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Abstract

Virtual screening (VS) is a computational method which is widely used to evaluate the

binding affinity between a vast number of compounds and a protein before conducting

in vitro assays. In particular, structure-based VS (SBVS), which uses protein tertiary

structures, is attracting attention because it can consider the binding affinity in a

physico-chemical manner. However, SBVS is too computationally heavy to evaluate

10 million-order of compounds. Pre-screening methods filtering out unfeasible com-

pounds have been proposed to avoid the problem of computational cost. Most of them

are ligand-based, prediction from known inhibitors, and structure-based pre-screening

methods are still needed to be accelerated.

In this dissertation, we designed a pipeline for faster virtual screening with a fun-

damental idea: substructure commonality. Commonality can be used to reuse of in-

termediate results. We firstly defined “fragment” to maximize meaningful common

substructures and we revealed our definition express compounds with much smaller

number of fragments than the RECAP, an existing decomposition rule. The fact leads

to faster calculation of pre-screening and docking calculation.

As a first step of the structure-based virtual screening pipeline, we proposed the

pre-screening method, Spresso. It evaluates compounds based on the binding scores of

their fragments, and thus the calculation results of fragments are reused to multiple

compounds. It is capable of exhaustive primary screening and completed pre-screening

approximately 200 times faster than the conventional method (Glide HTVS) while

precision is slightly compromised. When Spresso was applied to a more than 26 million

compounds, the calculation time was within a day.

The second step of the pipeline is docking calculation. We designed a docking calcula-

tion procedure with reuse of intermediate results. The procedure is based on fragment-

based anchor and grow algorithm.. We found that one of the intermediate information,

called the fragment grid, is an essential factor while it spends huge memory space;

therefore, we formulated and reduced the problem of optimization of the fragment

grids reuse as the minimum cost flow problem, which is known as a polynomial-time

problem. Because the reduced graph of the problem is topological sortable and sparse,

we finally proposed approximately 9 times faster algorithm.
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Chapter 1

Introduction

1.1 Drug Development

The development process of novel drugs is called “Drug development” or “Drug

design”, and pharmaceutical companies spends much money for R&D, research and

development. The process can be mainly divided into three parts:

Discovery and Development The aim of this step is obtaining potential drug can-

didates, and it consists of below steps.

Target selection a step to find a target protein related to a specific disease.

The function of protein is also considered in terms of safety.

Lead generation a step to find some feasible compounds which bind to the

target protein from huge number of compounds. The step is also called

“Hit identification”.

Lead optimization a step to optimize feasible compounds’ efficacy, bio-

availability and safety.

Preclinical Research The potential drug candidates are checked their efficacy and

safety in cells and animals.

Clinical Research This step is to assess the efficacy and safety of drug candidates in

humans. The step is separated into three steps, Phase I–III.

According to an article [1], these steps takes 4.5 years, 1.0 year, and 6.5 years,

respectively. Furthermore, the estimated cost for a new approved compound is more

than 1 billion dollars [2]. Preclinical Research and Clinical Research are based on in

3
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vivo experiences and are unavoidable, thus much of computational effort for obtaining

potential drugs and optimization of found candidates has been done. These methods

are named as Computer-aided Drug Design (CADD).

1.2 Computer-aided Drug Design (CADD)

Thanks to the enlarged databases of compounds, protein tertiary structure, expres-

sion profiles, and assay results, vast number of computational methods have been

proposed to improve the Discovery and Development step in the basis of accuracy, cost

and speed. For the prediction of efficacy in the Lead generation step, virtual screening

(VS) is proposed and done for lots of drug development campaigns [3, 4, 5, 6, 7]. On

the other hand, ADMET prediction [8] and off-target prediction [9] has been proposed

for the prediction of safety.

In this dissertation, we focused on VS because much more compounds are processed

with it compared to safety prediction and thus VS step is usually computationally more

expensive.

1.3 Virtual Screening

The identification of potential drug compounds is said as “finding needles in a

haystack” [10]; thus, estimation of the likelihood for a compound to become a vi-

able drug before conducting in vitro assays is critical in enhancing the effectiveness of

searches. To estimate drug likelihood, virtual screening methods have been improved

with the enlargement of available databases [11].

Virtual screening methods can be divided into three:

• Structure-based virtual screening (SBVS)

SBVS methods utilize target protein tertiary structures. It does not require

known compounds, and thus outputs are not biased toward knowns.

– Protein–ligand docking [12, 13]

– Molecular dynamics [13, 14]

– Receptor-based pharmacophore [15, 16]

• Ligand-based virtual screening (LBVS)

LBVS methods utilize known active and inactive compounds. It is considered as

more accurate than SBVS methods.
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– Quantitative Structure-Activity Relationship (QSAR) [17, 18]

– Machine learning [4, 19]

– Similarity search [20, 21]

– Ligand-based pharmacophore [16, 22]

• Chemical genomics-based virtual screening (CGBVS)

It also called as drug-target interaction prediction. CGBVS methods utilize

Protein–ligand interaction bipartite network. It predicts relasionship between

multiple proteins and multiple compounds, thus it is mainly applied to off-target

prediction and drug repositioning [23, 24, 25].

In particular, structure-based VS (SBVS) is attracting attention because it can con-

sider the binding affinity in a physico-chemical manner and thus does not require any

known drugs beforehand, whereas LBVS and CGBVS approaches need experimental

data for similar protein-compound pairs. The absence of bias toward experimental

compounds is also a strength of SBVS. It means the methods will output more diverse

potential drugs, and thus researchers are able to select new scaffolds to avoid side effects

or existing patents [26]. Additionally, the prediction ability of binding mode for each

compound is also a reason SBVS is attracting attention, while most of ligand-based VS

methods cannot estimate binding poses. The 3D structural information enables us to

interpret experimental results in atomic-level, and plan which part of compound will

be modified [6, 7].

Moreover, the availability of protein tertiary structures has increased in recent years.

For example, the Protein Data Bank (PDB), which is the most popular public database

of protein structures, contains > 136,000 entries, a 9% increase in 2017 [27].

1.3.1 Structure-Based Virtual Screening (SBVS)

As we already mentioned, SBVS is based on 3D structures of a protein and com-

pounds. Most of SBVS methods consider physical interaction, shape complementarity

between a protein and a compound [28, 29, 30, 31]. Especially, protein-ligand docking

is performed to estimate binding affinities and plausible binding modes for many drug

candidates [12, 13, 32].
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1.4 Protein-Ligand Docking

Protein-ligand docking is the most popular method in the SBVS methods since the

calculation uses atom positions and bond information between atoms, thus it can con-

sider physical interaction and compound’s flexibility explicitly. For instance, hydrogen

bond is one of the important factor of ligand binding, and it depends on the position

of atoms and directions of bonds. This atomic-level evaluation is informative to un-

derstand what binding factors are important and to modify compounds more feasible

and effective.

The inputs are a tertiary structure of target protein and a 3D-structure of a com-

pound, while the outputs are predicted binding mode and its score, which usually

mimics the binding energy. In order to output most stable binding mode, the docking

method is a optimization problem (Fig. 1.1). The screening is done by considering

docking scores [33] or re-ranking with predicted binding modes, including visual in-

spection [34, 35, 36].

Proprietary docking tools such as Glide [37], eHiTS [38], and open-sourced tools such

as AutoDock [39], AutoDock Vina [40], DOCK [41] have been developed. Table 1.1 is a

list of well-known docking tools. Glide, a proprietary tool, is one of the most accurate

tool [42, 43] and is still improved in terms of scoring function [44], thus it is widely

used [45].

This process, however, is computationally expensive [26]. The reason is docking is an

optimization problem. The internal degrees of freedom of a compound is a significant

factor associated with the search space and computation time required for docking

simulations. Furthermore, the calculation speed highly depends on the algorithms and

tools. For example, AutoDock 4.0 [39] spends ∼ 500 CPU core seconds per compound

[40], whereas the commercial docking tool Glide [37] is 50-fold faster than AutoDock

4.0. It should be noted that the speediness of Glide is still not enough to evaluate

millions of compounds. Additionally, parallel computation of some proprietary tools,

such as Glide, is highly restricted in terms of license.

Researches to accelerate docking have been done [40, 46, 47]; however, its use is

still not applicable to a huge collection of compounds such as ZINC (> 20 million

compounds) [48], PubChem (> 60 million comounds) [49], ZINC15 (> 120 million

compounds) [50]. Furthermore, GDB-17, a virtually enumerated compound library

have been also proposed (≈ 166.4 billion compounds) [51]. These facts indicates that

an acceleration of SBVS procedure has become a critical matter.
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Figure 1.1: An example of protein-ligand docking. The factors of docking are pose
optimization and scoring.

1.5 Pre-Screening

Because of slowness of docking calculation, the virtual screening campaigns often

screen out compounds prior to the docking calculation, termed “pre-screening” [53].

The pre-screening methods can be divided into three types: 1. pre-screening by physic-

ochemical descriptors, 2. pre-screening by 2D-structure of compounds, 3. pre-screening

by rough docking calculation.

1. Pre-screening by physicochemical descriptors

Existing drugs have some specific physicochemical values, e.g. molecular weight,

water-octanol partition coefficient (logP), and thus there are filtering methods
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Table 1.1: Examples of docking tools

Name
Compound-based

Method Free? Articles
or Fragment-based

AutoDock 4.0 Compound-based Genetic Algorithm ✓ [39]
AutoDock Vina Compound-based Simulated Annealing ✓ [40]
DOCK Fragment-based Anchor and Grow ✓ [41]
eHiTS Fragment-based Maximum Clique Finding – [38]
FlexX Fragment-based Anchor and Grow – [54]
FRED Compound-based Conformer Docking – [55]
Glide Compound-based Systematic Search – [37]
GOLD Compound-based Genetic Algorithm – [56, 57]

ICM Compound-based
Biased Probability

– [58]
Monte Carlo

rDock Compound-based Genetic Algorithm ✓ [59]

with those descriptors.

• Lipinski’s rule of five [60]

It consists of four physicochemical rules to be feasible as orally available

compounds.

• Quantitative Estimate of Druglikeness (QED) [61]

It is a scoring method of druglikeness, which is based on the distributions

of descriptors of known drugs.

These methods are independent from the target protein, and they evaluate bio-

availability and safety of compounds.

2. Pre-screening by 2D structure of compounds

Structurally similar compounds tend to bind to same targets, thus 2D structure

of compound is informative to predict efficacy if there are known binders to

the target protein. The prediction strategies are similar to the LBVS methods

because of its speediness.

• Fingerprint-based pre-screening [62]

Fingerprint is a binary vector of a compound. Each bit represents a sub-

structure of a compound. Similarity search and machine learning techniques

are used with fingerprints for pre-screening.

• Pharmacophore-based pre-screening [63]
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It considers functionality of substructures, e.g. aromatic, hydrophobic, hy-

drogen bond acceptor, hydrogen bond donor.

3. Pre-screening by roughly docking calculation

As we mentioned in section 1.4, docking is basically time consuming; however,

rough optimization of conformation search enables compound pre-screening. For

instance, Glide has a HTVS mode to calculate 10-fold faster than ordinal docking

mode (SP mode), thus the HTVS is highly used as pre-screening, followed by SP

docking calculation [64, 65, 66, 67]．

Physicochemical-based and 2D structure-based approaches are widely used as pre-

screening methods and can deal with vast numbers of compounds, since the approaches

are computationally less expensive than docking-based approaches. Physicochemical-

based approaches, however, filter out compounds not from protein-ligand binding point

of view. Additionally 2D structure-based approaches rely on known active/inactive

compounds. It means pre-screened compounds are biased toward known drugs and

thus the strength of SBVS will be vanished.

Docking-based methods avoid this problem, but still require large computation times.

For example, Glide HTVS and Panther [68] spends approximately 1 CPU core sec per

compound, resulting in spending 4 CPU core months for 10 million compounds. For

these reasons, a much faster docking-based method sufficient to evaluate all compounds

in ZINC library [48] or any other compound libraries is urgently needed, despite its

limited screening accuracy. In addition, it is not necessary for pre-screening methods

to output structural conformation information because pre-screened candidates will

subsequently undergo more expensive, more detailed docking simulations.

1.6 Fragment-based method

A promising way to achieve acceleration is to reuse the calculation results because

chemical compounds often partially share the same substructures, we called fragments.

There are some fragment-based docking tools as we have shown in Table 1.1. Thus the

reuse of fragment result is possible to apply compound evaluation and docking.

On the other hand, substructure-based methods have been adopted to calculate

compound properties. For instance, topological polar surface area (TPSA) [69] is an

estimation method of molecular polar surface area (PSA) that sums the substructure

contributions and there is also a compound volume estimation method by counting
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each type of atom [70]. These methods correctly estimate the properties independent

from 3D conformation despite of the conformation dependencies.

The binding affinity highly depends on the binding pose of ligands toward the tar-

get protein while binding pose optimization is time consuming. If compound pose

optimization-free procedure can predict the binding feasibility, it can be used as a pre-

screening method and performs drastically faster than other structure-based methods.

1.7 Purpose of Study

In this thesis, we describe the structure-based pre-screening method and proce-

dure of fragment extension-based docking in order to accelerate the compound evalu-

ation speed. To realize the acceleration, we firstly proposed compound decomposition

method, then we adopted it to structure-based virtual screening methods: pre-screening

and docking.

The ultrafast structure-based pre-screening method called Spresso evaluates com-

pounds by decomposition of them and fragment docking, followed by compound scor-

ing from fragments scores. We also evaluated its accuracy and proposed the filtering

method to improve it.

Fragment-based docking calculation procedure is also designed with reuse of inter-

mediate results. We found that one of the intermediate result, fragment grid, is an

essential factor toward acceleration while it spends huge memory space that cannot

save all of them at once. Therefore, we formulated and reduced the problem as the

minimum cost flow problem, and proposed faster algorithm utilizing graph character-

istics.

1.8 Summary of Contributions

The contributions of this thesis are classified into three categories: (1) proposal of

concept of decomposition into fragments and reuse of intermediate results, (2) devel-

opment of a novel structure-based pre-screening method that is up to 300 times faster

than the conventional procedure, (3) formulation of memory use optimization for frag-

ment reuse and development of faster algorithm to solve the problem. We now describe

these in more detail.

• We proposed the fundamental concept of compound decomposition and reuse

of intermediate results, especially for structure-based virtual screening methods.
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We also developed an decomposition procedure that generates several common

substructures among compounds. We unveiled that the number of kinds of frag-

ments can be one-tenth compared to the number of substructures generated by

RECAP, an existing decomposition method and up to one-hundredth or less

compared to the number of compounds.

• We developed Spresso, Speedy PRE-Screening method by Segmented cOm-

pounds. It only depends on protein tertiary structures, and it does not depend

on known binders (e.g. inhibitors). The docking calculation is only used for each

fragments, not for all compounds. Additionally, the compound conformation-

free evaluation scheme is hired. Because of these reasons, the calculation speed

is extremely faster than conventional, docking-based pre-screening.

• We designed protein-ligand docking procedure with reuse of intermediate results.

The idea of result reuse of fragments was already proposed and implemented in

eHiTS [38] but they achieved only up to 4-fold acceleration. We pointed out

the drawback of the implementation and we proposed better procedure, which

uses main memory, not hard disk. Additionally, we found new, another reusable

intermediate result in fragment extension-based docking procedure.

• We formulated the memory consumption problem into the minimum cost flow

problem. The memory consumption problem is arisen from intermediate result

storage because intermediate result of fragment, named fragment grid, consumes

more than 100 MB per fragment. Since the evaluation order of compounds and

extension order of fragments are determined in deterministic manner, it can be

formulated as a weighted offline cache problem, and can be reduced to a minimum

cost flow problem. The generated graph of the problem has characteristics, and

we developed faster algorithm specified for the graph.

1.9 Thesis Organization

The remaining chapters of this thesis are organized as follows: Chapter 2 depicts

the compound decomposition procedure which used in Chapter 3 and after. Chapter 3

describes a novel structure-based pre-screening method, called Spresso (Speedy PRE-

Screening method with Segmented cOmpounds). All experiments were updated from

the article [71], thus previous results are written in Appendix A. Novel protein-ligand

docking concept with reuse of intermediate results is described in Chapter 4, and
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Figure 1.2: The relationship between chapters

Chapter 5 explains the optimization method of memory usage for fragment grids and

the procedure of new algorithm to optimize it. Comclusions are presented in Chapter 6

together with future work and discussion. In addition, we report detailed information

of each target in DUD-E and prediction accuracies of Glide SP, Glide HTVS, and

Spresso in Appendix B. The relationship between chapters is shown in Fig. 1.2.

This thesis is based on the following publications by the author: [71, 72, 73, 74]
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Chapter 2

Compound Decomposition

2.1 Introduction

In this Chapter, we described compound decomposition procedure used in Chapter

3: Spresso and Chapter 4: novel protein-ligand docking procedure.

Medicinal chemists try to know which substructures of a compound are important

for binding to optimize compounds, and thus substructure evaluation is common idea,

such as group efficiency (GE) [75]. Additionally, linking multiple small structures

(called “fragments”) has been done as a part of fragment-based drug design (FBDD)

[76, 77, 78, 79]. These two research directions imply the feasibility of computational

methods with fragment-based evaluation.

Unlike FBDD, the virtual screening step evaluates existing compounds and does

not generate new compound structures; however, fragment-based evaluation also has

an large advantage in computational point of view. Organic compounds have lots

of common substructures since they are composed of specific functional groups (e.g.

Phenyl group, Carboxyl group, Imine group). If calculation results of substructures

can be shared among compounds, the total amount of calculation will be decreased.

Obviously, the algorithm of decomposition highly affects the amount of calculation.

From the retro-synthesis point of view, decomposition methods such as RECAP [80],

BRICS [81] have been proposed. The aim of these methods is to virtually generate

new compound structures, not to accelerate virtual screening. On the other hand, a

fragment-based docking tool, eHiTS [38], decomposes compounds into rigid fragments

and linkers between fragments, resulting in huge diversity of linker structures.

Thus, we firstly defined the fragment, followed by proposal of the decomposition

method, which is related to eHiTS’s method, but linkers are also decomposed into

15
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Figure 2.1: Example of fragments

rigid fragments in order to maximize the commonality of fragments. We also revealed

that the number of kinds of fragments generated by our method are quite fewer than

the number of compounds.

2.2 Definition of fragment

As mentioned in Introduction section, generating rigid substructure is important

from the docking calculation point of view. On the other hand, too much fragmentation

will break a functional groups into multiple substructures. Because of the reasons, we

define that fragment is a substructure which has no (or restricted) flexibility in terms

of the heavy atoms (except for hydrogen atoms).

No flexibility double bond, triple bond, and specific resonance bonded atoms such as

phenyl-group make substructure rigid. Atoms which connected with these bonds

each other are treated as a fragment.

Restricted flexibility some resonance bond such as peptide bonds, and cyclic bonds

make substructure less flexible. Atoms which connected with these bonds each

other are also treated as a fragment even though they have partial flexibility.

Fig. 2.1 shows some examples of fragment. Single atom is smallest fragment since it

has no flexibility in the structure, and thus fragments have inclusion relationship.

It is noted that the size of fragments in this dissertation is relatively small compared

to the definition of FBDD’s “fragments” (e.g. rule of three [82]).

2.3 Decomposition method

To decompose compounds into fragments, we proposed the two-step decomposition

method. The overview of the steps is shown in Fig. 2.2. It is noted that cleaved bonds

are attached hydrogen atoms.
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Figure 2.2: An example of compound decomposition. The carbon moiety in the struc-
ture on the right has four adjacent groups; therefore, it is not merged into any adjacent
groups.

Step1: Detect rigid groups Firstly, rigid groups in each compound are detected.

Rigid groups are double, triple, or resonance bonded atoms, ring groups (even in

the case of cyclohexane, which has partial flexibility).

Step2: Merge solitary groups The second step involves merging solitary groups

(single-atom fragments). Each non-solitary group and its adjacent solitary group

are merged, except for solitary groups having three or more adjacent groups. The

exceptional case is also shown in Fig. 2.2.

The program was coded with C++ and Open Babel library [83]. The code is open-

sourced at http://www.bi.cs.titech.ac.jp/spresso.
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2.4 Experiments

It is important to check how many fragments will be generated from some compound

libraries. In this section, we showed decomposition statistics compared to RECAP [80]

implemented in RDKit [84].

2.4.1 Dataset

There are several compound libraries because of different purposes. ZINC is a li-

brary of purchasable compounds [48] while the ChEMBL library contains compounds

which are associated with other information, such as scientific literatures, patents, as-

say data (via PubChem Bioassays) [85]. The differences may make the difference of

compound structures, thus we utilized three libraries: ZINC (all purchasable and all

boutique subsets with ZINC ID unification, 28,629,602 compounds), ChEMBL (ver-

sion 21, 1,583,897 compounds), and PubChem (accessed at 2016-12-12) [49]. As for the

PubChem library, compounds having ≥ 1, 000 Da are rejected because of calculation

cost, thus the number of compounds was 88,527,810.

2.4.2 Comparison of decomposition methods with the ZINC

library

We firstly compared how many fragments were generated with proposed method

and RECAP. The decomposition results are shown in Table 2.1. Proposed method

expressed the ZINC library by only 263,319 fragments, while RECAP generated > 10

times more fragments. The expression of compounds by fewer fragments leads more

reuse of intermediate results, thus we concluded our proposed method is better than

existing method, RECAP.

2.4.3 Difference between libraries

Secondly, we decomposed the libraries by our methods. Table 2.1 shows the results.

The results indicates that the number of fragments is dependent on the database; for

example, the compounds of ChEMBL library were decomposed into 127,360 fragments

(a 12-fold reduction). As for the PubChem, the compounds were decomposed into

2,082,185 fragments (a 43-fold reduction).
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Table 2.1: The number of kind of fragments of several libraries and decomposition
methods

Compound Library #compounds
#kinds of fragments

Proposed RECAP [80]
all purchasable

ZINC & 28,629,602 263,319 3,161,753
all boutique

ChEMBL v21 1,583,897 127,360 –
PubChem (2016-12-12)

88,527,810 2,082,185 –
(MW < 1000 Da)

Table 2.2: The numbers of kinds of fragments among different numbers of compounds.
Compounds were randomly sampled from ZINC all purchasable subset 5 times for each.
The values are averages and standard deviations.

#compounds #kinds of fragments
100 161.0 ± 3.9
300 338.8 ± 9.7

1,000 762.6 ± 33.1
3,000 1,602.8 ± 38.4
10,000 3,455.0 ± 56.6
30,000 6,754.0 ± 32.9
100,000 13,376.8 ± 70.8
300,000 24,172.2 ± 61.2

1,000,000 45,900.6 ± 65.1

2.5 Discussions

2.5.1 The relationship between the number of compounds and

fragments

According to the Table 2.1, the ratio between the number of compounds and the

number of fragments varies from 10-fold to 100-fold. For the further investigation,

different sizes of libraries were generated by randomly sampled from ZINC library,

and decomposed into fragments. Table 2.2 shows the results of the decomposition.

The number of kinds of fragments is larger than the number of compounds for the

small dataset, while the ratio goes to 22-fold for the large dataset. Interestingly, the

increasing ratio of the number of kinds of fragments becomes slower when the num-

ber of compounds is larger. The tendency is obviously seen in Fig. 2.3. Thus our

decomposition method is more effective when a compound library is larger.
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Figure 2.3: The relationship between the number of compounds and the number of
kinds of fragments. The values are same as Table 2.2. All compound libraries are
generated by randomly sampled from ZINC all purchasable subset.

2.5.2 The frequencies of fragments

The frequencies of each fragment highly varies, as shown in Fig. 2.4. As a further

investigation, we confirmed what kind of fragments are frequently emerged and rarely

emerged. Frequent fragments are shown in Fig. 2.5, while rare fragments are shown

in Fig. 2.6. Almost half of frequent fragments are ring structures, both aromatic

and aliphatic rings. Trifluoromethyl group, carboxyl group, and sulfo group are also

frequently emerged. On the other hand, most of rare fragments are fused ring and

contains chirality, it leads to its uniqueness.

2.6 conclusion

In this Chapter, we described the decomposition method which is utilized in all of

our proposed method. The decomposition method can generate fragments which have

no rotatable bond except for ring bonds.

The total number of kinds of fragments was decreased compared to the number of

compounds. The ratio varies from 10-fold to 100-fold, related to the size of libraries.

The fragments generated by our method is more common among compounds than

RECAP, an existing decomposition method.
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Figure 2.4: A scatter plot of appearance frequencies. The frequencies were calculated by
decomposition of 1,000,000 compounds randomly sampled from ZINC all purchasable
library.
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Figure 2.5: Frequent fragments of a decomposition result. These are emerged > 10,000
times in the decomposition of 1,000,000 compounds randomly sampled from ZINC all
purchasable library. The numbers are the frequencies of fragments.
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Figure 2.6: Rare fragments of a decomposition result. These are a part of fragments
emerged only one time in the decomposition of 1,000,000 compounds randomly sampled
from ZINC all purchasable library. The numbers are the frequencies of fragments.
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Chapter 3

Spresso: Development of an

Ultrafast Compound Pre-Screening

Method

3.1 Introduction

As we mentioned in Chapter 1, fast pre-screening method which based on protein ter-

tiary structure is needed. Additionally, pre-screening methods are not required to out-

put binding poses of each compound. It means reconstruction of compound structure

is not needed. Because of these reasons, we proposed a structure-based pre-screening

method called Spresso (Speedy PRE-Screening method with Segmented cOmpounds,

pronounced like “espresso”) that decomposes all candidate compounds into fragments

with no internal degrees of freedom. These fragments are docked into target pro-

teins individually, and compounds are scored based on the results of fragment docking.

Spresso performs ultrafast compound evaluation without protein-ligand conformation

prediction.

3.2 methods

The procedure of Spresso is comprised of three key steps summarized in Fig. 3.1: 1)

compound decomposition, 2) fragment docking, and 3) fragment-based evaluation of

each compound score.

27
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Figure 3.1: Spresso flowchart.

Compound Decomposition

We utilize the decomposition rule that is already mentioned in Chapter 2. The

decomposition method make fragments with no internal degrees of freedom, which

enable docking calculation faster.

Fragment docking

After decomposition, all rigid fragments are docked to the best location regardless

of the other fragments. This means that all fragments are independently docked to

the location in the protein cavity where they fit best. Fragments having the same

substructures as those from different compounds can be scored identically, thereby

significantly decreasing the number of fragments needing to be docked. The best score

from the docking results for each fragment is recorded. For this procedure, any docking

tool capable of outputting a score can be used, including AutoDock Vina [40], Glide

[37], or GOLD [57].
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Fragment-based evaluation of each compound

Compounds are evaluated after fragment docking is completed. Given that only

fragments are docked into the target protein, we cannot obtain docking scores for en-

tire compounds. Therefore, the screening evaluation score for each compound must

be calculated based on the docking scores of fragments decomposed from the original

compound. There are two strategies for compound evaluation: 1) choosing combina-

tions of fragment conformations that avoid contradictions, and 2) choosing the best

conformation without consideration of fragment collisions. The former strategy is more

precise as compared to the latter strategy, but searching for conformation combinations

can also be computationally expensive. Given our goal of creating a computationally

faster “pre-screening” method, we chose the latter strategy for compound evaluation.

We can consider many formulae for calculating compound-evaluation scores from

fragment-docking scores (scoref ). In this study, we evaluated seven calculation formu-

lae.

(I) Summation of fragment-docking scores (SUM)

SUM =
∑
f

scoref (3.1)

Summation is one of the simplest evaluation methods, where SUM reflects the

approximate rough upper bound of the compound-docking score. Generally, the

SUM value is larger when a compound is divided into more fragments.

(II) Best value of fragment-docking scores (MAX)

MAX = max
f

(scoref ) (3.2)

Utilizing the best value is also a simple evaluation method, where MAX reflects

the estimated rough lower bound of compound-docking scores. In most cases, the

MAX value will be less than the compound-docking score; however, a docking

score associated with a single fragment may exceed the compound-docking score

in specific cases (i.e., a compound too large for a protein cavity).

(III) Arithmetic Mean (AM)

AM =
SUM+MAX

2
(3.3)
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(IV) Geological Mean (GM)

GM =
√
MAX · SUM (3.4)

(V) Harmonic Mean (HM)

HM =
2 · SUM ·MAX

SUM+MAX
(3.5)

(VI) Generalized Sum (GS)

GSx = x

√∑
f

(scoref )x (3.6)

GS1 is equal to SUM, while limx→∞ GSx is equal to MAX; therefore, GS can

express the mixture of SUM and MAX values continuously. In this study, we

chose GS3 from the GS2 ∼ GS10 evaluation results (Fig. 3.2).

(VII) Energetic Sum (ENE)

ENEx = x log

(∑
f

exp (scoref/x)

)
(3.7)

This calculation is an analogy of sum of energies, and it is called “logsum-

exp” in some fields such as Deep Learning because of the structure of formula.

limx→0 ENEx is also equal to MAX, however, there is no equivalent expression

of SUM. In this study, we chose ENE1.8 from the ENE1 ∼ ENE2.5 evaluation

results (Fig. 3.3).

GS requires non-negative values as input, while the fragment-docking score is almost

always a negative value because the score was fitted to experimental ∆G. Therefore, the

fragment-docking scores are inverted, and positive docking scores (which are inverted

to negative values) are treated as zero.

The best pre-screening accuracy was achieved when (VII) ENE1.8 was used (detailed

description provided in section 3.3.2; thus, ENE1.8 was adopted as the default formula

in Spresso.

3.2.1 Datasets

The Directory of Useful Decoys, Enhanced (DUD-E) [86] was used to evaluate the

performance of pre-screening during the virtual screening process. The DUD-E dataset

is widely used and consists of 102 diverse sets of protein targets, as well as active and
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Figure 3.2: Results of the averaged prediction accuracy for 102 DUD-E targets among
GSx formulae. This figure shows 2%–1% results that represent the EF1% when 2% of
all compounds were pre-screened, and suggests that GS3 is the best parameter.

�

�

�

�

�

�

��

� 	
� �
� ��� ��� ��� ��� ��� �� !"# $ %&' ()* +,- ./0 123

456789:;<=>?

@ABCDEFGHI

E
nr

ic
h

m
en

t F
ac

to
r 

1%

Value J of KLMN

Figure 3.3: Results of the averaged prediction accuracy for 102 DUD-E targets among
ENEx formulae. This figure shows 2%–1% results that represent the EF1% when 2% of
all compounds were pre-screened, and suggests that ENE1.8 is the best parameter.

decoy compounds. The ZINC database [48] was also used to measure calculation time,

since the number of active compounds and decoys in each set is insufficient as compared
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to those used in actual virtual screening. The library consists of 28,629,602 compounds.

3.2.2 Implementation and Settings

The code of compound-evaluation score calculations were written in Python. Spresso

code (including decomposition code) is freely available at http://www.bi.cs.titech.

ac.jp/spresso/ under the GPL version 3 license. The URL has been accessed from not

only Japan, but also Belgium, Chile, China, France, Poland, Portugal, South Korea,

Turkey, and United States.

For the docking tool required in fragment docking step in Spresso, we used Glide SP

mode and Glide HTVS mode. It is noted that fragment-based docking tools, such as

eHiTS and FlexX, are more similar to the idea of Spresso; however, we did not utilize

them since eHiTS is no longer available (as of Feb. 8, 2019) and FlexX have been

reported the accuracy is worse than Glide [42, 43]. Glide HTVS was also used to dock

compounds for comparison of pre-screening. The version of Glide is 2018-3.

3.2.3 Computing environment

All calculations were conducted on the TSUBAME 3.0 supercomputing system,

Tokyo Institute of Technology, Japan. Each node has two Intel Xeon E5-2680 V4

CPUs (14 cores per CPU) and 256 GiB of RAM. Because Glide software is a single-

thread program, all docking simulations were performed in parallel using 25 CPU cores.

It should be noted that Glide is a proprietary software, and thus it cannot be optimized

for specific computing environments.

3.2.4 Metrics

Two computational experiments were conducted: 1) evaluation of calculation speed,

and 2) evaluation of virtual screening accuracy. Since one license will allow us to use

only one CPU core, we used CPU time to evaluate calculation speed. Accuracy was

measured by performance efficiency according to enrichment factors (EFs) [87].

EFx% =
Posx%/Allx%

Pos100%/All100%
(3.8)

In (3.8), Posx%, Allx%, Pos100%, and All100% are the number of active compounds in the

top x% of screened compounds, the number of compounds in the top x% of screened

compounds, the total number of screened active compounds, and the total number of
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screened compounds, respectively. In virtual screening, it is pragmatically meaningless

to assess differences between lower ranked compounds because wet-lab experiments

can be executed up to only a few thousand compounds even though computational

methods can deal with more than 1 million compounds. Therefore, EF1% and EF2%

were calculated to evaluate accuracy.

3.2.5 Assessment of prediction accuracy

As previously mentioned, Spresso is not intended for independent use. Therefore,

an evaluation must involve not only Spresso but also a following compound docking

calculation. The procedure used for evaluation of accuracy was as follows: 1) with each

pre-screening method, 2%, 5%, or 10% of the number of all target compounds were

selected; 2) pre-screened candidates were docked using Glide SP to obtain a docking

score; and 3) the top 1% and 2% of compounds were used to calculate EF1% and EF2%.

We calculated five combinations for each pre-screening method.

3.3 Results

To evaluate the usefulness of Spresso with regard to speed and prediction accuracy,

two experiments were performed. In all experiments, Glide HTVS, which is a conven-

tional pre-screening method, was also evaluated for comparison.

3.3.1 Comparison of docking calculation speed

Table 3.1 shows the calculation times for docking of all 28,629,602 ZINC compounds

into three target proteins from the DUD-E dataset. Spresso using Glide SP-mode

fragment docking (Spresso-SP) required < 3 CPU days, and Spresso with Glide HTVS-

mode fragment docking (Spresso-HTVS) required < 1 CPU day, while whole-compound

docking using Glide HTVS mode required > 8 CPU months. These results suggest that

Spresso is 300-fold faster than compound docking with conventional Glide HTVS pre-

screening.

3.3.2 Prediction accuracy in DUD-E benchmarking

Table 3.2 shows the average EF values associated with each DUD-E target. The

formulae are listed as (I)-(VII) in section 3.2. Seven score calculations were evaluated,
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Table 3.1: Computation times for docking of all 28,629,602 ZINC compounds into
DUD-E diverse subset targets. The calculation times for Spresso were measured with
all fragments decomposed from all ZINC compounds. On the other hand, the times
for Glide HTVS and Glide SP were measured with 100,000 and 10,000 compounds
randomly sampled from ZINC compounds 5 times respectively. The shown values for
Glides are estimated from the measured results. For the results of Glide HTVS, the
shown values expresses averages and standard deviations among 5 times calculation.

Target
Calculation time [CPU core days]

Spresso-SP Spresso-HTVS
Glide HTVS Glide SP
(estimated) (estimated)

AKT1 2.81 0.82 136.1 ± 0.5 2726.6 ± 83.4
AMPC 2.70 0.82 195.2 ± 0.9 3444.2 ± 58.6
CP3A4 2.84 0.95 427.0 ± 1.9 7185.0 ± 163.0
CXCR4 2.74 0.86 320.3 ± 12.2 5581.7 ± 114.1
GCR 2.87 0.88 270.0 ± 2.4 4600.8 ± 93.2

HIVPR 2.81 0.91 342.7 ± 15.2 6015.8 ± 122.9
HIVRT 2.84 0.87 159.7 ± 9.0 2989.5 ± 60.4
KIF11 2.69 0.83 258.7 ± 2.1 4373.6 ± 73.1

mean 2.79 0.87 263.7 4614.6
median 2.81 0.87 264.3 4487.2

revealing that the combination of Spresso-HTVS and ENE1.8 was the best. Inter-

estingly, the results of Spresso-SP were slightly less accurate results as compared to

Spresso-HTVS. Our results indicate that Spresso was less accurate when compared

with conventional method. On the other hand, Pearson’s correlation coefficients with

Glide SP score is almost same between Spresso-HTVS (ENE1.8, R = 0.49, Fig. 3.4)

and Glide HTVS (R = 0.50, Fig. 3.5) for CP3A4, one of the DUD-E target.

In order to reveal how many compounds selected by Glide SP are included in the

compounds selected by pre-screening methods Glide HTVS or Spresso, the overlap in

selected compounds identified with each method was calculated for DUD-E Diverse

Subset (8 targets). Venn diagrams are shown in Fig. 3.6. These diagrams indicate that

the compounds identified with Spresso have less intersection with those from Glide SP

than Glide HTVS.

3.3.3 Trade-off of accuracy and speediness

As we mentioned in Sections 3.3.1 and 3.3.2, it was revealed that Spresso was 300-

fold faster than Glide HTVS while its accuracy was slightly less accurate. The relation

between the accuracy and the speediness is a trade-off relation generally, thus we newly



3. Spresso: Ultrafast Compound Pre-Screening 35

� Glide SP

S
pr

es
so

-H
T

V
S

 (
E

N
E

1.
8)

Figure 3.4: A scatter plot of the Glide SP score and the Spresso-HTVS score for DUD-
E CP3A4 target. Each dot represents a compound in DUD-E CP3A4 dataset. The
Pearson correlation coefficient is R = 0.49.
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Figure 3.5: A scatter plot of the Glide SP and Glide HTVS scores for the DUD-E
CP3A4 target. Each dot represents a compound in the DUD-E CP3A4 dataset. The
Pearson correlation coefficient is R = 0.50.
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Figure 3.6: Venn diagrams of selected compounds identified by pre-screening for DUD-
E diverse subset targets. The top 1,000 compounds identified by Glide SP, Glide HTVS,
and Spresso-HTVS are shown. The number of compounds for each method is shown,
and numbers of true positives are in parentheses.
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Table 3.2: The results of averaged prediction accuracy for 102 DUD-E targets. Note
that all enrichment factors represent the average of 102 EFs from DUD-E protein
targets. a%–b% indicates the EFb% when compounds were pre-screened using a% of
all compounds. Best EF values among Spressos are written in bold.

Target
Enrichment Factor

2%–1% 5%–1% 10%–1% 5%–2% 10%–2%

Spresso-SP

SUM 4.51 6.35 7.76 3.91 4.98
MAX 8.10 9.29 11.10 6.30 7.43
AM 4.96 6.67 8.05 4.25 5.21
GM 6.15 8.02 9.65 5.26 6.36
HM 6.41 8.06 10.37 5.60 6.87
GS3 8.63 11.06 13.43 7.34 8.75

ENE1.8 9.42 11.86 13.63 7.83 8.89

Spresso-HTVS

SUM 4.71 6.41 8.12 4.03 5.26
MAX 8.43 9.74 11.91 6.24 7.72
AM 5.22 6.89 8.48 4.38 5.51
GM 6.76 8.64 10.59 5.48 6.69
HM 6.83 9.19 11.65 5.93 7.46
GS3 9.02 11.64 14.20 7.64 9.05

ENE1.8 9.70 11.95 14.53 7.64 9.26
Glide HTVS 17.29 18.04 18.55 11.82 12.20

defined the accuracy divided by the calculation time as the screening efficiency, then

single step screenings by Glide SP, Glide HTVS, or Spresso (scenarios 1–3, Figs. 3.7–

3.9), and pre-screening by Glide HTVS or Spresso (scenarios 4, 5, Figs. 3.10, 3.11) were

evaluated in terms of the screening accuracies (EF), the total docking calculation time

(time [days]), and the screening efficiencies. Additionally, three step screening scenario

was also evaluated (scenario 6, Fig. 3.12) because Spresso was ultrafast compared to

Glide HTVS. It is noted that the docking time was calculated under the condition

that 10 licenses (equivalent to 10 CPU cores) are utilized since that of docking tools is

expensive (e.g. more than 50 thousand dollars per Glide academic license per year).

The period available for the virtual screening in drug discovery is not enough, from

a few days to a month usually. Furthermore, multiple protein structures are sometimes

used for docking to consider the conformational change. Because of the reasons, sce-

narios with Spress, scenarios 5 and 6, are more suitable in terms of their speediness and

its effectiveness (Fig. 3.13). Interestingly, scenario 6: three step screening marked the

best efficiency of the three scenarios because the EF value was considerably improved

with small amount of additional computational cost.
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Figure 3.7: The 1% enrichment factor, the expected time consumption, and the screen-
ing efficiency for scenario 1: Glide SP only

Figure 3.8: The 1% enrichment factor, the expected time consumption, and the screen-
ing efficiency for scenario 2: Glide HTVS only
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Figure 3.9: The 1% enrichment factor, the expected time consumption, and the screen-
ing efficiency for scenario 3: Spresso only

Figure 3.10: The 1% enrichment factors, the expected time consumptions, and the
screening efficiencies for scenario 4: Combination of Glide HTVS and Glide SP
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Figure 3.11: The 1% enrichment factors, the expected time consumptions, and the
screening efficiencies for scenario 5: Combination of Spresso and Glide SP

Figure 3.12: The 1% enrichment factors, the expected time consumptions, and the
screening efficiencies for scenario 6: Three step screening
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Figure 3.13: The comparison between pre-screened scenarios. The EF, time, efficiency
values are reproduced from Figs. 3.10–3.12.
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3.4 Discussion

3.4.1 Superiority of ENE1.8

The computational experiment in section 3.2 revealed the (VII) ENE1.8 formula

as the best of the seven possible methods for calculating compound-evaluation score.

Method (I) SUM, utilizing all fragment scores equally, was the worst of the seven,

while ENE1.8 returned acceptable results. The exponent of ENE1.8 acts as a weight

coefficient, which implies that the result indicates that higher-scoring fragments should

be more weighted. However, ENE1.8 returned more accurate results relative to method

(II) MAX, given that considering the top few fragment scores is more informative than

considering only the top fragment score.

3.4.2 Score fitting to Glide SP

Linear least squares fitting is often applied to experimental results or precise es-

timates in fragment-based, compound property estimation methods [69, 70]. In the

compound property estimation methods, common explanatory variables include the

fragment type, number of cleaved bonds, and number of rings, amongst others; how-

ever, it is inappropriate to determine the contribution of each fragment in docking

simulations since docking scores differ based on the target protein, and thus fragment-

docking scores are used with equal contribution. Additionally, the number of cleaved

bonds must affect the sum of fragment score. Because of above reasons, we generated

a linear regression model with two factors, scoreSUM and the number of cleaved bonds,

performed fittings with the Glide SP compound docking score as a target using the

DUD-E HIVPR dataset, and then calculated the DUD-E CP3A4 dataset compounds’

scorefitting with the fitted parameter. The data utilized for this pre-screening is detailed

in Table 3.3. The correlation coefficient between scorefitting and Glide SP of CP3A4 was

R = 0.49 (Fig. 3.14), which is lower than that between ENE1.8 and Glide SP (R = 0.55,

Fig. 3.4), thus the linear regression fitting did not work well and explanatory valiables

should be more considered.

3.4.3 Can Spresso conserve compound diversity?

Drwal et al. showed that structure-based methods are likely to maintain the diver-

sity of compound structures as compared with ligand-based methods [26]. While this

is one reason to use structure-based methods, it does not guarantee that the diversity
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Table 3.3: Information used to generate the linear regression model and estimation.

Model creation

Protein DUD-E HIVPR (PDBID: 1XL2)
Compound DUD-E HIVPR (36,286 compounds)
Target score The score of Glide SP compound docking
Base model scorefitting = a · scoreSUM + b · |#cleaved bonds|

Score estimation
Protein DUD-E CP3A4 (PDBID: 3NXU)

Compound DUD-E CP3A4 (11,970 compounds)
Calculation Library Python StatsModels

� Glide SP
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g

Figure 3.14: A scatter plot of the Glide SP and fitted scores for the DUD-E CP3A4
target. Each dot represents a compound in the DUD-E CP3A4 dataset. The correlation
coefficient is R = 0.40.
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Table 3.4: Machine-learning settings on the support vector machine (SVM). Active
compounds and decoys were obtained from the DUD-E dataset. We performed param-
eter tuning by adopting the optimum-cost parameter C and the RBF-kernel parameter
γ from grid-search results during three-fold cross validation.

DUD-E Target name
Training data Best parameter

#Active #Inactive C: Cost γ: RBF-kernel
compounds compounds parameter parameter

ACES 1,635 487 23 2−5

EGFR 1,620 407 23 2−7

PGH1 543 1,070 23 2−5

of compounds selected by Spresso will be maintained. We analyzed the diversity of

compounds selected by Spresso according to two characteristics: physicochemical fea-

tures and structural diversity. We focused on three DUD-E targets (PGH1, ACES, and

EGFR) and screened ZINC compounds using Spresso-SP, Glide HTVS, and a ligand-

based method. As for the ligand-based method, a support vector machine (SVM)

with RBF kernel was adopted because it is one of the most popular machine learning

methods for ligand-based screening. ECFP4 fingerprint [88] was used for input feature

vectors of SVM. The details associated with the SVM are shown in Table 3.4. The

logP and the molecular weight of the top 0.1% of compounds were calculated in order

to assess the bias of physicochemical features. Additionally, the maximum Tanimoto

coefficient value between each known active compound was also calculated based on

ECFP4 fingerprint in order to assess structural diversity. A high Tanimoto coefficient

between two compounds indicates that the two structures share structural similarity.

LogP-MW scatter plots of the ACES, EGFR, and PGH1 targets are shown in Figs.

3.15, 3.16, and 3.17, respectively. Fig. 3.15 shows that Spresso is likely to assign higher

scores to large compounds. This is expected in some cases, because larger compounds

are more likely to obtain higher scores in docking simulations [89]; however, compounds

that are too large to enter protein cavities must be omitted. Structural diversity

assessment results of ACES, EGFR, and PGH1 (Figs. 3.18, 3.19, and 3.20) show that

Spresso conserved structural diversity on the same scale as that observed with Glide

HTVS, while bias toward known active compounds was observed in results from the

ligand-based method (SVM).
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Figure 3.15: Scatter plot of physicochemical features based on pre-screening for ACES,
a DUD-E protein target. Each dot represents a compound: cyan dots represent 0.1%
of the compounds from the ZINC database; orange dots represent the top 0.1% of
Spresso-HTVS compounds calculated using the method (VII) ENE1.8 formula; and
magenta dots represent active compounds for ACES from the DUD-E dataset.

Figure 3.16: The scatter plot of physicochemical features based on pre-screening for
EGFR, a DUD-E target. Each dot represents a compound: cyan dots represent 0.1%
of compounds from the ZINC database, orange dots represent the top 0.1% of Spresso-
HTVS results using the method (VII) ENE1.8 formula, and magenta dots represent
active compounds for EGFR from the DUD-E dataset.
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3.4.4 The top-screened compounds by Spresso

The highest scoring compound in DUD-E for the target protein EGFR is shown in

Fig. 3.21. The top compound screened by Spresso was ZINC16956948 (Fig. 3.21A),

with a molecular weight of 370.8 Da and a logP of 2.79. These physicochemical fea-

tures indicate a likely drug compound according to Lipinski’s rule of five [60]. The

decomposition and fragment-docking results are shown in Fig. 3.21B and Fig. 3.21C.

Since Spresso did not consider collisions and connectivities between fragments in order

to keep computation time low, some fragments appear to have collided or the connec-

tion is totally broken (Fig. 3.21C). Interestingly, the best compound still exhibited a

reasonable molecular weight according to Lipinski’s rule despite the problem.

3.5 Conclusion

In this study, we described Spresso, a docking-based pre-screening method for

database-wide screening. In order to evaluate all compounds from large databases

within a practical amount of time, Spresso uses compound decomposition into frag-

ments, resulting in reuse of fragment scores, followed by fragment-docking results to

estimate screening values without structure reconstruction. Our results showed that

Spresso achieved up to ∼200-fold faster calculation using ∼29 million compounds as

compared to compound docking by Glide HTVS. This acceleration rate is positively cor-

related to the number of compounds in a target database. Consequently, this method

is capable of screening over tens of millions of compounds with limited computational

resources.

For compound evaluation, the ENE1.8 formula was adopted; however, according to

the physicochemical assessment, Spresso-preferred compounds are likely to be large,

despite the need to filter compounds too large for a given target protein cavity.

The computational efficiency of Spresso enables the screening of large compound

databases within realistic times. In order to manage chemical compound libraries

that continue to increase in size, corresponding increases in computational speed are

necessary for virtual screening.



3. Spresso: Ultrafast Compound Pre-Screening 47

Figure 3.17: The scatter plot of physicochemical features based on pre-screening for
PGH1, a DUD-E target. Each dot represents a compound: cyan dots represent 0.1%
of compounds from the ZINC database, orange dots represent the top 0.1% of Spresso-
HTVS results using the method (VII) ENE1.8 formula, and magenta dots represent
active compounds for PGH1 from the DUD-E dataset.
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Figure 3.18: Boxplot representation and average (triangles) of the ECFP4 maximum
Tanimoto coefficient between active compounds of target ACES. The data indicate
structural diversity. ZINC, SVM, Glide HTVS, and Spresso represent 0.1% of randomly
selected compounds from the ZINC database, the top 0.1% of compounds resulting from
SVM prediction, the top 0.1% of compounds resulting from Glide HTVS scoring, and
the top 0.1% of compounds returned from Spresso-HTVS results using method (VII)
ENE1.8 scoring, respectively.
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Figure 3.19: Boxplot representation and average (triangles) of the ECFP4 maximum
Tanimoto coefficient between active compounds of target EGFR. The data indicate
structural diversity. ZINC, SVM, Glide HTVS, and Spresso represent 0.1% of randomly
selected compounds from the ZINC database, the top 0.1% of compounds resulting from
SVM prediction, the top 0.1% of compounds resulting from Glide HTVS scoring, and
the top 0.1% of compounds returned from Spresso-HTVS results using method (VII)
ENE1.8 scoring, respectively.



50 3. Spresso: Ultrafast Compound Pre-Screening

ZINC
SVM

Glid
e_H

TVS

Spresso
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

T
a
n
im

o
to

 c
o
e
ff

ic
ie

n
t

pgh1

Figure 3.20: Boxplot representation and average (triangles) of the ECFP4 maximum
Tanimoto coefficient between active compounds of target PGH1. The data indicate
structural diversity. ZINC, SVM, Glide HTVS, and Spresso represent 0.1% of randomly
selected compounds from the ZINC database, the top 0.1% of compounds resulting from
SVM prediction, the top 0.1% of compounds resulting from Glide HTVS scoring, and
the top 0.1% of compounds returned from Spresso-HTVS results using method (VII)
ENE1.8 scoring, respectively.



3. Spresso: Ultrafast Compound Pre-Screening 51

Figure 3.21: An example of Spresso procedure. (A) Structure of ZINC16956948, the
highest scoring compound for the protein target EGFR. (B) Result of ZINC16956948
decomposition. (C) Results of fragment docking. The color of the structure mimics
those of the structures shown in (A) and (B).





Part IV

Protein-ligand Docking calculation

with reuse of fragment

53





Chapter 4

Toward development of

protein–ligand docking tool with

substructure commonality

4.1 Introduction

Spresso is a fragment-based compound pre-screening method by storing only the best

docking score of each fragment. The method achieved a calculation speed of approx-

imately 200 times that of the Glide [37] HTVS mode although its accuracy is lower

because it does not consider the crush or connectivity between fragments. On the

other hand, some docking tools, such as eHiTS [38], dock compounds by first dividing

them into fragments (partial structures). After that, candidate conformations and cor-

responding docking scores for each individual fragment are calculated and memorized

(Fig. 4.1), followed by reconstruction of the conformation of the whole compound by

considering the crushes and connectivities by using the stored partial docking results.

Therefore, when two or more compounds contain the same fragment, it is possible

to reuse the docking result of that fragment. Furthermore, fragment extension-based

methods, such as FlexX [54], can reuse the intermediate results of fragment extension

with an appropriate arrangement of the order in which compounds are evaluated (Fig.

4.2). In particular, eHiTS is one of the most accurate docking tools [90] and has a

functionality that enables the fragment docking results to be saved in an SQL-based

database, thereby achieving 2–4 times speed-up for docking with several hundred com-

pounds to several thousand compounds. However, for about 10,000 compounds, it was

reported that the speed-up ratio tends to level out [38]. The factor responsible for

55
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CH3H3C

Figure 4.1: Image of a fragment docking result. The square containing the dots on the
protein structure show the docking boundary and docking points, respectively. The
box on the right is the fragment docking result of ortho-xylene (green fragment) with
the corresponding docking scores.

decreasing the speed is disk access. This cost arises frequently since the SQL database

is accessed every time to confirm the existence of data and to load them into the main

memory before performing a fragment docking calculation. Further speed-up would

require storing the fragment docking results in the main memory (rather than on disk)

as much as possible, as a matter of importance, to enable the existence of data to be

verified and to utilize data faster.

In this chapter, we explain the docking procedure which reuse intermediate results

of fragments, and the pros and cons of the procedure. Additionally, we revealed that

the caching algorithm can solve the weakness of the procedure.

4.2 Overview of proposed docking procedure

Whole procedure is shown in Fig. 4.3. The procedure is based on anchor and grow al-

gorithm, and is separated into four sub-procedures. In this section, we firstly mentioned

about the utilized docking algorithm, followed by explanation of each sub-procedure.
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Figure 4.2: Reuse of fragment extension results. The red fragment is first included
in the two compounds; therefore, it is possible to reuse the intermediate results for
fragment extension.

Figure 4.3: Docking procedure

4.2.1 docking algorithm

As we mentioned in Chapter 1, several algorithms for fragment-based docking have

been proposed (e.g. consistent allocation of fragments by maximum clique finding

(eHiTS), anchor and grow, or compound allocation by fragment extension (DOCK,

FlexX)). We proposed a docking procedure based on anchor and grow algorithm be-

cause of its possibility of speediness. Since maximum clique finding is NP-complete
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problem, thus it will be computationally expensive. Furthermore, intermediate results

of anchor and grow algorithm can be reused as shown in Fig. 4.2.

4.2.2 (A) Atom grid generation

In the first step, atom grid for the target protein is generated. Atom grid, or merely

grid, is a cubic lattice, which contains the interaction scores beetween an atom of ligand

and all atoms of protein. It is commonly generated and used for protein-ligand docking

to accelerate the calculation [91].

4.2.3 (B) Compound decomposition

Secondly, compounds are decomposed into fragments, with the decomposition

method mentioned in Chapter 2. The decomposition method make fragments with

no internal degrees of freedom.

In addition, growing orders, or fragment placement orders of compounds are decided.

The decision of a base fragment, or a fragment which place into the cavity firstly,

affects the docking result, as the article of FlexX mentioned “The docking algorithm

is quite sensitive to the selection of the base fragment” [54]. Thus the procedure tests

all fragments in a compound as the base. After that, largest fragment adjacented to

placed substructure is selected as “next” fragment.

4.2.4 (C) Growing graph generation

In next step, the docking order of compounds, named growing graph, is generated. It

is noted that docking order of compounds and growing order of each compound must be

decided to generate the graph. The growing orders are sorted in lexicographical order

of SMILES of fragments to maximize the reuse of intermediate results of anchor and

grow algorithm. After that, common growing orders are unified, resulting in generation

of growing graph.

The procedure is graphically shown in Fig. 4.4.

4.2.5 (D) Compound evaluation

Finally, compounds are evaluated with atom grids and the growing graph. The

evaluation process is done with two sub-steps: fragment grid generation and compound

scoring.
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Figure 4.4: The procedure of growing graph generation
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Fragment grid generation

Fragment grid is a natural extension of atom grid for fragments. The difference

between the atom grid and the fragment grid is rotation. Atoms are regarded as sphere,

thus they have rotational invariance. On the other hand, fragments are not sphere,

thus each lattice point in the grid must have multiple scores for rotated structures. The

fragment grid can be also reused in multiple growing orders, thus further acceleration

will be realized.

Compound docking and scoring

Compounds are placed with fragment grids. The placement procedure consists of

base placement step and complex construction steps. Base placement phase is to

place base fragment into the cavity without any structural restriction while complex

construction steps are to extend the substructure already placed in the cavity with

consideration of connectivity of the cleaved bond.

4.3 Strengths and weakness of proposed procedure

4.3.1 Strengths

The proposed procedure can reuse two types of intermediate results, fragment grids

and intermediate states of growing, as we mentioned. The acceleration of docking

calculation without degradation of accuracy is highly expected.

4.3.2 Weakness: memory usage problem

The procedure generates several fragment grids (e.g. 263,319 fragments for ZINC

library as we showed in Chapter 2), while the grids spend much memory because of

the rotation. The memory consumption per fragment is, for instance, more than 100

MB if the variation of rotation set to 60 (The number is same as eHiTS [38]). It results

in more than 25 TB memory consumption, which is thus far practically impossible to

store at a same time.
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4.4 Caching algorithm: A solution of the memory

usage problem

Since all fragment grids cannot be stored at a same time, it is important to effectively

use limited memory space. This problem can be considered as a cache problem in the

field of computer architecture.

The accession to the main memory is done in hierarchical way: obtaining data from

the cache space if there is (called “cache hit”), otherwise access to access main memory

space, where is quite farer and larger than the cache space (called “cache miss”). The

average memory access time (AMAT) is calculated with below formula:

AMAT = tcache +MR · tMEM (4.1)

where tcache, tMEM,MR are average access time to cache, average access time to main

memory, cache miss ratio, respectively.

The generation cost of fragment grid depends on the number of atoms of a fragment,

thus the formula is slightly different from the original AMAT.

Fragment grid obtaining time (FGOT) =

tMEM, when cache hit

HAC · tcalc, when cache miss
(4.2)

Total FGOT =

(∑
f∈F

tMEM

)
+

 ∑
f∈F/cache

HACf

 · tcalc (4.3)

where HAC, tcalc, F are the heavy atom count (HAC) of a fragment f , the average

calculation time to generate a single-atom fragment grid, series of needed fragments

among calculation, respectively.

If the memory space is enough to store all fragment grids, cache miss will happen

only one time per fragment type. Thus Total FGOTIdeal is:

Total FGOTIdeal =

(∑
f∈F

tMEM

)
+

 ∑
f∈Funiq

HACf

 · tcalc (4.4)

On the other hand, the computation time without reuse can be calculated as cache
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miss ratio is equal to 1, thus Total FGOTw/o is:

Total FGOTw/o =

(∑
f∈F

tMEM

)
+

(∑
f∈F

HACf

)
· tcalc (4.5)

∑
f∈Funiq

HACf is equal to the total atoms among fragments while
∑

f∈F HACf is equal

to the total atoms among all growing orders. It is important that the selection only

affects the summation of HAC in the second term of (4.3) when the same compound

set are calculated, thus the reduction of calculation cost can be derived:

Total FGOT− Total FGOTw/o =

∑
f∈F

HACf −
∑

f∈F/cache

HACf

 · tcalc (4.6)

Storing all fragment grids at a same time is obviously impossible in the real sit-

uation, thus selection of fragment grid storage is needed. The simplest algorithm is

storing the most frequent fragment grids from beginning to end while it must be better

if the optimum can be derived. Tables 4.1–4.3 show the difference of the summa-

tion of HAC between Ideal, w/o, Simplest, and Optimum under the assumption of

100,000 compounds calculation with 100 grids of memory space. Simplest method

can reduce 30–85% of ideal reduction, while optimization can reduce additional a few

hours approximately if it is possible within realistic time consumption. Especially, the

optimization is more effective with limited memory space.

In the next Chapter, we detailed the memory usage problem and reduced it as

a polynomial-time problem. Additionally, we proposed more efficient optimization

algorithm.
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Table 4.1: Estimated reduction of fragment grid generation time with memory space
of 10 fragment grids. Percentages in the parentheses are the relative calculation time
reduction compared to the Ideal. ∑

f∈F

HACf −
∑

f∈F/cache

HACf

 · tcalc
without reuse (w/o) 0 core sec (0.0%)
most frequent (Simplest) 25,253 core sec (29.1%)
optimized (Optimum) 36,201 core sec (41.8%)

infinite memory (Ideal) 86,650 core sec (100.0%)

Note: the experimental conditions are follows. compounds: 100,000 compounds
randomly sampled from ZINC all purchasable and all boutique subsets,

tcalc: 10 milliseconds per HAC per fragment grid.

Table 4.2: Estimated reduction of fragment grid generation time with memory space
of 100 fragment grids. Percentages in the parentheses are the relative calculation time
reduction compared to the Ideal. ∑

f∈F

HACf −
∑

f∈F/cache

HACf

 · tcalc
without reuse (w/o) 0 core sec (0.0%)
most frequent (Simplest) 56,711 core sec (65.4%)
optimized (Optimum) 61,807 core sec (71.3%)

infinite memory (Ideal) 86,650 core sec (100.0%)

Note: the experimental conditions are follows. compounds: 100,000 compounds
randomly sampled from ZINC all purchasable and all boutique subsets,

tcalc: 10 milliseconds per HAC per fragment grid.

Table 4.3: Estimated reduction of fragment grid generation time with memory space of
1,000 fragment grids. Percentages in the parentheses are the relative calculation time
reduction compared to the Ideal. ∑

f∈F

HACf −
∑

f∈F/cache

HACf

 · tcalc
without reuse (w/o) 0 core sec (0.0%)
most frequent (Simplest) 74,858 core sec (86.4%)
optimized (Optimum) 77,914 core sec (89.9%)

infinite memory (Ideal) 86,650 core sec (100.0%)

Note: the experimental conditions are follows. compounds: 100,000 compounds
randomly sampled from ZINC all purchasable and all boutique subsets,

tcalc: 10 milliseconds per HAC per fragment grid.





Chapter 5

Optimization of memory use of

fragment extension-based

protein-ligand docking with an

original fast minimum cost flow

algorithm

5.1 Introduction

In previous Chapter we described protein-ligand docking procedure with reuse of

intermediate results, and mentioned the memory usage problem. To use main memory

more efficiently, the optimization of construction, storing, and destruction of fragment

grids is inevitable, and thus we also mentioned caching algorithm.

In this Chapter, we first show the formulation and the reduction of the sequence

of requested fragment docking results to a graph of the minimum cost flow problem

via the weighted offline cache problem. Second, the characteristics of the obtained

graph are described, followed by the proposal of a faster algorithm based on these

characteristics. The whole structure of our method is illustrated in Fig. 5.1.

5.2 Method

In our docking procedure, compounds are firstly sorted based on growing orders, thus

the requiring order of fragment grids is decided before the calculation. The optimization

65
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Figure 5.1: Overview of this work

of memory usage with known requiring order can be considered as the weighted offline

cache problem [92], which is related to cache algorithms that have been widely studied

in the field of computer science. This makes it possible to optimize the choice of data

to be stored in the main memory.

The weighted offline cache problem involves minimizing the cost with the following

constraints:

• The cache can have a limited number of pages (denoted as k).

• The input consists of a sequence of page requests, and its ordering is perfectly

observable in advance (i.e., “offline”).

• The cost of caching varies from page to page.

The cache and a page correspond to the main memory and a fragment docking result,

respectively. Lopez-Ortiz et al. showed that the weighted offline cache problem can

be reduced to the minimum cost flow problem [93]. The latter problem has been
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Figure 5.2: The flow of formulation and reduction. it illustrates the reduction of the
results of the access order of fragment docking to a weighted offline cache problem, and
finally to a minimum cost flow problem.
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extensively studied since the proposal of the Successive Shortest Path algorithm in

1958, which searches for the shortest path iteratively until the amount of flow is equal

to k [94, 95, 96, 97]. The Cost-Scaling algorithm is a generalization of the push-

relabel algorithm and the maximum value of the edge cost influences the computational

complexity [98]. The Network-Simplex algorithm uses a simplex method for efficiency

improvement [99, 100, 101]. A fast algorithm specified for directed acyclic graphs has

also been proposed by Pirsiavash et al. [102].

The graph in a minimum cost flow problem generated from a weighted offline cache

problem has specific characteristics that facilitate acceleration.

5.2.1 Formulation of the memory usage problem as the

weighted offline cache problem (Fig. 5.2–(A))

The memory usage problem can be considered as cache problem, as we mentioned in

Section 4.4. Additionally, it is possible to know the precise order in which fragments

are accessed before the fragment docking calculation is started because compound

evaluation order is determined beforehand to maximize the reuse of fragment extension

results (Fig. 4.4). Therefore, the problem is offline, which is easier problem than online

problem. On the other hand, the generation cost of a fragment grid is not uniform

but almost proportional to the heavy atom count of the fragment, which means this

problem has a kind of weight. Because of the facts, the memory usage problem can be

considered as weighted offline cache problem.

A fragment docking result is represented as a page in a weighted offline cache prob-

lem, where the size of the cache represents the size of the main memory. Further, the

heavy atom count of the each fragment represents as the weight of each fragment in

the weighted offline cache problem.

5.2.2 Reduction to the minimum cost flow problem (Fig. 5.2–

(B))

The reduction from the weighted offline cache problem to the minimum cost flow

problem was shown [93]. In this part, we briefly show how to make a minimum cost

flow problem. Performing the following operations on the page (fragment docking

result) request sequence in a weighted offline cache problem enables the problem to be

reduced to a minimum cost flow problem that can derive the optimal sequential order

in which to store the required pages in the cache (main memory).
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Figure 5.3: A node in the reduced graph, where u and w are the immediate previ-
ous/next nodes originated from the same fragment request as v. (These previous/next
nodes may not exist.) n is the generation cost of the fragment grid v, which is equal
to the number of heavy atoms of the fragment. It is noticed that every node has a
maximum of four edges (0–2 reuse edges and 2 non-reuse edges).

1. All page requests are represented as nodes. The nodes are sorted uniquely in

relation to the page request order (circles in Fig. 5.3).

2. For each node, a “reuse” edge connected to the next appearing node, which

shares the same fragment request, is generated. The edge is given the properties

of (cost, capacity) = (a negative of the page request cost, 1) (blue arrows in Fig.

5.3).

3. For each node, a “non-reuse” edge to the next node is generated. The edge is

(cost, capacity) = (0,∞) (black arrows in Fig. 5.3).

4. The total amount of flow is equal to k, the number of pages the cache can store.

5.2.3 Characteristics of the reduced graph

The graph G(V,E) of a minimum cost flow problem generated from a weighted

offline cache problem can arrange nodes V in one row, with one node v having no more

than four edges, as shown in Fig. 5.3. Therefore, the reduced graph has the following

characteristics:

• It is a directed acyclic graph.

• Unique topological sorting is possible.

• The graph is sparse (O(|E|) = O(|V |))

• The capacity of an edge is 1 or ∞.
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In consideration of the special characteristics of the graph, we propose a faster algo-

rithm in the next section.

5.2.4 Proposed method: an exact algorithm for the minimum

cost flow problem generated from the weighted offline

cache problem

The proposed method is shown in Algorithm 5.1 and 5.2, which is based on the

Successive Shortest Path (SSP) algorithm. In the SSP algorithm, the ShortestPath

function repeatedly determines the minimum cost path from a source to a sink and

updates the flow and the graph until the path becomes equal to k. The CalcCosts

function searches the minimum cost path from the source to the sink based on a

dynamic programming method. An example showing how the dynamic programming

table is updated is presented in Fig. 5.4.

Algorithm 5.1 Successive shortest path (SSP) algorithm

1: function SuccessiveShortestPath(G, d)
▷ G, d: graph, total amount of flow

2: f0 ← 0 ▷ f :current amount of flow
3: Gf0 ← G ▷ Gf : graph when the flows are f
4: i← 0
5: while fi ̸= d do
6: i← i+ 1
7: Pi ← ShortestPath(Gfi−1

)
8: fi, Gfi , costi ← UpdateStates(fi−1, Gfi−1

, Pi, costi−1)
▷ A function to update the graph, flow, and cost

9: end while
10: end function

11: function ShortestPath(G) ▷ source and sink are v1 and vn
12: prev ← CalcCosts(G)
13: path← GeneratePath(prev)

▷ A function generating the path from the source to the sink
14: return path
15: end function
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Algorithm 5.2 Proposed Algorithm

1: function CalcCosts(G)
2: cost← {cost(i) = 0|1 ≤ i ≤ n}
3: prev ← {prev(i) = i− 1|1 ≤ i ≤ n}
4: now ← 1
5: while now < n do
6: updated← ϕ
7: for all {e|e ∈ G.E, e.from = now} do

▷ e.from : a start point of the edge e
▷ e.to : an end point of the edge e

▷ e.cost : a cost of the edge e
8: if cost(e.to) > cost(now) + e.cost then
9: cost(e.to)← cost(now) + e.cost
10: prev(e.to)← now
11: updated.add(e.to)
12: end if
13: end for
14: now ← min(updated, now + 1)
15: end while
16: return prev
17: end function

5.2.5 Proving the optimality of the proposed algorithm

In the framework of the SSP algorithm, it suffices to prove the optimality of the

ShortestPath function to prove the optimality of the minimum cost flow algorithm.

Lemma 5.1. CalcCosts function terminates in finite steps.

Proof. The function will terminate if the number of while loops is finite. In the while

loop (lines 5–15 of Algorithm 5.2), value now will increase except for the backward

updates. On the other hand, the values of cost are no less than the costs of the

true shortest path which are finite numbers. It means the number of updates is finite,

therefore, the number of while loop is also finite. The fact reveals that the CalcCosts

function terminates in finite steps. 2

Lemma 5.2. In the CalcCosts function, the number of steps the while loop required

to finish the operation of the last now = i defines ti (According to the Lemma 5.1, ti is

finite number), and the value of cost(v) at step t defines cost[t][v]. If there is an edge

(i, j) ∈ E, the following inequality holds:

cost[t][j] ≤ cost[t][i] + (i, j).cost if t ≥ ti
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Figure 5.4: Example of the execution of the CalcCosts function. The (cost, capacity)
labels are shown for valid edges. Edges without labels have (0,∞). The cell at row i
and column j of the table shows the cost(j) at step i. The cells updated in each step
are highlighted.

Proof. According to lines 7–13 of Algorithm 5.2, all nodes connected from node vi

are updated every time at now = i thus we obtain cost[ti][j] ≤ cost[ti][i] + (i, j).cost.

After time ti (define the time as t ≥ ti), cost[t][i] = cost[ti][i], cost[t][j] ≤ cost[ti][j] are

satisfied; thus, the Lemma 5.2 is satisfied. 2

Lemma 5.3. The CalcCosts function can find the exact minimum cost path.

Proof. The proof is by contradiction. Suppose that cost[tn][n] > d̂n (d̂n represents the

cost of the true shortest path from source v1 to sink vn).

If C(i) ≡ cost[tn][i] − d̂i, it is true that C(n) > 0, C(1) = 0. Therefore, there is at

least one edge (p, q) ∈ E,C(p) ≤ 0, C(q) > 0 that is contained in the true shortest
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path from v1 to vn, and the following inequality is satisfied for such an edge (p, q):

cost[tn][q] > cost[tn][p] + d̂q − d̂p = cost[tn][p] + (p, q).cost

However, there is a contradiction to Lemma 5.2.

The inequality d̂n ≤ cost[tn][n] is an immediate consequence of the optimality of d̂n,

resulting in cost[tn][n] = d̂n. 2

5.3 Experiments

5.3.1 Dataset

In this study, the existing and proposed methods are evaluated with two types of

datasets.

Real data: graphs generated from fragment decomposition results

Assuming fragment data reuse in a docking calculation based on fragment extension

with tree search such as FlexX, we generated realistic request sequences of the fragment

docking results with compounds in the ZINC database [48]. The protocol of generation

is shown below:

1. {10000, 100000, 1000000} compounds were randomly obtained from the ZINC

Purchasable subset (version 2014-11-28; 22,724,825 compounds).

2. Fragments were generated by decomposing sampled compounds at rotatable

bonds. The decomposition method described in Chapter 2 was utilized.

3. Assuming that the tree search is reused, the compounds were sorted based on

their partial structures, followed by the partial deletion of the fragment sequence

identical to the compound immediately previous to that one (Fig. 4.2).

4. Fragment sequences of compounds are concatenated to form a request sequence.

Random sampling was performed three times for each of the number of compounds.

Since the number of fragments varies depending on the compound, the lengths of

request sequences are different. Thus, when comparing the calculation results, the

lengths of request sequences must be specified.
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Artificial data: randomly generated graphs

The weighted offline cache problem has three elements: the number of requests, the

weight of pages, and the number of types of pages. However, as the real data did not

include a sufficient variety of patterns, further assessment of the performance of the

methods required data to be randomly generated. Data were randomly generated by

changing the parameters as follows:

• The number of page requests are {10000, 100000, 1000000}.

• The maximum weight of pages is 100, where each weight is set uniformly by

assigning a random integer value.

• The number of different kinds of pages are {1000, 10000, . . . , #requests
10

}.

5.3.2 Related methods

This section introduces existing exact algorithms for the minimum cost flow problem.

At first we compare general-purpose existing algorithms implemented in LEMON [103,

104], and the best algorithm is used as a baseline method in the comparison made in

Section 5.4.

LEMON ( [103, 104])

LEMON (Library for Efficient Modeling and Optimization in Networks) provides

for the implementation of data structures and algorithms related to graphs and net-

work structures written in C++. With regard to the minimum cost flow problem,

there are implementations of Cost-Scaling, Capacity-Scaling, Network-Simplex, and

Cycle-Canceling as exact algorithms. Kovacs showed that the Network-Simplex and

Cost-Scaling algorithms implemented in LEMON were the most efficient and robust

in general among several algorithms and several implementations [105]. Interestingly,

a comparison of these implementations using our real data (Table 5.1) revealed that

Cost-Scaling was the fastest of the algorithms implemented in LEMON. Therefore, we

chose Cost-Scaling as the baseline method used in Section 5.4.

An algorithm proposed by Pirsiavash et al. [102]

Pirsiavash et al. proposed an algorithm specifically for directed acyclic graphs. This

algorithm has a shorter calculation time by sacrificing generality. Their algorithm is
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Table 5.1: Calculation time of four existing methods implemented in LEMON for real
data. The total amount of flow is k = 100. Each experiment was conducted within the
3-hour time limit. The fastest times are written in bold.

#compounds #pages (n) Cost-Scaling Capacity-Scaling

10,000
272,851 25,263 ms 67,219 ms
273,095 26,853 ms 67,251 ms
274,127 26,650 ms 65,219 ms

100,000
2,327,638 455,921 ms 1,741,264 ms
2,332,426 452,442 ms 1,727,584 ms
2,343,338 445,881 ms 1,991,428 ms

1,000,000
18,663,564 > 3 h > 3 h
18,663,905 > 3 h > 3 h
18,698,105 > 3 h > 3 h

#compounds #pages (n) Network-Simplex Cycle-Canceling

10,000
272,851 404,497 ms 3,047,511 ms
273,095 402,680 ms 3,118,584 ms
274,127 404,778 ms 2,823,840 ms

100,000
2,327,638 > 3 h > 3 h
2,332,426 > 3 h > 3 h
2,343,338 > 3 h > 3 h

1,000,000
18,663,564 > 3 h > 3 h
18,663,905 > 3 h > 3 h
18,698,105 > 3 h > 3 h

also based on the SSP framework, which involves finding the shortest path in each step

with the Dijkstra method.

5.3.3 Computer environment

A thin node consisting of a TSUBAME 2.5 was used for the experiments at the

Tokyo Institute of Technology, Japan. Each thin node has two sockets of Intel Xeon

X5670 (6 cores per socket), and 54 GB main memory. Because none of the algorithms

are parallelized, all time measurements were carried out with the use of a single CPU

core. All results are the median values of three measurements.

5.4 Results

The results for the total amount of flow k = 10, 100, 1000 are shown in Tables 5.2,

5.3, and 5.4 for real data, and Tables 5.5, 5.6, and 5.7 for artificial data, respectively.
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Note that each fragment docking result consumes up to a few hundred megabytes, and

thus k = 1000 means main memory of hundreds of gigabytes. Each experiment was

conducted within the 3-hour time limit for real data and memory consumption did not

exceed a gigabyte for all the experiments.

5.4.1 Comparison of the proposed method and existing meth-

ods with real data

The results of the comparison of the proposed method, Pirsiavash’s method, and the

Cost-Scaling method for real data are provided in Tables 5.2–5.4. The results show

that our proposed method is 7.2–9.2 times faster than Pirsiavash’s method, and more

than 200 times faster than the Cost-Scaling method for the largest amount of data. It

should be noted that the acceleration rate is higher when the total amount of flow k is

larger.

5.4.2 Comparison of methods using artificial data

We assessed the superiority of our proposed method with a wide spectrum of problem

characteristics. The calculation times required for artificial data generated with several

parameters are presented in Tables 5.5–5.7. The results show that our proposed method

is also faster than existing methods. Interestingly, the acceleration rate is lower when

the total amount of flow k is larger, unless for the real data.

5.5 Discussion

5.5.1 Speed-up ratio of the proposed method: difference be-

tween real data and artificial data

According to the Tables 5.2–5.7, the speed-up ratio with real data differs from that

obtained with artificial data. As we already mentioned, the effects of the total amount

of flow k is totally different. The cause of this difference is considered to be the different

frequencies of occurrence of the same fragment requests. In reality, the frequency of

fragments is not uniform, namely, the frequencies of a few popular fragments are very

dominant, whereas the frequencies of most fragments are very low. Storing popular

fragments over a long period greatly reduces the cost, thus the edges of popular frag-

ments are likely to be used. Since the edges of frequent fragments are shorter than
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Table 5.2: Calculation time for real data. The total amount of flow is k = 10. Each
experiment was conducted within the 3-hour time limit.

#compounds #pages (n) Proposed Pirsiavash et al. [102] Cost-Scaling

10,000
272,851 74 ms 594 ms 27,524 ms
273,095 74 ms 600 ms 27,640 ms
274,127 75 ms 599 ms 27,415 ms

100,000
2,327,638 753 ms 5,557 ms 1,978,609 ms
2,332,426 747 ms 5,574 ms 2,166,534 ms
2,343,338 751 ms 5,570 ms 2,006,954 ms

1,000,000
18,663,564 6,256 ms 45,412 ms > 3 h
18,663,905 6,250 ms 45,185 ms > 3 h
18,698,105 6,221 ms 45,320 ms > 3 h

Table 5.3: Calculation time for real data. The total amount of flow is k = 100. Each
experiment was conducted within the 3-hour time limit.

#compounds #pages (n) Proposed Pirsiavash et al. [102] Cost-Scaling

10,000
272,851 723 ms 5,761 ms 25,263 ms
273,095 681 ms 5,731 ms 26,853 ms
274,127 688 ms 5,755 ms 26,650 ms

100,000
2,327,638 6,702 ms 52,281 ms 455,921 ms
2,332,426 6,670 ms 51,314 ms 452,442 ms
2,343,338 6,732 ms 52,685 ms 445,881 ms

1,000,000
18,663,564 55,354 ms 432,360 ms > 3 h
18,663,905 55,151 ms 427,696 ms > 3 h
18,698,105 62,283 ms 466,169 ms > 3 h

Table 5.4: Calculation time for real data. The total amount of flow is k = 1,000. Each
experiment was conducted within the 3-hour time limit.

#compounds #pages (n) Proposed Pirsiavash et al. [102] Cost-Scaling

10,000
272,851 6,413 ms 55,073 ms 102,048 ms
273,095 6,372 ms 55,459 ms 112,462 ms
274,127 6,386 ms 55,020 ms 108,839 ms

100,000
2,327,638 62,084 ms 519,230 ms > 3 h
2,332,426 62,035 ms 521,809 ms > 3 h
2,343,338 63,105 ms 524,776 ms > 3 h

1,000,000
18,663,564 500,488 ms 4,607,737 ms > 3 h
18,663,905 500,011 ms 4,357,040 ms > 3 h
18,698,105 497,837 ms 4,322,122 ms > 3 h
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Table 5.5: Calculation time for artificial data. The total amount of flow is k = 10.
#pages (n) #kinds of pages Proposed Pirsiavash et al. [102] Cost-Scaling

10,000 1,000 2 ms 19 ms 221 ms

100,000
1,000 22 ms 231 ms 8,068 ms
10,000 22 ms 270 ms 4,594 ms

1,000,000
1,000 253 ms 2,552 ms 1,055,883 ms
10,000 272 ms 3,197 ms 349,771 ms
100,000 339 ms 3,664 ms 123,676 ms

Table 5.6: Calculation time for artificial data. The total amount of flow is k = 100.
#pages (n) #kinds of pages Proposed Pirsiavash et al. [102] Cost-Scaling

10,000 1,000 60 ms 178 ms 361 ms

100,000
1,000 632 ms 2,467 ms 6,576 ms
10,000 462 ms 2,804 ms 9,195 ms

1,000,000
1,000 6,521 ms 27,645 ms 293,918 ms
10,000 4,913 ms 34,767 ms 167,089 ms
100,000 5,640 ms 37,763 ms 178,613 ms

Table 5.7: Calculation time for artificial data. The total amount of flow is k = 1,000.
Each experiment was conducted within the 3-hour time limit.

#pages (n) #kinds of pages Proposed Pirsiavash et al. [102] Cost-Scaling
10,000 1,000 532 ms 1,327 ms 1,915 ms

100,000
1,000 6,902 ms 20,024 ms 25,199 ms
10,000 8,561 ms 23,563 ms 23,814 ms

1,000,000
1,000 71,658 ms 239,408 ms > 3 h
10,000 91,733 ms 300,225 ms > 3 h
100,000 74,356 ms 342,660 ms > 3 h

those of rare fragments, the algorithm is unlikely to select edges that return to a very

distant node. On the other hand, the frequency of fragments is assumed to be uniform

in artificial data hence the algorithm is more likely to return to previous nodes. Ac-

cording to Algorithm 5.2, the total number of return movements affects the loop count

at lines 5–15. Therefore, different frequencies influence the calculation time.

5.5.2 The effectiveness for fragment grid generation cost

The generation time of fragment grids will be decreased approximately 1 hour with

optimization for 100,000 compounds with k = 1,000, we already mentioned in section

4.4. On the other hand, the optimization costs of the condition is 60 seconds for
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Table 5.8: Worst computational complexity of related methods. n,C, and U denote the
number of nodes, the max cost of edges, and the maximum supply value, respectively.
Since the number of edges of the reduced graph do not exceed a constant multiple of
the number of nodes, the computational complexities are written under the assumption
of O(n) = O(|V |) = O(|E|).

Algorithm name Acceptable graph Worst complexity
Cost-Scaling any graph O(n3 log(nC))

Capacity-Scaling any graph O(n2 logU · log n)
Network-Simplex any graph O(n3CU)
Cycle-Canceling any graph O(n3CU)

Pirsiavash et al. [102] directed acyclic graph O(Un log n)

Proposed
topologically sortable,

Unsolved, O(Un log n)?
sparse graph

proposed algorithm, thus the optimization cost is small enough. Pirsiavash’s algorithm

spent 520 seconds in the same condition; however, the generation of fragment grids can

be easily parallelized, while the optimization is difficult to be.

5.5.3 Estimation of calculation complexity

The calculation time is considered to depend on the total number of return move-

ments regarding the CalcCosts function. The total number of return movements

must depend on the total number of flows k and the number of page requests n. We

have not yet succeeded in theoretically deriving the worst computational complexity

of the proposed method because our previous attempts to determine the worst case for

solving the minimum cost flow problem were unsuccessful. The worst computational

complexity of the proposed and existing methods are listed in Table 5.8. According

to the results in Tables 5.2–5.4, the speed-up ratios of the proposed method are up to

9 times faster for real data regardless of the amount of data; thus, the order of the

complexity of the proposed method seems to be similar to that of Pirsiavash.

5.5.4 Avoiding unnecessary update calculations

According to line 14 of Algorithm 5.2 and Fig. 5.4, Node (i+1) will be targeted after

Node i regardless of whether the value of cost(i + 1) was updated since the last time

Node (i+ 1) was targeted. This is sometimes a wasteful calculation. In this regard, a

priority queue is useful to store nodes that are updated to avoid wasteful calculation

(updating the smaller indexed nodes often affects the cost values of nodes with larger
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Figure 5.5: An example of execution with a priority queue (“updated”). The
(cost, capacity) labels are shown for valid edges. Edges without labels have (0,∞).
The cell at row i and column j of the table shows the cost(j) at step i. The cells
updated in each step are highlighted.

indices). The example of execution with a priority queue is shown in Fig. 5.5. However,

the priority queue needs O(log n) calculation time for enqueue and dequeue operations,

resulting in an increase in the total amount of calculation, thus we did not employ the

technique.

5.6 Conclusion

In this Chapter, two things were mentioned; (1) we first revealed the optimization

problem can be reduced to the minimum cost flow problem, and (2) we proposed a

faster, exact algorithm for the problem. Our experiments showed that the proposed

algorithm is up to nine times faster than existing algorithms.



Part V

Concluding Remarks

81





Chapter 6

Conclusion

6.1 Conclusion

In this thesis, we document two procedures based on compound decomposition,

Spresso and a protein-ligand docking method. Spresso reuses the results of fragments,

resulting in up to 300-fold acceleration with a docking tool, Glide, in our experiment

cases. We also proposed protein-ligand docking procedure, and showed the optimiza-

tion of fragment reuse is possible within polynomial computation complexity. Below,

we describe the contributions provided by this work.

6.1.1 Contributions

• In Chapter 2, we proposed a decomposition method, that generates fragments

having no rotatable bond. The number of kinds of fragments of ZINC library

was 263,319, which is less than one-hundredth of the number of compounds.

Furthermore, we assessed the relationship between the ratio and the number of

compounds and revealed that the ratio is smaller when the number of compounds

is larger. We also checked what kind of fragments are emerged fruently and rarely.

• In Chapter 3, we proposed ultrafast pre-screening method named Spresso. A

compound is evaluated by the docking scores of fragments. The calculation speed

is up to 300-fold faster than Glide HTVS. We also showed some virtual screening

scenarios and revealed Spresso is a only way to evaluate huge compound library.

• In Chapter 4, we described fragment extension-based docking procedure with

reuse and sharing of two types of intermediate results. The growing orders or

compound extension orders are sorted to maximize the reuse of intermediate
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results of growing. We also found the fragment grid is too memory consuming,

resulting in the lack of memory space.

• In Chapter 5, we focused on the memory consumption problem mentioned in

Chapter 4. Firstly the problem was formulated as the weighted offline cache

problem, which can be reduced to the minimum cost flow problem. Secondly, we

pointed out the characteristics of the reduced graph of the minimum cost flow

problem, and we proposed novel algorithm specified to the graph. Our method

achieved up to 9 times faster than existing algorithms for the real data.

6.2 Future Works

6.2.1 Importance assignment to each fragment

Our methods, Spresso and docking procedure are aimed to accelerate the calculation

by reuse of fragments. On the other hand, ignoring unimportant fragments may make

the methods faster with subtle difference in evaluation. According to the Fig. 2.5, there

are tiny fragments (e.g. > 3 atoms), which hardly make huge difference in terms of

Spresso’s results. Additionally, the score functions of docking highly pay attention to

specific interactions such as hydrogen bonding and aromatic interaction, thus it may

possible to assign importance before docking. The easiest criteria are (1) The number

of atoms, (2) the type of atoms. The importance is also useful for docking procedure,

to improve anchor fragment selection, or re-ordering of fragment extension.

6.2.2 Improvement of pre-screening accuracy

The pre-screening method Spresso has great advantage about calculation cost, while

its accuracy is compromised. Thus, improvement of accuracy is highly demanded.

Compound score fitting with more complicated machine learning methods

We already tried to evaluate compounds by linear regression model in Section 3.4.2.

It is possible to improve accuracy with more complicated model because the vast num-

ber of training data can be generated by docking lots of compounds. Graph convolu-

tional neural network is one of ways, by considering compound as a tree structure of

fragments. It can consider the connectivity between fragments.
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Consideration of collision and connectivity of fragments in Spresso

As we mentioned in Section 3.4.4, Spresso will generate unreasonable conformation

since the method does not consider collisions nor connectivities between fragments. It

may be a reason of its accuracy. To improve the accuracy of Spresso, a possible way is

generating several fragment conformations, followed by selection of best combination.

It must be mentioned that the combination optimization is time-consuming, thus the

balance of speediness and accuracy have to be considered.

6.2.3 Development of protein-ligand docking tool

We described docking calculation procedure, and we proposed the optimization

method for memory usage problem. The implementation of docking tool, however,

is not covered by this thesis. To proof its superiority, it is needed to develop the

docking tool.

6.2.4 Simultaneous optimization of compound evaluation or-

der and memory usage

In Chapter 5, we assumed that evaluation order of compounds are decided firstly;

however, a growing graph in Fig. 4.4 indicates the order can be partially changed

without any loss of reuse of intermediate results. The simultaneous optimization of

compound evaluation order and memory usage makes the docking procedure acceler-

ated while the optimization may not be solved in polynomial order.
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Appendix A

Previous results of Spresso

In this thesis, we re-experienced most of evaluations of Spresso because of newer

version of the Glide and newer supercomputing system TSUBAME 3.0. This appendix

shows previous results already shown in our publication [71].

A.1 Computing environment

All calculations were conducted on the TSUBAME 2.5 supercomputing system,

Tokyo Institute of Technology, Japan. We used its thin nodes in all experiments,

with each node having two Intel Xeon X5670 CPUs (six cores per CPU) and 54 GB of

RAM. Glide (Schrödinger suite 2014-4) was used as the docking tool. Because Glide

software is a single-thread program, all docking simulations were performed in parallel

using 12 CPU cores. It should be noted that Glide is a proprietary software, and thus

it cannot be optimized for specific computing environments.

A.2 Experiments

A.2.1 Calculation speed

Table A.1 shows the calculation speed with Glide version 2014-4 for three targets,

ACES, EGFR, and PGH1.

A.2.2 Prediction accuracy

Table A.2 shows the pre-screening accuracy with Glide version 2014-4.
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Table A.1: The results of docking times for docking of all 28,629,602 ZINC compounds
into three DUD-E protein targets. Values in parentheses indicate the fold increase in
speed exhibited by Spresso relative to Glide HTVS.

Target
Calculation time [CPU core hours]

Spresso-SP Spresso-HTVS Glide HTVS
ACES 42.6 (× 76.8) 22.8 (× 143.1) 3268.8
EGFR 38.9 (× 126.4) 21.5 (× 229.3) 4925.1
PGH1 41.8 (× 88.0) 20.9 (× 175.4) 3674.5

Table A.2: The results of averaged prediction accuracy for 102 DUD-E targets. Note
that all enrichment factors represent the average of 102 EFs from DUD-E protein
targets. a%–b% indicates the EFb% when compounds were pre-screened using a% of
all compounds. Best EF values among Spressos are written in bold.

Methods
Enrichment factors

2%–1% 5%–1% 10%–1% 5%–2% 10%–2%
SUM 4.58 6.78 8.92 4.00 5.53

Spresso-SP MAX 9.28 11.01 11.94 7.51 8.31
GS3 9.73 12.79 15.03 8.01 9.94
SUM 4.60 6.78 8.93 4.20 5.46

Spresso-HTVS MAX 9.29 9.93 12.41 6.38 8.29
GS3 9.00 12.18 14.49 7.39 9.24

Glide HTVS 17.85 18.97 19.60 12.50 12.92



Appendix B

Detailed information of DUD-E

DUD-E (Directory of Useful Decoys, Enhanced) is a benchmarking set for protein-

ligand docking proposed by Mysinger et al. [86]. They selected 102 proteins which are

widely targeted of many drug design campaigns with consideration of target diversity.

Active ligand sets were also obtained from ChEMBL, and decoy compound sets were

generated.

1. Active ligands

(a) Obtain experimented compounds for each target protein from ChEMBL[85]

(b) Select compounds which IC50 ≤ 1µM as known actives

(c) Make clusters based on Bemis-Murcko scaffold [106] and select IC50 best N

actives from each cluster in order to generate active sets which contain 100

actives

2. Decoy compounds

Decoy compounds consist of two types:

• Experimentally inactive compounds (confirmed as inactive, IC50 ≥ 30µM)

• Expected inactive compounds generated with each active ligand (not exper-

imented, but considered as inactive)

Expected inactive compounds were generated with below procedure.

(a) For each active ligand, calculate physico-chemical properties such as MW,

logP, followed by obtaining several thousand compounds from ZINC [48],

which has similar properties
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(b) Filter out compounds which have high fingeprint similarity to active ligands

(c) Select 50 compounds randomly without duplication

3. Representative 3D structure of the target

(a) Obtain all 3D structures labeled as H. sapiens for each target from PDB

[27]

(b) Dock active ligands and inactive compounds using DOCK [41]

(c) Choose higher resolution, higher accuracy 3D structure as the representative

The detailed information of each target including the average of fragments are shown

in Tables B.1–B.4.

B.1 Single accuracies of Glide SP, Glide HTVS, and

Spresso (scenarios 1–3)

Enrichment factors for each target are shown in Tables B.5–B.8. It is noted that the

average EF values of all DUD-E targets are shown in Figs. 3.7–3.9.

B.2 Pre-screening accuracies of Glide HTVS and

Spresso (scenarios 4, 5)

Enrichment factors for each target are shown in Tables B.9–B.16. It is noted that

the average EF values of all DUD-E targets are shown in Figs. 3.10, 3.11.

B.3 Three-step screening accuracies with Spresso

and Glide (scenario 6)

Enrichment factors for each target are shown in Tables B.17–B.20. It is noted that

the average EF values of all DUD-E targets are shown in Fig. 3.12.
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Table B.1: Detailed information of DUD-E targets (1)

Target PDBID Description
# compounds Ave. # fragments
Pos. Neg. Pos. Neg.

aa2ar 3EML Adenosine A2a receptor 482 31,498 6.26 7.04
abl1 2HZI Tyrosine-protein kinase ABL 182 10,746 7.08 7.33
ace 3BKL Angiotensin-converting en-

zyme
282 16,860 9.90 7.52

aces 1E66 Acetylcholinesterase 453 26,234 9.48 8.07
ada 2E1W Adenosine deaminase 93 5,449 8.16 8.01
ada17 2OI0 ADAM17 532 35,810 8.81 8.32
adrb1 2VT4 Beta-1 adrenergic receptor 247 15,842 10.05 9.62
adrb2 3NY8 Beta-2 adrenergic receptor 231 14,993 10.35 9.72
akt1 3CQW Serine / threonine-protein ki-

nase AKT
293 16,426 6.94 8.00

akt2 3D0E Serine / threonine-protein ki-
nase AKT2

117 6,893 6.61 7.39

aldr 2HV5 Aldose reductase 159 8,995 4.81 5.34
ampc 1L2S Beta-lactamase 48 2,847 4.94 4.95
andr 2AM9 Androgen Receptor 269 14,343 3.91 4.67
aofb 1S3B Monoamine oxidase B 122 6,900 4.37 4.39
bace1 3L5D Beta-secretase 1 283 18,080 10.72 8.79
braf 3D4Q Serine / threonine-protein ki-

nase B-raf
152 9,944 7.27 7.24

cah2 1BCD Carbonic anhydrase II 492 31,134 7.14 7.10
casp3 2CNK Caspase-3 199 10,692 10.47 8.72
cdk2 1H00 Cyclin-dependent kinase 2 474 27,831 6.25 6.70
comt 3BWM Catechol O-methyltransferase 41 3,848 4.85 5.15
cp2c9 1R9O Cytochrome P450 2C9 120 7,446 7.18 6.78
cp3a4 3NXU Cytochrome P450 3A4 170 11,796 7.71 7.42
csf1r 3KRJ Macrophage colony stimulat-

ing factor receptor
166 12,144 6.86 6.92

cxcr4 3ODU C-X-C chemokine receptor
type 4

40 3,406 6.75 7.30

def 1LRU Peptide deformylase 102 5,696 9.78 7.77
dhi1 3FRJ 11-beta-hydroxysteroid dehy-

drogenase 1
330 19,341 5.89 5.54

dpp4 2I78 Dipeptidyl peptidase IV 533 40,916 6.52 6.44
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Table B.2: Detailed information of DUD-E targets (2)

Target PDBID Description
# compounds Ave. # fragments
Pos. Neg. Pos. Neg.

drd3 3PBL Dopamine D3 receptor 480 34,022 7.58 7.30
dyr 3NXO Dihydrofolate reductase 231 17,170 6.68 7.10
egfr 2RGP Epidermal growth factor re-

ceptor erbB1
542 35,021 7.27 7.74

esr1 1SJ0 Estrogen receptor alpha 383 20,663 5.55 6.72
esr2 2FSZ Estrogen receptor beta 367 20,182 5.21 6.56
fa10 3KL6 Coagulation factor X 537 28,247 9.01 8.18
fa7 1W7X Coagulation factor VII 114 6,245 10.29 8.26

fabp4 2NNQ Fatty acid binding protein
adipocyte

47 2,749 6.68 6.53

fak1 3BZ3 Focal adhesion kinase 1 100 5,350 8.44 8.12
fgfr1 3C4F Fibroblast growth factor re-

ceptor 1
139 8,691 7.33 7.55

fkb1a 1J4H FK506-binding protein 1A 111 5,800 9.75 8.42
fnta 3E37 Protein farnesyltransferase

/ geranylgeranyltransferase
type I alpha subunit

592 51,430 8.20 7.65

fpps 1ZW5 Farnesyl diphosphate syn-
thase

85 8,823 7.08 7.01

gcr 3BQD Glucocorticoid receptor 258 14,987 5.33 5.94
glcm 2V3F Beta-glucocerebrosidase 54 3,799 8.57 7.93
gria2 3KGC Glutamate receptor

ionotropic, AMPA 2
158 11,832 6.47 6.52

grik1 1VSO Glutamate receptor
ionotropic kainate 1

101 6,547 5.83 6.32

hdac2 3MAX Histone deacetylase 2 185 10,300 10.02 8.29
hdac8 3F07 Histone deacetylase 8 170 10,448 9.52 7.95
hivint 3NF7 Human immunodeficiency

virus type 1 integrase
100 6,645 6.42 6.35

hivpr 1XL2 Human immunodeficiency
virus type 1 protease

536 35,688 11.16 8.75

hivrt 3LAN Human immunodeficiency
virus type 1 reverse transcrip-
tase

338 18,879 4.98 5.65

hmdh 3CCW HMG-CoA reductase 170 8,743 9.79 8.56
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Table B.3: Detailed information of DUD-E targets (3)

Target PDBID Description
# compounds Ave. # fragments
Pos. Neg. Pos. Neg.

hs90a 1UYG Heat shock protein HSP 90-
alpha

88 4,848 5.56 7.20

hxk4 3F9M Hexokinase type IV 92 4,698 6.78 6.97
igf1r 2OJ9 Insulin-like growth factor I re-

ceptor
148 9,291 7.95 8.27

inha 2H7L Enoyl-[acyl-carrier-protein]
reductase

43 2,300 7.14 6.17

ital 2ICA Leukocyte adhesion glycopro-
tein LFA-1 alpha

138 8,487 7.72 7.62

jak2 3LPB Tyrosine-protein kinase JAK2 107 6,495 6.23 6.63
kif11 3CJO Kinesin-like protein 1 116 6,849 6.78 6.18
kit 3G0E Stem cell growth factor recep-

tor
166 10,447 7.80 7.57

kith 2B8T Thymidine kinase 57 2,850 6.70 7.60
kpcb 2I0E Protein kinase C beta 135 8,692 5.67 6.85
lck 2OF2 Tyrosine-protein kinase LCK 420 27,375 7.20 7.32

lkha4 3CHP Leukotriene A4 hydrolase 171 9,449 7.70 7.59
mapk2 3M2W MAP kinase-activated protein

kinase 2
101 6,147 4.67 5.58

mcr 2AA2 Mineralocorticoid receptor 94 5,146 5.43 5.91
met 3LQ8 Hepatocyte growth factor re-

ceptor
166 11,240 7.45 7.48

mk01 2OJG MAP kinase ERK2 79 4,548 7.25 6.84
mk10 2ZDT c-Jun N-terminal kinase 3 104 6,599 6.63 6.71
mk14 2QD9 MAP kinase p38 alpha 578 35,812 7.31 7.03
mmp13 830C Matrix metalloproteinase 13 572 37,127 8.98 8.29
mp2k1 3EQH Dual specificity mitogen-

activated protein kinase
kinase 1

121 8,147 6.92 8.02

nos1 1QW6 Nitric-oxide synthase, brain 100 8,050 4.86 5.50
nram 1B9V Neuraminidase 98 6,199 8.39 7.01
pa2ga 1KVO Phospholipase A2 group IIA 99 5,147 10.12 9.63
parp1 3L3M Poly [ADP-ribose]

polymerase-1
508 30,035 5.07 5.57

pde5a 1UDT Phosphodiesterase 5A 398 27,521 6.95 7.63
pgh1 2OYU Cyclooxygenase-1 195 10,797 4.66 4.72
pgh2 3LN1 Cyclooxygenase-2 435 23,136 5.14 5.28
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Table B.4: Detailed information of DUD-E targets (4)

Target PDBID Description
# compounds Ave. # fragments
Pos. Neg. Pos. Neg.

plk1 2OWB Serine / threonine-protein ki-
nase PLK1

107 6,797 7.16 7.95

pnph 3BGS Purine nucleoside phosphory-
lase

103 6,950 3.93 6.08

ppara 2P54 Peroxisome proliferator-
activated receptor alpha

373 19,358 9.75 8.98

ppard 2ZNP Peroxisome proliferator-
activated receptor delta

240 12,224 8.95 8.69

pparg 2GTK Peroxisome proliferator-
activated receptor gamma

484 25,256 9.19 8.61

prgr 3KBA Progesterone receptor 293 15,643 3.95 4.65
ptn1 2AZR Protein-tyrosine phosphatase

1B
130 7,243 8.98 7.62

pur2 1NJS GAR transformylase 50 2,694 12.18 8.54
pygm 1C8K Muscle glycogen phosphory-

lase
77 3,940 6.74 6.19

pyrd 1D3G Dihydroorotate dehydroge-
nase

111 6,446 5.66 5.64

reni 3G6Z Renin 104 6,955 14.59 11.68
rock1 2ETR Rho-associated protein kinase

1
100 6,297 5.54 6.30

rxra 1MV9 Retinoid X receptor alpha 131 6,935 5.95 5.79
sahh 1LI4 Adenosylhomocysteinase 63 3,450 3.46 5.67
src 3EL8 Tyrosine-protein kinase SRC 524 34,455 7.18 7.61
tgfr1 3HMM TGF-beta receptor type I 133 8,498 5.02 5.66
thb 1Q4X Thyroid hormone receptor

beta-1
103 7,442 6.52 7.19

thrb 1YPE Thrombin 461 26,948 11.09 8.75
try1 2AYW Trypsin I 449 25,915 10.42 8.34
tryb1 2ZEC Tryptase beta-1 148 7,643 11.55 9.19
tysy 1SYN Thymidylate synthase 109 6,738 8.57 7.14
urok 1SQT Urokinase-type plasminogen

activator
162 9,841 7.29 6.88

vgfr2 2P2I Vascular endothelial growth
factor receptor 2

409 24,928 7.23 7.37

wee1 3BIZ Serine / threonine-protein ki-
nase WEE1

102 6,149 5.87 7.57

xiap 3HL5 Inhibitor of apoptosis protein
3

100 5,145 11.89 8.87



B. Detailed information of DUD-E 97

Table B.5: The results of single prediction accuracies for 102 DUD-E targets (1)

Target
Glide SP Glide HTVS Spresso

EF1% EF2% EF1% EF2% EF1% EF2%

aa2ar 16.79 12.96 10.16 7.05 4.15 3.21
abl1 16.38 9.32 9.28 6.85 6.00 4.11
ace 8.48 7.09 7.42 5.14 3.18 4.61
aces 3.97 4.30 2.43 2.10 29.34 19.08
ada 17.03 12.88 13.83 9.13 3.19 2.15
ada17 33.78 20.11 19.71 13.25 1.31 1.88
adrb1 7.69 7.48 9.71 7.48 2.43 2.02
adrb2 24.12 15.77 15.51 9.94 8.18 6.27
akt1 10.53 6.13 4.08 3.07 3.40 3.41
akt2 9.28 7.65 5.06 4.25 4.22 2.97
aldr 24.41 16.27 15.02 8.76 10.01 7.51
ampc 6.24 7.28 2.08 4.16 0.00 0.00
andr 11.82 9.08 12.56 8.16 15.52 9.64
aofb 8.92 6.53 8.92 6.53 2.43 2.04
bace1 14.11 10.40 5.99 4.41 15.87 12.34
braf 27.62 16.77 26.96 15.13 3.29 3.62
cah2 1.01 0.61 1.82 1.12 4.06 2.94
casp3 15.06 9.04 7.53 6.78 10.04 7.78
cdk2 10.51 8.95 13.04 8.32 2.10 2.42
comt 0.00 1.22 4.86 4.86 4.86 2.43
cp2c9 0.83 0.83 0.83 0.41 1.66 1.66
cp3a4 8.80 6.16 5.28 3.23 4.11 2.64
csf1r 11.96 9.01 10.76 8.41 2.99 1.80
cxcr4 4.92 2.50 0.00 2.50 7.38 4.99
def 32.34 23.03 23.52 15.68 2.94 2.45
dhi1 12.10 7.72 5.14 5.30 0.30 0.15
dpp4 23.98 17.26 19.86 14.63 2.62 2.25



98 B. Detailed information of DUD-E

Table B.6: The results of single prediction accuracies for 102 DUD-E targets (2)

Target
Glide SP Glide HTVS Spresso

EF1% EF2% EF1% EF2% EF1% EF2%

drd3 4.78 3.85 4.78 4.26 3.74 2.50
dyr 11.19 9.50 7.32 6.26 21.52 15.11
egfr 20.46 11.80 10.14 6.64 3.32 3.59
esr1 47.14 28.98 30.21 18.27 20.57 14.75
esr2 46.21 31.20 36.42 22.07 13.59 8.99
fa10 38.53 25.03 24.94 16.66 3.16 2.98
fa7 36.61 22.66 34.86 23.53 12.20 9.59

fabp4 19.12 13.81 14.87 13.81 2.12 4.25
fak1 19.82 12.00 14.86 10.50 6.94 7.00
fgfr1 4.28 3.95 0.71 1.79 0.00 1.08
fkb1a 44.38 24.16 23.08 16.56 2.66 1.79
fnta 7.76 6.16 6.24 4.98 8.60 5.91
fpps 1.16 1.17 5.82 4.10 0.00 0.00
gcr 16.61 10.46 11.97 7.36 15.83 11.24
glcm 10.98 9.15 9.15 7.32 12.81 9.15
gria2 30.99 18.34 30.99 17.71 24.03 15.49
grik1 15.72 10.89 28.49 20.29 12.77 7.42
hdac2 10.80 9.72 3.78 2.70 1.08 1.08
hdac8 12.84 11.73 11.67 12.90 0.00 0.00
hivint 4.96 6.00 5.95 4.00 3.97 3.50
hivpr 20.11 13.80 9.31 7.36 12.66 8.39
hivrt 22.39 14.32 13.55 8.86 5.60 3.84
hmdh 37.86 24.60 25.05 16.69 2.33 2.05
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Table B.7: The results of single prediction accuracies for 102 DUD-E targets (3)

Target
Glide SP Glide HTVS Spresso

EF1% EF2% EF1% EF2% EF1% EF2%

hs90a 1.12 1.70 4.49 3.40 0.00 0.00
hxk4 15.19 7.59 11.93 7.59 1.08 0.54
igf1r 13.43 9.11 9.40 5.74 10.74 9.79
inha 4.54 2.32 6.81 3.48 0.00 3.48
ital 2.87 2.89 2.16 1.81 1.44 2.17
jak2 25.79 19.48 21.18 14.38 0.92 0.93
kif11 42.03 24.88 22.30 14.58 6.00 5.58
kit 3.59 2.40 4.78 3.00 8.37 5.70
kith 27.20 17.29 15.30 9.51 6.80 7.78
kpcb 49.22 28.07 36.73 20.32 19.84 12.19
lck 16.43 12.50 15.95 10.12 3.33 3.81

lkha4 21.46 19.24 22.04 15.16 0.00 0.00
mapk2 21.60 17.32 24.55 18.81 10.80 6.93
mcr 9.47 4.78 5.26 2.65 10.52 6.90
met 48.39 28.20 31.66 17.40 10.16 10.50
mk01 16.20 13.23 3.74 4.41 1.25 0.63
mk10 8.53 4.77 8.53 6.21 1.90 1.91
mk14 9.34 5.45 7.09 4.76 5.02 3.20
mmp13 18.71 12.50 12.94 7.78 4.37 3.06
mp2k1 4.94 3.29 4.94 4.53 11.53 8.23
nos1 1.99 1.50 2.98 3.50 7.95 7.50
nram 33.66 22.95 22.44 14.28 13.26 11.22
pa2ga 30.99 19.18 17.00 11.10 5.00 3.53
parp1 48.73 35.52 44.01 27.85 22.40 13.97
pde5a 15.78 12.17 11.27 8.28 8.52 6.15
pgh1 11.79 7.94 13.32 7.94 2.05 1.79
pgh2 26.63 16.53 21.35 12.17 0.69 1.38
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Table B.8: The results of single prediction accuracies for 102 DUD-E targets (4)

Target
Glide SP Glide HTVS Spresso

EF1% EF2% EF1% EF2% EF1% EF2%

plk1 30.42 19.50 19.36 14.39 0.92 0.46
pnph 38.58 26.52 49.19 26.52 44.36 28.45
ppara 9.35 8.70 5.61 6.16 3.74 3.21
ppard 3.32 3.95 4.15 3.53 1.25 1.04
pparg 6.60 5.37 5.77 4.75 4.33 3.20
prgr 25.15 17.39 19.04 12.96 13.26 8.52
ptn1 18.39 14.56 19.93 12.65 10.73 8.43
pur2 54.88 47.90 54.88 34.92 29.40 22.95
pygm 2.54 1.29 1.27 3.86 0.00 0.64
pyrd 41.17 23.72 30.43 17.45 3.58 4.92
reni 22.94 14.82 11.47 6.21 2.87 5.26
rock1 18.99 12.49 16.99 11.99 10.00 8.50
rxra 48.62 34.95 41.02 25.83 0.00 0.00
sahh 55.76 40.84 55.76 36.91 1.55 3.93
src 7.44 5.63 7.44 5.15 9.35 6.39
tgfr1 11.93 9.38 20.89 13.50 0.00 0.38
thb 27.95 17.95 16.39 13.10 0.96 1.46
thrb 29.19 18.52 21.84 14.73 21.84 16.79
try1 29.58 18.24 26.24 16.46 11.34 8.67
tryb1 14.85 11.14 15.52 10.12 2.70 3.71
tysy 35.50 24.76 24.58 15.59 29.13 21.09
urok 36.68 20.58 30.57 16.59 6.72 5.84
vgfr2 17.56 10.87 15.36 9.16 15.36 10.14
wee1 61.28 46.21 61.28 43.77 61.28 44.75
xiap 52.45 40.96 52.45 33.47 10.89 7.99
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Table B.9: The results of prediction accuracies for 102 DUD-E targets with Glide HTVS
and Glide SP (1). a%–b% indicates the EFb% when compounds were pre-screened using
a% of all compounds.

Target
Glide HTVS - Glide SP

2%–1% 5%–1% 10%–1% 5%–2% 10%–2%
aa2ar 12.03 13.89 16.38 9.33 11.51
abl1 12.55 12.01 12.55 7.13 8.23
ace 7.42 7.42 6.71 5.85 4.96
aces 2.43 3.31 3.75 2.43 2.65
ada 12.77 13.83 15.96 9.66 11.27
ada17 24.21 27.40 28.90 14.94 16.35
adrb1 10.52 8.09 8.09 6.47 6.27
adrb2 18.09 16.37 15.51 11.02 11.02
akt1 4.42 5.09 6.79 2.90 3.75
akt2 5.91 6.75 8.44 5.52 4.67
aldr 15.64 17.52 18.15 9.07 10.33
ampc 4.16 8.32 8.32 8.32 8.32
andr 13.67 13.67 12.19 9.27 9.64
aofb 11.35 8.11 9.73 7.75 7.35
bace1 7.05 8.11 8.82 6.52 5.82
braf 25.65 27.62 26.96 15.78 16.44
cah2 1.82 1.22 1.01 1.12 0.61
casp3 8.54 12.05 13.05 8.54 8.28
cdk2 12.41 13.88 14.09 8.64 9.48
comt 0.00 0.00 0.00 3.65 0.00
cp2c9 0.00 0.83 0.83 0.83 0.83
cp3a4 4.69 7.04 9.39 5.28 6.45
csf1r 11.96 14.35 14.95 8.41 9.31
cxcr4 2.46 2.46 4.92 1.25 2.50
def 21.56 23.52 25.48 17.15 16.66
dhi1 6.35 8.17 10.59 6.05 7.11
dpp4 23.23 24.73 24.73 17.26 17.26
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Table B.10: The results of prediction accuracies for 102 DUD-E targets with Glide
HTVS and Glide SP (2). a%–b% indicates the EFb% when compounds were pre-
screened using a% of all compounds.

Target
Glide HTVS - Glide SP

2%–1% 5%–1% 10%–1% 5%–2% 10%–2%
drd3 4.57 4.78 5.19 4.47 4.06
dyr 11.62 10.76 9.47 6.91 6.48
egfr 11.98 13.64 15.30 7.93 8.75
esr1 33.07 33.60 35.68 18.53 19.84
esr2 39.14 39.41 39.96 23.30 23.84
fa10 27.92 31.45 33.31 19.36 20.75
fa7 39.22 39.22 38.35 27.45 25.71

fabp4 17.00 19.12 21.25 14.87 12.75
fak1 17.84 14.86 12.88 11.00 12.00
fgfr1 3.57 2.14 3.57 2.15 2.87
fkb1a 27.51 29.29 31.95 16.11 17.45
fnta 7.25 7.59 8.43 6.25 6.67
fpps 1.16 2.33 2.33 2.93 2.93
gcr 13.52 13.13 13.52 7.56 8.33
glcm 14.64 16.47 16.47 8.23 8.23
gria2 31.62 29.09 29.09 18.97 18.34
grik1 23.58 22.60 17.68 14.85 13.36
hdac2 5.40 6.48 7.02 4.05 5.67
hdac8 18.10 15.76 15.76 15.83 15.83
hivint 6.94 7.94 8.93 6.50 6.50
hivpr 13.40 14.34 17.69 10.53 12.40
hivrt 15.02 15.91 15.91 10.93 11.52
hmdh 29.71 36.70 37.86 21.97 23.43
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Table B.11: The results of prediction accuracies for 102 DUD-E targets with Glide
HTVS and Glide SP (3). a%–b% indicates the EFb% when compounds were pre-
screened using a% of all compounds.

Target
Glide HTVS - Glide SP

2%–1% 5%–1% 10%–1% 5%–2% 10%–2%
hs90a 5.61 3.37 0.00 4.53 3.40
hxk4 11.93 13.02 13.02 8.14 6.51
igf1r 7.38 7.38 8.06 6.07 6.07
inha 6.81 6.81 4.54 4.64 4.64
ital 2.87 2.16 2.87 1.81 3.25
jak2 21.18 23.02 22.10 14.38 15.77
kif11 21.44 27.45 32.59 15.87 18.44
kit 4.78 4.18 3.59 2.70 2.70
kith 15.30 15.30 15.30 7.78 7.78
kpcb 40.41 41.88 42.61 22.53 23.27
lck 16.66 17.14 17.62 12.26 12.97

lkha4 24.36 26.68 27.84 17.78 18.36
mapk2 29.46 29.46 26.51 19.30 20.29
mcr 5.26 6.31 6.31 3.19 3.19
met 32.26 38.83 42.42 20.70 22.20
mk01 6.23 7.48 8.72 4.41 4.41
mk10 4.74 4.74 5.69 4.30 5.73
mk14 5.02 5.36 5.53 3.29 3.63
mmp13 13.64 16.61 16.61 10.23 10.93
mp2k1 7.41 5.76 4.12 4.53 4.94
nos1 2.98 2.98 2.98 1.50 1.50
nram 25.50 29.58 31.62 17.34 17.34
pa2ga 18.00 18.00 17.00 10.60 11.10
parp1 47.16 45.78 47.16 30.60 32.18
pde5a 13.28 14.53 16.03 10.04 10.79
pgh1 13.32 11.79 11.27 7.43 7.69
pgh2 21.12 21.35 22.04 12.63 13.09



104 B. Detailed information of DUD-E

Table B.12: The results of prediction accuracies for 102 DUD-E targets with Glide
HTVS and Glide SP (4). a%–b% indicates the EFb% when compounds were pre-
screened using a% of all compounds.

Target
Glide HTVS - Glide SP

2%–1% 5%–1% 10%–1% 5%–2% 10%–2%
plk1 23.97 26.73 29.50 16.25 19.03
pnph 44.36 46.29 46.29 28.45 27.49
ppara 8.28 9.08 8.82 6.96 7.23
ppard 3.32 4.57 4.99 3.32 3.74
pparg 6.18 6.60 7.01 5.06 5.06
prgr 22.10 22.10 24.14 14.83 15.86
ptn1 18.39 17.63 17.63 12.65 13.03
pur2 54.88 54.88 54.88 39.91 42.91
pygm 2.54 2.54 2.54 4.51 2.58
pyrd 32.22 34.01 34.91 19.69 20.59
reni 11.47 18.16 20.08 10.04 11.95
rock1 15.99 11.99 16.99 11.49 11.99
rxra 45.58 47.10 49.38 28.49 29.63
sahh 55.76 55.76 54.21 37.70 37.70
src 7.63 8.39 7.44 6.10 6.58
tgfr1 20.14 14.92 14.17 12.00 12.38
thb 23.13 24.10 24.10 16.49 16.49
thrb 21.62 23.13 25.30 14.73 15.70
try1 24.24 25.80 26.91 14.68 15.23
tryb1 18.90 18.22 15.52 10.46 9.79
tysy 28.22 30.04 29.13 18.34 16.97
urok 28.12 28.73 30.57 15.97 16.90
vgfr2 14.39 15.85 15.61 9.16 8.92
wee1 61.28 61.28 61.28 44.26 44.75
xiap 52.45 52.45 52.45 34.47 34.97
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Table B.13: The results of prediction accuracies for 102 DUD-E targets with Spresso
and Glide SP (1). a%–b% means the EFb% value with below procedure: (a) Spresso
pre-screening from compound library to a% subset of compounds, (b) Glide SP docking
calculation for a% subset of compounds. The score function of Spresso was ENE1.8
and it utilized Glide HTVS fragment docking.

Target
Spresso - Glide SP

2%–1% 5%–1% 10%–1% 5%–2% 10%–2%
aa2ar 6.43 9.12 10.99 4.87 6.22
abl1 7.64 7.10 8.19 7.40 6.31
ace 5.65 6.36 8.13 4.79 4.79
aces 15.89 11.69 10.59 7.94 7.28
ada 4.26 6.38 12.77 3.76 8.59
ada17 3.57 11.26 19.89 6.01 10.90
adrb1 3.64 5.66 6.88 3.03 5.26
adrb2 11.63 13.78 20.68 8.21 12.32
akt1 5.43 6.79 6.45 4.94 3.75
akt2 5.91 5.91 7.59 4.67 5.95
aldr 12.52 16.90 23.78 10.01 13.77
ampc 0.00 6.24 10.40 3.12 6.24
andr 11.82 14.41 17.74 7.23 9.08
aofb 1.62 5.67 7.29 3.67 5.31
bace1 22.22 26.80 25.04 16.93 15.52
braf 5.92 6.58 10.52 5.92 6.91
cah2 0.00 0.00 0.20 0.00 0.10
casp3 14.56 19.58 21.59 11.55 14.56
cdk2 4.00 5.05 7.57 3.37 4.84
comt 2.43 2.43 2.43 1.22 1.22
cp2c9 0.00 0.00 2.49 0.00 1.66
cp3a4 5.28 7.63 6.45 5.57 4.99
csf1r 2.39 4.19 5.38 2.40 3.00
cxcr4 9.85 4.92 0.00 4.99 1.25
def 4.90 7.84 8.82 4.90 5.39
dhi1 0.30 0.30 1.51 0.45 0.91
dpp4 4.50 10.87 14.24 5.82 8.72
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Table B.14: The results of prediction accuracies for 102 DUD-E targets with Spresso
and Glide SP (2). a%–b% means the EFb% value with below procedure: (a) Spresso
pre-screening from compound library to a% subset of compounds, (b) Glide SP docking
calculation for a% subset of compounds. The score function of Spresso was ENE1.8
and it utilized Glide HTVS fragment docking.

Target
Spresso - Glide SP

2%–1% 5%–1% 10%–1% 5%–2% 10%–2%
drd3 4.15 6.65 7.06 4.16 4.89
dyr 24.11 19.37 12.91 14.68 12.95
egfr 6.27 10.69 13.82 6.08 7.93
esr1 23.18 30.73 35.94 17.23 19.32
esr2 16.31 22.56 29.90 12.26 17.03
fa10 5.58 8.75 10.79 5.21 6.79
fa7 19.17 23.53 29.63 16.12 17.87

fabp4 8.50 12.75 21.25 6.37 11.69
fak1 8.92 7.93 5.95 7.00 7.50
fgfr1 0.71 0.71 2.86 0.36 1.79
fkb1a 3.55 4.44 5.33 2.68 4.03
fnta 10.96 14.50 14.00 8.78 9.88
fpps 0.00 0.00 0.00 0.00 0.00
gcr 8.88 10.04 11.20 5.62 6.97
glcm 14.64 16.47 14.64 10.98 10.06
gria2 20.87 22.77 30.35 12.65 15.49
grik1 8.84 12.77 20.63 8.41 15.84
hdac2 1.62 4.86 7.56 2.43 3.78
hdac8 0.00 2.33 3.50 1.17 2.05
hivint 5.95 5.95 9.92 5.00 6.50
hivpr 15.45 21.97 23.46 12.77 15.57
hivrt 6.48 12.08 14.43 7.68 9.75
hmdh 2.33 8.74 16.31 4.98 8.49



B. Detailed information of DUD-E 107

Table B.15: The results of prediction accuracies for 102 DUD-E targets with Spresso
and Glide SP (3). a%–b% means the EFb% value with below procedure: (a) Spresso
pre-screening from compound library to a% subset of compounds, (b) Glide SP docking
calculation for a% subset of compounds. The score function of Spresso was ENE1.8
and it utilized Glide HTVS fragment docking.

Target
Spresso - Glide SP

2%–1% 5%–1% 10%–1% 5%–2% 10%–2%
hs90a 0.00 0.00 0.00 0.00 0.00
hxk4 1.08 0.00 2.17 1.08 3.80
igf1r 16.11 16.11 14.10 11.47 11.47
inha 4.54 0.00 0.00 2.32 0.00
ital 2.16 2.16 1.44 1.08 1.81
jak2 1.84 6.45 13.81 4.64 7.42
kif11 11.15 12.01 16.30 6.00 9.01
kit 4.78 3.59 1.20 4.50 1.80
kith 6.80 8.50 20.40 6.05 13.83
kpcb 20.57 27.92 32.33 15.52 17.73
lck 6.90 8.81 10.47 5.83 6.67

lkha4 0.00 0.00 1.74 0.00 0.87
mapk2 7.86 15.71 20.62 8.91 10.89
mcr 7.36 6.31 7.36 3.19 3.72
met 19.72 22.70 25.09 12.60 14.10
mk01 0.00 0.00 3.74 0.00 2.52
mk10 2.84 1.90 2.84 2.39 1.91
mk14 2.77 1.90 2.77 1.99 2.08
mmp13 5.94 9.61 12.24 5.33 7.17
mp2k1 8.23 4.12 3.29 5.35 2.88
nos1 9.94 4.97 3.98 5.50 4.50
nram 17.34 31.62 37.74 17.85 21.93
pa2ga 6.00 6.00 11.00 5.05 7.07
parp1 24.95 33.21 40.87 17.61 23.12
pde5a 10.27 8.02 8.27 6.15 6.53
pgh1 3.07 1.54 1.54 0.77 1.28
pgh2 1.38 1.84 2.53 0.92 1.38
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Table B.16: The results of prediction accuracies for 102 DUD-E targets with Spresso
and Glide SP (4). a%–b% means the EFb% value with below procedure: (a) Spresso
pre-screening from compound library to a% subset of compounds, (b) Glide SP docking
calculation for a% subset of compounds. The score function of Spresso was ENE1.8
and it utilized Glide HTVS fragment docking.

Target
Spresso - Glide SP

2%–1% 5%–1% 10%–1% 5%–2% 10%–2%
plk1 0.00 0.92 4.61 0.46 2.32
pnph 50.15 52.08 49.19 30.86 30.86
ppara 6.14 8.82 10.42 4.82 6.16
ppard 1.66 2.91 2.91 2.49 3.74
pparg 5.98 10.10 9.48 6.09 7.74
prgr 9.52 11.22 13.60 5.80 7.33
ptn1 12.26 17.63 22.23 10.73 12.26
pur2 45.08 50.96 52.92 25.94 26.94
pygm 0.00 5.09 6.36 2.58 5.15
pyrd 8.95 17.90 20.59 8.95 11.19
reni 9.56 19.12 19.12 12.43 13.86
rock1 13.99 22.99 22.99 14.99 14.49
rxra 0.00 5.32 25.83 2.66 12.91
sahh 0.00 15.49 51.12 7.85 31.42
src 9.35 6.68 6.68 5.91 6.01
tgfr1 0.75 2.98 3.73 1.88 3.00
thb 0.00 0.00 4.82 0.00 2.43
thrb 30.27 31.57 30.27 20.90 21.12
try1 15.79 15.79 18.68 11.90 12.90
tryb1 6.75 10.12 11.47 7.09 8.10
tysy 39.15 42.79 42.79 30.26 29.80
urok 8.56 14.67 15.90 8.91 10.75
vgfr2 17.56 13.90 16.10 11.85 11.00
wee1 61.28 61.28 61.28 46.69 47.67
xiap 15.83 24.74 36.62 12.99 18.48
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Table B.17: The results of prediction accuracies for 102 DUD-E targets with three-step
screening (1). a%–b%–c% means the EFc% value with below procedure: (a) Spresso
pre-screening from compound library to a% subset of compounds, (b) Glide HTVS
pre-screening from a% subset of compounds to b% subset of compounds, (c) Glide SP
docking calculation for b% subset of compounds. The score function of Spresso was
ENE1.8 and it utilized Glide HTVS fragment docking.

Target
Spresso - Glide HTVS - Glide SP

5%–2%–1% 10%–2%–1% 10%–5%–1%
aa2ar 8.71 9.54 10.99
abl1 8.73 7.10 8.19
ace 6.36 6.01 6.71
aces 11.69 5.30 10.59
ada 7.45 13.83 14.90
ada17 9.57 16.14 17.83
adrb1 5.66 5.26 6.88
adrb2 13.78 20.68 20.68
akt1 6.79 6.45 6.45
akt2 5.91 5.91 7.59
aldr 15.02 16.27 21.90
ampc 6.24 12.48 10.40
andr 14.41 17.74 17.74
aofb 5.67 7.29 7.29
bace1 22.57 17.98 22.92
braf 8.55 9.21 11.18
cah2 0.00 0.20 0.20
casp3 19.08 21.09 20.08
cdk2 5.26 7.57 7.57
comt 2.43 0.00 2.43
cp2c9 0.00 2.49 2.49
cp3a4 8.80 8.21 7.63
csf1r 4.19 4.78 5.38
cxcr4 9.85 4.92 2.46
def 6.86 5.88 5.88
dhi1 0.30 1.21 1.51
dpp4 10.87 14.80 14.05
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Table B.18: The results of prediction accuracies for 102 DUD-E targets with three-step
screening (2). a%–b%–c% means the EFc% value with below procedure: (a) Spresso
pre-screening from compound library to a% subset of compounds, (b) Glide HTVS
pre-screening from a% subset of compounds to b% subset of compounds, (c) Glide SP
docking calculation for b% subset of compounds. The score function of Spresso was
ENE1.8 and it utilized Glide HTVS fragment docking.

Target
Spresso - Glide HTVS - Glide SP

5%–2%–1% 10%–2%–1% 10%–5%–1%
drd3 6.65 5.40 7.06
dyr 13.77 12.91 12.48
egfr 9.40 10.87 13.09
esr1 22.92 22.66 26.56
esr2 16.31 21.47 29.90
fa10 8.56 10.24 10.61
fa7 28.76 30.51 32.25

fabp4 12.75 17.00 21.25
fak1 9.91 9.91 8.92
fgfr1 0.71 2.86 2.86
fkb1a 3.55 7.10 7.10
fnta 16.02 17.20 16.70
fpps 0.00 0.00 0.00
gcr 10.04 11.20 11.20
glcm 16.47 14.64 14.64
gria2 20.24 25.93 27.82
grik1 12.77 23.58 23.58
hdac2 4.86 7.56 7.56
hdac8 2.33 2.92 3.50
hivint 7.94 13.89 10.91
hivpr 17.13 18.99 21.78
hivrt 12.08 14.43 14.43
hmdh 6.99 11.07 14.56
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Table B.19: The results of prediction accuracies for 102 DUD-E targets with three-step
screening (3). a%–b%–c% means the EFc% value with below procedure: (a) Spresso
pre-screening from compound library to a% subset of compounds, (b) Glide HTVS
pre-screening from a% subset of compounds to b% subset of compounds, (c) Glide SP
docking calculation for b% subset of compounds. The score function of Spresso was
ENE1.8 and it utilized Glide HTVS fragment docking.

Target
Spresso - Glide HTVS - Glide SP

5%–2%–1% 10%–2%–1% 10%–5%–1%
hs90a 0.00 0.00 0.00
hxk4 0.00 1.08 2.17
igf1r 14.10 15.44 13.43
inha 0.00 0.00 0.00
ital 0.72 0.72 1.44
jak2 5.53 6.45 10.13
kif11 10.29 12.87 14.58
kit 6.57 3.59 1.79
kith 1.70 6.80 18.70
kpcb 21.31 26.45 27.18
lck 8.57 10.95 9.76

lkha4 0.00 1.74 1.74
mapk2 14.73 16.69 18.66
mcr 6.31 7.36 7.36
met 21.51 21.51 25.69
mk01 0.00 4.98 3.74
mk10 4.74 3.79 2.84
mk14 2.42 2.77 2.77
mmp13 7.17 9.09 10.49
mp2k1 8.23 4.94 3.29
nos1 7.95 4.97 4.97
nram 23.46 27.54 30.60
pa2ga 2.00 4.00 7.00
parp1 29.67 35.96 38.12
pde5a 8.77 10.27 9.77
pgh1 1.54 1.54 1.54
pgh2 1.84 2.53 2.53
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Table B.20: The results of prediction accuracies for 102 DUD-E targets with three-step
screening (4). a%–b%–c% means the EFc% value with below procedure: (a) Spresso
pre-screening from compound library to a% subset of compounds, (b) Glide HTVS
pre-screening from a% subset of compounds to b% subset of compounds, (c) Glide SP
docking calculation for b% subset of compounds. The score function of Spresso was
ENE1.8 and it utilized Glide HTVS fragment docking.

Target
Spresso - Glide HTVS - Glide SP

5%–2%–1% 10%–2%–1% 10%–5%–1%
plk1 0.92 5.53 4.61
pnph 51.12 52.08 50.15
ppara 8.82 10.42 10.42
ppard 2.91 4.99 2.91
pparg 8.25 9.89 9.48
prgr 11.22 13.60 13.60
ptn1 13.03 16.09 22.23
pur2 47.04 43.12 49.00
pygm 2.54 2.54 2.54
pyrd 17.90 15.22 20.59
reni 17.21 14.34 21.03
rock1 21.99 19.99 25.99
rxra 5.32 25.83 25.83
sahh 15.49 51.12 51.12
src 7.82 6.68 7.06
tgfr1 1.49 2.24 2.98
thb 0.00 4.82 4.82
thrb 31.78 30.92 31.35
try1 16.68 20.02 18.68
tryb1 6.75 8.77 7.42
tysy 40.97 36.42 42.79
urok 13.45 13.45 14.06
vgfr2 13.90 14.14 16.10
wee1 61.28 61.28 61.28
xiap 24.74 33.65 35.63
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