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Modeling of Synthetic Fiber Ropes and Frequency
Response of Long-distance Cable-Pulley System

Atsushi Takata1, Gen Endo1, Member, IEEE, Koichi Suzumori1, Member, IEEE,
Hiroyuki Nabae1, Member, IEEE, Yoshihiro Mizutani1, and Yoshiro Suzuki1

Abstract—In recent years, synthetic fiber ropes have attracted
much attention because of their potential to increase the load
capacity, reduce the size, and lighten the weight of tendon-
driven mechanisms. However, the mechanical characteristics of
synthetic fiber ropes in a dynamic loading situation remain an
open problem because of their visco-elasto-plasticity. This paper
focuses on modeling synthetic fiber ropes, and the frequency
response of a long-distance cable-pulley system for a tendon-
driven robot. We show that a synthetic fiber rope can be modeled
by Flory’s model, and that it can be reduced to a conventional
four-element model with sufficient preloading. After empirically
acquiring the parameters of the four-element model for four
different synthetic fiber ropes, each frequency response of a long-
distance cable-pulley servo system was measured and compared
to the analytical results based on the model, as well as the
results of a stainless wire rope. Consequently, we show that
synthetic fiber ropes achieved comparable bandwidth to that of
the stainless wire rope. The damping of synthetic fiber ropes was
found to suppress the servo system gain. This is useful for joint
control of a tendon-driven robot with a relatively large amount
of inertia, such as a long-reach robot arm.

Index Terms—Tendon/Wire Mechanism, Synthetic Fiber
Ropes, Frequency Response, Mechanism Design

I. INTRODUCTION

TENDON-DRIVEN mechanisms provide light, simple,
and long-distance transmission more easily than other

transmission mechanisms such as gears and link mechanisms.
Recently, synthetic fiber ropes have been developed that are
lightweight and as strong or stronger than stainless steel wire
ropes [1]–[3] as shown in Table I. They have attracted attention
in tendon-driven robotics, because synthetic fiber ropes can be
expected to realize tendon-driven mechanisms with a higher
load capacity, smaller size, and lighter weight. For example,
a cable robot was designed to use a lightweight rope to
save energy [4], and a quadruped walking robot [5] and a
human mimetic humanoid [6] were developed by exploiting
the small bending radius of synthetic fiber ropes. Moreover,
an articulated long-reach robot arm exceeding 10 m in length
driven by cable-pulley systems is required to decommission
the Fukushima Daiichi Nuclear Power Station [7].

However, there is a difficulty to develop robots taking
advantage of synthetic fiber ropes. We do not have design
guidelines for synthetic fiber ropes because their characteris-
tics have not been comprehensively studied. Our ultimate goal
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TABLE I: Properties of ropes 2 mm in diameter

Tensile
strength Weight

[kN] [g/m]
Dyneema2

DB-96HSL* Hayami
industry 4.29 2.4

Dyneema®
SK-71
UHPE

2640 dtex
× 8 strand

braid

Zylon2
ZB-308* Hayami

industry 6.59 2.9
Zylon®

AS
PBO

3340 dtex
× 8 strand

braid

Vectran2
VB-308* Hayami

industry 4.18 2.9
Vectran®

HT
Polyarylate

3340 dtex
× 8 strand

braid

Kevlar2
KB-308* Hayami

industry 4.08 3.0
Kevlar®

29
Para-aramid

3340 dtex
× 8 strand

braid

Stainless1
SC-200 SHINYO 3.56 16.3 SUS304 7×19

* without preload

Name Model Supplier Fiber Structure

is to establish design guidelines for tendon-driven mechanisms
using the ropes. To fulfill the design guidelines, we need to
investigate the various physical properties of synthetic fiber
ropes. Tensile strength, creep elongation, and repetitive bend-
ing durability are of course important for designing robots.

In this particular paper, we focused on modeling the char-
acteristics of synthetic fiber ropes and the frequency response
of a long-distance cable-pulley system. Although synthetic
fiber ropes have high strength, it is generally known that
synthetic fiber ropes engender more elongation than stainless
cables. Given that stainless cables are simple and elastic, the
mechanical behavior of synthetic fiber ropes shows visco-
elasto-plasticity. For example, one of our previous works
reported that the stiffness of synthetic fiber ropes was strongly
affected by consecutive impact loading [8]. Thus, the dynamic
behavior of a mechanism using synthetic fiber ropes is also
expected to be complicated. Moreover, the mechanical prop-
erties of tendons influence the dynamic characteristics of the
mechanism, depending on the length of a tendon. The question
is whether the bandwidth of a servo system using synthetic
fiber ropes is lower than that of a system using stainless cables.
Therefore, the purpose of this paper is to model synthetic fiber
ropes and investigate the frequency response of a cable-pulley
system as a most general tendon-driven servo mechanism.

Many robotics studies have dealt with tensile elongation of
tendons. For instance, [9] analyzed one servo winch system
assuming that it is a second-order lag system, and improved
the absolute positional accuracy of a cable-driven parallel
robot. Moreover, [10] used a black box model to describe
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the hysteresis effect of a cable. [11] presented a compact and
lightweight capstan drive mechanism using a synthetic fiber
rope. However, these studies focused on limited types of ropes.
To the best of our knowledge, there has been no comprehensive
study on the relationship between the mechanical properties
of ropes and the dynamic characteristics of the mechanism.
This paper is a groundwork for tendon-driven robots using
synthetic fiber ropes. We verified a previously proposed model
for a mooring rope. The frequency response of a 15 m long
cable-pulley system was investigated using rope models and
measurements.

This paper is structured as follows. In Section II, an existing
model for mooring ropes is introduced. On the basis of
two tensile tests, the model was verified to be applicable
to the small diameter synthetic fiber ropes used for robots.
In Section III, the visco-elasticity of ropes was measured.
The parameters for visco-elasticity were estimated by fitting
the tension relaxation, and quantitatively compared with the
others. In Section IV, we used a cable-pulley servo mechanism
to measure the dynamic characteristics of the mechanism,
applying different types of ropes. In Section V, we discuss the
visco-elasticity of the ropes, along with the frequency response
of the servo mechanism and relationships between them. In
Section VI, conclusions and future work are provided.

II. FLORY’S MODEL

There have been many studies on the visco-elasto-plasticity
of synthetic fiber ropes used for mooring. For example, some
studies predicted the elongation of mooring ropes occurring
over an extremely long time by using a nonlinear function
of time and stress [12], [13]. On the other hand, Flory
separated the behavior of synthetic fiber ropes into nonlinear
elasto-plasticity and linear visco-elasticity. He expressed the
nonlinear elasto-plasticity by using a parallel element of a
ratchet and spring. The parallel element were combined with
a four-element model (Fig. 1 [14]) to propose his model (Fig.
2 [15]).

The four-element model is often used for linear visco-
elasticity. This model considers visco-elasticity as a combina-
tion of element representing elasticity, viscosity and retarded
elasticity, and separates the total strain into strains of each
elements. Each element in Fig. 1 are explained as follows. The
leftmost spring represents elasticity. The dashpot in the middle
represents viscosity or creep. The rightmost parallel element of
the spring and dashpot represents retarded elasticity. fmodel[N]
is the tension, k1 and k3[N] are the elastic coefficients per
strain, c2 and c3[N · s] are the viscosity coefficients per strain.
These parameters are normalized by length because they are

inversely proportional to length, but they are not nominalized
by area because a real cross sectional area of ropes is difficult
to measure and the nominal diameter of ropes in this paper is
2 mm. Here, ε is the total strain. ε1, ε2 and ε3 are the strains
of the corresponding elements.

The Flory’s model contains the four-element model ex-
plained above. kp is the elastic coefficient per strain of the
spring parallel to the ratchet element in Fig. 2. If the mechan-
ical properties are assumed to follow the Flory’s model, two
relations can be expected between the tension and strain at
loading and unloading.

First, when tension is applied to the parallel elements of the
spring and ratchet, plastic strain occurs. Because the ratchet
element suppresses shrinkage, the plastic strain retains the
value at the maximum tension applied previously. The strain
at maximum tensionfpeak is defined as εpeak, a plastic strain
remaining after unloading is εp and a elastic strain recovered
after unloading is ε1. In order to further increase the parallel
elements, it is necessary to add a tension that exceeds the
previous maximum tension fpeak. Conversely, as long as the
tension of the Flory’s model is subsequently lower, the plastic
strain εp does not increase. In that case, the Flory’s model can
be considered as the four-element model shown in Fig. 1.

Second, if the loading speed is sufficiently high and the
strain caused by the viscosity is ignored, the relations between
the load and strain can be represented as follows:

εpeak = ε1 + εp, (1)

fpeak = k1ε1 = kpεp. (2)

Therefore, maximum tension fpeak increases in proportion
to εp and ε1 respectively. Considering these relations, the
properties of synthetic fiber ropes become linear by a high
preload. This is expected to provide high bandwidth and
linearity to a cable-pulley servo using synthetic fiber ropes.

However, mooring ropes are more than 10 mm in diameter
with loads of several hundred kilonewtons, whereas the ropes
used in many robotic applications are thin with diameters of
about 0.5 mm to 5 mm. For example, a rope of 1.6 mm in
diameter was used for a humanoid [6], and 6 mm rope was
used for a parallel wire robot [4]. Because of the differences
in the scale of the load and the number of strands, the model
of previous studies cannot be directly applied to this study
without verification. Table I lists the types of rope used in this
paper, namely, four synthetic fiber ropes and one stainless steel
wire rope. Experiments were performed to verify whether the
two relations of the synthetic fiber ropes hold, and to confirm
whether the Flory’s model can be applied.

A. Convergence of the Plastic Strain at Maximum Tension

A cyclic load test was performed on ropes in this paper. If
the Flory’s model is applicable for the test rope, the plastic
strain will not increase as long as the loading tension does not
exceed the maximum tension applied in the past. The test ropes
were repeatedly pulled five times with a 10 mm/min stroke
speed and a maximum tension of 1000 N. A tensile tester (AG-
I Shimadzu.co, maximum load of 100 kN) was used. Table II
presents the experimental conditions. We performed the test on
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TABLE II: Experimental conditions of cyclic tensile test

Stroke speed 10 mm/min
Maximum load 1000 N
Minimum load 5 N
Cycle number 5
Temperature 16.8◦C
Humidity 52%
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Fig. 3: Results of the cyclic tensile tests

one sample of each rope. The initial length of test rope was
determined through the following the tensile test procedure:

1) The distance between the two holding grips of the tensile
tester was set to about 100 mm

2) Both ends of the test rope were fixed with the holding
grips.

3) In order to straighten the test rope, the upper holding
grip was moved up and down while keeping the tension
within the range of 5 N or less.

4) The distance between the gripping tools at that time was
taken as the initial length of the rope.

5) The tensile test was then carried out.
Figure 3 shows the tension-strain curve of the test. The strain
is defined as the elongation divided by the initial length. In
the synthetic fiber ropes, a large plastic strain of more than
1% remained after the first loading and unloading, especially,
that of Dyneema2 (about 5.5%). However, in the second and
subsequent loadings and unloadings, the increase in plastic
strain reduced to about 0.1%. This is sufficiently small to
be absorbed by elastic elongation and a tensioner, because
cable-pulley servo systems must have the tensioner to prevent
rope slack. The plasticity of synthetic fiber ropes preserved
the elongation at the maximum tension applied in the past.
By contrast, the mechanical properties of Stainless1 showed
extremely linear elasticity. Therefore, measurements described
in the next section was not performed for Stainless1. The
elastic coefficient of Stainless1 was ks = 1.37× 105 N based
on the slope of the line approximating the tension-strain curve
using the least-squares method.

B. Elasto-plasticity Experiments

A load amplitude test was carried out in which the peaks
of cyclic load were gradually increased. A linear relationship

TABLE III: Experimental conditions of load
amplitude test with increasing amplitude

Frequency of load 1 Hz
Maximum load Increment by 98.1 N each cycle
Minimum load 5 N
Cycle number 5
Temperature 17.1◦C
Humidity 28%

0 0.5 1 1.5 22.1

Strain[%]

0

100

200

300

400

500

T
en
si
o
n
[N
]

Dyneema2
Zylon2
Vectran2
Kevlar2

Fig. 4: Results of the load amplitude test

was expected between both εp and ε1 and the peaks of
tensionfpeak. The four synthetic fiber ropes in Table I were
used. In order to reduce the elongation due to viscosity, a high
tension speed is desirable, thus the test load was a 1 Hz haver-
sine wave using a fatigue testing machine (SERVOPULSER
Shimadzu.co, maximum load of 2 tf ). The initial length of the
test rope was determined in the same manner as for the cyclic
load test described above. Table III shows the experimental
conditions. We performed the experiment on one sample of
each type of rope.
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Fig. 5: Peaks of tension proportional to elastic strain and
plastic strain

Figure 4 shows tension-strain diagram. For all synthetic
fiber ropes, the strain at the minimum tension(i.e., the plastic
strain εp) increased with the maximum tensionfpeak. Figure
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5 shows the fitting results for Dyneema2. The elastic strain
ε1 was obtained from (1), εpeak, and εp. The distribution
diagrams of the five peaks of tension versus both ε1 and εp
are given. The linear fitting lines of these two distribution
diagrams are identified in the legend. The slopes of the two
fitting lines give k1and kp. kp corresponds to the spring that
is parallel to the ratchet element in Fig. 2, and k1 corresponds
to the leftmost spring in Fig. 2 and Fig. 1. The results of other
synthetic fiber ropes were similarly approximated by straight
line. Table IV summarizes the values of k1 and kp that were
obtained by a linear approximation that satisfies (1)and (2).
Therefore, Flory ’s model was confirmed to be applicable to
the ropes. In this paper, “pre-stretch process” is defined as the
preparatory process applying an initial force whose magnitude
is larger than that of normal operation to a rope. This process
lets us assume that the four-element model which is a linear
model is applied to the synthetic fiber ropes.

III. VISCO-ELASTICITY MEASUREMENT

Visco-elasticity measurements were conducted on synthetic
fiber ropes subjected to prestretch process. The visco-elastic
parameters k1, c2, k3, and c3 of four-element model in Fig.
1 were determined. To measure visco-elasticity, the tension
relaxation was measured. When the tensile strain of the rope
is instantaneously given and kept constant, the decrease in
tension over time is called the tension relaxation. The visco-
elasticity parameter was obtained by fitting the measured
tension-time curve with the theoretical equation for the tension
relaxation of the four-element model. The relationship between
the total strain ε(t) and tension fmodel(t) of the four-element
model is given by

fmodel(t) = k1ε1 = c2ε̇2 = k3ε3 + c3ε̇3, (3)

ε(t) = ε1 + ε2 + ε3 = ε0. (4)

The initial condition for the tension relaxation is given by

ε(0) = ε1(0) = ε0 and ε2(0) = ε3(0) = 0. (5)

The tension fmodel(t) is expressed as follows:

fmodel(t) =
ε0k1
2B

exp

(
−A+B

D
t

)
(C +B)

−ε0k1
2B

exp

(
−A−B

D
t

)
(C −B)

A =c2k1 + c2k3 + c3k1

B =
√
(c2k1 + c2k3 + c3k1)2 − 4c2c3k1k3

C =c2k1 − c2k3 + c3k1

D =2c2c3

(6)

A tensile tester (AG-I Shimadzu.co) was used for the measure-
ments. For the pre-stretch process, 1000 N were preloaded and
immediately unloaded, and the tension was kept at 5 N or less
for at least 10 minutes before the test. The delay was needed
to allow the elongation caused by the retarded elasticity to
recover. Table V shows the experimental conditions. Visco-
elasticity measurement was performed on three specimens
and they were similar trend. Values shown in Table V are

TABLE IV: Values of k1 and kp

Dyneema2 6.89 3.04
Zylon2 6.19 6.51
Vectran2 5.94 31.5
Kevlar2 4.67 7.25

1[N × 104] [N × 104]

TABLE V: Experimental conditions of the tension
relaxation tests

Constant elongation 1.5 mm
Tension for pre-stretch process 1000 N
Temperature(other than Kevlar2) 22.2◦C
Temperature(Kevlar2) 15.8◦C
Humidity(other than Kevlar2) 81%
Humidity(Kevlar2) 57%

representative of those obtained for the three specimens. After
the prestretch process, the initial length of test rope was
determined in the same manner as for the cyclic load test
described above.

By minimizing the root mean square (RMS) of the measured
tension fmeasure and fmodel, the time series of tension fmeasure

was fitted with (6). RMS is expressed as follow:

RMS =

√√√√ 1

N

N∑
i=1

(fmodel(ti)− fmeasure(ti))2 (7)

where N is the total number of measurement points, and ti
is the time of the sampling points. Figure 6 shows measured
tension and fitting curves.

Table VI gives the estimated visco-elastic parameters and
RMS. The values of k1 in Table IV and Table VI the same
meaning. Their values have the same order of magnitude, and
the error is less than 29%. The RMS of each rope exhibited
a small error compared to a applied tension on operation.
A convergent tension at the end of the measurement was
considered as the applied tension. The RMS value is only
4% of the applied tension even in the case of Dyneema2,
which showed the largest RMS. RMS of each rope was
evaluated as a small error by comparison with the applied
tension. Convergence tension at the end of measurement was
considered as applied tension. RMS is only 4% of the applied
tension even in the case of Dyneema2, which showed the
largest RMS. Therefore, the visco-elasticity measurement was
considered appropriate. The elastic coefficients k1 of synthetic
fiber ropes are about half that of Stainless1 ks = 1.37×105 N.

As suggested by (6), the tension began showing a exponen-
tial decay immediately after the test rope was placed under
a constant strain, and the rate of decay gradually decreased.
After sufficient time, the tension decayed at a constant speed.
The exponential decrease in the tension ended more quickly
for Vectran2 than for the other ropes. Therefore, considering
that c3 represents the retarded elasticity, c3 for Vectran2 is
less than that for other synthetic fiber ropes. In addition, the
decay speed of the tension at 200 s after the start of the
measurement was less for Zylon2, Vectran2 and Kevlar2 than
for Dyneema2. This indicates that Dyneema2 has low creep
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TABLE VI: Visco-elastic parameters of the ropes and RMS

1
N × 104

2
N ⋅ s × 107

3
N × 105

3
N ⋅ s × 105

RMS 
[N]

Dyneema2 7.29 9.02 1.65 15.7 17.7

Zylon2 7.48 51.1 4.76 19.4 8.15

Vectran2 5.08 21.3 1.94 7.65 7.89

Kevlar2 3.31 25.1 2.63 13.8 3.29
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Fig. 6: Tension-time curves and fitting curves

resistance. c2 expresses the creep resistance of the rope, and
c2 of Dyneema2 was smaller than that of the other ropes by
one order of magnitude.

IV. DYNAMIC RESPONSE OF THE
TENDON-DRIVEN SERVO SYSTEM

A. Testing Machine and Experimental Procedure

A long-distance servo system exceeding 10 m in length is
required to develop a long-reach robot arm for decommis-
sioning work. We constructed a 15.2 m servo system with a
cable-pulley drive system that was as long as possible. Figure
7 shows the tendon-driven servo system. The input and output
are the rotation angle of the pulleys. Since it is difficult to
model relay pulleys in detail, we decided to ignore these in
this paper without discussing it in detail. However, due to
the limitation in area, three relay pulleys are included in the
system. The model used to derive the transfer function of the
testing machine is shown in Fig. 8. Table VII describes the
symbols used in Fig. 8. The tension amplitude f was half the
difference between the tensions of Rope 1 and Rope 2. Here,
C denotes the viscous resistance of the pulleys of the testing
machine. When the rope is not set and the axis of the pulley is
rotated freely by hand, the motion of the pulley axis is given
by

Iϕ̈+ Cϕ̇ = 0. (8)

Where C was determined by measuring the attenuation of the
angular velocity of the shaft over time. As inertial load, the
weight was fixed such that the moment of the inertia of the
test machine was I = 2.84× 104 kg ·mm2 on the axis of the

Input pulley

Rotation postition sensor

Output pulley

Rotation position sensor

Free pulleys

Free pulleys

Weight
DC motor

Tension sensors

Rope1

(blue)

 Rope2

(orange)

Fig. 7: Long-distance cable-pulley system
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L
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θ
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I
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Fig. 8: Analytical model of the testing machine

output pulley. The radii of pulleys, r1 and r2 are 25 mm and
the length of the rope was L = 15.2 m.

The dynamic characteristics were measured by changing the
rotation angle of the input pulley with a sine wave and mea-
suring the response of the rotation angle of the output pulley.
The input pulley was driven by a 150 W DC motor (301830,
MAXON MOTOR), and the rotation of the input pulley was
transmitted to the output pulley by two antagonistic ropes. The
angles of the input and output pulleys were measured with a
position sensor (E6B2-CWZ1X, Omron.co) with a resolution
of 0.18 deg. The rope tension was measured at a total of four
points near the input and output pulleys. In order to suppress
the total length of the testing machine, Rope 1 and Rope 2
pass each passed through three shaft, as shown in Fig. 7. Each
of the three shafts had two pulleys that rotated freely, and the
two antagonistic ropes were wound separately. Therefore, on
a free pulley, the two ropes did not slide, and the rope and
pulley did not slip. For the rope used for the measurement, a
tension of 490 N or more was preliminarily added to the test
rope as a prestretch process. The averaged tension was varied
from about 49 N to about 392 N in increments of about 49 N,
and the measurement was carried out at each tension value.
The input sine wave amplitude was 4.5 deg and the input
frequency was swept from 0.1 Hz to 6.0 Hz. Measurement of
the frequency response was performed three times with the
same average tension. All measurements of one kind of rope
were performed on one specimen.

B. Experimental Results

A Bode diagram was obtained with a Fourier-transform of
the input and output rotation angles. The results of the four
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TABLE VII: Symbols in Fig. 8

Name Unit
L [m] Length of test rope

k1, k3 [N] Coefficients of elasticity
c2, c3 [N · s] Coefficients of viscosity
I [kg ·mm2] Moment of inertia
C [kg ·m2 · s−1] Viscous resistance of pulleys

r1, r2 [mm] Radius of pulley
θ [deg] Rotation angle of the input pulley
ϕ [deg] Rotation angle of the output pulley
li [m] Elongations of elements i = 1, 2, 3
f [N] Tension amplitude

ropes are shown in Fig. 9-13, and the legend indicates how the
averaged tension was changed in eight ways. In all results, one
resonance point was confirmed. The gain reached its maximum
value at the resonance point, and the phase reversed before and
after the resonance point. In addition, the gain on the high-
frequency side of the resonance point decreased at -40 dB/deg.
The resonance point shifted to the high-frequency side for all
ropes with an increase in the averaged tension. However, it
stopped shifting at around 294 N. In addition, the magnitude
of the gain at the resonance point also changed along with
the averaged tension. For Stainless1 and Dyneema2, the max-
imum gain increased with the averaged tension. For Zylon2,
however, the maximum gain did not increase but converged to
a certain value with increased averaged tension. For Vectran2
and Kevlar2, the maximum gain decreased by increasing the
averaged tension.

Figure 14 and Fig. 15 compare the results of different ropes
with the same averaged tension. The resonance frequency of
Vectran2 or Kevlar2 smallest and that of Dyneema2 is always
the highest. The gain of Vectran2 at the resonance point was
always the smallest, and that of Stainless1 was the largest.
Dyneema2 and Zylon2 had about the same maximum gain.

The transfer function was obtained from the model of the
testing machine shown in Fig. 8. The motion of the output
pulley is given by

Iϕ̈+ Cϕ̇ = 2r2f. (9)

In Fig. 8, Rope 1 and Rope 2 are antagonistic. The elongation
and tension of Rope 1 are given by (10) and those for Rope
2 are given by (11). In (11), replacing l′i = −l′′i is isomorphic
to (10).

l1 + l2 + l3 = r1θ − r2ϕ

f = k1l1 = c2 l̇2 = k3l3 + c3 l̇3
(10)

l′1 + l′2 + l′3 = −r1θ + r2ϕ

f = k1l
′
1 = c2 l̇′2 = k3l

′
3 + c3 l̇′3

(11)

When the Laplace transform is performed on (9) and (10), the
transfer function GVE(s) is given by

GVE(s) =
L[ϕ]
L[θ]

=
r1

Is2+Cs
2r2

· ( 1
k1

+ 1
c2s

+ 1
k3+c3s

) + r2
(12)

Because Stainless1 is regarded as an elastic body, only the
element of k1 out of k1, c2, k3, and c3 was considered to obtain
the transfer function GE(s), as shown in (13). The values of
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Fig. 9: Frequency response with Dyneema2
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Fig. 10: Frequency response with Zylon2

other elements were extremely large, and elongation of them
did not occur.

GE(s) =
L[ϕ]
L[θ]

=
r1

Is2+Cs
2r2k1

+ r2
. (13)

The transfer function into which the parameters for the me-
chanical properties were substituted was compared with the
measured dynamic characteristics. For the four kinds of syn-
thetic fiber ropes, the values in Table VI and (12) were used.
For Stainless1, the value of ks = 1.37× 105 N obtained from
the cyclic tensile test and (13) was used. The obtained transfer
functions are shown in Fig. 9-13 as legend “Analytical value”.
The transfer functions do not completely match the actual
measured dynamic characteristics of the testing machine, but
the frequencies of the resonance point and the maximum gains
were of the same order of magnitude.

V. DISCUSSION

The dynamic characteristics were measured by using a long-
distance cable-pulley system with four kinds of synthetic fiber
ropes and Stainless1. The results show that the servo system is
close to a second-order lag system regardless of the rope used.
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Fig. 11: Frequency response with Vectran2
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Fig. 12: Frequency response with Kevlar2

The frequency of the resonance point of the servo mechanism
was between 2 and 4 Hz for any type of rope. This means
that synthetic fiber ropes can drive the servo mechanism in
the same range of frequency as the stainless steel wire rope
with the same diameter, considering the servo mechanism is
driven in a bandwidth lower than the resonance point to avoid
intensifying the vibrations.

As the averaged tension increased, the resonance point
shifted to the high-frequency side for all ropes. This is thought
to be due to the nonlinearity of the elastic coefficient. As
shown in Fig. 3, the tension-strain diagram of the rope draws a
downwardly convex curve, and the elastic coefficient increases
with the averaged tension and the strain. However, while
the testing machine was running, the elastic coefficient was
assumed to be constant. To estimate the maximum amount of
change in rope strain while the testing machine was running,
if the position gain was assumed to be 10 and calculated from
the length of rope and radius of pulleys, the amount of change
in strain is as small as ±0.13%. Therefore, the change in
elastic coefficient was also assumed to be small while the servo
system was driven. It is thus reasonable to treat the model in
this paper as having a constant elastic coefficient.
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Fig. 13: Frequency response with Stainless1
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Fig. 14: Frequency response when tension was 49 N

If the rope is a simple elastic body and the servo system is a
second-order lag system, the maximum gain never decreases as
the resonance point shifts to the higher side. However, the gain
clearly declined for Vectran2 and Kevlar2 as the resonance
point shifted. This may be because the visco-elasticity of
synthetic fiber ropes is close to elastic, but the viscous damping
and structural damping of Vectran2 and Kevlar2 are greater
than those of the others.

Both the transfer function and the Bode diagram are close
to the second-order lag system and the resonance point and
the gain have the same order of magnitude. The model in Fig.
8 conforms with reality, and thus can be used to model the
dynamic characteristics of a tendon-driven mechanism.

All synthetic fiber ropes decreased the gain of the servo
system relative to the stainless-steel wire rope. The large
difference in gain at the resonance point may be due to the
damping derived from the viscosity and plasticity of synthetic
fiber ropes. A tendon-driven servo system that needs to drive
a large amount of inertia compared with the stiffness of the
joint, such as a long-reach robot arm, vibrates easily with long
settling time. Thus, an additional damper is often placed on
the joint to shorten the settling time. If the vibration can be
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Fig. 15: Frequency response when tension was 392 N

sufficiently suppressed without an additional damper by using
a synthetic fiber rope, the structure will be lighter. Synthetic
fiber ropes thus seem more suitable than stainless wire ropes
for such applications.

VI. CONCLUSIONS

In this paper, we investigate the frequency response of a
long-distance cable-pulley system using synthetic fiber ropes.
Four synthetic fiber ropes braided with the same method and a
stainless-steel wire rope of the same diameter were compared.
The results are summarized as follows:

1) The Flory’s model was confirmed to be applicable to
different types of synthetic fiber rope with a diameter of
2 mm. This model can be used to quantitatively compare
different types of synthetic fiber ropes.

2) The elastic coefficient of ropes made with UHPE, PBO,
Polyarylate, and Aramid are about half of the elastic
coefficient of the stainless-steel wire rope. However, in
the testing machine, frequency responses were of the
same order in any rope, which means that it can be
driven in the same bandwidth.

3) The dynamic characteristics of the mechanism were
confirmed as related to the visco-elasticity of the rope. In
particular, the synthetic fiber ropes showed lower gain in
the tendon-driven servo mechanism. This is considered
to be due to viscous and structural damping.

In the future, we shall evaluate other types of rope of varying
diameters, fibers, and braiding methods. Insofar as environ-
mental conditions affect the mechanical properties of rope
(e.g., humidity, temperature, and radiation), this must also be
investigated. Moreover, the precision and scalability of the
model for synthetic fiber rope need to be improved. Therefore,
we shall consider the nonlinearity of elasticity, mass or sagging
rope, friction on guide elements, variation of properties, and
the influence of the method of preloading on model errors.
Finally, we shall investigate other physical properties, such as
creep over the long term and friction durability, in order to
provide design guidelines for synthetic fiber rope.
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