their direction to the high altitude because only the tangential velocity
component remains.The gas then falls onto the surface of the CPD through its Hill sphere
with almost free-fall velocity. However, the angular momentum of the gas is not enough for
rotating the falling point, it flows inward on the surface of the CPD. On the other hand, the
gas falling onto the outer region of the disk flows out from the disk through the mid-plane.
This picture is cited from Figure 1.3 in Tanigawa et al. (2012).
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Crida & Charnoz, 2012; Szulágyi et al., 2018). It is considered that the candidate huge ex-

omoon around Kepler-1625b was captured by the planet after its formation phase (Teachey

& Kipping, 2018). In this work, we focus on the formation of large satellites around gas

planets, in particular, the four large Jovian satellites. Here, we show the two main classical

scenarios (models) for satellite formation.

1.3.1 Minimum Mass Disk Model

Lunine & Stevenson (1982) proposed the “minimum mass disk” model where CPDs are

static and their solid mass is equal to the total mass of the satellites. The concept of

this model is the same with the “minimum mass solar nebular” model in planet formation

(Hayashi, 1981). Mosqueira & Estrada (2003a), Mosqueira & Estrada (2003b), Estrada

et al. (2009), and Mosqueira et al. (2010) showed that the Jovian and Saturnian satellites

can form in the minimum mass disks. One of the key points of this model is that they

assume a low-density portion outer than the centrifugal radius. This low-density region is

suitable for formation of Callisto with avoiding its internal differentiation by slow satellites-

imal accretion. However, such a region has not been reproduced in the previous numerical

simulations, and the satellites would have to overcome rapid inward migration induced by

the interaction with the massive disk (Miguel & Ida, 2016). Moreover, recent hydrodynam-

ical simulations suggest that the gas accretion onto the planet through the CPD continues

even if the gap structure open around the disk (Tanigawa & Ikoma, 2007; Tanigawa &

Tanaka, 2016) because the gap is shallower than the traditional prediction (e.g. Kanagawa

et al., 2015). In the next subsection, we introduce a formation scenario with the case of

continuous gas accretion.

1.3.2 Gas-starved Disk Model

Canup & Ward (2002) and Ward & Canup (2010) proposed the “gas-starved disk” whose

mass is regulated by viscous accretion onto the central planet and by gradual supply of

the gas from the parent protoplanetary disk. Alibert et al. (2005) also developed a similar

accretion disk model consistent with a formation model for Jupiter. Canup & Ward (2006)
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performed N-body simulations of satellite formation in the gas-starved disks, showing that

the total mass of the satellites formed in the disk is ∼ 10−4 of the central planet’s mass as

observed for the Jovian, Saturnian, and Uranian satellite systems. In this scenario, satellites

repeated their formation and falls onto the planet by Type I migration over and over, and the

total satellite mass becomes quasi-steady. Figure 1.4 represents the total satellite mass in

CPDs normalized by the planet mass, calculated in Canup & Ward (2006). It shows that the

total mass actually becomes a quasi-steady state with the mass ratio of ∼ 10−4. The current

satellites are then considered as the final generation of the satellites repeating formation

and migration. Sasaki et al. (2010) and Ogihara & Ida (2012) also studied this model by

using Monte Carlo and N-body simulations respectively, and successfully reproduced the

number, masses, and orbits of the Galilean satellites. Sasaki et al. (2010) also reproduced

the Saturnian system which one satellite rotates with a long period. In these studies, they

assumed the inner cavity of the circum-Jovian disk due to the strong magnetic field of

ancient Jupiter. We discussed the validity of this assumption in Sections 3.2.2 and 3.5.2 in

detail.

The key parameters of this scenario are (1) the efficiency of transport of gas angular

momentum, (2) the gas accretion rate onto the planet through CPDs, and (3) the mass flux

of the supply of solid material into CPDs. First, we generally consider the disk as a (quasi-

)steady gas accretion disk because the timescale of the growth, drift, migration of solid

bodies is much shorter than the evolution timescale of the disk. In this case, the gas surface

density of CPDs are determined by the transport efficiencies of angular momentum (i.e.

the magnitude of α in the case of α disk model (Shakura & Sunyaev, 1973)) and the mass

fluxes of gas inflow from the parental PPDs to the CPDs. However, these key parameters

have not been constrained enough. First, hydrodynamical simulations have not succeeded

to reproduce the gas accretion of planets in detail, the predicted final mass of Jupiter in

one of the simulations is 10 times larger than that of the current Jupiter although the effect

of the gap formation is included (Tanigawa & Tanaka, 2016). Second, the mechanism to

transport the orbital angular momentum in the gas disk is still controversial. Some previous

woks argued that the magneto-rotational instability (MRI, Balbus & Hawley (1991, 1998))
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Figure 1.4: Evolution of the total satellite mass scaled to the planet’s mass. The hori-
zontal and vertical axes are time scaled to τG = 5 Myr and the mass ratio between MT (total
satellite mass in the CPDs) and Mp (planet mass), respectively. The red, blue, and green
solid curves represent the results of the N-body simulations with α/ f = 5 × 10−4, 5 × 10−5,
and 10−6, respectively, where the coefficient α is the strength of viscous turbulence and f is
the gas-to-solid inflow mass fluxes ratio. The dashed lines are the estimates from Eqs. (3)
in Canup & Ward (2006). The “cracks” in the curves indicate satellites’ inward migration
and falls into the planet. This figure is cited from Figure 2 in Canup & Ward (2006).



1.4. PURPOSE OF THIS WORK 11

is not maintained in CPDs because of the quick magnetic diffusion due to the small size-

scale of CPDs (Fujii et al., 2014; Keith & Wardle, 2014; Turner et al., 2014; Fujii et al.,

2017). If α = 10−4 (i.e. no MRI) and the gas inflow mass flux is Ṁg = 0.02 MJ Myr−1

(the fiducial case of Canup & Ward (2002)), the gas surface density around the Galilean

satellites’ orbits exceeds 103 g cm−2 (see Section 2.2.1). As α becomes small, the properties

of the disk approach those of the minimum disk model. On the other hand, Zhu et al.

(2016) has shown that dissipation of spiral shocks can transport the angular momentum.

They carried out 2-D hydrodynamical simulations with radiative cooling in CPDs and the

coefficient α could be ∼ 10−3 in the simulations. However, this simulation is 2-D, and so

3-D calculations are necessary for more correct discussion. Finally, the rate of solid supply

to CPDs is an important factor of satellite formation because if there is a large amount of

solid material in the disk, the growth timescale of satellites becomes short regardless of

formation models (e.g. Mosqueira & Estrada, 2003a; Canup & Ward, 2006). In the next

subsection, we explain that the supply of solid material to CPDs should be insufficient to

form satellites.

1.4 Purpose of This Work

In this section, we show some problems of previous satellite formation scenarios and ex-

plain how we overcome them in this work.

1.4.1 Scarcity of Material

One significant problem of the classical satellite formation scenarios is that the question

how satellitesimals form from dust particles is not addressed. Canup & Ward (2006), Sasaki

et al. (2010), and Ogihara & Ida (2012) assumed that the dust particles grow to satellitesi-

mals as soon as they deliver from the protoplanetary to circumplanetary disks. However, it

is already known from planetesimal formation studies that dust growth to kilometer-sized

bodies in PPDs can be hindered by phenomena such as the radial drift and the collisional

fragmentation of intermediate-sized particles (Whipple, 1972; Adachi et al., 1976; Weiden-

schilling, 1977). Therefore, it is easy to imagine that satellitesimal formation in CPDs could
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suffer from similar difficulties. In Chapter 2, we investigate this issue in detail and actually

show that satellitesimal formation is difficult unless a large amount of dust is supplied into

the disk (Shibaike et al., 2017). We find that the one of the conditions for satellitesimal

formation is the ratio of dust-to-gas accretion rate into CPDs, Ṁd/Ṁg, is larger than unity.

However, this condition must be difficult to achieve because the small dust particles must be

trapped at the positive gas pressure gradient at the outer edge of the gap structure (Adachi

et al., 1976; Zhu et al., 2012; Kanagawa et al., 2018). Very small particles coupled with gas

(smaller than 0.1 mm, by Zhu et al. (2012)) can penetrate into the gap but the amount must

be small. As a result, the dust particles supplied from PPDs through the gap structure and

the high altitude gas inflow can only grow to pebbles (cm-m size) but then drift toward the

planet before they grow to satellitesimals.

It has also been discussed that planetesimals can be captured by gas drag from CPDs

(Fujita et al., 2013; Tanigawa et al., 2014; D’Angelo & Podolak, 2015; Suetsugu et al.,

2016; Suetsugu & Ohtsuki, 2017). Suetsugu et al. (2016) and Suetsugu & Ohtsuki (2017)

examined the captures and subsequent orbital evolutions of planetesimals. They showed

that the capture hypothesis could roughly reproduce the initial radial distribution of plan-

etesimals (i.e. satellitesimals) assumed in the satellite formation model by Canup & Ward

(2006), Sasaki et al. (2010), and Ogihara & Ida (2012). However, the growing planets

and the gap curved by the planets push the planetesimals out from the feeding zones of

the planets, rendering the planetesimal capture rates very low (Hayashi et al., 1977; Fujita

et al., 2013).

Therefore, in Chapter 3, we construct a new hybrid satellite formation scenario, in par-

ticular, for the Galilean satellites (Shibaike et al., submitted). In this scenario, only a small

number of planetesimals are captured by CPDs and they grow to satellites by accreting the

drifting pebbles. In this case, we can assume a very low dust-to-gas mass accretion ratio

because satellitesimals do not have to form. Instead, the growth timescale becomes longer

than previous scenarios (∼ 10 Myr) and it requires a mechanism to avoid the loss of satel-

lites by their inward migration. Therefore, we invoke an inner cavity of the gas disk around

Jupiter opened by a strong magnetic field of the planet to stop the migration at the edge of
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the cavity. In Figure 1.5, we summarize the transport of material from the circum-stellar

disk (CSD) to CJD, which is implicitly assumed in our scenario.

We note that very recent work argue that these difficulties can be overcome in special

situations. Drażkowska & Szulágyi (2018) shows that small dust particles can gather at

the point where the effects of the inward drift and outward advection by a gas outflow pre-

dicted in their hydrodynamical calculations is balanced. At the gathering point (≈ 85 RJ),

satellitesimals can form by streaming instability (Youdin & Goodman, 2005) in their cal-

culations. However, the results significantly depend on the gas flow structure. Cilibrasi

et al. (2018) carries out population synthesis calculations based on the results of this satel-

litesimal formation scenario. Ronnet et al. (2018) calculates the orbital evolution of the

planetesimals in the CSD and shows that the growth of Saturn excites the eccentricities of

their orbits and make them be captured into the CJD even if the gap opens around Jupiter.

Suetsugu et al. (2016) also shows that some of the planetesimals with a high and narrow

range of the eccentricity in the CSD can be captured into CJD by multiple approaches to

Jupiter and become circularized around ≈ 50 RJ (“long-lived prograde captured orbit”),

outside the current orbits of the Galilean system.

1.4.2 Reproduction of the Galilean Satellites

Any model describing the formation of the Galilean satellites, must obey the observational

constraints. However, previous models have only explained parts of these characteristics

and the models are inconsistent with each other. Therefore, we aim to create a new scenario

which can reproduce most of the important properties simultaneously and consistently. The

features of the Galilean satellites to be reproduced and the explanations by the classical

scenarios are as follows.

The resonance chain of the inner three satellites’ orbits is actually consistent with a sce-

nario where the cavity of the CJD halted the migration of Io and then Europa and Ganymede

were captured into the resonances one by one (Sasaki et al., 2010; Ogihara & Ida, 2012).

Fujii et al. (2017) argued that opacity transitions change the radial temperature structure



14 CHAPTER 1. INTRODUCTION

Gas gap

Pressure

bump

60 RJ30 RJ

Gas inflow

CJD

G
a

s
 s

u
rf

a
c
e

 d
e

n
s
it
y

CSD

2 RH

Dust

Dust 

settling

PebblesPlntsmls

5.2 au 6 au 7 au

Distance

from Jupiter

・Dust (< 0.1 mm)
・Plntsmls (high e)

・Pebbles trapped

・Plntsml formation
Pebble 

accretion

Figure 1.5: Schematic picture of transport of material. The horizontal axis roughly
shows the distance from Jupiter (or Sun) in the case that Jupiter is at the current position
(5.2 RJ). The background black solid curve and the gray shaded region represent the gas
surface density. The solid material of satellites originates at the outer region of the CSD
as pebbles and they drift inward (green solid arrow) (e.g. Sato et al., 2016). The drifting
pebbles are then trapped at the gas pressure bump (pressure maximum) because of the
positive gas pressure gradient at the outer edge of the gap (yellow solid region). Because of
the high pebble density there, planetesimals (plntsmls) must form from the pebbles and dust
particles should be also created from the fragmentation (Kobayashi et al., 2012; Taki et al.,
2016). Planetesimals excited by large bodies (such as Saturn) can have high eccentricity
and penetrate into the gap (brown dashed arrow) (Kobayashi et al., 2012; Ronnet et al.,
2018). The CJD can captures them by the “long-lived prograde captured orbit” around
≈ 50 RJ (red dashed arrow) (Suetsugu et al., 2016). Small particles coupled with gas can
also penetrate into the gap with gas (brown dashed arrow) but the settling of them makes the
inflow gas depleted (blue solid arrow) (Tanigawa et al., 2012; Zhu et al., 2012). The small
particles are supplied inside the ≈ 30 RJ radius of the CJD with the gas inflow from the
high altitude (blue dashed and black solid arrow) (Shibaike et al., 2017). The amounts of
the supply of the planetesimals and dust are both small. Finally, the captured planetesimals
grow by accreting the drifting pebbles made from the supplied dust which has grown by
mutual colliding in the CJD (purple solid arrow).
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and it can also stop the migration of the satellites. Classical alternative ways to stop the mi-

gration are (1) the largest satellite, Ganymede, migrates fastest and catches up Europa and

Io as the gas disk quickly disappears before they fall into the planet (Peale & Lee, 2002),

or (2) the differential tidal expansion of the orbits by Jupiter after the gas disappears (e.g.

Yoder, 1979). Peale & Lee (2002) has shown that the former way is better to explain the

Laplace relation of the three satellites than the latter. In our scenario, we invoke an inner

cavity structure like the scenarios in Sasaki et al. (2010); Ogihara & Ida (2012) (see also

Section 3.5.2 for detailed discussion).

The outer three satellites have icy material and that constrains the temperature where

the satellites formed. One of the historical open questions of satellite formation has been

how to reduce the temperature of CPDs. The disk temperature mainly depends on the gas

inflow mass flux (see Eq. (2.3) in the next chapter) if the dominant heat source is viscous

heating. Hydrodynamical simulations argue that the mass flux is Ṁg ≈ 2 MJ Myr−1 even

if the gap structure is assumed and the disk temperature then becomes about 400 K at

the current Ganymede’s orbit, higher than the sublimation temperature of H2O ice, about

160 K. In this case, satellitesimals forming in-situ should be dry because the icy parts of

the material must be evaporated. Moreover, if the dust opacity is large, the temperature

can be much higher. Therefore, we assume the inflow gas mass flux as 10 to 1000 times

smaller than the estimated value in Chapter 2 and 3. An alternative idea is that the satellites

formed in the outer cold region of the disk but a poor amount of material would be a

severe problem. On the other hand, some recent MHD simulations predict that the mid-

plane temperature could be lower than previous estimates thanks to the accretion energy

dissipations at the high altitude of the disk (Hirose et al., 2009; Mori et al., in prep.). We

discuss these temperature problems and their effects on our simulations also in Sections

2.2.1 and 3.5.3.

The variation in the ice fraction of the satellites also constitutes a formidable modeling

challenge. In particular, the ice mass fraction of Europa (≈ 8%)―very small compared to

Ganymede and Callisto―is hard to explain by the classical satellitesimal-accretion scenar-

ios because the rocky and icy satellitesimals must be radially mixed beyond the snowline



16 CHAPTER 1. INTRODUCTION

(Dwyer et al., 2013). The strong tidal heating by Jupiter can remove water components

from Io, the closest satellite to the planet, but can not from Europa (Peale et al., 1979). On

the other hand, (Ronnet et al., 2017) argues that a scenario where Europa accretes small

icy particles, which dehydrated interior to the snowline, can explain the small ice fraction.

Another idea is to reproduce the fraction by accreting small particles by invoking the in-

ward movement of the snowline in the final growth phases of the satellites (Canup & Ward,

2009). In Chapter 3, we show that this idea works well in our scenario to reproduce the

Europa’s small ice mass fraction.

Finally, the dichotomy between the differentiated Ganymede and the undifferentiated

Callisto requires tuned conditions. Given that Ganymede and Callisto have similar mass

and compositions, it is natural to likewise expect a similar thermal history for these neigh-

boring satellites (Barr & Canup, 2008). In our scenario, we consider a slow growth case,

in other words, the case that the accretion heating does not dominate the internal temper-

ature of the satellites. Our “slow-pebble-accretion” scenario explains the dichotomy by

the difference of the radiogenic heating of 26 Al decay, which is from the different capture

time (i.e. starting time of pebble accretion) of the two planetesimals, the seeds of the satel-

lites (see Chapter 3). We also note that subsequent effects, for example, the Late Heavy

Bombardment, may be able to make the difference (Barr & Canup, 2010).

1.5 Differences Between Satellite and Planet Formation

Satellites around gas planets are believed to have formed in CPDs, like planets form in

PPDs. In this work, we apply the physics and technical methods for planet formation to

satellite formation. Before getting into the main part of the thesis, we summarize the main

differences between satellite and planet formation for ease of comprehension.

• Scale The most important difference is the scale. The semi-major axis of Ganymede

is about 106 km, more than 100 times smaller than that of Earth (1 au ≈ 1.5×108 km).

The orbital period of the satellite is only 7 days, 50 times shorter, suggesting that the

discussion in satellite formation should be based on roughly 10 to 100 times shorter
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timescale than planet formation. The typical gas scale height of CPDs is also 10 times

larger than that of PPDs (∼ 0.1). The compactness of CPDs also makes the magnetic

diffusion much faster and it prevents MRI (i.e. the magnetic Reynolds number is

small) in CPDs (e.g. Fujii et al., 2014).

• Open System Satellite formation regions, in other words, CPDs are open systems

unlike planet formation in PPDs. Through the satellite formation, gas and solid ma-

terial is continuously supplied to CPDs from the parental PPDs and discharged from

the disks to the central planets (Figure 1.5). Therefore, the evolution of CPDs and

satellites are dominated by the continuous gas and dust inflows and their radial flux

es in CPDs. Considering that the timescale of CPDs’ evolution must be the same

with that of PPDs (∼ 1 Myr), satellite formation must be a quasi-steady state phe-

nomenon that repeats over and over (see Figure 1.4 as an example). This is because

the timescale of satellite growth and migration are much shorter than PPDs’. This

fact also suggests that (2-D) orbital calculations through the whole satellite formation

era or those from the satellite formation to the present are more tough than the orbital

calculations of planet formation. On the other hand, if there are special structures

like the inner cavity, the system loses the balance between the inflow and outflow

and the mass in the system increases (or decreases). In Chapter 2, we discuss the

case with a quasi-steady state. On the other hand, in Chapter 3, we assume the inner

cavity to stop the loss of satellites, and discuss a non-steady state. Moreover, satellite

systems are gravitationally affected by the central star. The Hill spheres are distorted

into lemon-like shapes and two (and more) spiral shocks are excited by the stars in

CPDs. However, it is generally considered that the large regular satellites formed

inside ∼ 0.1 Hill radius (see Figure 1.1), the effects from the central stars could be

negligible. We actually neglect the effects and only consider azimuthally symmetric

cases in this thesis.
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• Absence of Generality Unfortunately, only one candidate of exomoon has been

found and there are few satellite systems in our solar system. Therefore, the dis-

cussion of satellite formation is not general yet but limited to unique and historical

one like that of planet formation before 1995, the first exoplanet was discovered.

There have not actually been a lot of work about general satellite formation but, for

example, Heller et al. (2014) has reviewed formation, habitability, and detection of

exomoons. In this thesis, we focus on the unique history of the Galilean satellites in

Chapter 3. On the other hand, in Chapter 2, we investigate satellitesimal formation

which will be able to apply to other than Jovian satellites systems in future. More-

over, we discuss our future work including Saturnian satellites formation and general

satellite formation associated with gas planet formation and observation of exomoons

in Chapter 4.



Chapter 2 Satellitesimal Formation by

Collisional Dust Growth

Except for Section 2.4.5, this chapter is from

Shibaike, Y., Okuzumi, S., Sasaki, T., and Ida, S., The Astrophysical Journal, 2017.

2.1 Short Introduction

In this chapter, we aim to answer the question of whether dust particles can grow to satel-

litesimals by their direct collisional growth in circumplanetary disks. We employ a simple

one-dimensional model in which we calculate the radial distribution of the surface den-

sity and typical size of dust particles in a steadily accreting circumplanetary disk. We also

consider only icy dust particles and do not consider rocky particles. Although we assume

perfect sticking upon collision, fragmentation occurs if the collision velocity is higher than

a few m s−1 when the aggregates are mainly composed of silicate particles (e.g. Blum &

Wurm, 2008; Wada et al., 2009). The majority of the Galilean satellites are indeed icy

satellites: Europa is ≈ 10% and Ganymede and Callisto are ≈ 50% ice by mass (Sohl

et al., 2002). Our simple treatment allows us to explore a large parameter space. The goal

of this chapter is to derive the conditions under which satellitesimal formation via direct

coagulation of dust particles is viable.

2.2 Methods

2.2.1 Circumplanetary Disk Model

We model the structure of the circumplanetary disk following Fujii et al. (2014). Although

some numerical simulations suggested the possibility that gas near the midplane spiral

outward (Tanigawa et al., 2012; Fung & Chiang, 2016; Szulágyi et al., 2016), here we

assume that the circumplanetary disk is a viscous accretion disk with a continuous supply

19
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of material from the protoplanetary disk. The diffusion equation for the gas surface density

Σg of the circumplanetary disk is then given by

∂Σg

∂t
=

1
r
∂

∂r

[
3r1/2 ∂

∂r

(
r1/2νΣg

)]
+ f , (2.1)

where r is the distance from the central planet, f is the mass flux of the gas inflow from

the protoplanetary to circumplanetary disks, and ν is the kinematic viscosity. We employ

the standard α prescription (Shakura & Sunyaev, 1973) and express the viscosity as ν =

αcsHg, where cs is the isothermal sound speed and Hg is the gas scale height. The sound

speed is related to the temperature as cs =
√

kBT/mg with kB the Boltzmann constant

and mg = 3.9 × 10−24 g the mean molecular mass. The gas scale height is given by Hg =

cs/ΩK, whereΩK =
√

GMcp/r3 is the Kepler frequency, and G and Mcp are the gravitational

constant and the central planet mass, respectively. Unless otherwise noted, we assume Mcp

to be the Jupiter mass MJ = 1.89 × 1030 g. Based on the results of the three-dimensional

hydrodynamical simulation by Tanigawa et al. (2012), Fujii et al. (2014) modeled f as

f ∝ r−1 for r < rb and f = 0 for r > rb, where rb is the radius of the region where the gas

falls in. With this scaling for f , the steady-state solution of Eq. (2.1) can be analytically

obtained as (see Eqs. (23) and (25) of Fujii et al., 2014)

Σg =
Ṁg

2πrb

r3/2

ν

(
−2

9
r−1/2 +

2
3

rbr−3/2
)
, (2.2)

where Ṁg is the mass accretion rate of the infall gas. The simulation by Tanigawa et al.

(2012) shows that rb ≈ 20RJ for the planet of Mcp = 0.4MJ (see also Fujii et al., 2014).

Assuming that rb scales with the Hill radius of the central planet, we use rb = 27RJ for our

1MJ-mass planet.

We assume that the circumplanetary disk is viscously heated. Then, the gas temperature

at the midplane is given by Nakamoto & Nakagawa (1994),

T =
(

9
8σSB

νΣgΩ
2
K

)1/4

g(τ), (2.3)

where σSB is the Stefan-Boltzmann constant and

g(τ) =
(
3
8
τ +

1
4.8τ

)1/4

(2.4)
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is a function of the Rosseland mean optical depth τ. In principle, τ depends on the size

distribution of the smallest dust particles, which cannot be predicted with simple dust evo-

lution models as employed in this study. Lacking good knowledge about τ, we opt to set

g ≈ 1. Since g ⪆ 1 in general, the assumption g ≈ 1 yields a minimum estimate for the

disk temperature. The temperature can be up to three times higher than assumed here if the

optical depth ranges between 10−2 ≲ τ ≲ 102. However, this uncertainty has little effects

on the main results of this work because the dependence of our results on T is weak (see

Section 2.3.2).

According to the simulation by Tanigawa et al. (2012), the mass flux Ṁg scales as

Ṁg ≈ 0.2ΣPPDr2
HΩPPD, where ΣPPD and ΩPPD are the gas surface density and orbital pe-

riod of the parent protoplanetary disk in the vicinity of the planet, respectively, and rH is

the planet’ Hill radius (see Figure 14 of Tanigawa et al., 2012). At Jupiter’s orbit, the

gas surface density is 143 g cm−2 according to the minimum-mass solar nebula model of

Hayashi (1981). For this value of ΣPPD, the accretion rate onto Jupiter-sized planet would

be Ṁg ≈ 200 MJ Myr−1.

However, a strong constraint on Ṁg can be obtained from the temperature of the cir-

cumplanetary disk. In the left panel of Figure 2.1, we plot the midplane temperature of

our modeled circumplanetary disk as a function of the distance from the central planets

for three cases Ṁg = 2, 0.2, 0, 02, and 0.002 MJ Myr−1. For Ṁg = 2 and 0.2 MJ Myr−1,

the temperatures are higher than the sublimation temperature of ice, which is about 160

K. Such hot environments are unsuitable for the formation of icy regular satellites around

Jupiter and Saturn. Therefore, we only consider Ṁg ≤ 0.02 MJ Myr−1 in this work. We plot

the gas surface density of the disk for the two cases in the right panel of Figure 2.1.

2.2.2 Dust Growth and Radial Drift

We treat the coagulation and radial drift of dust particles in circumplanetary disks. In

particular, we focus on steady state where the radial distribution of the size and surface

density of the particles is constant over time. We approximate the size distribution of the

particles at each distance from the central planet by a narrow distribution peaked at mass
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Figure 2.1: Gas surface density and midplane temperature of CPDs. The red, blue,
green, and purple curves in the left panel represent the temperatures, where Ṁg =

2, 0.2, 0.02, and 0.002 MJ Myr−1, respectively. The horizontal black line is the sublima-
tion temperature of icy aggregates. The vertical black dashed lines represent the current
orbits of the Galilean satellites. The blue and purple curves in the left panel represent the
gas surface density, where Ṁg = 0.02 and 0.002 MJ Myr−1, respectively. The strength of
the turbulence is α = 10−5, 10−4, 10−3, and 10−2.

md. With this approximation, the integro-differential equation governing the evolution of

particles in a disk can be rewritten into a simple differential equation for md. We also

approximate the radial distribution of dust inflow to the circumplanetary disk by a narrow

peak lying at r = rb, the outer edge of the infall region. With this approximation, the

problem of obtaining the radial distribution of Σd and md in steady state reduces to a simple

boundary-value problem. We discuss the validity of these assumptions in Section 2.4.4.

In addition to the above approximations, we for the moment assume that the collision

velocity between the particles is so low that their fragmentation is negligible. The issue of

the fragmentation barrier will be separately treated in Section 2.3.3. We also assume that

the initial particle radius (i.e., the particle radius at r = rb) is 0.1 mm. This is the maximum

size of the particles which can diffuse into the gas gap against the outward drift motion

caused by the positive gas pressure gradient at the gap’s outer edge (Zhu et al., 2012). We

focus on steady state where the radial distribution of the mass and surface density of the

particles is independent of time.

In steady state, and in the absence of fragmentation, the mass md of the radially drifting
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particles is determined as a function of r by (Equation (5) of Sato et al., 2016)

vr
dmd

dr
=

2
√
πR2

d∆vdd

Hd
Σd, (2.5)

where Rd, ∆vdd, vr, Hd and Σd are the radius, collision velocity, drift speed, scale height,

and surface mass density of the particles, respectively. The particle mass is related to the

particle radius by md = (4π/3)R3
dρint, where ρint is the internal density of the particles. We

fix ρint = 1.4 g cm−3 but we discuss the effects of changing it in Section 2.4.2. The inward

accretion rate of the particles is

Ṁd = −2πrvrΣd, (2.6)

which is, in steady state, constant over r and is equal to the infall rate set at r = rd as

a boundary condition. We numerically integrate Equation (2.5) with Equation (2.6) from

r = rb toward smaller r.

The radial drift velocity of a dust particle is determined by its stopping time, tstop. In this

study, we express the stopping time in terms of the Stokes number defined by St = ΩKtstop

In dense circumplanetary disks, one can safely assume that particles of Rd > 0.1 mm are

much larger than the mean free path of gas molecules so that the flow around the particles

can be regarded as continuous fluid. Then, the Stokes number can be expressed as

St =
8

3CD

ρintRd

ρg∆vdg
ΩK, (2.7)

where ∆vdg is the relative velocity between the dust particles and the gas, and CD is a

dimensionless coefficient that depends on the particle Reynolds number, Rep. According

to Perets & Murray-Clay (2011), the coefficient can be written as

CD =
24
Rep

(1 + 0.27Rep)0.43 + 0.47(1 − exp(−0.04Re0.38
p )). (2.8)

The particle Reynolds number is given by

Rep =
4Rd∆vdg

vthλmfp
, (2.9)

where vth =
√

8/πcs is the thermal velocity and λmfp = mg/(σmolρg) is the mean free pass

of the gas with σmol = 2 × 10−15cm2 the collisional cross section of the gas molecules and

ρg = Σg/(
√

2πHg) the gas density at the midplane.
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The scale height of the particles can be derived analytically from the balance of their

vertical sedimentation and diffusion (Youdin & Lithwick, 2007),

Hd = Hg

(
1 +

St
α

1 + 2St
1 + St

)−1/2

. (2.10)

The radial drift velocity of the dust particles is (Whipple, 1972; Adachi et al., 1976; Wei-

denschilling, 1977)

vr = −2
St

St2 + 1
ηvk, (2.11)

where vk = rΩk is the Kepler velocity and

η = −1
2

(
Hg

r

)2 ∂ ln ρgc2
s

∂ ln r
(2.12)

is the ratio of the pressure gradient force to the gravity of the central planet.

The relative velocity between the dust particles (i.e. collision velocity) is the root sum

square

∆vdd =

√
∆v2

B + ∆v2
r + ∆v2

ϕ + ∆v2
z + ∆v2

t , (2.13)

where ∆vB, ∆vr, ∆vϕ, ∆vz, and ∆vt are the relative velocities induced by Brownian motion,

the radial drift, azimuthal drift, vertical sedimentation, and turbulence (Okuzumi et al.,

2012). For collisions between equal-sized particles, the Brownian-motion-induced velocity

can be written as ∆vB =
√

16kBT/(πmd). The relative velocity induced by the radial drift

is ∆vr = |vr(St1) − vr(St2)|, where St1 and St2 are the Stokes numbers of the two particles.

We assume St2 = 0.5St1 (see Section 2.4 in Sato et al., 2016) and vr is given by Equation

(2.11). The relative velocity induced by the azimuthal drift is ∆vϕ = |vϕ(St1) − vϕ(St2)|,

where vϕ = −ηvK/(1 + St2). The relative velocity induced by the vertical motion is ∆vz =

|vz(St1) − vz(St2)|, where vz = −ΩKStHd/(1 + St). For the relative velocity induced by the

turbulence, we use the analytic formula derived from Ormel & Cuzzi (2007). The formula

has three limiting expressions:

∆vt =



√
αcsRe1/4

t |St1 − St2|, St1 ≪ Re−1/2
t ,

√
3αcsSt1/2

1 , Re−1/2
t ≪ St1 ≪ 1,

√
αcs

(
1

1 + St1
+

1
1 + St2

)1/2

, 1 ≪ St1.

(2.14)
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Table 2.1: Parameter choice
Quantity Description Value
Ṁg Gas infall rate 0.02, 0.002 MJ Myr−1

Ṁd/Ṁg Dust-to-gas infall rate ratio 1, 0.1, 0.01, 0.001
α Turbulence parameter 10−5, 10−4, 10−3, 10−2

Here, Ret = ν/νmol is the turbulence Reynolds number, where νmol = vthλmfp/2 is the molec-

ular viscosity. We obtain the relative velocity between the solid materials and the gas, ∆vdg,

by setting St1 = St and St2 → 0 in the above expressions for the relative velocities.

2.2.3 Parameter Choice

Table 2.1 summarizes the parameter range explored in this study. The gas infall rate Ṁg

onto the circumplanetary disk is taken to be either 0.02 MJ Myr−1 or 0.002 MJ Myr−1. As

mentioned in Section 2.2.1, we do not consider a higher value of Ṁg since the disk would

become too hot for icy satellites to form. In reality, a giant planet carves a gap around its

orbit. For example, the hydrodynamical simulations by Kanagawa et al. (2015) show that

the gas surface density inside the gap is depleted by a factor of more than 100 compared

to outside the gap. This means that realistic values of Ṁg should be less than 2 MJ Myr−1,

i.e., less than 1% of the accretion rate without a gap. The infall rate that adopted in the

gas-starved disk model of Canup & Ward (2002) is about 0.2 MJ Myr−1. The value of

Ṁg whose temperature is suitable for icy satellite formation is lower than these estimated

values. Although we do not consider the decrease of the gas inflow in detail, the final phase

of planetary formation should be suitable for satellite formation (see also Section 2.4.1).

The ratio Ṁd/Ṁg of the dust inflow rate to the gas inflow rate is chosen between 0.001–

1. If we assume that the inflow has the solar composition and the dust particles are strongly

coupled with the gas, the ratio should be 0.01. However, the gap structure of the gas around

Jupiter dams the dust particles drifted from the outer region of the protoplanetary disk to-

ward the Sun and makes their similar gap structure. On the other hand, the strong gas

gradient may trigger a hydrodynamic instability and disturb the gas inflow. This distur-

bance should enhance the radial diffusion of small dust particles and make them nearer to
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the central planet (Zhu et al., 2012; Tanigawa et al., 2014).

The strength α of turbulence is varied from 10−5 to 10−2. We note that mechanisms

that could drive turbulence in the circumplanetary disk is highly uncertain. The magneto-

rotational instability, a viable mechanism driving turbulence in ionized accretion disks,

could operate on the surface of circumplanetary disks (Turner et al., 2014), but might not

produce fully developed turbulence (Fujii et al., 2014). Therefore, we cannot rule out that

α of circumplanetary disks falls below α. However, as we discuss in the following section,

too weak turbulence would make it difficult for satellitesimals to form within a realistic

range of Ṁd/Ṁg.

2.3 Results

In this section, we present the results of our dust growth calculations and explore the con-

ditions under which satellitesimals can form through dust coagulation in circumplanetary

disks.

2.3.1 Fiducial Calculations

Figure 2.2 shows the results of our fiducial calculations that assume Ṁg = 0.02 MJ Myr−1

and α = 10−4. We assume that the snow line is where the midplane temperature is 160 K

and it is at r = 10RJ (see Figure (2.1)). The top, middle, and bottom panels represent the

surface density, radius, and Stokes number of the mass-dominating dust particles in the disk

as a function of the distance r from the central planet. Because the particles grow and move

inward at the same time, the particle size increases with decreasing r. As already mentioned

in the previous section, we assume that the dust particles are 0.1 mm in size when they are

initially delivered from the protoplanetary disk to r = rb(= 27RJ). However, the middle

panel of 2.2 suggests that the assumption about the initial size of the dust particles is not

crucial because the particles immediately grow at r ≈ rb. The change of rb will not affect the

steady-state profiles either because the profiles should gradually approach the approximated

lines (see the dashed lines in the bottom panel of Figure 2.2 and Equation (2.15)).

As the particles grow, their Stokes number St and inward drift velocity |vr| increases in
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Figure 2.2: Steady-state profiles of dust in the fiducial case. The surface density Σd (top
panel) and radius Rd (middle panel) of dust that grow and drift in the circumplanetary disk
of Ṁg = 0.02 MJ Myr−1 and α = 10−4. The bottom panel shows the Stokes number St of
the particles. The red, green, blue, and purple curves correspond to Ṁd/Ṁg = 1, 0.1, 0.01,
and 0.001, respectively. The dashed lines in the bottom panel show the prediction from
the analytic estimate given by Equation (2.15). Shaded in gray is the region interior to the
snow line, which lies at r = 10RJ.
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accordance with Equations (2.7) and (2.11). We find that the radial drift becomes appre-

ciable when their drift timescale tdrift = r/|vr| becomes shorter than 30 times the growth

timescale tgrow = md/(dmd/dt), in agreement with the situation for dust evolution in proto-

planetary disks (Okuzumi et al., 2012; Tsukamoto et al., 2017). For Ṁd/Ṁg = 1, we find

that the particles stop drifting and grow to kilometer-sized satellitesimals at r ≈ 10 RJ. The

drift stalls because the drift speed (normalized by ηvK) decreases with increasing size as

long as St > 1. Therefore, they have to overcome this barrier of the St = 1 for growing to

the satellitesimals. After they achieve St = 1, the drift speed becomes slower and they get

jammed. The jam makes the collisional rate higher, so that the collisional growth speeds

up. We also found that this condition St > 1 is consistent with tgrow < tdrift when St ∼ 1.

Note that we did not consider the possibility that the dust surface density near the snow-

line increases because of sublimation or recondensation (e.g. Saito & Sirono, 2011; Ros &

Johansen, 2013; Ida et al., 2016; Ida & Guillot, 2016; Schoonenberg & Ormel, 2017).

2.3.2 Effects of the Dust and Gas Inflow Mass Fluxes

The amount of the gas and dust that flow to the circumplanetary disk can be changed by

the conditions of the central planet, the protoplanetary disk, and the circumplanetary disk.

We investigate the effects of changing the gas and dust inflow mass fluxes. Figure 2.2

shows that the the dust surface density increases with the dust-to-gas inflow mass flux ratio

Ṁd/Ṁg. The radius and Stokes number of the dust particles also have the same features.

The particles can grow to satellitesimals only when Ṁd/Ṁg = 1. This can be understood

by using the approximate analytical expression for the Stokes number (dotted lines in the

figure). When α = 10−4 and Ṁg = 0.02 MJ Myr−1, the gas surface density is so large

that Rep ≪ 1. For example, we found that the particle Reynolds number Rep is about 103

when Ṁd/Ṁg = 0.1 − 1 at r ∼ 10 RJ. In this case, the dimensionless coefficient CD can

be approximated as a constant, CD ≈ 0.5 (Newton’s friction law, see Equation (2.8)). The

dust–dust and dust–gas relative velocities can also be approximated as ∆vdd ≈ (1/2)vr and

∆vdg ≈ vr because the turbulence is so week that ∆vt is much smaller than ∆vr (see Figure
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2.5). The approximated Stokes number can then be described as,

St ≈ 1.2
(

Ṁd/Ṁg

1

)2/5 (
α

10−4

)1/5 ( T
160 K

)−2/5 (
Mcp

1 MJ

)2/5 (
r

10 RJ

)−2/5

, (2.15)

for small r. Equation (2.15) is derived by substituting Equation (2.6) into Equation (2.5)

and integrating it. Here, the gas surface density and the midplane temperature have been

approximated as Σg ≈ ṀgΩK/(3παc2
s ) and T ≈ (3GMcpṀg/(8πσSBr3))1/4. The scale

height and radial drift velocity of the dust particles have also been approximated as Hd ≈

Hg(α/St)1/2 and vr ≈ −2StηvK. Equation (2.15) shows that the Stokes number is propor-

tional to (Ṁd/Ṁg)2/5 and reaches unity when Ṁd/Ṁg = 1 and r = 10 RJ. Once St exceeds

unity, the radial drift velocity starts to decrease with increasing particle size, and hence the

particles grow to satellitesimals. Neglecting the weak Ṁg dependence of T (T ∝ Ṁ1/4
g ), Σg

is proportional to Ṁg. When Σg is high, the gas drag force that the dust particles receive

is strong and St is small. The collision rate of the dust particles becomes high when Ṁd

(i.e. Σd) is large. The high collision rate promotes satellitesimal formation. Even if the

Newton’s friction law does not apply, the Stokes number is proportional to (Ṁd/Ṁg)2/3 or

(Ṁd/Ṁg)6/11 and the trend that the Stokes number is an increasing function does not change

(see Equations (2.17) and (2.18) in Section 2.5.1).

The key parameter of the dust evolution is not the pure gas inflow mass flux but the ratio

of the dust and gas inflow mass fluxes. Figure 2.3 represents the distributions of the dust

surface density, the dust radius, and the Stokes number of the representative dust particles

for Ṁg = 0.002 MJ Myr−1 and α = 10−4. In this case, the snow line lies at r = 5RJ (see

Figure (2.1)). The profiles of the surface density and radius of dust particles are lower than

those for Ṁg = 0.02 MJ Myr−1 and α = 10−4 (Figure 2.2). The radial profiles of St are

steeper than those in the fiducial case (we derive Equation (2.17), an analytic equation of

St for Ṁg = 0.002 MJ Myr−1, in Section 2.5.1). Nevertheless, we find that dust particles

grow beyond St = 1 only when Ṁd/Ṁg = 1. For fixed Ṁd/Ṁg, Ṁg dependence of St

is indeed weak. When Ṁg = 0.02 MJ Myr−1, only T depends on Ṁg (T ∝ Ṁ1/4
g ) so

that St ∝ T−2/5 ∝ Ṁ−1/10
g (Equation (2.15)). When Ṁg = 0.002 MJ Myr−1 or α = 10−2,

St ∝ T−1 × Ṁ4/9
g ∝ Ṁ7/36

g or St ∝ T−1 × Ṁ4/11
g ∝ Ṁ5/44

g (Equations (2.17) and (2.18)).
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Figure 2.3: Steady-state profiles of dust with a lower gas inflow flux. Same as Figure 2.2,
but for Ṁg = 0.002 MJ Myr−1 and α = 10−4. The dashed lines in the bottom panel show
the prediction from the analytic estimate given by Equation (2.17). Shaded in gray is the
region interior to the snow line, which lies at r = 5RJ.



2.3. RESULTS 31

2.3.3 Effects of the Strength of Turbulence

The strength of turbulence in the circumplanetary disk is also a key parameter of the dust

evolution. Figure 2.4 represents the profiles of the dust particles in the case with Ṁg =

0.02 MJ Myr−1, and α = 10−5 (upper panel) and α = 10−2 (lower panel). In the case

of α = 10−5, the Stokes number of drifting particles is on average lower than those in

the fiducial case with α = 10−4. Even if Ṁd/Ṁg = 1, the dust particles cannot grow to

satellitesimals outside of the snow line at r = 10 RJ. In the case of α = 10−2, the Stokes

number is slightly higher than in the fiducial case. Equations (2.15) and (2.18) show that the

Stokes number is actually proportional to α1/5 or α1/11 when Ṁg = 0.02 MJ Myr−1 (see also

Equation (2.17) for Ṁg = 0.002 MJ Myr−1). However, the stokes number is not high enough

for the particles to overcome the radial drift outside the snow line unless Ṁd/Ṁg ≥ 1.

Even if Ṁd/Ṁg = 1, satellitesimals would not form via direct dust growth because the

relative velocity between the dust particles would be too high to avoid collisional frag-

mentation. Collision simulations by Wada et al. (2009) argued that icy dust aggregates

with monomers of 0.1 µm fragment upon collision if the collision velocity is higher than

50 m s−1. Figure 2.5 represents the dust–dust relative velocities for different values of α.

When α = 10−4, the relative velocity is determined by the radial drift speed and that induced

by the turbulence is low. When α = 10−2, the dust–dust relative velocity is determined by

the turbulence because the relative velocity induced by the turbulence is proportional to
√
α

(Equation(2.14)) and it becomes 10 times higher than that for α = 10−4. Figure 2.5 shows

that the relative velocity exceeds 50 m s−1, indicating that collisional fragmentation would

happen. Therefore, satellitesimal formation via direct dust coagulation is unlikely to occur

in such strong turbulence. Note that experiments by Gundlach & Blum (2015) showed that

the fragmentation occurs with the collision speed of ∼ 10 m s−1 for icy aggregates with

monomers of 1 µm.

2.3.4 Conditions for Satellitesimal Formation

The results presented in the previous subsections can be summarized in Figure 2.6. This

figure represents the condition for satellitesimal formation when Ṁg = 0.02 MJ Myr−1.
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Figure 2.4: Steady-state profiles of dust with different turbulent strength. Steady-state
profiles of the Stokes number St of the particles when Ṁg = 0.02 MJ Myr−1, and α = 10−5

(upper panel) and α = 10−2 (lower panel). The dashed lines in the lower panel show the
prediction from the analytic estimate given by Equation (2.18).
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Figure 2.5: Dust–dust relative velocities with different turbulent strength. The left and
right panels are α = 10−4 and α = 10−2, respectively. The other conditions are Ṁd/Ṁg = 1
and Ṁg = 0.02 MJ Myr−1 in both the panels. The black curves represent the dust–dust
relative velocities (collision velocities). The red and blue curves represent the velocities
induced by only the turbulence and their radial drift, respectively. The black dashed lines
are the critical velocity of fragmentation.

The conditions are Ṁd/Ṁg ≥ 1 and 10−4 ≤ α < 10−2. The condition for breaking through

the radial drift barrier is approximately given by Ṁd/Ṁg > 6 × 10−3 × α−1/2 derived from

the condition St > 1 at r = 10 RJ (see Equation (2.15)). When the turbulence is strong

(α ≳ 10−3), it is about Ṁd/Ṁg > 0.08 α−1/6 (see Equation (2.18)). The dashed lines in

Figure (2.6) show the boundary of each condition. However, in the case of α = 10−2, the

aggregate collision velocity is too high to avoid collisional fragmentation. When Ṁg =

0.002 MJ Myr−1, the drift barrier is overcome outside the snow line even if α = 10−5

because the line is at r = 5 RJ (asterisk in Figure (2.6)).

2.4 Discussions

2.4.1 Feasibility of the High Dust-to-Gas Inflow Mass Flux Ratio

We found that the one of the conditions for satellitesimal formation is Ṁd/Ṁg ≥ 1. How-

ever, this condition may be difficult to achieve. First, the dust particles tend to settle down

toward the midplane, the inflow gas from the high altitude is likely to dust-poor gas (Tani-

gawa et al., 2012). This effect must depend on the conditions of the turbulence and the

gas density of the region around the circumplanetary disk which the accretion gas comes
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Figure 2.6: Condition for satellitesimal formation. The gas accretion rate is Ṁg =

0.02 MJ Myr−1. The green ticks indicate that dust particles grow to satellitesimals outside
of the snow line at r = 10 RJ. The red crosses indicate that the radial drift barrier inhibits
dust growth to satellitesimals. The blue triangles indicate that dust particles grow to satel-
litesimals on the calculations but the collision velocity (dust–dust relative velocity) is faster
than the critical velocity of fragmentation, 50 m s−1. The dashed lines show the condition
St = 1 at r = 10 RJ from Equations (2.15) and (2.18). When Ṁg = 0.002 MJ Myr−1,
the condition is the same except that the drift barrier is overcome outside the snow line if
Ṁd/Ṁg = 1 and α = 10−5 (asterisk).
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from (Equations (2.15) and (2.10)). Second, the dust supply may not be enough to achieve

Ṁd/Ṁg ≥ 1. Dust particles are drifted from the outer region of the protoplanetary disk.

However, these particles have already grown to the pebbles (cm-sized particles) until they

reach around the gas planets like Jupiter (e.g. Lambrechts & Johansen, 2012; Okuzumi

et al., 2012; Sato et al., 2016), so that most of them should be dammed at the outer edge of

the gas gap by the positive gas pressure gradient (e.g. Adachi et al., 1976; Zhu et al., 2012;

Kanagawa et al., 2018). In this case, only a small part of the dust particles can penetrate

into the gas gap and flow into the circumplanetary disk, so that the dust-to-gas mass inflow

flux ratio should be smaller than unity.

One possibility to achieve the high ratio is considering satellitesimal formation in the fi-

nal phase of planetary formation. Photoevaporation may increase the dust-to-gas mass ratio

in protoplanetary disk as time passes (e.g. Alexander et al., 2006a,b). It is also considered

that the gas flux decreases in the final phase because the gas gap becomes wider and deeper

(e.g. Kanagawa et al., 2015; Tanigawa & Tanaka, 2016). Our results actually suggested that

low gas inflow mass flux is suitable for satellitesimal formation. The midplane tempera-

ture T is almost proportional to Ṁ1/4
g (Equation (2.3)). When the gas inflow decrease, the

disk becomes cooler and the snow line moves inward (see Figure 2.1). This means that the

area where icy satellitesimals can form expands. Moreover, the collisional velocity driven

by turbulence weakly depends on the gas inflow rate, ∆vt ∝ cs ∝ T 1/2 ∝ Ṁ1/8
g (Equation

(2.14)). Low gas inflow mass flux may also contribute to overcoming fragmentation barrier.

2.4.2 Effects of the Internal Density

We investigated the impact of changing the internal density of dust particles on satellites-

imal formation. Figure 2.7 represents the Stokes number for ρint = 1.4 × 10−4 g cm−3 and

α = 10−4. We found that the conditions for satellitesimal formation did not change from

those with ρint = 1.4 g cm−3 (see Figures. 2.2 and 2.4). This is because the Stokes num-

ber for small r can also be approximated as Equation (2.15) in this case, (we found that

Rep ≳ 103 for r ∼ 10 RJ and we have been able to assume CD ≈ 0.5) and this approxi-

mated Stokes number dose not depend on ρint. In generally, the growth timescale takes a
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Figure 2.7: Steady-state profiles of fluffy dust. The Stokes number St of the highly porous
(ρint = 1.4 × 10−4g cm−3) dust particles with α = 10−4, and Ṁg = 0.02 (left panel) and
0.002 MJ Myr−1 (right panel). The dashed lines in both the panels show the predictions
from the analytic estimates given by Equation (2.15). We stopped the calculation when the
particle radius reaches 100 km (the red curve in the left panel).

minimum value within the Newton regime (Okuzumi et al., 2012). Therefore, the Stokes

number dose not grow beyond the dashed lines in Figure 2.7 by changing ρint unless it

reaches unity. The impact of changing ρint is only that the fluffy particles move earlier than

the compact particles from the Stokes regime (Rep ≲ 1) to the Newton regime.

We note that the growth timescale (i.e. St) depends on the internal density only in the

Stokes regime (Okuzumi et al., 2012). Since the gas densities of protoplanetary disks are

generally much lower than those of circumplanetary disks, the growth timescale of highly

porous dust aggregates in protoplanetary disks can be so small that they overcome the drift

barrier within the Stokes regime (Okuzumi et al., 2012).

2.4.3 Streaming Instability

Generating growing particle-density perturbations by streaming instability is another plan-

etesimal formation mechanism not the collisional growth of the dust particles (Youdin &

Goodman, 2005). The difference between the velocities of the dust and gas drives the in-

stability. The dust particles are concentrated quickly in localized dense clumps, so that they

do not drift to the Sun. This mechanism may also be applicable to satellitesimal formation.

Carrera et al. (2015) showed that the condition that streaming instability is active depends
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Figure 2.8: Steady-state profiles of dust-to-gas surface density ratio. The gas accretion
rate is Ṁg = 0.02 and α = 10−4. The dashed line shows the occurrence condition of
streaming instability in the most suitable case of St (Carrera et al., 2015).

on the dust-to-gas surface density ratio and the Stokes number of the dust particles. They

found that the particle clumps can form if Σd/Σg > 0.02 in the most suitable Stokes num-

ber condition (see Figure 8 in Carrera et al. (2015)). However, our results showed that the

ratio is much lower than the critical value (see Figure 2.8), so that it should be difficult to

form satellitesimals via the streaming instability process. Note that water sublimation or

recondensation near the snowline can result in an enhancement in the dust surface density

and it may be able to trigger streaming instability (Ida et al., 2016; Ida & Guillot, 2016;

Schoonenberg & Ormel, 2017).

2.4.4 Validity of the Single-size Approach in Circumplanetary Disks

We used a single-size approach to investigate the growth and drift of dust particles in CPDs.

As shown by Sato et al. (2016), this approach is valid for the growth and drift of mass-

dominating particles in PPDs, as long as the collisional destruction of the particles is neg-

ligible (see also Krijt et al. (2016), Okuzumi et al. (2016), and Tsukamoto et al. (2017) for

applications to dust growth in protoplanetary disks).

In principle, the single-size approximation breaks down when there is more than one

population of particles that dominates the total dust mass. Unlike our assumption that the
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dust inflow onto the CPD is concentrated at the outer edge of the gas inflow region, the dust

inflow may be extended over a wide area of the disk. In this case, the size distribution in

the inner disk regions may have two peaks of the drifting pebbles that accreted in the outer

disk region and the small dust grains directly supplied to the inner disk regions. Actually,

when the dust particles strongly couple with the gas, the mass flux of the dust inflow should

be proportional to that of the gas f ∝ r−1. The ratio of the dust mass flux flowing to the

inside of r relative to the total dust inflow mass flux is then ≈ r/rb which is still about 0.5

even if r = 15 RJ (the orbit of Ganymede). Therefore, the actual size distribution of the dust

particles may be wide. We note that our assumption of the concentrated dust inflow may

have also caused overestimation of the Stoke number especially in the outer disk regions

(St ∝ Ṁ2/5
d , Ṁ2/3

d , or Ṁ6/11
d in our model, see Equations (2.15), (2.17), and (2.18)) and the

satellitesimal formation could be harder in reality.

On the other hand, even if the dust particles have a wide size distribution, the smaller

particles should grow rapidly and the distribution will narrow. This is because the dust

growth timescale tgrow must be an increasing function of the dust mass md in the Newton

regime (tgrow ∝ m1/4
d or m1/3

d in our model, see Equations (2.5), (2.6), (2.7), and the ap-

proximations in Section 2.3.2 and Section 2.5.1) so that the dust particles should grow as

orderly growth in most areas within the disk. However, the md dependence of tgrow is weak

and we will have to make sure of the validity of the single-size approach by using full-size

calculations of dust growth in CPDs in future.

2.4.5 Separation of α coefficient: Turbulent Viscosity and Dust Diffusion

In this thesis, we do not separate the two kinds of α: the turbulent viscosity coefficient

αacc and the turbulent diffusion coefficient of dust particles αdiff . The former determines the

evolution of the gas accretion disk and the latter drives the motion of dust particles. Almost

all of the previous planet/satellite formation work considered the two values as the same,

but actually they are physically different and should be considered separately. Some pre-

vious work has carried out MHD simulations of PPDs and showen the relations of the two

values. Johansen & Klahr (2005) calculated ideal MHD simulations and directly measures
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the turbulent diffusion coefficient of the dust embedded in magneto-rotational turbulence.

Johansen et al. (2006) also investigated the effect of an imposed vertical magnetic field on

the diffusion. These studies predicted that αacc ∼ 2 − 20 αdiff . Okuzumi & Hirose (2011)

carried out 3D ohmic-resistive MHD simulations and showed that αacc ∼ 5− 30 αdiff on the

mid-plane in MRI-inactive “dead-zones”. A simple estimate from the outcome value of the

rms vertical velocity fluctuation from Bai (2015), which calculated 3D MHD simulations

including all three non-ideal MHD effects, suggested that αacc ≳ 10 αdiff . Given the argu-

ment that MRI should be dead in CPDs (Fujii et al., 2014; Keith & Wardle, 2014; Turner

et al., 2014; Fujii et al., 2017), it can be deduced that αacc ≳ 10 αdiff in CPDs as well.

Therefore, we modify the calculation methods of the gas surface density of the disk,

the vertical diffusion of the dust particles, and the dust-dust/dust-gas relative velocities. We

substitute ν = αacccsHg for Eq. (2.2) in stead of ν = αcsHg and αdiff for Eqs. (2.10) and

(2.14) instead of α. Here, isotropic diffusion of dust particles is implicitly assumed. We

then calculate the dust evolution as well as previous sections by changing the value of αacc

and αdiff. Figure 2.9 represents the evolution of the Stokes number of fluffy dust particles

(ρint = 1.4 × 10−4g cm−3) with αacc = 10−2 and αdiff = 10−4. This is equivalent to that we

change αacc 100 times higher from the case in Figure 2.7 and keep αdiff unchanged. As a

result, satellitesimal formation becomes easy and even in the case with Ṁd/Ṁg = 0.01, the

particles can grow to satellitesimals outside the snowline. This is because the gas surface

density of the disk becomes lower and then the drift speed becomes slower, but the vertical

diffusion is still weak and so the collision rate does not change. Figure 2.10 shows the result

of our parameter study in αacc–αdiff space. First, the diagonal results are equivalent to those

in the previous sections, and actually, they show that the drift, satellitesimal formation,

and fragmentation occur when αacc = αdiff = 10−5, 10−4 − 10−3, and 10−2, respectively. The

figure also shows that if αacc/αdiff is 10 times larger, satellitesimals can form even if Ṁd/Ṁg

is 10 times smaller. This trend can be understood by the modified version of the Eq. (2.15),

the analytical approximation of the Stokes number. The α dependency of the equation

can be separated to the αacc and αdiff dependencies by reconsidering the analytical deriving
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Figure 2.9: Steady-state profiles of dust with separated α. The Stokes number St of the
highly porous (ρint = 1.4 × 10−4g cm−3) dust particles with αacc = 10−2, αdiff = 10−4, and
Ṁg = 0.02. The dashed lines are the analytic estimates given by Eqs. (2.15) and (2.16).

process. The dependency of the Stokes number is then, including Ṁd/Ṁg dependency,

St ∝ (Ṁd/Ṁg)2/5 × α1/5 ∝ (Ṁd/Ṁg)2/5 ×
(
αacc

αdiff

)2/5

× α−1/5
diff . (2.16)

Therefore, a 10 times increase of αacc/αdiff is equivalent to a 10 times increase of Ṁd/Ṁg.

If our deduction from previous MHD simulations of PPDs is correct, satellitesimal may be

able to form even if Ṁd/Ṁg ∼ 0.01−0.1. We also note that a 2D hydrodynamical simulation

shows that dissipation of spiral shocks transports the angular momentum of CPDs (Zhu

et al., 2016), in this case, the horizontal diffusion of the dust particles may become even

higher but the vertical diffusion be still low. This effect might make the collision rate higher

than considered in this subsection and help the satellitesimal formation even easier.

2.5 Appendix

2.5.1 Approximation of the Stokes Number for Low Gas Density Cases

Although we assume that CD is a constant in Section 2.3.2, this assumption is not correct

when the gas density is low by small gas inflow mass flux or strong turbulence. When

Ṁg = 0.002 MJ Myr−1 and α = 10−4, or Ṁg = 0.002 MJ Myr−1 and α = 10−2, the particle
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Figure 2.10: Condition for satellitesimal formation with separated α. The gas accretion
rate is Ṁg = 0.02 MJ Myr−1. The particles are highly porous (ρint = 1.4× 10−4g cm−3). The
green ticks, blue triangles, red diamonds, and indicate the minimum Ṁd/Ṁg conditions for
satellitesimal formation outside the snowline. The particles drift into the planet at the black
cross case. The asterisk indicates the fragmentation must occur.

Reynolds number is with in the range of 10−1 ≲ Rep ≲ 102 for r ∼ 10 RJ. In this case, CD

can be approximated as CD ≈ 12/
√

Rep (Equation (2.8)). When Ṁg = 0.002 MJ Myr−1 and

α = 10−4, the dust–dust and dust–gas relative velocities are approximated as ∆vdd ≈ (1/2)vr

and ∆vdg ≈ vr. The Stokes number St can then be approximated as

St ≈ 1.6
(

Ṁd/Ṁg

1

)2/3 (
α

10−4

)−1/9

×
(

Ṁg

0.002 MJ Myr−1

)4/9 ( T
90 K

)−1 (
ρint

1.4 g cm−3

)−2/9 (
Mcp

1 MJ

)7/9 (
r

10 RJ

)−13/9

,

(2.17)

for small r. Unlike in Equations (2.15) and (2.18), St decreases with increasing α, although

the dependence is very weak. Strong turbulence diffuses dust particles into the vertical di-

rection and thereby reduces their collision rate (see Equations (2.5) and (2.10)). However,

this effect is canceled out by the particle collision velocity induced by turbulence, which

increases with increasing α. When Ṁg = 0.02 MJ Myr−1 and α = 10−2, the two relative ve-

locities are determined by the strength of turbulence (i.e. ∆vdd ≈ ∆vdg ≈ ∆vt ≈
√

3αcsSt1/2
1 ,
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see Figure 2.5), for small r,

St ≈ 0.73
(

Ṁd/Ṁg

0.1

)6/11 (
α

10−2

)1/11

×
(

Ṁg

0.02 MJ Myr−1

)4/11 ( T
160 K

)−1 (
ρint

1.4 g cm−3

)−2/11 (
Mcp

1 MJ

)9/11 (
r

10 RJ

)−15/11

.

(2.18)



Chapter 3 The Galilean Satellites Formation

by Pebble Accretion

This chapter is from

Shibaike, Y., Ormel, C., W., Ida, S., Okuzumi, S., and Sasaki, T., in prep.

3.1 Short Introduction

In Chapter 2, we found that the satellite formation by the classical satellitesimal accretion

model with realistic conditions around the planets has severe problems. Therefore, we

construct a new alternative scenario for the origin of the Galilean satellites in this chapter.

Figure 3.1 represents the outline of our “slow-pebble-accretion” scenario. Only four large

planetesimals are captured by the CJD, which slowly accrete the pebbles drifting toward

Jupiter as are shown in Chapter 2. We show that this scenario can reproduces the physical,

dynamical, compositional, and structural properties of the satellite system.

3.2 Methods

The methods to investigate the scenario include many physics and are complicated. There-

fore, we first summarize them and then the details are shown.

3.2.1 Summary of Methods

We model the gas accretion rate as Ṁg = 0.2 exp(−(t − tgap)/tdep)) MJ Myr−1, where t,

tgap, tdep, and MJ are the time after the formation of CAIs, gap opening time, gas depletion

timescale of the CSD (we assume tdep = 3 Myr), and the current Jupiter mass, respectively.

We consider a 1-D viscous accretion CJD. We assume that the gas mass flux is uniform in

the CJD and it is equal to both the inflow mass flux to the disk and gas accretion rate to

Jupiter, and the mass of Jupiter grows by Ṁg from 0.4 MJ at t = tgap to 1.0 MJ at the end of

43
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Figure 3.1: Outline of the new formation scenario for the Galilean satellites. 1.0 Myr)
Jupiter grows to ≈ 0.4 MJ. The gas accretion rate decreases due to a gap around the CJD and then an
inner cavity around Jupiter opens. Pebbles drifting from the outer region of the CSD pile up at the
pressure maximum of the gap. Only small dust particles coupled with gas are supplied to the CJD.
Some planetesimals form from the pebbles at the pressure maximum. 1.5 Myr) Three planetesimals
are captured by the CJD and migrate toward Jupiter by aerodynamic drag. The innermost one stops
at the edge of the inner cavity and the two other planetesimals are captured into 2:1 mean motion
resonances one by one. The position of the snow line is just inside the third satellite. 2.0 Myr)
The fourth planetesimal is captured by the disk. It migrates inward quickly and is captured into
a 2:1 resonance with the third one. The difference in capture time between the third and fourth
planetesimals creates the dichotomy of their interior ice-rock differentiation. ∼ 10 Myr) The four
planetesimals grow to almost the same sizes with the current Galilean satellites. The gas accretion
rate decreases much because of the depletion of the parent CSD. The snowline then moves to just
inside the second satellite (Europa) and small quantities of icy pebbles are accreted onto its outer-
most shell. ∼ 100 Myr) The CJD has disappeared and the fourth satellite (Callisto) escapes from the
resonance. The rock-metal differentiation occurs in Io by tidal heating and in Europa and Ganymede
by long-lived radiogenic heating.
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the calculation. We fix the position of the edge of the cavity rcav at the current position of

Io. On the distribution of the disk temperature in our model, the position of the snowline

rsnow is at Ganymede’s orbit when the gap opens and moves to Europa’s orbit at the end of

the disk evolution.

We first calculate the evolution of dust particles in the CJD using a 1-D single-size

analytical formula (Shibaike et al., 2017). They grow to pebbles and then drift to Jupiter

because the gas disk rotates with sub-Kepler velocity which is slower than the rotating

velocity of the pebbles so that they lose their angular momentum. We assume the dust

inflow mass flux as xṀg, where x, the dust-to-gas accretion ratio, is a constant parameter

with x = 0.0026. The pebble mass flux Mp is equal to xṀg at the outer edge of the disk

and is uniform in the disk except for the filtering effects of that outer satellites accrete

the pebbles and the evaporation of the pebbles inside the snowline. There are only rocky

pebbles inside the snowline and we assume that the pebble mass flux is halved. We also

assume that the fragmentation of pebbles occur when their collisional velocity becomes

faster than 5 or 50 m s−1 for inside or outside the snowline, respectively (Wada et al., 2009).

We calculate the disk midplane temperature as Td = (3GMcpṀg/(8πσSBr3))1/4g, where

g = (3/8τ+1/(4.8τ))1/4, σSB and G are the Stefan-Boltzmann constant and the Gravitational

constant, respectively (Nakamoto & Nakagawa, 1994). The Rosseland mean opacity is

τ = κΣg, where the dust opacity is κ = 450rsdg for Td ≥ 160 K and κ = 450(Td/160 K)2rsdg

for Td < 160 K. We neglect the effect of the gas opacity (∼ 10−5 to 10−4 cm2 g−1 (Mizuno,

1980)).

We calculate the mass of the growing seeds as

Ms(t) =
∫ t

tcap

ṀpPeff dt, (3.1)

where tcap and Peff are the capture time of the seeds and their pebble accretion efficiencies.

The pebble accretion efficiency depends on the mass of the seed and the Stokes number of

the pebbles around it (Ormel & Liu, 2018).

We also calculate the migration of the seeds by aerodynamic drag and Type I migration

which includes both inward and outward migration (Adachi et al., 1976; Weidenschilling,
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1977; Paardekooper et al., 2011; Ogihara et al., 2015). We finally consider the capture into

2:1 or 3:2 mean motion resonances (Ogihara & Kobayashi, 2013).

We calculate the surface temperature, Ts(Rs), with the radii of the seeds, Rs, from the

equilibrium of the emission and accretion heat of pebbles. We also calculate the cumulative

heat of 26Al decay, ∆Tfin(R), from when the pebbles (the ice mass fraction is 0.5) including
26Al have been accreted on the seeds’ surface to the end of the formation, where R is

the distance from the center of the seeds. We can then estimate the final (i.e. maximum)

internal temperature of the seeds at the point R by Tfin(R) = Ts(R)+∆Tfin(R) (Barr & Canup,

2008). We do not include thermal diffusion, solid-state convection, and latent heat inside

the seeds.

Here, we show the details of the methods.

3.2.2 Circum-Jovian Disk model

After the gap formation, the gas accretion rate to Jupiter becomes much lower. In this work,

we assume that the gas accretion rate is

Ṁg = Ṁg,gap exp
(
−

t − tgap

tdep

)
(t > tgap). (3.2)

We also assume that the initial gas accretion rate and the gas depletion timescale are

Ṁg,gap = 0.2 MJ Myr−1 and tdep = 3 × 106 yr, where MJ is the current Jupiter mass. We

set t = 0 as the timing of the formation of CAIs. The mass of Jupiter grows by Ṁg from

0.4 MJ at t = tgap to 1.0 MJ at the end of the calculation. The accretion rate is equal to the

inflow mass flux from the circum-stellar disk (CSD) to circum-Jovian disk (CJD) because

we assume that the flow of gas (and pebbles) in whole region of the disk is semi-steady and

all of the gas flow into the disk will be accreted by Jupiter eventually.

A cavity of the gas disk can open around Jupiter by the magnetic field of the planet.

The timing that the inner cavity opens depends on the strength of the magnetic field. The

position of the disk inner edge can be estimated from the balance of gas accretion and

magnetic stress (Lovelace et al., 2011; Liu et al., 2017). If Jupiter has a dipole magnetic
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field, it is given by

rcav =

 B4
cpR12

cp

4GMcpṀ2
g

1/7

=1.07
(

Bcp

40 Gauss

)4/7 (
Rcp

RJ

)12/7 (
Mcp

0.4 MJ

)−1/7  Ṁ2
g

0.2 MJ Myr−1

−2/7

[RJ],

(3.3)

valid for rcav < rco where rco is the corotation radius (see Section 3.5.2). In the equation,

Bcp, Rcp, G, and Mcp are the strength of the magnetic field of the central planet, radius of the

central planet, gravitational constant, and mass of the central planet, respectively. Current

Jupiter has a magnetic field and its strength on the surface of the equational region of the

planet is 4.2 Gauss (Connerney, 1993). Previous work, however, argued that the magnetic

field was once stronger than the current one (Stevenson et al., 1983; Sánchez-Lavega, 2004;

Christensen et al., 2009). Therefore, we consider that the magnetic field is ≈ 40 Gauss. In

this case, the disk inner cavity and gap open at almost same time (substituting the Jupiter

radius RJ at rcav for Eq. (3.3)). On the other hand, if the strength of the magnetic field is the

same with the current one, the cavity only opens 14 Myr later than the gap opening. In this

case, any satellite would be consumed by proto-Jupiter (t < 14Myr) and too little material

would remain to form form the Galilean satellites after gap opening. We summarize the

evolution of Ṁg in Figure 3.2. In our model, we assume that rcav is fixed at Io’s orbit for

simplicity.

Based on the above gas accretion model, we calculate the evolution of the 1-D CJD.

The gas surface density of the viscous accretion disk is1

Σg =
ṀgΩK

3παc2
s
. (3.4)

We assumed that the strength of turbulence is α = 10−4 because the MRI should not have

occurred in the CJD (Fujii et al., 2014). The upper left panel of Figure 3.3 represents the

evolution of the gas surface density. The gas surface density becomes small as the gas

accretion rate decreases.

1The equation can be derived from Eq. (2.2) by neglecting the first term on the right-hand.
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Figure 3.2: Model of the gas accretion rate. The black solid curve represents the evolution
of the gas accretion rate in our model. After the gap opens at t = tgap, the accretion rate
decreases exponentially. The red and blue regions represent the gas accretion rates required
for the gap opening if the strength of Jupiter’s magnetic field is Bcp ≈ 40, or 4 Gauss (i.e.
the current strength), respectively. The red and blue dashed lines represent the time (after
the formation of CAIs) that the inner cavity opens if Bcp ≈ 40 or 4 Gauss, respectively.
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Figure 3.3: Evolution of the circum-Jovian disk and the pebbles. The left upper and
lower panels represent the evolution of the gas surface density and the temperature of the
mid-plane, respectively. The black horizontal line is the sublimation temperature of water
ice, 160 K. The right upper and lower panels represent the evolution of the Stokes number
of the drifting pebbles and the pebble surface density, respectively. The color variations of
the both panels represent the time after the gap opens (t − tgap).



50CHAPTER 3. THE GALILEAN SATELLITES FORMATION BY PEBBLE ACCRETION

We assume that the CJD is viscously heated. The gas temperature in the midplane of

the viscous accretion disk is given by (Nakamoto & Nakagawa, 1994)2,

Td =

(
3GMcpṀg

8πσSBr3

)1/4

g, (3.5)

where σSB is the Stefan-Boltzmann constant and3,

g =
(
3
8
τ +

1
4.8τ

)1/4

(3.6)

is a function of the Rosseland mean optical depth τ = κΣg. In principle, the opacity κ de-

pends on the size distribution of the smallest dust particles. However, the size distribution

cannot be predicted from the simple dust evolution model as employed in this study. There-

fore, we just assume rsdg, the ratio of the surface densities of the small grains that affect the

temperature and the gas. Then, the opacity can be assumed as

κ =


450rsdg Td ≥ 160 K

450 (Td/160 K)2 rsdg Td < 160 K.
(3.7)

The lower left panel of Figure 3.3 represents the evolution of the temperature when

rsdg = 1.65 × 10−7. We choose this value to get the thermal condition that the snowline is

just inside current Ganymede’s orbit. The slopes on curves change at the snowline where

the temperature is 160 K. The Rosseland mean optical depth τ becomes the smallest (∼ 1)

slightly outside the snowline. The temperature decrease as the gas accretion rate reduces.

The temperature depends on this ratio rsdg and we discuss the effects by this dependency in

Section 3.5.3 in detail.

3.2.3 Pebble Growth and Radial Drift

We calculate the distributions of the Stokes number and surface density of the drifting peb-

bles in the CJD. We only consider semi-steady conditions of pebbles because the evolution

timescale of the pebbles is much shorter than those of the disk and satellites. In this case,
2The equation is the same with Eq. (2.3) in Section 2.2.1.
3The equation is the same with Eq. (2.4) in Section 2.2.1.
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the pebble mass flux in the CJD Ṁp does not depend on the distance from Jupiter r. It is

also equal to the mass flux of dust particles supplied from the parent CSD to the CJD,

Ṁp = xṀg, (3.8)

where x is the ratio of the dust-to-gas accretion rates. We treat this ratio as a parameter

and assume that the ratio does not depend on time, for simplicity. However, the mass flux

of pebbles drifting inside the snowline is smaller than that of outside because pebbles lose

their H2O ice inside the snowline. We assume that Ṁp inside the snowline becomes half of

that of outside. We also consider the filtering effect by outer satellites.

Under these assumptions, we first calculate the Stokes number of the pebbles. When the

Stokes number is determined by radial drift, it can be calculated by the following equation

(modified version of Eq. (2.15) in Section 2.3.1),

Stp = 0.23
(

2
3 + 2p + q

)4/5 (
10

18 − 39q

)2/5

×
(

Ṁp/Ṁg

0.003

)2/5 (
α

10−4

)1/5 ( Td

160 K

)−2/5 (
Mcp

1 MJ

)2/5 (
r

10 RJ

)−2/5

,

(3.9)

where p and q are the r exponents of the gas surface density and temperature (i.e. Σg ∝ r−p

and Td ∝ r−q).

However, fragmentation occurs if the collision velocity, in other words, the pebble-to-

pebble relative velocity is too fast. This relative velocity is4,

vpp =

√
(vr/2)2 + v2

t , (3.10)

where vr and vt are the radial drift velocity of the pebbles and the relative velocity induced

by turbulence, respectively. These two velocities are (Adachi et al., 1976; Weidenschilling,

1977; Ormel & Cuzzi, 2007)5

vr = −2
Stp

Stp
2 + 1

ηvK, (3.11)

4The equation can be derived from Eq. (2.13) by neglecting ∆v2
B, ∆v2

ϕ, and ∆v2
z on the right-hand.

5The equation is the same with Eq. (2.11) in Section 2.2.2 except the subscript of St.
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where vK = rΩK is the Kepler velocity, and6

vt =
√

3αcsStp
1/2. (3.12)

If the Stokes number is determined by their fragmentation, it is

Stp =
−3αc2

s +

√
9α2c4

s + 4η2r2Ω2
Kv2

cr

2η2r2Ω2
K

, (3.13)

where vcr is the critical fragmentation speed (Okuzumi et al., 2016). This equation can be

derived by substituting Eq. (3.11), (3.12), and vpp = vcr for Eq. (3.10).

Finally, the pebble surface density can be calculated by the continuity equation,

Σp =
Ṁp

2πrvr
. (3.14)

The right panels of Figure 3.3 represent the evolution of the Stokes number and the

surface density of the dust particles (i.e. pebbles). The stair around 10 RJ is consistent

with the position of the snowline. The snowline migrates inward because the temperature

becomes lower as the gas accretion rate decreases. We also find that the Stokes number

inside the snowline is smaller than that outside. Outside the snowline, the Stokes number

is determined by drift (Eq. (3.9)). While, inside the snowline, the Stokes number is de-

termined by fragmentation (Eq. (3.13)) because rocky particles are more fragile than icy

ones (Wada et al., 2009). We assume that the critical fragmentation speeds of rocky and

icy pebbles are vcr = 5 and 50 m s−1, respectively. In the right panels of Figure 3.3 the

minor stairs reflect the accretion of pebbles by the planets. As time goes on and the satel-

lites grow larger, the pebble accretion efficiency increases, resulting in larger jumps (see

Section 3.2.4). Although we do not consider the inner cavity in this calculation, the rocky

pebbles should flow onto the planet with the gas because they are small enough to couple

to the magnetospheric accretion flow of gas. Their dynamical timescale should be about

the free-fall timescale, and the stopping time of pebbles is much smaller than it because

the upper panel of Figure 3.3 shows that the Stokes number is about 0.02 around the cavity

(5.89 RJ). Note that, however, there is a possibility that the settling of pebbles onto the

midplane prevents them from flowing into the planet with the magnetospheric gas flow.
6The equation is the same with the middle line of Eq. (2.14) in Section 2.2.2 except the subscript of St.
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3.2.4 Pebble Accretion Efficiency

According to recent N-body simulations, the pebble accretion efficiency is well-fitted by

(Liu & Ormel, 2018)

Peff =


0.31

√
µs∆v/vK

Stpη2


−2

+

(
0.39

µs

ηhp

)−2

−1/2

, (3.15)

where µs = Ms/Mcp and hp = Hp/r are the satellite-to-central planet mass ratio and the

pebble aspect ratio, respectively. This equation combines two regimes of pebble accretion,

2-D (the first term) and 3-D (the second term) limits. If the pebble accretion radius is larger

than the pebble scale height Hp, the first term is dominant. The pebble scale height can be

derived analytically from the balance of their vertical sedimentation and diffusion (Youdin

& Lithwick, 2007)7,

Hp = Hg

(
1 +

Stp

α

1 + 2Stp

1 + Stp

)−1/2

, (3.16)

where Hg = cs/ΩK is the gas scale height. The expression in the 2-D limit depends on the

approach velocity of the pebbles ∆v, which is given by the Keplerian shear in the disk or

else the disk head wind. The approach velocity is (Ormel & Liu, 2018)

∆v/vK = 0.52(µsStp)1/3 + η

{
1 + 5.6

(
µs

η3/Stp

)}−1

. (3.17)

The pebble mass flux within an orbit of the seed is smaller than without because a

fraction of drifted pebbles are captured by the embryo,

Ṁp,in = (1 − Peff)Ṁp,out, (3.18)

where Ṁp,in and Ṁp,out are the fluxes inside and outside the embryo, respectively. The upper

panel of Figure 3.4 represents Peff of Seeds1 to 4. All pebble accretion efficiencies of the

satellites are smaller than ∼ 10%. The lower panel represents the growth timescale of the

seeds, tgrow = Ms/(dMs/dt).

In this work, we assume that all seeds are in the settling regime and they always accrete

pebbles effectively. The effective pebble accretion occurs only if the mass becomes larger
7The equation is the same with Eq. (2.10) in Section 2.2.2 except the subscripts of H and St.
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than a critical mass (Ormel, 2017),

M∗ =
v3

hwtstop

8G
=

1
8
η3StpMcp. (3.19)

In our CJD model, we found that the gas aspect ratio hg is about 0.1 in the whole disk

regions and the Stokes number of the pebbles is Stp = 0.1 (See Figures 3.3). Then, the

critical mass is M∗ ∼ 10−8Mcp, which is about 10 times smaller than the initial mass Mini =

3 × 1023g. On the other hand, pebble accretion stops if a gap structure forms around the

seed. We ignore this effect because the critical mass (generally called the pebble isolation

mass) Miso is larger than the mass of the largest Galilean satellite Ganymede, 0.78×10−4MJ.

The pebble isolation mass is (Ataiee et al., 2018)

Miso = h3
g

√
37.3α + 0.01 ×

1 + 0.2

 √αhg

√
1

Stp
2 + 4


0.7 Mcp, (3.20)

where hg = Hg/r is the gas aspect ratio. Then, the isolation mass in our disk model is

Miso ≈ 1.4 × 10−4 Mcp.

3.2.5 Satellite Internal Temperature

We estimate the internal temperature of satellites to discuss their differentiation. The sur-

face temperature of satellites with radius Rs, can be estimated by the following equation

(Barr & Canup, 2008). The temperature Ts(Rs) is

ρsCp(Ts(Rs) − Td) =
1
2

Ṁsu2
i

4πR2
s
− σSB(Ts(Rs)4 − T 4

d ). (3.21)

This equation represents the balance of the energy in the thin layer of the pebbles accreted

during the unit time on the surface of the satellites. The left-hand side is the energy neces-

sary for heating the thin layer. The terms of the right-hand side are the collisional energy

of the accreted pebbles and the emission form the surface. The pebble-satellite collision

velocity ui can be estimated by

ui = min(
√

v2
esc + ∆v2, vset), (3.22)

where vesc =
√

2GMs/Rs and vset = gststop are the escape and settling velocities, respec-

tively. The gravitational field of satellite is gs = GMs/R2
s .
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Heating by 26Al is also very effective. The increase of the satellite internal temperature

at R, distance from the center of the satellite, during the formation is

∆Tfin(R) =
1

Cp

∫ tfin

tacc

mrq26(t)dt

=
mrq26,0

Cpλ26
exp(−λ26tacc),

(3.23)

where tacc and tfin are the time when the satellite radius Rs was equal to R and the end of

the formation (Barr & Canup, 2008). Here, we assume that all 26Al heat has remained at

the point until the end. Thermal diffusion can be ignored because it diffuses only ∼ 10 km

in 107 years. Solid-state convection can also be ignored because it can start at t ∼ 108 year

(Barr & Canup, 2008). Latent heat is not included because the purpose of this estimation is

to determine whether the satellites melt or not. The final (i.e. maximum) satellite internal

temperature at R can be then estimated by the sum of the two heating sources, the accretion

heating and the 26Al heating,

Tfin(R) = Ts(R) + ∆Tfin(R). (3.24)

Note that the 26Al heating is dominant (see Section 3.5.1).

3.2.6 Satellite Migration

There are two main mechanisms that make satellites migrate in the disk, aerodynamic drag

and Type I migration. We consider both two mechanisms at the same time to calculate

the migration of satellites. The aerodynamic drag migration velocity can be obtained by

substituting the Stokes number of satellites, Sts, for Stp of Eq. (3.11),

vgd = −2
Sts

Sts
2 + 1

ηvK. (3.25)

The Stokes number of satellites is8

Sts =
8

3CD

ρsRs

ρgηvK
ΩK. (3.26)

8The equation is the same with Eq. (2.7) in Section 2.2.2 except the subscripts of St, ρ, and R.
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Table 3.1: The capture coefficient CMMR for 2:1 or 3:2 mean motion resonances

Mass ratio 2:1 3:2
Mout/Min ∼ 1 1 × 106 2 × 105

Mout/Min ≲ 0.1 1 × 107 5 × 105

The Type I migration velocity is,

vt1 = bt1

(
Ms

Mcp

) (
Σgr2

Mcp

) (
vK

cs

)2

vK, (3.27)

where bt1 is the migration constant depends on the distribution of the temperature and gas

surface density of the CJD (see Eq. (10) of Ogihara et al. (2015)). If bt1 is negative or

positive, the satellite migrates inward or outward, respectively.

3.2.7 Capture into Mean Motion Resonances

According to a recent N-body simulation, the critical migration timescale for capture into

mean motion resonances is (Ogihara & Kobayashi, 2013),

tcrit = CMMR

(
Min

M⊕

)−4/3 (
Mcp

M⊙

)4/3

Tin, (3.28)

where Min, M⊕, and M⊙ are the mass of the inner satellite, Earth, and Sun, respectively, and

Tin is the orbital period of the inner satellite. If the migration timescale tmig = r/(vgd + vmig)

is longer than this critical timescale, the two bodies can be captured into the resonance. The

capture coefficient CMMR depends on the type of the resonance and the mass ratio of the two

bodies. We summarize the values of CMMR in Table 3.1 cited from Ogihara & Kobayashi

(2013) which calculated numerical simulations (Ogihara & Kobayashi, 2013). Note that

our 1-D model can not consider the eccentricity and inclination of the orbits.

3.2.8 Parameters and Constants in Chapter 3

We summarize the parameters and constants used in Chapter 3 in Table 3.2. We assume

that the values of x, rsdg, and α do not depend on time. We also assume that the rock mass

fraction outside the snowline is mr = 0.5. In this case, q26,0, Cp, and ρs can be assumed as

the values in the table (Barr & Canup, 2008).
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Table 3.2: Parameters and constants in Chapter 3

Value* Description
tgap 0, 1.0, 2.0, 3.0 Myr Gap opening time
x 0.0021, 0.0026 Dust-to-gas accretion rate ratio
α 10−5, 10−4 Strength of the turbulence
rsdg 1.7 × 10−8, 1.7 × 10−7, 1.7 × 10−6 Small grain-to-gas surface densities ratio
tcap 1.0, 1.25, 1.5, 2.0 Myr Capture time
Ms,start 1023, 3 × 1023 g Initial mass of satellites (seeds)
Ṁg,gap 0.2 MJ Myr−1 Initial gas accretion rate
tdep 3 × 106 yr Gas depletion timescale
Mcp,gap 0.4 MJ Initial mass of the central planet
rs,start 50 RJ Initial (captured) position of satellites (seeds)
tfin 3 × 107 yr Time of the end of the formation
mg 3.9 × 10−24 cm3 g s−2 Mean molecular mass of gas
CD 0.5 Drag coefficient
mr 0.5 Rock mass fraction outside the snowline
vcr 5, 50 m s−1 Critical fragmentation speed of rocky/icy pebbles
CMMR Table 3.1 Capture coefficient
λ26 9.68 × 10−7 yr−1 Decay rate of 26Al
q26,0 1.82 × 10−7 W kg−1 Initial heating rate by 26Al
Cp 1400 J kg−1 K−1 Specific heat (for Ganymede and Callisto)
ρs 1.9 g cm−3 Satellite density (for Ganymede and Callisto)

* The boldface shows the fiducial case.
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Table 3.3: Final properties of the satellites
Seeds Capture time [Myr] Final Mass [1025 g] Final Position [RJ] Final Ice Mass Fraction
Seed1 (Io) 1.0 9.14 (8.93) 5.89 (5.89) 0.0028 (0.00)
Seed2 (Europa) 1.25 6.98 (4.80) 9.35 (9.38) 0.11 (0.08)
Seed3 (Ganymede) 1.5 15.8 (14.8) 14.8 (15.0) 0.50 (0.45)
Seed4 (Callisto) 2.0 8.08 (10.8) 23.6 (26.3) 0.50 (0.56)

3.3 Results

We calculate the evolution of the mass and orbits of four planetesimals (Seeds1 to 4) cap-

tured by the CJD one by one (see Table 3.3). We assume the initial mass and positions of

the seeds as Ms,start = 3 × 1023 g and rs,start = 50 RJ, respectively. Figure 3.5 represents the

evolution of the size and orbits of the seeds, and Table 3.3 lists the final mass and posi-

tions. Figure 3.5 and Table 3.3 show that the mass (sizes) of the Galilean satellites can be

reproduced very well. The dichotomy of the size between the inner and outer two satellites

is created by the assumption that the pebble mass flux inside the snow line is half of that

of outside because icy pebbles evaporate inside the snowline. Note that their mass does

not reach the pebble isolation mass and the filtering effect of pebbles by outer satellites

are small enough (see Supplementary Section S1.3). Figure 3.5 also shows that all seeds

migrate quickly (< 3 × 105 year) by aerodynamic drag (not by Type I migration) and are

captured into 2:1 resonances one by one from the inner ones. After the seeds are captured

into the resonances, they grow by pebble accretion without migration and keep their orbits

on the current ones. The position of Seed4 is, on the other hand, different from the real

orbit of Callisto. Seed4 is also captured into a 2:1 resonance with Seed3.

Each Galilean satellite has different ice mass fraction and, in particular, the low ice

mass fraction of Europa is very unique (Table 3.3). We calculate the ice mass fractions

of the growing seeds and find that this low ice mass fraction of Europa (≈ 8%) can be

reproduced by the migration of the snowline at the final phase of the formation (Table 3.3).

Figure 3.5 shows that Seed2 (Europa) accretes icy pebbles after 10 Myr. Although the

ice mass fraction strongly depends on the distribution of the disk temperature, there is a

disk condition which is suitable for reproducing the ice mass fractions of all the Galilean

satellites. In our model ice sublimation occurs instantaneously at the snowline, in contrast
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Figure 3.5: Evolution of the four satellites. The solid curves represent the positions of
the evolving seeds at the time after the gap opens (i.e. t − tgap). The sizes of the circles
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curves range from gray to dark blue for the increasing ice mass fractions of the seeds. The
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inner cavity is fixed at the current orbit of Io (the vertical dotted line). The horizontal dotted
line represents the gas depletion timescale of the CSD. The values of the initial and final
mass, positions, and ice mass fractions are shown in Table 3.3.
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to a previous one (Ronnet et al., 2017). Europa also naturally acquired an icy surface on

top of a rocky interior, because the satellite accretes dry pebbles before accreting ice-rich

pebbles.

We estimate the internal temperature of Seed3 and 4 and find that, in order to avoid

differentiation of Callisto by 26Al heat, its seed must be captured by the disk late enough.

Figure 3.6 represents the internal temperature of Ganymede (Seed3, light blue) and Callisto

(Seed4, orange). The first one is higher than the melting point of Callisto (black) and the

second one is lower than it. This means that Callisto does not melt but Ganymede may melt

by 26Al heat. The dichotomy of their internal ice-rock differentiation can be created by the

difference in their capture time, 0.5 Myr, because the half-life of 26Al is 0.717 Myr. The

long growth timescale (∼ 107 yr) is the reason why such different capture time is allowed.

If the growth timescale is shorter and the difference in the capture time is the same, the final

mass of Ganymede and Callisto would end up too large. Indeed, it is difficult to make the

dichotomy between the internal structures of the two satellites by the classical Canup-Ward

formation scenario where the growth timescale is < 106 yr (Barr & Canup, 2008). Note that

once rock-metal cores form in Europa and Ganymede, they can also differentiate metallic

cores by long-lived radiogenic heating (Spohn & Breuer, 1998), and Io can be differentiated

completely by tidal heating after its formation with its current orbit (Peale et al., 1979).

3.4 Assessment

Our new slow-pebble-accretion scenario reproduces most of the important properties of

the current Galilean satellites; mass, orbits, ice mass fractions, and internal structures.

Although some key assumptions which determine each characteristics of the satellites are

needed to reproduce them, most of the assumptions are supported by previous predictions

or observations. We summarize these in Table 3.4 and discuss in the followings. The first

column lists the key assumptions of our model and the second and third columns describe

the motivations for them.

We consider a situation that the gas accretion rate decreases by the gap opening around
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Table 3.4: Summary of the key assumptions and their validity
Key assumptions Reproduced characteristics Supporting predictions or observations
tdep = 3 Myr - Lifetime of PPDs
rcav = 5.89 RJ Position of Io Stronger magnetic field of young Jupiter

Larger radius of young Jupiter
α = 10−4 - Inactivity of MRI in CPDs
τ ∼ 1 at Ganymede Ice mass fractions of all the satellites Accretion energy dissipation at high altitude
(rsdg = 1.7 × 10−7)
Four seeds Four large Jovian satellites Low likelihood of planetesimal-capture
Circular orbits Resonances of the inner three satellites Long-lived prograde captured orbits
Ms,start = 3 × 1023 g Resonances of the inner three satellites Long-lived prograde captured orbits

Critical mass of pebble accretion’s start
x = 0.0026 Mass of all the satellites A small amount of dust-supply
tgap = 1.0 Myr Melted/unmelted Ganymede & Callisto Early formation of Jupiter
tcap = 1.0, 1.25, 1.5, 2.0 Myr Melted/unmelted Ganymede & Callisto -
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the CJD so that the inner cavity also opens around Jupiter by its magnetic field (see Meth-

ods). The position of the edge of the cavity can be estimated from the balance of the gas

accretion rate and magnetic stress by Jupiter’s magnetic field (Takata & Stevenson, 1996;

Liu et al., 2017). It is plausible that Jupiter’s magnetic field was stronger than the current

one, resulting in magnetospheric accretion and opening of a cavity (Stevenson et al., 1983;

Sánchez-Lavega, 2004; Christensen et al., 2009). In our model, we fix the position of the

cavity at Io’s position (rcav = 5.89 RJ). This should move outward as the gas accretion

rate decreases but stop at the corotation radius. It is considered that Jupiter was larger than

today (Burrows et al., 1997; Fortney et al., 2011) and so the corotation radius was wider

than the current, rco = 2.25 RJ. See also Section 3.5.2.

We also assume that the strength of turbulence of the viscous accretion disk is α = 10−4,

consistent with the inability of the MRI to operate in the CJD (Fujii et al., 2014). From the

assumptions of the strength of turbulence and the gas accretion rate, we calculate the gas

surface density of the disk. The surface density affects many properties of the system, for

example, the disk temperature, the pebble accretion rates, and the migration speeds.

To get the disk thermal condition suitable for reproducing the ice mass fractions of the

satellites, we assume that rsdg, the ratio of the surface densities of the small dust particles

which affect the temperature and the gas is rsdg = 1.7 × 10−7, which renders the Rosseland

mean optical depth τ about unity at Ganymede’s orbit, 15 RJ. This value of rsdg implies that

there is only a tiny quantity of dust present. However, previous work argued that a laminar

viscous accretion disk can keep the midplane temperature cold even if the optical depth

is larger than unity because the accretion energy dissipates at the high altitude of the disk

and is lost due to magnetically driven disk wind (Hirose et al., 2009; Mori et al., in prep.).

Under these conditions, our model will also work with higher rsdg. See also Section 3.5.3.

One of the strong points compared with previous scenarios is that our slow-pebble-

accretion scenario only needs a small amount of solid material (i.e. planetesimals and

dust particles). Actually, only four planetesimals need to be captured by the CJD. This

assumption is consistent with the following facts: after the gap opens in the CSD, such

captures only appear for the planetesimals which have high eccentricities in the CSD (Fujita
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et al., 2013); planetesimals can form at the gas pressure maximum of the gap and those that

are scattered by a large body will have high eccentricities (Kobayashi et al., 2012; Ronnet

et al., 2018). Moreover, our assumptions of a starting location of rs,start = 50 RJ with zero

eccentricity are plausible. According to a previous work, there are orbits that planetesimals

are captured by multiple approaches to Jupiter and become circularized around ≈ 50 RJ

(long-lived prograde captured orbits) (Suetsugu et al., 2016). We also fix the mass of the

captured planetesimals as 3 × 1023g (about 300 km), which is consistent for the properties

of the captured orbits (Suetsugu et al., 2016). These planetesimals are large enough to

start growing by efficient pebble accretion (i.e. in the settling regime) for the adopted disk

properties (Ormel, 2017). Smaller planetesimals, on the other hand, will stay small and may

be scattered or accreted by large ones. In the settling regime, any difference in the initial

mass does not change the final mass because the growth timescale increase with mass. In

addition, planetesimals smaller than the assumed value, are likely to end up in higher order

resonances (i.e. 3:2 instead 2:1), by virtue of their faster migration. Therefore, the initial

seed mass must be similar or larger than our standard value. See also Section 3.5.4 for

further discussion.

Furthermore, the total amount of dust needed to drive the growth in the slow-pebble-

accretion scenario is also modest. Our scenario can reproduce the mass of the current

Galilean satellites even with the dust-to-gas accretion ratio is as low as x = 0.0026, which

is smaller than the solar composition. by a factor of four. This is consistent with the fact that

the gas flowing into the CJD is depleted in solids (Canup & Ward, 2002; Tanigawa et al.,

2012). Because of the gap formation in the CJD caused by Jupiter, only small particles

can overcome the ensuing gas pressure gradient to end up in the CJD (Zhu et al., 2012), In

addition, the accreted gas should be supplied from high altitude where gravitational settling

of larger particles limits the amounts of dust (Tanigawa et al., 2012).

In this scenario, Jupiter should have also grown so large that the gap structure opens

and the pebbles can be trapped at the gas pressure maximum around Jupiter around 1 Myr

after the formation of the calcium-aluminum-rich inclusions (CAIs) to make the dichotomy

of the internal structures of Ganymede and Callisto by 26Al heat. This is consistent with
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a resent “early Jupiter formation” scenario showing that solid materials in the solar sys-

tem were spatially separated by that time (Kruijer et al., 2017). Each capture time of the

planetesimals tcap are also assumed to make the dichotomy.

Callisto is captured into a 2:1 resonance with Ganymede and it is difficult to form

Callisto without a capture in a resonance by our simple calculations. However, present-day

Callisto is not in any resonance with Ganymede, requiring an escape from the resonance.

More detailed studies of the orbital evolutions of the two satellites will be needed.

3.5 Discussions

3.5.1 Formation of Undifferentiated Callisto

Callisto is minimally or only modestly differentiated but the other Galilean satellites are

fully differentiated. It is difficult to make the dichotomy between the internal structures

of Ganymede and Callisto by the difference in the heat of accretion or 26Al decay in the

previous Canup-Ward formation scenario (Canup & Ward, 2006; Barr & Canup, 2008). In

our slow-pebble-accretion scenario, we found that only Ganymede melted by 26Al heat if

its seed was captured by the disk later enough.

Figure 3.7 represents the internal temperature of Callisto where its seed is captured

at different timing. We fix the position of Callisto at the current orbit in this calculation.

Without the 26Al heat, the surface of Callisto keeps its temperature the same as the sur-

rounding gas disk. This means that the pebble accretion heating can not differentiate the

satellite. The settling velocity is ≈ 3 × 105 ms−1 and this is faster than the escape veloc-

ity ≈ 1 × 105 m s−1 (see Section 3.2.5). This means that the aerobraking does not work

on pebbles and the collisional speed of pebbles to the surface of Callisto is actually the

escape velocity. In this case, the collisional velocities are the same in both the classical

satellitesimal-accretion and our slow-pebble-accretion scenarios. The difference between

the two scenarios is the formation timescale. The formation of the Galilean satellites takes

about 10 Myr in our scenario and this is much longer than the melting critical accretion

timescale, 0.6 Myr (Barr & Canup, 2008).

Only in the cases where 26Al radiogenic heating is considered, the internal temperature



66CHAPTER 3. THE GALILEAN SATELLITES FORMATION BY PEBBLE ACCRETION

 100

 200

 300

 400

 500

 600

 500  1000  1500  2000  2500  3000

In
te

ri
o

r 
te

m
p

e
ra

tu
re

 [
K

]

Satellite radius [km]

tgap = 0 yr
1 Myr
2 Myr
3 Myr

w/o
26

Al
Melting point

Figure 3.7: Internal temperature of satellites. The color variations represent the dif-
ference in the gap opening time, in other words, the time that the pebble accretion starts.
The black solid curve represents the internal temperature without 26Al heat (only accretion
heat). The dotted black curve is the melting point of Callisto (Barr & Canup, 2008). We
put seeds of satellites on 26.3 RJ (the current orbit of Callisto) at t = 0, 1, 2, 3 Myr with the
initial mass of Ms,start = 3×1023 g and fix their positions in this calculation. The dust-to-gas
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becomes larger than the melting point. Figure 3.7 shows that this condition is achieved

if most of the 26Al in the material of Callisto has decayed before its formation starts, in

other words, tgap(= tcap) > 2 Myr. Also, if Ganymede starts to form by 1.5 Myr after the

formation of CAIs and Callisto starts later than 2.0 Myr, the dichotomy between the two

satellites should be explained.

3.5.2 Inner Cavity and Position of Io

In this work, we have fixed the position of the disk inner edge as the current orbit of Io,

5.89 RJ, for simplicity. In this section, we actually explain that this assumption is plausible.

However, Equation 3.3 shows the position is determined by the balance between the two

stresses of Jupiter’s dipole magnetic field and gas accretion. Therefore, as the gas accretion

rate Ṁg decreases, the inner edge moves outward and the innermost seed (Io) may also

migrates together. The two-sided (i.e. normal Type I migration) torque that a satellites
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receives is,

Γ2s =
1
2

MsvKvt1. (3.29)

On the other hand, a satellite at the disk edge receives a strong one-sided positive corotation

torque that pushes the satellite outward (Liu et al., 2017). The one-sided corotation and

Lindblad torque is,

Γ1s,co = 2.46
(
Σgr2

Mcp

) (
µs

h3
g

)1/2

Ms(rΩK)2, (3.30)

and

Γ1s,Lin = −0.65
(
Σgr2

Mcp

)
µs

h3
g

Ms(rΩK)2, (3.31)

respectively (Liu et al., 2017). Figure 3.8 shows that the one-sided corotation torque Io

(Seed1) receives is much larger than the negative one-sided Lindblad torque and the neg-

ative two-sided torque of that the other satellites (Seed2, 3, and 4) receive, respectively.

Since the sum of the negative torque is smaller than the positive torque, even if the other

satellites push Io through the chain of the resonance, Io keeps its position on the edge of

the cavity. It is also argued that if the migration timescale of the edge (i.e. 3.5tdep) is shorter

than that of the migration of the satellite by the one-sided corotation torque, the disk edge

leaves the satellite there (Liu et al., 2017). We found that, however, the timescale of Io’s

migration by the one-sided corotation torque is ∼ 103 year and this is much shorter than the

migration timescale of the edge, ∼ 106 year. Therefore, Io may have moved much further

than its current orbit with the disk inner edge moves outward.

However, this outward migration of the inner edge should stop at the corotation ra-

dius rco where the Keplerian frequency of the disk equals to the spin frequency of Jupiter.

When rcav > rco, there will be two possibilities; the angular momentum will be transferred

from Jupiter to the disk and then the gas accretion will stop, or otherwise the corotation

radius and the disk edge will move outward together and then the accretion will continue

(Takata & Stevenson, 1996; Liu et al., 2017). Although the current corotation radius is

rco ≈ 2.25 RJ, it is considered that the radius of Jupiter was larger than that of today (Bur-

rows et al., 1997; Fortney et al., 2011), and this means that the corotation radius was also
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larger than the current one if the conservation of the angular momentum of Jupiter is as-

sumed. Considering the transport of the angular momentum from Jupiter to the disk, the

angular momentum should have been conserved since the disk disappeared. According to

a formation model of Jupiter, the radius of the planet was ≈ 1.75 RJ after its rapid gas

accretion and it decreased little by little (Lissauer et al., 2009). When the radius of Jupiter

is 1.75 RJ, the corotation radius should be rco ≈ 4.7 RJ. We have then considered two

scenarios of Io formation. The first one is that Io formed around r ≈ 4.7 RJ, slightly in-

terior to the r = 5.89 RJ of our fiducial model, and then moved outward after the disk

dissipated. The satellites, especially the inner ones, could move outward by the tidal force

from Jupiter (Yoder & Peale, 1981). The outer ones would be pushed by the inner ones

and move outward with them because of the resonance. In this case, the position of the

snowline should have been more inside than the fiducial case in this work but this thermal

condition could easily be reproduced by another parameter set. The second possibility is

that Io was not the innermost one. If a body was present at r = 3.7 RJ, Io would have

been situated at r = 5.7 RJ if they were trapped in a 2:1 resonance. This orbit is consistent
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with that the corotation radius when the radius of Jupiter is ≈ 1.5 RJ and this radius can be

achieved during the contraction of Jupiter. The innermost body may have been broken by

the tidal force of Jupiter when it has entered inside the Roche limit. Current Io, trapped in

the Laplace resonance, actually moves inward little by little because of the tidal dissipation

and the innermost body may have also experienced such inward migration (Lainey et al.,

2009).

The ionization degree of the disk inner region, χe ≡ ne/nn, where ne and nn are re-

spectively number density of electron and neutral gas, is also important. Without enough

ionization, the disk gas can not couple with the rotating magnetic field of Jupiter and the

inner cavity does not open. The angular momentum transfer can be occurred if the mag-

netic Reynolds number9 Rm ≡ VHg/λ > 1, where V is the relative velocity between

the rotating magnetic field and the disk gas, and λ is the magnetic diffusivity (Takata

& Stevenson, 1996). If Jupiter and its magnetic field spin rigidly at the current speed,

V ≈ 3×104 m s−1, Hg ≈ 1.1×107 m, and λ ≈ 0.74/χe at r = 1 RJ with the disk temperature

is T = 1000 K (Blaes & Balbus, 1994). The condition for angular momentum transport

is then χe ≳ 10−12 − 10−11. Takata & Stevenson (1996) estimated the ionization degree of

the circum-Jovian disk including the effects of galactic cosmic rays and radioactive isotope

decay and so on. They assumed the minimum mass disk model by Lunine & Stevenson

(1982), whose gas surface density is 100 times larger than that of our model, and argued

that the ionization degree is χe ≲ 10−16 at the midplane, χe ∼ 10−15 at the altitude of one

scale height, and χe ∼ 10−13 − 1012 at three scale heights. If the ionization degree is in-

versely proportional to the gas surface density, although it is a very rough estimate, the

ionization degree in our disk model should be χe ≲ 10−14 at the midplane, χe ∼ 10−13 at

the altitude of one scale height, and χe ∼ 10−11 − 10−10 at three scale heights. Therefore,

the condition for angular momentum transport will be achieved at the altitude higher than

the scale height. A possible mechanism to curve the inner cavity of the gas disk is that the

transport of angular momentum (i.e. the radial gas flow) is dominated in the upper region

9This magnetic Reynolds number is ∼ 103 times larger than the Elsasser number, the critical number for
the MRI activation.
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and the quick vertical relaxation to hydrostatic conditions provides an accompanying verti-

cal upward drift of gas (see Takata & Stevenson (1996)). However, this discussion is based

on a very rough estimate, more detailed investigation of the disk inner region should be

carried out in future.

3.5.3 Effects of the Thermal Condition of the Disk

We have assumed a thermal condition of the disk but actually the thermal condition can

affect the formation of the satellites strongly. The disk temperature strongly depends on the

quantities of small dust grains. Figure 3.9 represents the rsdg dependences of the snowline,

satellite mass, and ice fraction of satellites in the case of the fixed orbits. The top panel

shows that when rsdg = 1.7 × 10−7, the assumption in this work, the snowline migrates

inward from just inside Ganymede’s orbit and stops just inside Europa’s. This is because

the first term is dominant in the opacity factor g in the first half of its evolution and then

the second term becomes dominant as the gas surface density decreases (see Eq. (2.4)). If

rsdg is larger than this, the first term is dominant until the almost end, and vice versa. The

middle panel shows that the mass distribution of the Galilean satellites can be reproduced

only when rsdg = 1.7 × 10−7. However, if the gas accretion rate Ṁg is smaller than this

assumption and the dust-to-gas accretion rate ratio x is larger, the snowline will be at the

Ganymede orbit and the mass distribution of the satellites will be reproduced. The bottom

panel shows that the rsdg dependence of the ice mass fraction is large. When rsdg is larger

than the most suitable case, the slope inside the first position of the snowline is gentler

and the ice mass fraction of Europa is larger. On the other hand, when rsdg is smaller, the

slope is steeper and Europa can not get enough ice. These results can be understood by the

top panel. Note that the gas opacity (∼ 10−5 to 10−4 cm2 g−1) may be able to raise the disk

temperature (Mizuno, 1980). On the other hand, previous work showed that if the midplane

of the disk is laminar, the accretion energy dissipates at the high altitude of the disk and

is lost due to magnetically driven disk wind. The midplane temperature determined by

viscous heating can then be low even if the optical depth τ is larger than unity (Hirose

et al., 2009; Mori et al., in prep.). It is argued that MRI does not occur in the CJD and there
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is only a weak turbulence (Fujii et al., 2014) so the disk could be cold. This phenomenon

is consistent with our assumption of the disk temperature.

3.5.4 Effects of the Initial Mass of the Seeds

We have assumed the initial mass of the seeds as 3 × 1023g. In this section, we investigate

the initial mass dependences. Basically, the final mass of satellites does not depend on

the initial mass strongly because the growth timescale becomes larger as they grow (see

the lower panel of Figure 3.4). Moreover, there are two effects that make the distribution

of the initial mass narrow. First, the effective pebble accretion (in settling regime) only

occurs when the seeds are heavier than ∼ 1023g around r ≈ 50 RJ (see Eq. (3.19)). Smaller

captured planetesimals can not grow large and will be scattered or accreted by large ones. In

addition, smaller planetesimals experience stronger aerodynamic drag, which allows them

to cross 2:1 resonances (see Eq.(3.28) and Table 3.1). This is because the migration speed

by aerodynamic drag is fast when the seeds are small (Eq. (3.25)). On the other hand,

larger planetesimals are difficult to be captured–aerodynamic drag is not strong enough.

These arguments limit the range in the initial seed mass, justifying our fiducial value of

Ms,start = 3 × 1023 g.

3.5.5 Subsequent Evolution of Ganymede’s Internal Structure

We conclude that Ganymede’s interior differentiates into the rocky core and the icy mantle

because of the 26Al heat in the accreted pebbles. However, strictly speaking, it can melt

only the region of 1000 km from the center of Ganymede (see Figure 3.6). One possible

heat source to melt the whole interior of the satellite is the potential energy released during

the overturn of the pristine (undifferentiated) icy-rocky crust and the pure icy mantle by

the Rayleigh-Taylor instability. Here, we consider a three-layered interior structure: (1)

the pristine (undifferentiated) icy-rocky crust (0 − 1600 km deep), (2) the pure icy mantle

(1600 − 2000 km deep), and (3) the rocky core (2000 − 2600 km deep), as the initial

condition. We estimate the depth of the layers by assuming the density of the pure ice,

rocky core, and pristine crust is ρice = 1.4 g cm−3, ρrock = 3.0 g cm−3 and ρs = 1.9 g cm−3,
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respectively.

First, we check whether the Rayleigh-Taylor instability occurs or not. The condition

depends on the viscosity of the upper layer, which is the pristine crust in this situation.

if the viscosity is lower than the following critical value, the instability occurs with the

timescale tRT (Rubin et al., 2014),

ηcrit =

[
(n − 1)1/n CL∆ρ

2n

] (Z0

L

)(n−1)/n

∆ρg(R)LtRT, (3.32)

where n, CL∆ρ, and Z0 are the index of the stress related to the strain rate, a dimensionless

quantity determined by the geometry and rheology, and the initial perturbation amplitude,

respectively. We assume n = 1.8, CL∆ρ = 0.76, and Z0 = 1 km (see Rubin et al. (2014)).

The difference of the density is ∆ρ = ρs − ρice = 500 kg m−3 and gs(R) = 0.54 m s−1 is the

gravitational field of satellite at R(= 1000 km), distance from the center. The lengthscale

over which the viscosity varies significantly is

L =
nRT0

Ea

T0

|dT/dz| , (3.33)

where R, T0, and Ea are the gas constant, the temperature of at the interface between the

two layers, and the activation energy, respectively. We assume them as T0 = 370 K and

Ea = 49 kJ mol−1 (see Figure 3.6 and Rubin et al. (2014)). According to Figure 3.6, the

temperature gradient across the upper crust is T0/|dT/dz| = 0.14 K km−1. We can then

calculate the critical viscosity, ηcrit = 7.6× 1013(tRT/year) [Pa s]. The viscosity of the upper

layer should strongly depend on the temperature. According to the Arrhenius functions,

the viscosity can be estimated by

ηice = ηref exp
[
A

(Tref

T
− 1

)]
, (3.34)

where ηref , T , and Tref = 273 K are the reference viscosity, the temperature of the upper

crust, and the reference temperature (melting point of pure ice), respectively. A constant

coefficient A is about 20 − 25 and the reference viscosity of pure ice I and pure ice V and

VI, are ηI ∼ 1014 [Pa s] and ηV,VI ∼ 1016 − 1017 [Pa s] (Rubin et al., 2014; Shoji & Kurita,

2014). If the volume rate of rock is smaller than 75%, the viscosity of rock-mixed ice is
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almost the same as that of pure ice (Durham et al., 2010). The minimum temperature of the

upper crust is about 150 K (see Figure 3.6). If we substitute this temperature for Eq. (3.34),

the timescale of the R-T instability is 109 − 1010 year for A = 20 and 1011 − 1012 year for

A = 25. However, if we substitute T = 170 K, only 20 K larger, the timescale becomes

10 − 100 times shorter. Therefore, if the upper crust was heated up 20 K by long-lived

radiogenic heating or the released gravitational energy of halfway R-T instability itself

(see next paragraph), R-T instability has been able to occur by today in the upper crust of

Ganymede. One interesting observational fact of Ganymede is that there are two regions

on the surface of the satellite: very primitive region (∼ 4 Ga) and relatively newer region

(∼ 2 Ga). This characteristic is consistent with our estimate of the evolution of Ganymede’s

interior; the newer surface had been the inner pure icy mantle and was transported to the

surface by the R-T instability around 2 Ga. On the other hand, Callisto’s interior did not

melt and the surface has been kept as a primitive crust.

Second, we estimate the heat released by the R-T instability and how much the internal

temperature rises. If the pure ice mantle (consistent with the half mass of the differentiated

region, Mice(= Mrock) = 4 × 1021 kg) is lifted up to the surface of the satellite, the thickness

of the pure ice crust will be hice = 120 km. The mass of the pure ice (and rock) is much

smaller than the whole mass of Ganymede (MG), the increase of the temperature of the

undifferentiated pristine crust uniformly heated up by the released potential energy (∆QRT)

can be roughly estimated by the following equations,

∆TRT =
∆QRT

CpMG

≈ GMice

Cp(RG − hice)

(
ρs

ρice
− 1

) (
1 −

R2
rockρrock

(RG − hice)2ρs

)
≈20 [K],

(3.35)

where RG is the radius of Ganymede. This temperature increase is, unfortunately, not

enough for the whole differentiation of the interior of the satellite. To melt the whole re-

gion, about 100 K increase of the temperature would be needed (see Figure 3.6). However,

we neglect the two kinds of heat provided by (1) the released potential energy during the
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Table 3.5: Variables in Chapter 3

Equation Description
t - Time after the formation of CAIs
r - Distance from Jupiter
Min - Mass of the inner satellite
Mout - Mass of the outer satellite
Tin - Orbital period of the inner satellite
Bcp - Strength of the magnetic field of the central star
ΩK

√
GMcp/r3 Kepler angular velocity (G: Gravitational constant)

cs
√

kBTd/mg Sound speed (kB: Boltzmann constant)
τ κΣg Rosseland mean optical depth
vK rΩK Kepler velocity
p Σg ∝ r−p r exponent of the gas surface density
q Td ∝ r−q r exponent of the temperature
µs Ms/Mcp Satellite-to-central planet mass ratio
hp Hp/r Pebble aspect ratio
Hg cs/ΩK Gas scale hight
tgrow Ms/(dMs/dt) Growth timescale
hg Hg/r Gas aspect ratio
vesc

√
2GMs/Rs Escape velocity

vset gststop Settling velocity, Terminal velocity
gs GMs/R2

s Gravitational field of satellite
ρg Σg/(

√
2πHg) Local gas space density

tstop Stp/ΩK Stopping time of pebbles
tmig r/|vgd + vt1| Migration timescale

differentiation of the region of 1000 km from the center and (2) the central captured plan-

etesimal which has been heated up by 26Al decay (Wakita & Sekiya, 2011). Such heat may

be transported with the lifting up pure icy mantle and so be able to contribute to differentiate

the region remaining unmelted.

3.6 Appendix

3.6.1 Variables in Chapter 3

We use many variables in Chapter 3. We then summarize them in Table 3.5 and 3.6.
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Table 3.6: Variables in Chapter 3

Equation Description
Ms Eq. (3.1) Satellite mass
Ṁg Eq. (3.2) Gas accretion rate
rcav Eq. (3.3) Size of the magnetospheric cavity
Σg Eq. (3.4) Gas surface density
Td Eq. (3.5) Disk midplane temperature
g Eq. (3.6) Opacity factor
κ Eq. (3.7) Rosseland mean opacity
Ṁp Eq. (3.8) Pebble mass flux
Stp Eq. (3.9) Stokes number of pebbles (determined by drift)
vpp Eq. (3.10) Pebble-to-pebble relative velocity
vr Eq. (3.11) Drift velocity of pebbles
vt Eq. (3.12) Relative velocity of pebbles driven by turbulence
Stp Eq. (3.13) Stokes number of pebbles (determined by fragmentation)
Ṁp Eq. (3.14) Pebble mass flux
Peff Eq. (3.15) Pebble accretion efficiency
Hp Eq. (3.16) Pebble scale height
∆v Eq. (3.17) Pebble-satellite relative velocity
Ṁp,in Eq. (3.18) Pebble mass flux inside a satellite
M∗ Eq. (3.19) Satellite mass that the effective pebble accretion starts
Miso Eq. (3.20) Pebble isolation mass
Ts Eq. (3.21) Temperature of the satellite surface
ui Eq. (3.22) Pebble-satellite collision velocity
∆Tfin Eq. (3.23) The increase in the satellite internal temperature
Tfin Eq. (3.24) The final satellite internal temperature
vgd Eq. (3.25) Aerodynamic drag migration velocity
Sts Eq. (3.26) Stokes number of satellites
vmig Eq. (3.27) Type I migration velocity
tcrit Eq. (3.28) Critical migration timescale for resonance capture
bt1 * Migration constant
Γ2s Eq. (3.29) Two-sided torque
Γ1s,co Eq. (3.30) One-sided corotation torque
Γ1s,Lin Eq. (3.31) One-sided Lindblad torque

* Eq. (10) of Ogihara et al. (2015)



Chapter 4 Conclusions

We have investigated the formation of the satellites around gas planets, in particular, Jupiter.

In this thesis, we studied mainly two phases of satellite formation: (1) satellitesimal for-

mation by collisional dust growth; and (2) the Galilean satellites formation by pebble ac-

cretion. Here, we summarize our work and conclude the thesis by showing the remaining

issues and future work.

4.1 Difficulties in Formation of Satellitesimals

In Chapter 2, we investigated whether icy dust particles can form satellitesimals by their

pairwise collisional growth in circumplanetary disks with various conditions. We have

calculated the distributions of the surface density, radius and Stokes number (stopping time

normalized by the Kepler-time) of the peak mass dust particles. Our model considered

only steady conditions and assumed that the temperature of the circumplanetary disk is

almost like a minimum estimate. We have changed the dust and gas inflow mass fluxes

and the strength of turbulence in the disk so that we understood the effects of these factors

to satellitesimal formation. We have also approximated the Stokes number analytically to

understand these effects.

From the parameter studies, we have revealed the conditions for satellitesimal forma-

tion. The conditions are Ṁd/Ṁg ≥ 1 and 10−4 ≤ α < 10−2 and the results do not depend

on the gas accretion rate (Figure 2.6). The valance between the growth and drift timescale

determines the evolution of the particles. The dust inflow mass flux is larger, the dust sur-

face density in the disk is higher, increasing the collision rate and the making the growth

timescale short. On the other hand, the gas mass flux is smaller, the gas surface density in

the disk is lower, reducing the gas drag and making the drift timescale longer. Strong tur-

bulence also reduces the gas surface density and makes the satellitesimals formation easy.

77
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However, if the turbulence is too strong (α ≥ 10−2), fragmentation occurs and satellitesi-

mals do not form. The former condition, Ṁd/Ṁg ≥ 1, would be difficult to achieve. This

is because the dust particles must be prevented by the positive pressure bump at the outer

edge of the gas gap structure to penetrate into the gap and the inflow gas from inside the

gap will be dust depleted (See Sections 1.4.1 and 2.4.1). Our results also show that the

porosity of dust particles does not affect the condition for satellitesimal formation (Section

2.4.2). The Stokes number does not depend on its internal density in Newton regime where

the Stokes number takes the largest value (Equation (2.15)). Satellitesimal formation via

streaming instability is also unfeasible because the dust-to-gas surface density ratio Σd/Σg

is much smaller than the critical value that the instability occurs (Section 2.4.3). On the

other hand, there remains possibilities that satellitesimals form in CPDs by avoiding the

vertical diffusion of the dust particles from the mid-plain and increasing the collision rate

thanks to considering the difference between the α of diffusion (turbulence) and of disk

accretion coefficient (Section 2.4.5). The photoevaporation may also contribute to satisfy

the condition for satellitesimal formation by increasing the dust-to-gas ratio of the inflow

gas in the final phase of planet formation (Section 2.4.1).

4.2 A New Scenario for the Origin of the Galilean Satellites

In Chapter 3, we built a new alternative formation scenario especially for the Galilean sys-

tem using the pebbles not growing to satellitesimals but drifting toward Jupiter. As the

seeds of the four satellites, we assume that four planetesimals are captured at given timing.

We first calculate the evolution of the CJD, a gas accretion disk, which is determined by

the given gas inflow mass flux reducing exponentially, and the fixed strength of turbulent

viscosity. We then calculate 1-D (radial distribution) representative-size evolution of the

pebbles including their collisional growth, aerodynamic drag, fragmentation and the dis-

tinction of icy/rocky pebbles by the position of snowline. Finally, the growth by accretion

of the pebbles and 1-D radial orbital evolution of the seeds including aerodynamic drag,

Type I migration, and simple checks of resonance capture are calculated. We simultane-

ously calculate their internal thermal evolution by pebble accretion and 26Al decay heating,
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and the pebble filtering effects by outer satellite seeds.

In contrast to the previous scenarios which only explain a part of the characteristics of

the Galilean system or are inconsistent among the scenarios themselves in part, we found

that our new scenario can reproduce the following characteristics simultaneously and con-

sistently. First, it can reproduce the mass distribution of all the Galilean satellites even in

the case of a very small amount of material supply to the CJD. Second, Io, Europa, and

Ganymede are captured into 2:1 resonances one by one because the inner cavity opens by

the strong magnetic field of Jupiter and halts the migration of Io at the edge of the cavity.

Third, Europa accretes small quantities of icy particles in the final phase of its formation be-

cause the snowline moves inward as the gas accretion rate onto the CJD decreases. There-

fore, Europa’s rocky core and icy mantle are explained naturally. The ice mass fractions

of the three other satellites are also reproduced because their orbits are inside, respectively

outside, the snowline. Finally, our model explains why only Callisto stays undifferentiated

and why the other satellites melt by radiogenic heating of 26Al decay. The difference in

the capture time of the planetesimals affects the total 26Al heat they got and their internal

structures but not their final mass because of their slow growth.

4.3 Satellitesimals or Pebbles?

In Chapter 2, we found that the dust particles do not grow to satellitesimals but drift toward

Jupiter. However, we used smooth and steady disk models and neglected their detailed

structures or evolution. Therefore, some special conditions may make satellitesimal forma-

tion possible, for example, a weak vertical diffusion and effective transport of gas angular

momentum, an increase of dust-to-gas accretion rate in the final phase of planet formation,

or gathering dust particles by gas outflow predicted by detailed hydrodynamical simula-

tions (Drażkowska & Szulágyi, 2018). Moreover, the growth of Saturn may excite nearby

planetesimals and make them be captured by the disk (Ronnet et al., 2018). Therefore, it

can be considered that such special conditions raise episodic or local satellitesimal forma-

tion. In this case, not only pebble but also satellitesimal accretion can contribute to satellites

formation unlike the discussion in Chapter 3. Moreover, satellitesimals originate from such
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in-situ situations may also work as the seeds of the satellites, which subsequently accrete

the drifting pebbles. This discussion is actually very similar to that of the recent scenar-

ios for hybrid planetesimal-pebble accretion in planet formation (e.g. Alibert et al., 2018).

The increase of solid material as planetesimals will help the growth of satellites but, on the

other hand, it may become difficult to reproduce the properties of the Galilean system like

the classical satellitesimal-accretion scenarios (see Section 1.3). In planet formation, the

difference of the size of accreting solid material changes the planet’s subsequent evolution,

such as evolution of the gas envelope. It suggests that the difference of size also affects

satellite formation such as Titan formation, which has a dense atmosphere. Moreover, it

will affect the host gas planet formation itself (see also Section 4.5.3). Fortunately, we will

be able to include satellitesimal accretion in our simulations. We should investigate the

satellite formation with both satellitesimals and pebbles as a next step.

4.4 Suggestions for Exploration Missions

One possibility to find out which scenario is dominant, our new “slow-pebble-accretion”

scenario or classical quick satellitesimal-accretion scenarios, is a measurement of D/H ra-

tio in H2O ice of Ganymede and Callisto. A new exploration mission for Jupiter and the

Galilean satellites, JUICE (JUpiter ICy moons Explorer, ESA), will measure the D/H ratio

of H2O vapor in the thin atmospheres on the satellites by SWI (Submillimetre Wave In-

strument). Here, we discuss the D/H ratio in H2O ice of the satellites predicted by the two

kinds of the scenarios.

In the case of our new scenario, the ratio should be ∼ 10−4 − 10−3, ten times or more

larger than that of the protosolar value. This is because the icy material of the satellites

never experiences evaporation after condensing in the outer region of the protoplanetary

disk (⪆ 30 au), where the predicted D/H ratio in H2O ice is ∼ 10−4 − 10−3 and long-period

comets with the similar value of D/H ratio form (e.g. Furuya et al., 2013; Altwegg et al.,

2015). In our scenario, as we showed in Figure 1.5 in Section 1.4.1, the icy material origi-

nates in the outer region as icy pebbles and drifts to the Jovian orbit (e.g. Sato et al., 2016).
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The pebbles then trap at the gas pressure maximum of the gas gap and form icy plan-

etesimals and fragments Kobayashi et al. (2012); Taki et al. (2016). Some of the fragments

coupled with gas can penetrate into the gap and flow into the circum-Jovian disk (Zhu et al.,

2012). They form icy pebbles again and are finally accreted by the captured planetesimals

and constitute the satellites. Even during the icy material accumulation, the surface tem-

perature of the satellites should not be high enough to cause evaporation of water and so

the D/H ratio of the material should be kept (see also Section 3.5.5).

On the other hand, in the classical scenarios, the D/H ratio should be lower than that in

the “slow-pebble-accretion” scenario. The surface of the satellites, especially Ganymede

should be melted by accretion heating and ocean would form (Barr & Canup, 2008). If the

water vapor from the ocean stays around the surface, in other words, if the satellites can

have their atmospheres, the deuterium exchange between the hydrogen gas and the water

vapor may be able to increase the D/H ratio of the ocean about two times larger than that

of the original accreted icy material (Genda & Ikoma, 2008). If mass fractionation during

atmospheric hydrogen loss occurs, the ratio increases several times more. However, such an

increase of the D/H ratio can occur only if the most amount of the water is exchanged with

the vapor atmosphere. Moreover, if the atmosphere is continuously recycled with the CJD

gas, the D/H ratio of the ocean should be only two times larger than that of the hydrogen

of the CJD gas with the plotosolar D/H value at most (Horner et al., 2008). We note that

if the icy material condenses at the jovian orbit or inside the CJD, the D/H ratio should be

about 4 − 5 times larger than that of the plotosolar value or the same with it, respectively,

in the cases that the atmospheres do not form (Horner et al., 2008). Therefore, the D/H

ratio may be kept lower than that in the “slow-pebble-accretion” scenario. Further studies

of the primordial atmospheres (and the current thin atmospheres) of the satellites including

the relations to the surfaces is necessary for more detail discussion.

Comparison of the D/H ratios between Ganymede and Callisto may also contribute to

make sure which scenario is correct. In the case of the “slow-pebble-accretion” scenario,

the D/H ratio of the two satellites should be the same because both of the ratios keep their

original value. On the other hand, in the classical scenarios, if the dichotomy of the interiors
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(differentiated/undifferentiated) of Ganymede and Callisto is from the accretion heating,

the surface of Ganymede melts but that of Callisto does not. Therefore, the exchange of

deuterium only occur on the surface of Ganymede and it should make some difference

between the D/H ratios of the two satellites.

4.5 Future Work

We have already mentioned the importance of the studies which consider pebble- and

satellitesimal- accretion simultaneously in the above section. Here, we show the other

important future work in satellite formation research.

4.5.1 Orbital Calculations of Satellites

We are working on a 2-D orbital calculation of the satellites using a simulation code in-

cluding MERCURY (Chambers, 1999) to check whether they are actually captured into

resonance or not. In particular, the reason why current Callisto is not in any resonance is

still unclear. We have already succeeded in developing a code by applying one of the latest

simulation codes developed for planet formation (Brügger et al., 2018) to satellite forma-

tion. First, we modeled the circum-Jovian gas disk which is different from circum-stellar

disks because of Jupiter’s negligible radiation and a continuous supply of gas and solid ma-

terials. We then developed a code calculating the growth and drift of small solid particles

in the disk (see Figure 4.1). This is the almost same with the simulations carried out in the

previous sections but the size of the particles inside snowline is fixed as 0.1 cm. Finally,

we calculated the growth of the satellites accreting the drifting solid particles and the 2-D

orbital evolution of the satellites with the mutual gravitational interaction by modifying a

previous N-body simulation code for planet systems. We have incorporated the above cal-

culations into our new code and checked that the code works well. Figure 4.2 represents

one of the test results of the orbital evolution of two satellites in the CJD. The satellites

migrate toward Jupiter by gravitational interaction with the gas disk as they grow larger.

They also interact with each other and are captured into 2:1 mean motion resonance like

the actual orbits of Jovian satellites. We will use this code for future full-scale calculations
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Figure 4.1: Evolution of drifting solid particles. The red solid curve is the Stokes number
of the representative particles at each distance from Jupiter at t = 1.6 Myr. There is an
evaporation line of icy particles around 15 Jupiter radius (RJ) and the size of the rocky
particles inside the line is much smaller than outside. Schematic pictures of the rocky/icy
particles are also shown.

that can reveal how the satellites form and get their current orbits. However, there remains

two problems. First, the satellites migrate inward with ∼ 100 km size, which is about 10

times smaller than the real large satellites. Satellitesimals may be able to contribute to

solve this problem (see the previous subsection). Second, it takes a long time to calculate

the simulations because of the short orbital periods of the satellites (see Section 1.5). We

will have to find a way to reduce the calculation time.

4.5.2 Saturnian Satellites Formation

Titan is considered to have formed in a CPD around Saturn and Iapetus may also have

formed in the disk (Mosqueira & Estrada, 2003a; Canup & Ward, 2006; Sasaki et al., 2010).

This is because the formation scenario where Saturnian satellites formed from ancient rings

and migrated by tidal effects of Saturn can explain the origin of the mid-sized satellites

nearby the planet but Titan and Iapetus are too far (Crida & Charnoz, 2012). However,

the “slow-pebble-accretion” scenario where we built in Chapter 3 for the formation of

the Jovian satellites will not be able to apply to the formation of the Saturnian satellites

directly. In our scenario, the growth of satellites takes a long time but do not fall into the
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Figure 4.2: Evolution of satellites in 2-D calculations. The solid and dashed curves are the
orbital evolution of the satellites with/without mutual gravitational interaction, respectively.
The circles are the size of the satellites. Satellite2 grows faster than Satellite1 because there
is an ice evaporation line between them and Satellite2 accretes not only rocky but also icy
particles. Satellite2 then migrates faster and catches Satellite1 up. They are captured into
2:1 mean motion resonance because of the mutual gravitational interaction and Satellite2,
heavier than Satellite1, pushes it toward Jupiter.

planet because the inner cavity stops their migration. In the case of Saturnian system, first,

their current positions are too far from the central planet even for our scenario. On the

other hand, Titan is considered to be incomplete differentiated (Iess et al., 2010), requiring

that the satellite formed so slowly that accretion heating did not melt the interior. This

is consistent with the “slow-pebble-accretion” scenario. The ways to achieve avoiding

Titan’s inward migration until the end of its long-timescale formation should be reducing

the gas surface density of the disk (i.e. reducing the migration speed) and/or increasing the

pebble mass flux (i.e. enhancing the accretion speed). Orbital expansion by outward Type

I migration (see Eq. (3.27) in Section 3.2.6 and Eq. (10) of Ogihara et al. (2015)) or the

outward migration of the inner edge of the gas disk (see Eq.(3.3) in Section 3.2.2) may be

alternative ways to explain the current orbits of Titan and Iapetus.

On the other hand, discussion in Chapter 2 will be able to be applied to Saturnian satel-

lites formation. We found that the most important factor dominating the evolution of dust

particles is the dust-to-gas accretion rates ratio into CPDs, Ṁd/Ṁg. In other words, any
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satellite system’s formation could be discussed by changing this factor. In the case of Sat-

urnian system, the gas gap around the CPD may be shallower than that of Jupiter because

the planet mass is lighter. Therefore, the filtering effect by the pressure bump is weaker and

so the dust-to-gas accretion ratio could be higher than that of Jupiter, suggesting satellites-

imal formation easier. However, it should be noted that the dependency of aerodynamical

drag changes within lower density gas (see Sections 2.2.2 and 2.5.1).

4.5.3 Formation of General Satellites and Gas Planets

It will also be important to investigate general satellite formation, in other words, exomoon

formation in CPDs. We consider that it should be based on the recent understanding of

gas planet formation. On the contrary, it will also be able to constrain gas planet forma-

tion from the characteristics of the satellites in our solar system and future observations

of exomoons. One of the key points associating satellite formation with gas planet for-

mation is supply of solid material to the planet’s envelope through the satellite formation

regions. As we showed in the previous sections, satellite formation in CPDs strongly de-

pends on the amount of solid material in the disks because the more solids there are, the

faster satellites grow. The size of the solid material also affects satellite formation processes

of satellitesimal/pebble-accretion. At the same time, the amount of solid supply to the cen-

tral planet’s envelope strongly affects their gas accretion and evolution because the kinetic

energy released from the accreted bodies supports the envelope (e.g. Ikoma et al., 2006).

The size of the bodies is also important because small bodies like pebbles easily evapo-

rate and enrich the envelope, accelerating the gas contraction (Venturini & Helled, 2017).

Satellite formation processes (i.e. growth of material around planets) should also change

the size and mass flux of the solids being accreted to the planets. Therefore, constraining

how much and what kind of solid material are supplied to the envelope through the satellite

formation regions is fundamentally important for both satellite and planet formation.

One strong reason why we should work on this research now is that recent studies have

commenced to constrain the solid mass flux into gas planets during their formation. The

formation of gas giants consists of three stages: core accretion (Mp ⪅ 15 M⊕); slow gas
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accretion(Mp ⪅ 50 M⊕); and rapid gas accretion. If their envelopes gravitationally collapse

against the support by supply of solid material, the growth of planets will be accelerated

and the stage will move from 2 to 3. If Stage 2 continues long, the planets migrate inward

(Type I) during the stage and become Super-Earths, or otherwise the protoplanetary gas

disk dissipates before the migration and Neptune analogs form Venturini & Helled (2017).

In the case of Jupiter, Stage 2 should have continued 2 Myr (Kruijer et al., 2017) and a rate

of at least ∼ 1 M⊕ yr−1 in planetesimal accretion is required (Alibert et al., 2018). On the

other hand, in Sage 3, Hot-Jupiters form after their migration (Type II) or Jupiter analogs

form if the disk disappears before the migration. In the case of Jupiter, up to ≈ 25 M⊕ of

solid material were accreted in Stage 3 (Alibert et al., 2018). We should investigate the

satellite formation in both Stage 2 and 3 but, in particular, the latter will be challenging.

This is because, in generally, CPDs do not form and envelopes maintain their forms during

Stage 2, and satellite formation in pressure-supported envelops should be tough because

the bodies will quickly fall into the cores in such gas structures. On the other hand, if the

envelope is cold enough, the gas disk may form and satellites will grow in the disk (Wang

et al., 2014; Szulágyi et al., 2018).

We should also try to predict the characteristics of the satellites formed around the

planets plotted in a (distance from the central star) – Mp (planet mass) space (Figure 4.3).

Population synthesis has been one of the effective ways to understand the evolution of

planets and compare planet formation models with observations (e.g. Ida & Lin, 2004). In

particular, one of the population synthesis models called “Bern model”, can calculate the

internal structures of the planets (e.g. Alibert et al., 2004). Therefore, we should use the

model with satellite formation process that changes the size and mass flux of solid material

supplied into the gas planets (Figure 4.3).

Finally, we should tray to predict the characteristics of the exomoons observed in future,

in particular those of the planet-satellite systems at around 1 − 10au, by using a modified

population synthesis model including the formation and loss of satellites (Figure 4.3). The

telescopes CHEOPS and TESS (and PLATO), may be able to observe exomoons (Cabrera

et al., 2018). The systems rotating around M type stars may be other suitable targets for the
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Figure 4.3: Evolution tracks of gas planets and their satellites on the a−Mp diagram of
confirmed exoplanets. The red, cyan, magenta, and green points indicate planets detected
by the radial velocity, transits, direct imaging, and microlensing, respectively. The planets
of the solar system are also shown. The black arrows show the evolution tracks of gas
planets. The cyan shaded region roughly shows the orbits of observable planet-satellite
systems. This figure is modified from Fig. 1 of Mordasini (2018).

comparison between my theoretical predictions and future observations.
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