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Abstract

Virtual screening (VS) is a computational method which is widely used to evaluate the
binding affinity between a vast number of compounds and a protein before conducting
in vitro assays. In particular, structure-based VS (SBVS), which uses protein tertiary
structures, is attracting attention because it can consider the binding affinity in a
physico-chemical manner. However, SBVS is too computationally heavy to evaluate
10 million-order of compounds. Pre-screening methods filtering out unfeasible com-
pounds have been proposed to avoid the problem of computational cost. Most of them
are ligand-based, prediction from known inhibitors, and structure-based pre-screening
methods are still needed to be accelerated.

In this dissertation, we designed a pipeline for faster virtual screening with a fun-
damental idea: substructure commonality. Commonality can be used to reuse of in-
termediate results. We firstly defined “fragment” to maximize meaningful common
substructures and we revealed our definition express compounds with much smaller
number of fragments than the RECAP, an existing decomposition rule. The fact leads
to faster calculation of pre-screening and docking calculation.

As a first step of the structure-based virtual screening pipeline, we proposed the
pre-screening method, Spresso. It evaluates compounds based on the binding scores of
their fragments, and thus the calculation results of fragments are reused to multiple
compounds. It is capable of exhaustive primary screening and completed pre-screening
approximately 200 times faster than the conventional method (Glide HTVS) while
precision is slightly compromised. When Spresso was applied to a more than 26 million
compounds, the calculation time was within a day.

The second step of the pipeline is docking calculation. We designed a docking calcula-
tion procedure with reuse of intermediate results. The procedure is based on fragment-
based anchor and grow algorithm.. We found that one of the intermediate information,
called the fragment grid, is an essential factor while it spends huge memory space;
therefore, we formulated and reduced the problem of optimization of the fragment
grids reuse as the minimum cost flow problem, which is known as a polynomial-time
problem. Because the reduced graph of the problem is topological sortable and sparse,

we finally proposed approximately 9 times faster algorithm.
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Chapter 1

Introduction

1.1 Drug Development

The development process of novel drugs is called “Drug development” or “Drug
design”, and pharmaceutical companies spends much money for R&D, research and

development. The process can be mainly divided into three parts:

Discovery and Development The aim of this step is obtaining potential drug can-

didates, and it consists of below steps.

Target selection a step to find a target protein related to a specific disease.

The function of protein is also considered in terms of safety.

Lead generation a step to find some feasible compounds which bind to the
target protein from huge number of compounds. The step is also called
“Hit identification”.

Lead optimization a step to optimize feasible compounds’ efficacy, bio-

availability and safety.

Preclinical Research The potential drug candidates are checked their efficacy and

safety in cells and animals.

Clinical Research This step is to assess the efficacy and safety of drug candidates in

humans. The step is separated into three steps, Phase I-III.

According to an article [1], these steps takes 4.5 years, 1.0 year, and 6.5 years,
respectively. Furthermore, the estimated cost for a new approved compound is more
than 1 billion dollars [2]. Preclinical Research and Clinical Research are based on in
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vivo experiences and are unavoidable, thus much of computational effort for obtaining
potential drugs and optimization of found candidates has been done. These methods

are named as Computer-aided Drug Design (CADD).

1.2 Computer-aided Drug Design (CADD)

Thanks to the enlarged databases of compounds, protein tertiary structure, expres-
sion profiles, and assay results, vast number of computational methods have been
proposed to improve the Discovery and Development step in the basis of accuracy, cost
and speed. For the prediction of efficacy in the Lead generation step, virtual screening
(VS) is proposed and done for lots of drug development campaigns [3, 4, 5, 6, 7]. On
the other hand, ADMET prediction [8] and off-target prediction [9] has been proposed
for the prediction of safety.

In this dissertation, we focused on VS because much more compounds are processed
with it compared to safety prediction and thus VS step is usually computationally more

expensive.

1.3 Virtual Screening

The identification of potential drug compounds is said as “finding needles in a
haystack” [10]; thus, estimation of the likelihood for a compound to become a vi-
able drug before conducting in vitro assays is critical in enhancing the effectiveness of
searches. To estimate drug likelihood, virtual screening methods have been improved
with the enlargement of available databases [11].

Virtual screening methods can be divided into three:

e Structure-based virtual screening (SBVS)
SBVS methods utilize target protein tertiary structures. It does not require
known compounds, and thus outputs are not biased toward knowns.
— Protein-ligand docking [12, 13]
— Molecular dynamics [13, 14]
— Receptor-based pharmacophore [15, 16]
e Ligand-based virtual screening (LBVS)

LBVS methods utilize known active and inactive compounds. It is considered as

more accurate than SBVS methods.
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— Quantitative Structure-Activity Relationship (QSAR) [17, 18]
— Machine learning [4, 19]

— Similarity search [20, 21]

Ligand-based pharmacophore [16, 22]

e Chemical genomics-based virtual screening (CGBVS)
It also called as drug-target interaction prediction. CGBVS methods utilize
Protein-ligand interaction bipartite network. It predicts relasionship between
multiple proteins and multiple compounds, thus it is mainly applied to off-target
prediction and drug repositioning [23, 24, 25].

In particular, structure-based VS (SBVS) is attracting attention because it can con-
sider the binding affinity in a physico-chemical manner and thus does not require any
known drugs beforehand, whereas LBVS and CGBVS approaches need experimental
data for similar protein-compound pairs. The absence of bias toward experimental
compounds is also a strength of SBVS. It means the methods will output more diverse
potential drugs, and thus researchers are able to select new scaffolds to avoid side effects
or existing patents [26]. Additionally, the prediction ability of binding mode for each
compound is also a reason SBVS is attracting attention, while most of ligand-based VS
methods cannot estimate binding poses. The 3D structural information enables us to
interpret experimental results in atomic-level, and plan which part of compound will
be modified [6, 7].

Moreover, the availability of protein tertiary structures has increased in recent years.
For example, the Protein Data Bank (PDB), which is the most popular public database

of protein structures, contains > 136,000 entries, a 9% increase in 2017 [27].

1.3.1 Structure-Based Virtual Screening (SBVS)

As we already mentioned, SBVS is based on 3D structures of a protein and com-
pounds. Most of SBVS methods consider physical interaction, shape complementarity
between a protein and a compound [28, 29, 30, 31]. Especially, protein-ligand docking
is performed to estimate binding affinities and plausible binding modes for many drug
candidates [12, 13, 32].
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1.4 Protein-Ligand Docking

Protein-ligand docking is the most popular method in the SBVS methods since the
calculation uses atom positions and bond information between atoms, thus it can con-
sider physical interaction and compound’s flexibility explicitly. For instance, hydrogen
bond is one of the important factor of ligand binding, and it depends on the position
of atoms and directions of bonds. This atomic-level evaluation is informative to un-
derstand what binding factors are important and to modify compounds more feasible

and effective.

The inputs are a tertiary structure of target protein and a 3D-structure of a com-
pound, while the outputs are predicted binding mode and its score, which usually
mimics the binding energy. In order to output most stable binding mode, the docking
method is a optimization problem (Fig. 1.1). The screening is done by considering
docking scores [33] or re-ranking with predicted binding modes, including visual in-
spection [34, 35, 36].

Proprietary docking tools such as Glide [37], eHiT'S [38], and open-sourced tools such
as AutoDock [39], AutoDock Vina [40], DOCK [41] have been developed. Table 1.1 is a
list of well-known docking tools. Glide, a proprietary tool, is one of the most accurate
tool [42, 43] and is still improved in terms of scoring function [44], thus it is widely
used [45].

This process, however, is computationally expensive [26]. The reason is docking is an
optimization problem. The internal degrees of freedom of a compound is a significant
factor associated with the search space and computation time required for docking
simulations. Furthermore, the calculation speed highly depends on the algorithms and
tools. For example, AutoDock 4.0 [39] spends ~ 500 CPU core seconds per compound
[40], whereas the commercial docking tool Glide [37] is 50-fold faster than AutoDock
4.0. Tt should be noted that the speediness of Glide is still not enough to evaluate
millions of compounds. Additionally, parallel computation of some proprietary tools,

such as Glide, is highly restricted in terms of license.

Researches to accelerate docking have been done [40, 46, 47]; however, its use is
still not applicable to a huge collection of compounds such as ZINC (> 20 million
compounds) [48], PubChem (> 60 million comounds) [49], ZINC15 (> 120 million
compounds) [50]. Furthermore, GDB-17, a virtually enumerated compound library
have been also proposed (& 166.4 billion compounds) [51]. These facts indicates that

an acceleration of SBVS procedure has become a critical matter.
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Protein-ligand docking

[

Pose optimization

\

@%@ score = —10.4

Scoring function
ex) Chemscore [51]

AGping = AGH_boncl Z f(AR: Aa) + AGmetar Z f(AR: Aa) +

H_bond metal

AGlipo Z f(AR) + AGrotor Z f(Pnl' PT’ll) + AGO

lipo rotor

Figure 1.1: An example of protein-ligand docking. The factors of docking are pose
optimization and scoring.

1.5 Pre-Screening

Because of slowness of docking calculation, the virtual screening campaigns often
screen out compounds prior to the docking calculation, termed “pre-screening” [53].
The pre-screening methods can be divided into three types: 1. pre-screening by physic-
ochemical descriptors, 2. pre-screening by 2D-structure of compounds, 3. pre-screening

by rough docking calculation.

1. Pre-screening by physicochemical descriptors
Existing drugs have some specific physicochemical values, e.g. molecular weight,

water-octanol partition coefficient (logP), and thus there are filtering methods
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Table 1.1: Examples of docking tools

Compound-based

Name Method Free? Articles
or Fragment-based
AutoDock 4.0 Compound-based  Genetic Algorithm v o [39]
AutoDock Vina  Compound-based — Simulated Annealing v [40]
DOCK Fragment-based ~ Anchor and Grow v 41
eHiTS Fragment-based ~ Maximum Clique Finding -  [3§]
FlexX Fragment-based ~ Anchor and Grow - [54]
FRED Compound-based  Conformer Docking - [55]
Glide Compound-based  Systematic Search — [37]
GOLD Compound-based  Genetic Algorithm - [56, 57]
Biased Probability

ICM Compound-based Monte Carlo - [58]
rDock Compound-based  Genetic Algorithm v o [h9]

with those descriptors.

e Lipinski’s rule of five [60]
It consists of four physicochemical rules to be feasible as orally available

compounds.

e Quantitative Estimate of Druglikeness (QED) [61]
It is a scoring method of druglikeness, which is based on the distributions

of descriptors of known drugs.

These methods are independent from the target protein, and they evaluate bio-

availability and safety of compounds.

2. Pre-screening by 2D structure of compounds
Structurally similar compounds tend to bind to same targets, thus 2D structure
of compound is informative to predict efficacy if there are known binders to
the target protein. The prediction strategies are similar to the LBVS methods
because of its speediness.

e Fingerprint-based pre-screening [62]
Fingerprint is a binary vector of a compound. Each bit represents a sub-
structure of a compound. Similarity search and machine learning techniques

are used with fingerprints for pre-screening.

e Pharmacophore-based pre-screening [63]
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It considers functionality of substructures, e.g. aromatic, hydrophobic, hy-

drogen bond acceptor, hydrogen bond donor.

3. Pre-screening by roughly docking calculation
As we mentioned in section 1.4, docking is basically time consuming; however,
rough optimization of conformation search enables compound pre-screening. For
instance, Glide has a HT'VS mode to calculate 10-fold faster than ordinal docking
mode (SP mode), thus the HTVS is highly used as pre-screening, followed by SP
docking calculation [64, 65, 66, 67].

Physicochemical-based and 2D structure-based approaches are widely used as pre-
screening methods and can deal with vast numbers of compounds, since the approaches
are computationally less expensive than docking-based approaches. Physicochemical-
based approaches, however, filter out compounds not from protein-ligand binding point
of view. Additionally 2D structure-based approaches rely on known active/inactive
compounds. It means pre-screened compounds are biased toward known drugs and
thus the strength of SBVS will be vanished.

Docking-based methods avoid this problem, but still require large computation times.
For example, Glide HTVS and Panther [68] spends approximately 1 CPU core sec per
compound, resulting in spending 4 CPU core months for 10 million compounds. For
these reasons, a much faster docking-based method sufficient to evaluate all compounds
in ZINC library [48] or any other compound libraries is urgently needed, despite its
limited screening accuracy. In addition, it is not necessary for pre-screening methods
to output structural conformation information because pre-screened candidates will

subsequently undergo more expensive, more detailed docking simulations.

1.6 Fragment-based method

A promising way to achieve acceleration is to reuse the calculation results because
chemical compounds often partially share the same substructures, we called fragments.
There are some fragment-based docking tools as we have shown in Table 1.1. Thus the
reuse of fragment result is possible to apply compound evaluation and docking.

On the other hand, substructure-based methods have been adopted to calculate
compound properties. For instance, topological polar surface area (TPSA) [69] is an
estimation method of molecular polar surface area (PSA) that sums the substructure

contributions and there is also a compound volume estimation method by counting
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each type of atom [70]. These methods correctly estimate the properties independent
from 3D conformation despite of the conformation dependencies.

The binding affinity highly depends on the binding pose of ligands toward the tar-
get protein while binding pose optimization is time consuming. If compound pose
optimization-free procedure can predict the binding feasibility, it can be used as a pre-

screening method and performs drastically faster than other structure-based methods.

1.7 Purpose of Study

In this thesis, we describe the structure-based pre-screening method and proce-
dure of fragment extension-based docking in order to accelerate the compound evalu-
ation speed. To realize the acceleration, we firstly proposed compound decomposition
method, then we adopted it to structure-based virtual screening methods: pre-screening
and docking.

The ultrafast structure-based pre-screening method called Spresso evaluates com-
pounds by decomposition of them and fragment docking, followed by compound scor-
ing from fragments scores. We also evaluated its accuracy and proposed the filtering
method to improve it.

Fragment-based docking calculation procedure is also designed with reuse of inter-
mediate results. We found that one of the intermediate result, fragment grid, is an
essential factor toward acceleration while it spends huge memory space that cannot
save all of them at once. Therefore, we formulated and reduced the problem as the
minimum cost flow problem, and proposed faster algorithm utilizing graph character-

1stics.

1.8 Summary of Contributions

The contributions of this thesis are classified into three categories: (1) proposal of
concept of decomposition into fragments and reuse of intermediate results, (2) devel-
opment of a novel structure-based pre-screening method that is up to 300 times faster
than the conventional procedure, (3) formulation of memory use optimization for frag-
ment reuse and development of faster algorithm to solve the problem. We now describe

these in more detail.

e We proposed the fundamental concept of compound decomposition and reuse

of intermediate results, especially for structure-based virtual screening methods.
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We also developed an decomposition procedure that generates several common
substructures among compounds. We unveiled that the number of kinds of frag-
ments can be one-tenth compared to the number of substructures generated by
RECAP, an existing decomposition method and up to one-hundredth or less

compared to the number of compounds.

e We developed Spresso, Speedy PRE-Screening method by Segmented cOm-
pounds. It only depends on protein tertiary structures, and it does not depend
on known binders (e.g. inhibitors). The docking calculation is only used for each
fragments, not for all compounds. Additionally, the compound conformation-
free evaluation scheme is hired. Because of these reasons, the calculation speed

is extremely faster than conventional, docking-based pre-screening.

e We designed protein-ligand docking procedure with reuse of intermediate results.
The idea of result reuse of fragments was already proposed and implemented in
eHiTS [38] but they achieved only up to 4-fold acceleration. We pointed out
the drawback of the implementation and we proposed better procedure, which
uses main memory, not hard disk. Additionally, we found new, another reusable

intermediate result in fragment extension-based docking procedure.

e We formulated the memory consumption problem into the minimum cost flow
problem. The memory consumption problem is arisen from intermediate result
storage because intermediate result of fragment, named fragment grid, consumes
more than 100 MB per fragment. Since the evaluation order of compounds and
extension order of fragments are determined in deterministic manner, it can be
formulated as a weighted offline cache problem, and can be reduced to a minimum
cost flow problem. The generated graph of the problem has characteristics, and

we developed faster algorithm specified for the graph.

1.9 Thesis Organization

The remaining chapters of this thesis are organized as follows: Chapter 2 depicts
the compound decomposition procedure which used in Chapter 3 and after. Chapter 3
describes a novel structure-based pre-screening method, called Spresso (Speedy PRE-
Screening method with Segmented cOmpounds). All experiments were updated from
the article [71], thus previous results are written in Appendix A. Novel protein-ligand

docking concept with reuse of intermediate results is described in Chapter 4, and
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Chapter 1
General introduction

!

Chapter 2
Compound decomposition

Chapter 3 Chapter 4
Spresso: compound pre-screening Procedure of docking
Chapter 5
Fragment reuse optimization

Chapter 6
Conclusion

Figure 1.2: The relationship between chapters

Chapter 5 explains the optimization method of memory usage for fragment grids and
the procedure of new algorithm to optimize it. Comclusions are presented in Chapter 6
together with future work and discussion. In addition, we report detailed information
of each target in DUD-E and prediction accuracies of Glide SP, Glide HTVS, and
Spresso in Appendix B. The relationship between chapters is shown in Fig. 1.2.

This thesis is based on the following publications by the author: [71, 72, 73, 74]
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Chapter 2

Compound Decomposition

2.1 Introduction

In this Chapter, we described compound decomposition procedure used in Chapter
3: Spresso and Chapter 4: novel protein-ligand docking procedure.

Medicinal chemists try to know which substructures of a compound are important
for binding to optimize compounds, and thus substructure evaluation is common idea,
such as group efficiency (GE) [75]. Additionally, linking multiple small structures
(called “fragments”) has been done as a part of fragment-based drug design (FBDD)
[76, 77, 78, 79]. These two research directions imply the feasibility of computational
methods with fragment-based evaluation.

Unlike FBDD, the virtual screening step evaluates existing compounds and does
not generate new compound structures; however, fragment-based evaluation also has
an large advantage in computational point of view. Organic compounds have lots
of common substructures since they are composed of specific functional groups (e.g.
Phenyl group, Carboxyl group, Imine group). If calculation results of substructures
can be shared among compounds, the total amount of calculation will be decreased.

Obviously, the algorithm of decomposition highly affects the amount of calculation.
From the retro-synthesis point of view, decomposition methods such as RECAP [80],
BRICS [81] have been proposed. The aim of these methods is to virtually generate
new compound structures, not to accelerate virtual screening. On the other hand, a
fragment-based docking tool, eHiTS [38], decomposes compounds into rigid fragments
and linkers between fragments, resulting in huge diversity of linker structures.

Thus, we firstly defined the fragment, followed by proposal of the decomposition

method, which is related to eHiTS’s method, but linkers are also decomposed into

15
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CH; o)
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Figure 2.1: Example of fragments

rigid fragments in order to maximize the commonality of fragments. We also revealed
that the number of kinds of fragments generated by our method are quite fewer than

the number of compounds.

2.2 Definition of fragment

As mentioned in Introduction section, generating rigid substructure is important
from the docking calculation point of view. On the other hand, too much fragmentation
will break a functional groups into multiple substructures. Because of the reasons, we
define that fragment is a substructure which has no (or restricted) flexibility in terms

of the heavy atoms (except for hydrogen atoms).

No flexibility double bond, triple bond, and specific resonance bonded atoms such as
phenyl-group make substructure rigid. Atoms which connected with these bonds

each other are treated as a fragment.

Restricted flexibility some resonance bond such as peptide bonds, and cyclic bonds
make substructure less flexible. Atoms which connected with these bonds each

other are also treated as a fragment even though they have partial flexibility.

Fig. 2.1 shows some examples of fragment. Single atom is smallest fragment since it
has no flexibility in the structure, and thus fragments have inclusion relationship.

It is noted that the size of fragments in this dissertation is relatively small compared
to the definition of FBDD’s “fragments” (e.g. rule of three [82]).

2.3 Decomposition method

To decompose compounds into fragments, we proposed the two-step decomposition
method. The overview of the steps is shown in Fig. 2.2. It is noted that cleaved bonds

are attached hydrogen atoms.
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a exceptional case

e@

(1) Detect rigid group (2) Merge solitary group

Figure 2.2: An example of compound decomposition. The carbon moiety in the struc-
ture on the right has four adjacent groups; therefore, it is not merged into any adjacent
groups.

Stepl: Detect rigid groups Firstly, rigid groups in each compound are detected.
Rigid groups are double, triple, or resonance bonded atoms, ring groups (even in

the case of cyclohexane, which has partial flexibility).

Step2: Merge solitary groups The second step involves merging solitary groups
(single-atom fragments). Each non-solitary group and its adjacent solitary group
are merged, except for solitary groups having three or more adjacent groups. The

exceptional case is also shown in Fig. 2.2.

The program was coded with C++ and Open Babel library [83]. The code is open-
sourced at http://www.bi.cs.titech.ac. jp/spresso.
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2.4 Experiments

It is important to check how many fragments will be generated from some compound
libraries. In this section, we showed decomposition statistics compared to RECAP [80]
implemented in RDKit [84].

2.4.1 Dataset

There are several compound libraries because of different purposes. ZINC is a li-
brary of purchasable compounds [48] while the ChEMBL library contains compounds
which are associated with other information, such as scientific literatures, patents, as-
say data (via PubChem Bioassays) [85]. The differences may make the difference of
compound structures, thus we utilized three libraries: ZINC (all purchasable and all
boutique subsets with ZINC ID unification, 28,629,602 compounds), ChEMBL (ver-
sion 21, 1,583,897 compounds), and PubChem (accessed at 2016-12-12) [49]. As for the
PubChem library, compounds having > 1,000 Da are rejected because of calculation

cost, thus the number of compounds was 88,527,810.

2.4.2 Comparison of decomposition methods with the ZINC
library

We firstly compared how many fragments were generated with proposed method
and RECAP. The decomposition results are shown in Table 2.1. Proposed method
expressed the ZINC library by only 263,319 fragments, while RECAP generated > 10
times more fragments. The expression of compounds by fewer fragments leads more

reuse of intermediate results, thus we concluded our proposed method is better than
existing method, RECAP.

2.4.3 Difference between libraries

Secondly, we decomposed the libraries by our methods. Table 2.1 shows the results.
The results indicates that the number of fragments is dependent on the database; for
example, the compounds of ChEMBL library were decomposed into 127,360 fragments
(a 12-fold reduction). As for the PubChem, the compounds were decomposed into
2,082,185 fragments (a 43-fold reduction).
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Table 2.1: The number of kind of fragments of several libraries and decomposition

methods
. #kinds of fragments

Compound Library #compounds Proposed RECAP [80]

all purchasable
ZINC & 28,629,602 263,319 3,161,753

all boutique

ChEMBL v21 1,583,897 127,360 -

PubChem (2016-12-12)

(MW < 1000 Da) 88,527,810 | 2,082,185

Table 2.2: The numbers of kinds of fragments among different numbers of compounds.
Compounds were randomly sampled from ZINC all purchasable subset 5 times for each.
The values are averages and standard deviations.

#compounds

#kinds of fragments

100
300

1,000
3,000
10,000
30,000
100,000
300,000
1,000,000

161.0 + 3.9
338.8 + 0.7
762.6 + 33.1

1,602.8 + 38.4

3.455.0 & 56.6

6,754.0 & 32.9

13,376.8 + 70.8

924,172.2 + 61.2

45,900.6 & 65.1

2.5 Discussions

2.5.1 The relationship between the number of compounds and

fragments

According to the Table 2.1, the ratio between the number of compounds and the

number of fragments varies from 10-fold to 100-fold. For the further investigation,

different sizes of libraries were generated by randomly sampled from ZINC library,

and decomposed into fragments. Table 2.2 shows the results of the decomposition.

The number of kinds of fragments is larger than the number of compounds for the

small dataset, while the ratio goes to 22-fold for the large dataset. Interestingly, the

increasing ratio of the number of kinds of fragments becomes slower when the num-

ber of compounds is larger. The tendency is obviously seen in Fig. 2.3. Thus our

decomposition method is more effective when a compound library is larger.
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Figure 2.3: The relationship between the number of compounds and the number of
kinds of fragments. The values are same as Table 2.2. All compound libraries are
generated by randomly sampled from ZINC all purchasable subset.

2.5.2 The frequencies of fragments

The frequencies of each fragment highly varies, as shown in Fig. 2.4. As a further
investigation, we confirmed what kind of fragments are frequently emerged and rarely
emerged. Frequent fragments are shown in Fig. 2.5, while rare fragments are shown
in Fig. 2.6. Almost half of frequent fragments are ring structures, both aromatic
and aliphatic rings. Trifluoromethyl group, carboxyl group, and sulfo group are also
frequently emerged. On the other hand, most of rare fragments are fused ring and

contains chirality, it leads to its uniqueness.

2.6 conclusion

In this Chapter, we described the decomposition method which is utilized in all of
our proposed method. The decomposition method can generate fragments which have
no rotatable bond except for ring bonds.

The total number of kinds of fragments was decreased compared to the number of
compounds. The ratio varies from 10-fold to 100-fold, related to the size of libraries.
The fragments generated by our method is more common among compounds than

RECAP, an existing decomposition method.
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Figure 2.4: A scatter plot of appearance frequencies. The frequencies were calculated by
decomposition of 1,000,000 compounds randomly sampled from ZINC all purchasable

library.



22 2. Compound Decomposition
NH, — — ——ii / %0 —NH
589659 589592 386328 268783 265811 232552 194756

H
/\ /\OH O// \\O Cl
140840 135205 90856 74659 69890 68589 62680
NH
OH Pr s \ / )\ CH, D Y
62234 54038 48697 47586 47489 37527 36847
0
/ \ 0.
N NH [‘\\ Oi\ o O E\> AN ( )
NH (#] NH
34792 34762 33657 32001 29918 26076 24852
o]
N I
[ —_— - Br —NH | \
PN
N o]
N
22084 20993 19849 19757 19565 19529 19126
T — X 2 O O =
o
18477 16827 16293 16044 16003 13991 13822
oH
O_O /\ )\ E\>_
NH o
12797 12591 12004 11669 11444 10453 10437

10255

Figure 2.5: Frequent fragments of a decomposition result. These are emerged > 10,000
times in the decomposition of 1,000,000 compounds randomly sampled from ZINC all
purchasable library. The numbers are the frequencies of fragments.
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Figure 2.6: Rare fragments of a decomposition result. These are a part of fragments
emerged only one time in the decomposition of 1,000,000 compounds randomly sampled
from ZINC all purchasable library. The numbers are the frequencies of fragments.
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Chapter 3

Spresso: Development of an

Ultrafast Compound Pre-Screening
Method

3.1 Introduction

As we mentioned in Chapter 1, fast pre-screening method which based on protein ter-
tiary structure is needed. Additionally, pre-screening methods are not required to out-
put binding poses of each compound. It means reconstruction of compound structure
is not needed. Because of these reasons, we proposed a structure-based pre-screening
method called Spresso (Speedy PRE-Screening method with Segmented cOmpounds,
pronounced like “espresso”) that decomposes all candidate compounds into fragments
with no internal degrees of freedom. These fragments are docked into target pro-
teins individually, and compounds are scored based on the results of fragment docking.
Spresso performs ultrafast compound evaluation without protein-ligand conformation

prediction.

3.2 methods

The procedure of Spresso is comprised of three key steps summarized in Fig. 3.1: 1)
compound decomposition, 2) fragment docking, and 3) fragment-based evaluation of

each compound score.

27
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Figure 3.1: Spresso flowchart.

Compound Decomposition

We utilize the decomposition rule that is already mentioned in Chapter 2. The
decomposition method make fragments with no internal degrees of freedom, which

enable docking calculation faster.

Fragment docking

After decomposition, all rigid fragments are docked to the best location regardless
of the other fragments. This means that all fragments are independently docked to
the location in the protein cavity where they fit best. Fragments having the same
substructures as those from different compounds can be scored identically, thereby
significantly decreasing the number of fragments needing to be docked. The best score
from the docking results for each fragment is recorded. For this procedure, any docking
tool capable of outputting a score can be used, including AutoDock Vina [40], Glide
[37], or GOLD [57].
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Fragment-based evaluation of each compound

Compounds are evaluated after fragment docking is completed. Given that only
fragments are docked into the target protein, we cannot obtain docking scores for en-
tire compounds. Therefore, the screening evaluation score for each compound must
be calculated based on the docking scores of fragments decomposed from the original
compound. There are two strategies for compound evaluation: 1) choosing combina-
tions of fragment conformations that avoid contradictions, and 2) choosing the best
conformation without consideration of fragment collisions. The former strategy is more
precise as compared to the latter strategy, but searching for conformation combinations
can also be computationally expensive. Given our goal of creating a computationally
faster “pre-screening” method, we chose the latter strategy for compound evaluation.

We can consider many formulae for calculating compound-evaluation scores from
fragment-docking scores (scorey). In this study, we evaluated seven calculation formu-
lae.

(I) Summation of fragment-docking scores (SUM)

SUM = Z scoreg (3.1)
f

Summation is one of the simplest evaluation methods, where SUM reflects the
approximate rough upper bound of the compound-docking score. Generally, the

SUM value is larger when a compound is divided into more fragments.

(IT) Best value of fragment-docking scores (MAX)

MAX = mfax(scoref) (3.2)

Utilizing the best value is also a simple evaluation method, where MAX reflects
the estimated rough lower bound of compound-docking scores. In most cases, the
MAX value will be less than the compound-docking score; however, a docking
score associated with a single fragment may exceed the compound-docking score

in specific cases (i.e., a compound too large for a protein cavity).

(IIT) Arithmetic Mean (AM)
_ SUM + MAX

2

AM (3.3)
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(IV) Geological Mean (GM)
GM = vMAX - SUM (3.4)

(V) Harmonic Mean (HM)
~ 2-SUM-MAX

HM =
SUM + MAX

(3.5)

(VI) Generalized Sum (GS)
GS, = . Z(scoref)w (3.6)

!
GS; is equal to SUM, while lim, ., GS, is equal to MAX; therefore, GS can
express the mixture of SUM and MAX values continuously. In this study, we
chose GS3 from the GSy ~ GSyy evaluation results (Fig. 3.2).

(VII) Energetic Sum (ENE)

ENE, = zlog (Z exp (scoref/x)> (3.7)
!

This calculation is an analogy of sum of energies, and it is called “logsum-
exp” in some fields such as Deep Learning because of the structure of formula.
lim,_,qo ENE, is also equal to MAX, however, there is no equivalent expression
of SUM. In this study, we chose ENE; g from the ENE; ~ ENE, 5 evaluation
results (Fig. 3.3).

GS requires non-negative values as input, while the fragment-docking score is almost
always a negative value because the score was fitted to experimental AG. Therefore, the
fragment-docking scores are inverted, and positive docking scores (which are inverted
to negative values) are treated as zero.

The best pre-screening accuracy was achieved when (VII) ENE; g was used (detailed
description provided in section 3.3.2; thus, ENE; 3 was adopted as the default formula
in Spresso.

3.2.1 Datasets

The Directory of Useful Decoys, Enhanced (DUD-E) [86] was used to evaluate the
performance of pre-screening during the virtual screening process. The DUD-E dataset

is widely used and consists of 102 diverse sets of protein targets, as well as active and
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Figure 3.2: Results of the averaged prediction accuracy for 102 DUD-E targets among
GS, formulae. This figure shows 2%-1% results that represent the EF;¢ when 2% of
all compounds were pre-screened, and suggests that GSs3 is the best parameter.
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Figure 3.3: Results of the averaged prediction accuracy for 102 DUD-E targets among
ENE, formulae. This figure shows 2%-1% results that represent the EF;¢ when 2% of
all compounds were pre-screened, and suggests that ENE; g is the best parameter.

decoy compounds. The ZINC database [48] was also used to measure calculation time,

since the number of active compounds and decoys in each set is insufficient as compared
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to those used in actual virtual screening. The library consists of 28,629,602 compounds.

3.2.2 Implementation and Settings

The code of compound-evaluation score calculations were written in Python. Spresso
code (including decomposition code) is freely available at http://www.bi.cs.titech.
ac. jp/spresso/ under the GPL version 3 license. The URL has been accessed from not
only Japan, but also Belgium, Chile, China, France, Poland, Portugal, South Korea,
Turkey, and United States.

For the docking tool required in fragment docking step in Spresso, we used Glide SP
mode and Glide HTVS mode. It is noted that fragment-based docking tools, such as
eHiTS and FlexX, are more similar to the idea of Spresso; however, we did not utilize
them since eHiTS is no longer available (as of Feb. 8, 2019) and FlexX have been
reported the accuracy is worse than Glide [42, 43]. Glide HTVS was also used to dock

compounds for comparison of pre-screening. The version of Glide is 2018-3.

3.2.3 Computing environment

All calculations were conducted on the TSUBAME 3.0 supercomputing system,
Tokyo Institute of Technology, Japan. Each node has two Intel Xeon E5-2680 V4
CPUs (14 cores per CPU) and 256 GiB of RAM. Because Glide software is a single-
thread program, all docking simulations were performed in parallel using 25 CPU cores.
It should be noted that Glide is a proprietary software, and thus it cannot be optimized

for specific computing environments.

3.2.4 Metrics

Two computational experiments were conducted: 1) evaluation of calculation speed,
and 2) evaluation of virtual screening accuracy. Since one license will allow us to use
only one CPU core, we used CPU time to evaluate calculation speed. Accuracy was

measured by performance efficiency according to enrichment factors (EFs) [87].

POSI% / Aﬂx%

EF,9 =
7 Pos100% /All1go%

(3.8)

In (3.8), Pos,q, All,g, Posigoy, and Alljggy are the number of active compounds in the
top % of screened compounds, the number of compounds in the top 2% of screened

compounds, the total number of screened active compounds, and the total number of
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screened compounds, respectively. In virtual screening, it is pragmatically meaningless
to assess differences between lower ranked compounds because wet-lab experiments
can be executed up to only a few thousand compounds even though computational
methods can deal with more than 1 million compounds. Therefore, EF ¢ and EFqy

were calculated to evaluate accuracy.

3.2.5 Assessment of prediction accuracy

As previously mentioned, Spresso is not intended for independent use. Therefore,
an evaluation must involve not only Spresso but also a following compound docking
calculation. The procedure used for evaluation of accuracy was as follows: 1) with each
pre-screening method, 2%, 5%, or 10% of the number of all target compounds were
selected; 2) pre-screened candidates were docked using Glide SP to obtain a docking
score; and 3) the top 1% and 2% of compounds were used to calculate EF;¢ and EFqg.

We calculated five combinations for each pre-screening method.

3.3 Results

To evaluate the usefulness of Spresso with regard to speed and prediction accuracy,
two experiments were performed. In all experiments, Glide HTVS, which is a conven-

tional pre-screening method, was also evaluated for comparison.

3.3.1 Comparison of docking calculation speed

Table 3.1 shows the calculation times for docking of all 28,629,602 ZINC compounds
into three target proteins from the DUD-E dataset. Spresso using Glide SP-mode
fragment docking (Spresso-SP) required < 3 CPU days, and Spresso with Glide HTVS-
mode fragment docking (Spresso-HTVS) required < 1 CPU day, while whole-compound
docking using Glide HTVS mode required > 8 CPU months. These results suggest that
Spresso is 300-fold faster than compound docking with conventional Glide HTVS pre-

screening.

3.3.2 Prediction accuracy in DUD-E benchmarking

Table 3.2 shows the average EF values associated with each DUD-E target. The

formulae are listed as (I)-(VII) in section 3.2. Seven score calculations were evaluated,
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Table 3.1: Computation times for docking of all 28,629,602 ZINC compounds into
DUD-E diverse subset targets. The calculation times for Spresso were measured with
all fragments decomposed from all ZINC compounds. On the other hand, the times
for Glide HTVS and Glide SP were measured with 100,000 and 10,000 compounds
randomly sampled from ZINC compounds 5 times respectively. The shown values for
Glides are estimated from the measured results. For the results of Glide HTVS, the
shown values expresses averages and standard deviations among 5 times calculation.

Calculation time [CPU core days]
Target Glide HTVS Glide SP
& Spresso-SP Spresso-HTVS (estimated) (estimated)

AKT1 2.81 0.82 136.1 £ 0.5 | 2726.6 £ 83.4
AMPC 2.70 0.82 1952 £ 0.9 | 34442 £ 58.6
CP3A4 2.84 0.95 4270 £ 1.9 | 7185.0 £ 163.0
CXCR4 2.74 0.86 320.3 £+ 12.2 | 5581.7 + 114.1
GCR 2.87 0.88 270.0 £ 2.4 | 4600.8 £ 93.2
HIVPR 2.81 0.91 342.7 £ 15.2 | 6015.8 £ 122.9
HIVRT 2.84 0.87 159.7 £ 9.0 | 2989.5 £ 60.4
KIF11 2.69 0.83 258.7 £ 2.1 |4373.6 £ 73.1
mean 2.79 0.87 263.7 4614.6
median 2.81 0.87 264.3 4487.2

revealing that the combination of Spresso-HTVS and ENE;g was the best. Inter-
estingly, the results of Spresso-SP were slightly less accurate results as compared to
Spresso-HTVS. Our results indicate that Spresso was less accurate when compared
with conventional method. On the other hand, Pearson’s correlation coefficients with
Glide SP score is almost same between Spresso-HTVS (ENE; g, R = 0.49, Fig. 3.4)
and Glide HTVS (R = 0.50, Fig. 3.5) for CP3A4, one of the DUD-E target.

In order to reveal how many compounds selected by Glide SP are included in the
compounds selected by pre-screening methods Glide HT'VS or Spresso, the overlap in
selected compounds identified with each method was calculated for DUD-E Diverse
Subset (8 targets). Venn diagrams are shown in Fig. 3.6. These diagrams indicate that
the compounds identified with Spresso have less intersection with those from Glide SP
than Glide HTVS.

3.3.3 Trade-off of accuracy and speediness

As we mentioned in Sections 3.3.1 and 3.3.2, it was revealed that Spresso was 300-
fold faster than Glide HT'VS while its accuracy was slightly less accurate. The relation

between the accuracy and the speediness is a trade-off relation generally, thus we newly



3. Spresso: Ultrafast Compound Pre-Screening 35

12

10

Spresso-HTVS (ENE; g)
(@)

0 2 4 6 8 10 12
— Glide SP

Figure 3.4: A scatter plot of the Glide SP score and the Spresso-HTVS score for DUD-
E CP3A4 target. Each dot represents a compound in DUD-E CP3A4 dataset. The
Pearson correlation coefficient is R = 0.49.
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Figure 3.5: A scatter plot of the Glide SP and Glide HTVS scores for the DUD-E
CP3A4 target. Each dot represents a compound in the DUD-E CP3A4 dataset. The
Pearson correlation coefficient is R = 0.50.
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Figure 3.6: Venn diagrams of selected compounds identified by pre-screening for DUD-
E diverse subset targets. The top 1,000 compounds identified by Glide SP, Glide HTVS,
and Spresso-HTVS are shown. The number of compounds for each method is shown,
and numbers of true positives are in parentheses.
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Table 3.2: The results of averaged prediction accuracy for 102 DUD-E targets. Note
that all enrichment factors represent the average of 102 EFs from DUD-E protein
targets. a%-b% indicates the EFyy when compounds were pre-screened using a% of
all compounds. Best EF values among Spressos are written in bold.

Enrichment Factor

Target 2%-1% 5%-1% 10%-1% | 5%-2% 10%-2%
SUM | 451 635 776 | 391 493
MAX | 810 929 1110 | 630  7.43
AM | 496 667 805 | 425 521
GM | 615 802 965 526 6.36
Spresso-SP

HM 6.41 8.06 10.37 5.60 6.87
GS; 8.63 11.06 13.43 7.34 8.75
ENE;g | 9.42 11.86 13.63 7.83 8.89
SUM 4.71 6.41 8.12 4.03 5.26
MAX 8.43 9.74 11.91 6.24 7.72
AM 5.22 6.89 8.48 4.38 2.51
GM 6.76 8.64 10.59 5.48 6.69
HM 6.83 9.19 11.65 5.93 7.46
GSs 9.02 11.64 14.20 7.64 9.05
ENE; g | 9.70 11.95 14.53 7.64 9.26
Glide HTVS 17.29 18.04 18.55 11.82 12.20

Spresso-HTVS

defined the accuracy divided by the calculation time as the screening efficiency, then
single step screenings by Glide SP, Glide HTVS, or Spresso (scenarios 1-3, Figs. 3.7
3.9), and pre-screening by Glide HT'V'S or Spresso (scenarios 4, 5, Figs. 3.10, 3.11) were
evaluated in terms of the screening accuracies (EF), the total docking calculation time
(time [days]), and the screening efficiencies. Additionally, three step screening scenario
was also evaluated (scenario 6, Fig. 3.12) because Spresso was ultrafast compared to
Glide HTVS. It is noted that the docking time was calculated under the condition
that 10 licenses (equivalent to 10 CPU cores) are utilized since that of docking tools is

expensive (e.g. more than 50 thousand dollars per Glide academic license per year).

The period available for the virtual screening in drug discovery is not enough, from
a few days to a month usually. Furthermore, multiple protein structures are sometimes
used for docking to consider the conformational change. Because of the reasons, sce-
narios with Spress, scenarios 5 and 6, are more suitable in terms of their speediness and
its effectiveness (Fig. 3.13). Interestingly, scenario 6: three step screening marked the
best efficiency of the three scenarios because the EF value was considerably improved

with small amount of additional computational cost.
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Scenario 1: Glide SP only

@ Glide SP >

Compound library Top 1% of compounds

EF10/° 20-4
Time [days] 461
EF,o, / time 0.04

Figure 3.7: The 1% enrichment factor, the expected time consumption, and the screen-
ing efficiency for scenario 1: Glide SP only

Scenario 2: Glide HTVS only

@ Glide HTVS
>0

Compound library Top 1% of compounds

EF,o, 16.3
Time [days] 26.4
EF,o, / time 0.62

Figure 3.8: The 1% enrichment factor, the expected time consumption, and the screen-
ing efficiency for scenario 2: Glide HTVS only
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Scenario 3: Spresso only

Spresso
L

Compound library

Top 1% of compounds

EF10/° 8-0
Time [days] 0.1
EF,o, / time 88.8

Figure 3.9: The 1% enrichment factor, the expected time consumption, and the screen-
ing efficiency for scenario 3: Spresso only

Scenario 4: Combination of Glide HTVS and Glide SP

g

Glide HTVS>@ Glide SP

>

Compound library Top 1% of compounds

Top X% of compounds

screening x%-1%
(@) 2%-1% (b) 5%-1% (c¢) 10%-1%

EF 1%

17.3 18.0 18.6
Time [days] 35.6 49.4 72.5
EF,., / time 0.49 0.37 0.26

Figure 3.10: The 1% enrichment factors, the expected time consumptions, and the
screening efficiencies for scenario 4: Combination of Glide HTVS and Glide SP
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Scenario 5: Combination of Spresso and Glide SP

Spresso — Glide SP
J

Compound library Top X% of compounds Top 1% of compounds

g

screening x%-1%
(@) 2%-1% (b) 5%-1% (c) 10%-1%
EF,0, 9.4 11.8 14.5
Time [days] 9.3 23.2 46.2
EF,o, / time 1.01 0.51 0.31

Figure 3.11: The 1% enrichment factors, the expected time consumptions, and the
screening efficiencies for scenario 5: Combination of Spresso and Glide SP

Scenario 6: Three step screening

Spresso Glide HTVS - Glide SP
> >

Compound library Top X% Top Y% Top 1%

screening X%-y%-1%
(@) 5%-2%-1% (b) 10%-2%-1% (c) 10%-5%-1%
EF,o, 11.1 13.0 14.1
Time [days] 10.6 12.0 25.8
EF,,, / time 1.05 1.08 0.55

Figure 3.12: The 1% enrichment factors, the expected time consumptions, and the
screening efficiencies for scenario 6: Three step screening
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Figure 3.13: The comparison between pre-screened scenarios. The EF, time, efficiency
values are reproduced from Figs. 3.10-3.12.
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3.4 Discussion

3.4.1 Superiority of ENE; g

The computational experiment in section 3.2 revealed the (VII) ENE;g formula
as the best of the seven possible methods for calculating compound-evaluation score.
Method (I) SUM, utilizing all fragment scores equally, was the worst of the seven,
while ENE; g returned acceptable results. The exponent of ENE; g acts as a weight
coefficient, which implies that the result indicates that higher-scoring fragments should
be more weighted. However, ENE; g returned more accurate results relative to method
(IT) MAX, given that considering the top few fragment scores is more informative than

considering only the top fragment score.

3.4.2 Score fitting to Glide SP

Linear least squares fitting is often applied to experimental results or precise es-
timates in fragment-based, compound property estimation methods [69, 70]. In the
compound property estimation methods, common explanatory variables include the
fragment type, number of cleaved bonds, and number of rings, amongst others; how-
ever, it is inappropriate to determine the contribution of each fragment in docking
simulations since docking scores differ based on the target protein, and thus fragment-
docking scores are used with equal contribution. Additionally, the number of cleaved
bonds must affect the sum of fragment score. Because of above reasons, we generated
a linear regression model with two factors, scoresyy and the number of cleaved bonds,
performed fittings with the Glide SP compound docking score as a target using the
DUD-E HIVPR dataset, and then calculated the DUD-E CP3A4 dataset compounds’
scoregting With the fitted parameter. The data utilized for this pre-screening is detailed
in Table 3.3. The correlation coefficient between scoreggting and Glide SP of CP3A4 was
R = 0.49 (Fig. 3.14), which is lower than that between ENE; s and Glide SP (R = 0.55,
Fig. 3.4), thus the linear regression fitting did not work well and explanatory valiables
should be more considered.

3.4.3 Can Spresso conserve compound diversity?

Drwal et al. showed that structure-based methods are likely to maintain the diver-
sity of compound structures as compared with ligand-based methods [26]. While this

is one reason to use structure-based methods, it does not guarantee that the diversity
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Table 3.3: Information used to generate the linear regression model and estimation.
Protein DUD-E HIVPR (PDBID: 1XL2)
Compound | DUD-E HIVPR (36,286 compounds)
Target score | The score of Glide SP compound docking
Base model | scoregying = a - scoresum + b - |#cleaved bonds|
Score estimation Protein DUD-E CP3A4 (PDBID: 3NXU)
Compound | DUD-E CP3A4 (11,970 compounds)

Calculation Library Python StatsModels

Model creation

— SCOI'€;jting
AN (@) 0o

N

2 4 6 8 10 12
— Glide SP

Figure 3.14: A scatter plot of the Glide SP and fitted scores for the DUD-E CP3A4
target. Each dot represents a compound in the DUD-E CP3A4 dataset. The correlation

coefficient is R = 0.40.
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Table 3.4: Machine-learning settings on the support vector machine (SVM). Active
compounds and decoys were obtained from the DUD-E dataset. We performed param-
eter tuning by adopting the optimum-cost parameter C' and the RBF-kernel parameter
v from grid-search results during three-fold cross validation.

Training data Best parameter
DUD-E Target name | #Active #Inactive C: Cost  ~: RBF-kernel
compounds compounds | parameter parameter
ACES 1,635 487 23 275
EGFR 1,620 407 23 277
PGH1 543 1,070 23 275

of compounds selected by Spresso will be maintained. We analyzed the diversity of
compounds selected by Spresso according to two characteristics: physicochemical fea-
tures and structural diversity. We focused on three DUD-E targets (PGH1, ACES, and
EGFR) and screened ZINC compounds using Spresso-SP, Glide HTVS, and a ligand-
based method. As for the ligand-based method, a support vector machine (SVM)
with RBF kernel was adopted because it is one of the most popular machine learning
methods for ligand-based screening. ECFP4 fingerprint [88] was used for input feature
vectors of SVM. The details associated with the SVM are shown in Table 3.4. The
logP and the molecular weight of the top 0.1% of compounds were calculated in order
to assess the bias of physicochemical features. Additionally, the maximum Tanimoto
coefficient value between each known active compound was also calculated based on
ECFP4 fingerprint in order to assess structural diversity. A high Tanimoto coefficient
between two compounds indicates that the two structures share structural similarity.

LogP-MW scatter plots of the ACES, EGFR, and PGH1 targets are shown in Figs.
3.15, 3.16, and 3.17, respectively. Fig. 3.15 shows that Spresso is likely to assign higher
scores to large compounds. This is expected in some cases, because larger compounds
are more likely to obtain higher scores in docking simulations [89]; however, compounds
that are too large to enter protein cavities must be omitted. Structural diversity
assessment results of ACES, EGFR, and PGH1 (Figs. 3.18, 3.19, and 3.20) show that
Spresso conserved structural diversity on the same scale as that observed with Glide
HTVS, while bias toward known active compounds was observed in results from the
ligand-based method (SVM).



3. Spresso: Ultrafast Compound Pre-Screening 45

ACES

20 . 20 . 20
15 15 15

10 10

logP

=15 =15 =15
0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

molecular weight

Figure 3.15: Scatter plot of physicochemical features based on pre-screening for ACES,
a DUD-E protein target. Each dot represents a compound: cyan dots represent 0.1%
of the compounds from the ZINC database; orange dots represent the top 0.1% of
Spresso-HTVS compounds calculated using the method (VII) ENE;g formula; and
magenta dots represent active compounds for ACES from the DUD-E dataset.
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Figure 3.16: The scatter plot of physicochemical features based on pre-screening for
EGFR, a DUD-E target. Each dot represents a compound: cyan dots represent 0.1%
of compounds from the ZINC database, orange dots represent the top 0.1% of Spresso-
HTVS results using the method (VII) ENE; g formula, and magenta dots represent
active compounds for EGFR from the DUD-E dataset.
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3.4.4 The top-screened compounds by Spresso

The highest scoring compound in DUD-E for the target protein EGFR is shown in
Fig. 3.21. The top compound screened by Spresso was ZINC16956948 (Fig. 3.21A),
with a molecular weight of 370.8 Da and a logP of 2.79. These physicochemical fea-
tures indicate a likely drug compound according to Lipinski’s rule of five [60]. The
decomposition and fragment-docking results are shown in Fig. 3.21B and Fig. 3.21C.
Since Spresso did not consider collisions and connectivities between fragments in order
to keep computation time low, some fragments appear to have collided or the connec-
tion is totally broken (Fig. 3.21C). Interestingly, the best compound still exhibited a

reasonable molecular weight according to Lipinski’s rule despite the problem.

3.5 Conclusion

In this study, we described Spresso, a docking-based pre-screening method for
database-wide screening. In order to evaluate all compounds from large databases
within a practical amount of time, Spresso uses compound decomposition into frag-
ments, resulting in reuse of fragment scores, followed by fragment-docking results to
estimate screening values without structure reconstruction. Our results showed that
Spresso achieved up to ~200-fold faster calculation using ~29 million compounds as
compared to compound docking by Glide HTVS. This acceleration rate is positively cor-
related to the number of compounds in a target database. Consequently, this method
is capable of screening over tens of millions of compounds with limited computational
resources.

For compound evaluation, the ENE; g formula was adopted; however, according to
the physicochemical assessment, Spresso-preferred compounds are likely to be large,
despite the need to filter compounds too large for a given target protein cavity.

The computational efficiency of Spresso enables the screening of large compound
databases within realistic times. In order to manage chemical compound libraries
that continue to increase in size, corresponding increases in computational speed are

necessary for virtual screening.
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Figure 3.17: The scatter plot of physicochemical features based on pre-screening for
PGHI1, a DUD-E target. Each dot represents a compound: cyan dots represent 0.1%
of compounds from the ZINC database, orange dots represent the top 0.1% of Spresso-
HTVS results using the method (VII) ENE; g formula, and magenta dots represent
active compounds for PGH1 from the DUD-E dataset.
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Figure 3.18: Boxplot representation and average (triangles) of the ECFP4 maximum
Tanimoto coefficient between active compounds of target ACES. The data indicate
structural diversity. ZINC, SVM, Glide HTVS, and Spresso represent 0.1% of randomly
selected compounds from the ZINC database, the top 0.1% of compounds resulting from
SVM prediction, the top 0.1% of compounds resulting from Glide HTVS scoring, and
the top 0.1% of compounds returned from Spresso-HTVS results using method (VII)
ENE; g scoring, respectively.
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Figure 3.19: Boxplot representation and average (triangles) of the ECFP4 maximum
Tanimoto coefficient between active compounds of target EGFR. The data indicate
structural diversity. ZINC, SVM, Glide HTVS, and Spresso represent 0.1% of randomly
selected compounds from the ZINC database, the top 0.1% of compounds resulting from
SVM prediction, the top 0.1% of compounds resulting from Glide HTVS scoring, and
the top 0.1% of compounds returned from Spresso-HTVS results using method (VII)
ENE; g scoring, respectively.
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Figure 3.20: Boxplot representation and average (triangles) of the ECFP4 maximum
Tanimoto coefficient between active compounds of target PGH1. The data indicate
structural diversity. ZINC, SVM, Glide HTVS, and Spresso represent 0.1% of randomly
selected compounds from the ZINC database, the top 0.1% of compounds resulting from
SVM prediction, the top 0.1% of compounds resulting from Glide HTVS scoring, and
the top 0.1% of compounds returned from Spresso-HTVS results using method (VII)
ENE; g scoring, respectively.
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(A) (B)

Docking

Figure 3.21: An example of Spresso procedure. (A) Structure of ZINC16956948, the
highest scoring compound for the protein target EGFR. (B) Result of ZINC16956948
decomposition. (C) Results of fragment docking. The color of the structure mimics
those of the structures shown in (A) and (B).
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Chapter 4

Toward development of
protein—ligand docking tool with

substructure commonality

4.1 Introduction

Spresso is a fragment-based compound pre-screening method by storing only the best
docking score of each fragment. The method achieved a calculation speed of approx-
imately 200 times that of the Glide [37] HTVS mode although its accuracy is lower
because it does not consider the crush or connectivity between fragments. On the
other hand, some docking tools, such as eHiTS [38], dock compounds by first dividing
them into fragments (partial structures). After that, candidate conformations and cor-
responding docking scores for each individual fragment are calculated and memorized
(Fig. 4.1), followed by reconstruction of the conformation of the whole compound by
considering the crushes and connectivities by using the stored partial docking results.
Therefore, when two or more compounds contain the same fragment, it is possible
to reuse the docking result of that fragment. Furthermore, fragment extension-based
methods, such as FlexX [54], can reuse the intermediate results of fragment extension
with an appropriate arrangement of the order in which compounds are evaluated (Fig.
4.2). In particular, eHiTS is one of the most accurate docking tools [90] and has a
functionality that enables the fragment docking results to be saved in an SQL-based
database, thereby achieving 2-4 times speed-up for docking with several hundred com-
pounds to several thousand compounds. However, for about 10,000 compounds, it was

reported that the speed-up ratio tends to level out [38]. The factor responsible for

95
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Figure 4.1: Image of a fragment docking result. The square containing the dots on the
protein structure show the docking boundary and docking points, respectively. The
box on the right is the fragment docking result of ortho-xylene (green fragment) with
the corresponding docking scores.

decreasing the speed is disk access. This cost arises frequently since the SQL database
is accessed every time to confirm the existence of data and to load them into the main
memory before performing a fragment docking calculation. Further speed-up would
require storing the fragment docking results in the main memory (rather than on disk)
as much as possible, as a matter of importance, to enable the existence of data to be
verified and to utilize data faster.

In this chapter, we explain the docking procedure which reuse intermediate results
of fragments, and the pros and cons of the procedure. Additionally, we revealed that

the caching algorithm can solve the weakness of the procedure.

4.2 Overview of proposed docking procedure

Whole procedure is shown in Fig. 4.3. The procedure is based on anchor and grow al-
gorithm, and is separated into four sub-procedures. In this section, we firstly mentioned

about the utilized docking algorithm, followed by explanation of each sub-procedure.
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Figure 4.2: Reuse of fragment extension results. The red fragment is first included
in the two compounds; therefore, it is possible to reuse the intermediate results for
fragment extension.
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Figure 4.3: Docking procedure

4.2.1 docking algorithm

As we mentioned in Chapter 1, several algorithms for fragment-based docking have
been proposed (e.g. consistent allocation of fragments by maximum clique finding
(eHiTS), anchor and grow, or compound allocation by fragment extension (DOCK,
FlexX)). We proposed a docking procedure based on anchor and grow algorithm be-

cause of its possibility of speediness. Since maximum clique finding is NP-complete
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problem, thus it will be computationally expensive. Furthermore, intermediate results

of anchor and grow algorithm can be reused as shown in Fig. 4.2.

4.2.2 (A) Atom grid generation

In the first step, atom grid for the target protein is generated. Atom grid, or merely
grid, is a cubic lattice, which contains the interaction scores beetween an atom of ligand
and all atoms of protein. It is commonly generated and used for protein-ligand docking

to accelerate the calculation [91].

4.2.3 (B) Compound decomposition

Secondly, compounds are decomposed into fragments, with the decomposition
method mentioned in Chapter 2. The decomposition method make fragments with
no internal degrees of freedom.

In addition, growing orders, or fragment placement orders of compounds are decided.
The decision of a base fragment, or a fragment which place into the cavity firstly,
affects the docking result, as the article of FlexX mentioned “The docking algorithm
is quite sensitive to the selection of the base fragment” [54]. Thus the procedure tests
all fragments in a compound as the base. After that, largest fragment adjacented to

placed substructure is selected as “next” fragment.

4.2.4 (C) Growing graph generation

In next step, the docking order of compounds, named growing graph, is generated. It
is noted that docking order of compounds and growing order of each compound must be
decided to generate the graph. The growing orders are sorted in lexicographical order
of SMILES of fragments to maximize the reuse of intermediate results of anchor and
grow algorithm. After that, common growing orders are unified, resulting in generation
of growing graph.

The procedure is graphically shown in Fig. 4.4.

4.2.5 (D) Compound evaluation

Finally, compounds are evaluated with atom grids and the growing graph. The
evaluation process is done with two sub-steps: fragment grid generation and compound

scoring.
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Figure 4.4: The procedure of growing graph generation
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Fragment grid generation

Fragment grid is a natural extension of atom grid for fragments. The difference
between the atom grid and the fragment grid is rotation. Atoms are regarded as sphere,
thus they have rotational invariance. On the other hand, fragments are not sphere,
thus each lattice point in the grid must have multiple scores for rotated structures. The
fragment grid can be also reused in multiple growing orders, thus further acceleration

will be realized.

Compound docking and scoring

Compounds are placed with fragment grids. The placement procedure consists of
base placement step and complex construction steps. Base placement phase is to
place base fragment into the cavity without any structural restriction while complex
construction steps are to extend the substructure already placed in the cavity with

consideration of connectivity of the cleaved bond.

4.3 Strengths and weakness of proposed procedure

4.3.1 Strengths

The proposed procedure can reuse two types of intermediate results, fragment grids
and intermediate states of growing, as we mentioned. The acceleration of docking

calculation without degradation of accuracy is highly expected.

4.3.2 Weakness: memory usage problem

The procedure generates several fragment grids (e.g. 263,319 fragments for ZINC
library as we showed in Chapter 2), while the grids spend much memory because of
the rotation. The memory consumption per fragment is, for instance, more than 100
MB if the variation of rotation set to 60 (The number is same as eHiT'S [38]). It results
in more than 25 TB memory consumption, which is thus far practically impossible to

store at a same time.
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4.4 Caching algorithm: A solution of the memory

usage problem

Since all fragment grids cannot be stored at a same time, it is important to effectively
use limited memory space. This problem can be considered as a cache problem in the

field of computer architecture.

The accession to the main memory is done in hierarchical way: obtaining data from
the cache space if there is (called “cache hit”), otherwise access to access main memory
space, where is quite farer and larger than the cache space (called “cache miss”). The

average memory access time (AMAT) is calculated with below formula:
AMAT = tcache + MR - tymm (4.1)

where tcache, tmeEM, MR are average access time to cache, average access time to main

memory, cache miss ratio, respectively.

The generation cost of fragment grid depends on the number of atoms of a fragment,
thus the formula is slightly different from the original AMAT.

tMEM, when cache hit

Fragment grid obtaining time (FGOT) = (4.2)

HAC - t.ae., when cache miss

Total FGOT = (Z tMEM) + Z HACf - Teale (43)

feFr fE€F/cache

where HAC, teae, F' are the heavy atom count (HAC) of a fragment f, the average
calculation time to generate a single-atom fragment grid, series of needed fragments

among calculation, respectively.

If the memory space is enough to store all fragment grids, cache miss will happen

only one time per fragment type. Thus Total FGOT 4. is:

Total FGOT 4ear = (Z tMEM) + Z HACf - teale (44)

fEF feFuniq

On the other hand, the computation time without reuse can be calculated as cache
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miss ratio is equal to 1, thus Total FGOTy,/, is:

Total FGOT,,, = <Z tMEM> + (Z HAcf> teale (4.5)

fer fer

> fe Funig BACy Is equal to the total atoms among fragments while > jer HAC; is equal
to the total atoms among all growing orders. It is important that the selection only
affects the summation of HAC in the second term of (4.3) when the same compound

set are calculated, thus the reduction of calculation cost can be derived:

Total FGOT — Total FGOTy/, = | Y HAC;— > HAC | -teue (4.6)

fEF feF/cache

Storing all fragment grids at a same time is obviously impossible in the real sit-
uation, thus selection of fragment grid storage is needed. The simplest algorithm is
storing the most frequent fragment grids from beginning to end while it must be better
if the optimum can be derived. Tables 4.1-4.3 show the difference of the summa-
tion of HAC between Ideal, w/o, Simplest, and Optimum under the assumption of
100,000 compounds calculation with 100 grids of memory space. Simplest method
can reduce 30-85% of ideal reduction, while optimization can reduce additional a few
hours approximately if it is possible within realistic time consumption. Especially, the
optimization is more effective with limited memory space.

In the next Chapter, we detailed the memory usage problem and reduced it as
a polynomial-time problem. Additionally, we proposed more efficient optimization

algorithm.
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Table 4.1: Estimated reduction of fragment grid generation time with memory space
of 10 fragment grids. Percentages in the parentheses are the relative calculation time
reduction compared to the Ideal.

Y HAC;— Y HAC; | - te
fer fe€F/cache
without reuse  (w/o) 0 core sec (0.0%)
most frequent  (Simplest) 25,253 core sec  (29.1%)
optimized (Optimum,) 36,201 core sec  (41.8%)
infinite memory (Ideal) 86,650 core sec  (100.0%)

Note: the experimental conditions are follows. compounds: 100,000 compounds
randomly sampled from ZINC all purchasable and all boutique subsets,
teale: 10 milliseconds per HAC per fragment grid.

Table 4.2: Estimated reduction of fragment grid generation time with memory space
of 100 fragment grids. Percentages in the parentheses are the relative calculation time
reduction compared to the Ideal.

Y HAC;— Y HAC; | - te
fEF feF/cache
without reuse  (w/o) 0 core sec (0.0%)
most frequent  (Simplest) 56,711 core sec  (65.4%)
optimized (Optimum,) 61,807 core sec  (71.3%)
infinite memory (Ideal) 86,650 core sec  (100.0%)

Note: the experimental conditions are follows. compounds: 100,000 compounds
randomly sampled from ZINC all purchasable and all boutique subsets,
teale: 10 milliseconds per HAC per fragment grid.

Table 4.3: Estimated reduction of fragment grid generation time with memory space of
1,000 fragment grids. Percentages in the parentheses are the relative calculation time
reduction compared to the Ideal.

> HAC;— Y HAC; | - te
fEF feF/cache
without reuse  (w/o) 0 core sec (0.0%)
most frequent  (Simplest) 74,858 core sec  (86.4%)
optimized (Optimum,) 77,914 core sec  (89.9%)
infinite memory  (Ideal) 86,650 core sec  (100.0%)

Note: the experimental conditions are follows. compounds: 100,000 compounds
randomly sampled from ZINC all purchasable and all boutique subsets,
teale: 10 milliseconds per HAC per fragment grid.






Chapter 5

Optimization of memory use of
fragment extension-based

protein-ligand docking with an
original fast minimum cost flow

algorithm

5.1 Introduction

In previous Chapter we described protein-ligand docking procedure with reuse of
intermediate results, and mentioned the memory usage problem. To use main memory
more efficiently, the optimization of construction, storing, and destruction of fragment
grids is inevitable, and thus we also mentioned caching algorithm.

In this Chapter, we first show the formulation and the reduction of the sequence
of requested fragment docking results to a graph of the minimum cost flow problem
via the weighted offline cache problem. Second, the characteristics of the obtained
graph are described, followed by the proposal of a faster algorithm based on these

characteristics. The whole structure of our method is illustrated in Fig. 5.1.

5.2 Method

In our docking procedure, compounds are firstly sorted based on growing orders, thus

the requiring order of fragment grids is decided before the calculation. The optimization

65
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Protein-ligand docking

A protein & a compound A conformation
Fragment-based methods Compound-based methods
Clique search (eHiTS [38]) Genetic algorithm (AutoDock4 [39])
Fragment extension (FlexX [54]) Systematic search (Glide [37])

v

Fragment reuse problem
¢ Formulation
Weighted offline cache (WOC) problem

\L Reduction
Minimum cost flow (MCF) problem

This work targets the MCF problem.

Figure 5.1: Overview of this work

of memory usage with known requiring order can be considered as the weighted offline
cache problem [92], which is related to cache algorithms that have been widely studied
in the field of computer science. This makes it possible to optimize the choice of data
to be stored in the main memory.

The weighted offline cache problem involves minimizing the cost with the following

constraints:
e The cache can have a limited number of pages (denoted as k).

e The input consists of a sequence of page requests, and its ordering is perfectly

observable in advance (i.e., “offline”).
e The cost of caching varies from page to page.

The cache and a page correspond to the main memory and a fragment docking result,
respectively. Lopez-Ortiz et al. showed that the weighted offline cache problem can

be reduced to the minimum cost flow problem [93]. The latter problem has been
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Figure 5.2: The flow of formulation and reduction. it illustrates the reduction of the
results of the access order of fragment docking to a weighted offline cache problem, and
finally to a minimum cost flow problem.
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extensively studied since the proposal of the Successive Shortest Path algorithm in
1958, which searches for the shortest path iteratively until the amount of flow is equal
to k [94, 95, 96, 97]. The Cost-Scaling algorithm is a generalization of the push-
relabel algorithm and the maximum value of the edge cost influences the computational
complexity [98]. The Network-Simplex algorithm uses a simplex method for efficiency
improvement [99, 100, 101]. A fast algorithm specified for directed acyclic graphs has
also been proposed by Pirsiavash et al. [102].

The graph in a minimum cost flow problem generated from a weighted offline cache

problem has specific characteristics that facilitate acceleration.

5.2.1 Formulation of the memory usage problem as the
weighted offline cache problem (Fig. 5.2—(A))

The memory usage problem can be considered as cache problem, as we mentioned in
Section 4.4. Additionally, it is possible to know the precise order in which fragments
are accessed before the fragment docking calculation is started because compound
evaluation order is determined beforehand to maximize the reuse of fragment extension
results (Fig. 4.4). Therefore, the problem is offline, which is easier problem than online
problem. On the other hand, the generation cost of a fragment grid is not uniform
but almost proportional to the heavy atom count of the fragment, which means this
problem has a kind of weight. Because of the facts, the memory usage problem can be
considered as weighted offline cache problem.

A fragment docking result is represented as a page in a weighted offline cache prob-
lem, where the size of the cache represents the size of the main memory. Further, the
heavy atom count of the each fragment represents as the weight of each fragment in

the weighted offline cache problem.

5.2.2 Reduction to the minimum cost flow problem (Fig. 5.2—
(B))

The reduction from the weighted offline cache problem to the minimum cost flow
problem was shown [93]. In this part, we briefly show how to make a minimum cost
flow problem. Performing the following operations on the page (fragment docking
result) request sequence in a weighted offline cache problem enables the problem to be
reduced to a minimum cost flow problem that can derive the optimal sequential order

in which to store the required pages in the cache (main memory).
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(—n, 1) (—n,1)
....... > SN —_— —_— TN N eeeendp
U v—1 v v+ 1 w

Figure 5.3: A node in the reduced graph, where u and w are the immediate previ-
ous/next nodes originated from the same fragment request as v. (These previous/next
nodes may not exist.) n is the generation cost of the fragment grid v, which is equal
to the number of heavy atoms of the fragment. It is noticed that every node has a
maximum of four edges (0-2 reuse edges and 2 non-reuse edges).

1. All page requests are represented as nodes. The nodes are sorted uniquely in

relation to the page request order (circles in Fig. 5.3).

2. For each node, a “reuse” edge connected to the next appearing node, which
shares the same fragment request, is generated. The edge is given the properties

of (cost, capacity) = (a negative of the page request cost, 1) (blue arrows in Fig.
5.3).

3. For each node, a “non-reuse” edge to the next node is generated. The edge is

(cost, capacity) = (0,00) (black arrows in Fig. 5.3).

4. The total amount of flow is equal to k, the number of pages the cache can store.

5.2.3 Characteristics of the reduced graph

The graph G(V, E) of a minimum cost flow problem generated from a weighted
offline cache problem can arrange nodes V' in one row, with one node v having no more
than four edges, as shown in Fig. 5.3. Therefore, the reduced graph has the following

characteristics:
e [t is a directed acyclic graph.
e Unique topological sorting is possible.
e The graph is sparse (O(|E|) = O(|V]))

e The capacity of an edge is 1 or oc.
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In consideration of the special characteristics of the graph, we propose a faster algo-

rithm in the next section.

5.2.4 Proposed method: an exact algorithm for the minimum
cost flow problem generated from the weighted offline

cache problem

The proposed method is shown in Algorithm 5.1 and 5.2, which is based on the
Successive Shortest Path (SSP) algorithm. In the SSP algorithm, the SHORTESTPATH
function repeatedly determines the minimum cost path from a source to a sink and
updates the flow and the graph until the path becomes equal to k. The CALcCOSTS
function searches the minimum cost path from the source to the sink based on a
dynamic programming method. An example showing how the dynamic programming

table is updated is presented in Fig. 5.4.

Algorithm 5.1 Successive shortest path (SSP) algorithm

1: function SUCCESSIVESHORTESTPATH(G, d)
> G, d: graph, total amount of flow

2: fo+<0 > ficurrent amount of flow
3: Gy — G > Gy: graph when the flows are f
4: 10

5: while f; # d do

6: 14—1+1

7 P; <~ SHORTESTPATH(GY, ,)

8: fi» Gy, cost; < UPDATESTATES(fi—1, Gy, ., D, costi_1)

> A function to update the graph, flow, and cost
9: end while
10: end function

11: function SHORTESTPATH(G) > source and sink are vy and v,
12: prev <— CALCCOSTS(G)
13: path <~ GENERATEPATH(prev)

> A function generating the path from the source to the sink
14: return path
15: end function
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Algorithm 5.2 Proposed Algorithm

1: function CALcCosTS(G)

2 cost « {cost(i) = 0|1 <i<n}

3. prev< {prev(i) =i— 1|1 <i<n}
4: now < 1
5
6
7

while now < n do
updated < ¢
for all {e|e € G.E, e.from = now} do
> e.from : a start point of the edge e
> e.to : an end point of the edge e
> e.cost : a cost of the edge e

8: if cost(e.to) > cost(now) + e.cost then
: cost(e.to) < cost(now) + e.cost

10: prev(e.to) < now

11: updated.add(e.to)

12: end if

13: end for

14: now <— min(updated, now + 1)

15: end while

16: return prev

17: end function

5.2.5 Proving the optimality of the proposed algorithm

In the framework of the SSP algorithm, it suffices to prove the optimality of the
SHORTESTPATH function to prove the optimality of the minimum cost flow algorithm.

Lemma 5.1. CALCCOSTS function terminates in finite steps.

Proof. The function will terminate if the number of while loops is finite. In the while
loop (lines 5-15 of Algorithm 5.2), value now will increase except for the backward
updates. On the other hand, the values of cost are no less than the costs of the
true shortest path which are finite numbers. It means the number of updates is finite,
therefore, the number of while loop is also finite. The fact reveals that the CALcCoOSTS

function terminates in finite steps. O

Lemma 5.2. In the CALCCOSTS function, the number of steps the while loop required
to finish the operation of the last now = i defines t; (According to the Lemma 5.1, t; is
finite number), and the value of cost(v) at step t defines cost[t][v]. If there is an edge
(i,7) € E, the following inequality holds:

cost[t][7] < cost[t][i] + (i,7).cost if ¢ >,
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Figure 5.4: Example of the execution of the CALCCOSTS function. The (cost, capacity)
labels are shown for valid edges. Edges without labels have (0,00). The cell at row ¢
and column j of the table shows the cost(j) at step . The cells updated in each step
are highlighted.

Proof. According to lines 7-13 of Algorithm 5.2, all nodes connected from node v;
are updated every time at now = i thus we obtain cost[t;|[j] < cost[t][i] + (i, j).cost.
After time t¢; (define the time as t > t;), cost[t][i] = cost[t;][i], cost[t][j] < cost|t;][j] are
satisfied; thus, the Lemma 5.2 is satisfied. O

Lemma 5.3. The CALCCOSTS function can find the exact minimum cost path.

Proof. The proof is by contradiction. Suppose that cost[t,]|[n] > d,, (d, represents the
cost of the true shortest path from source v; to sink v,,).

~

If C(i) = costlt,][i] — d;, it is true that C(n) > 0,C(1) = 0. Therefore, there is at
least one edge (p,q) € E,C(p) < 0,C(q) > 0 that is contained in the true shortest
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path from vy to v,, and the following inequality is satisfied for such an edge (p, q):
cost(t,][q] > cost[ty][p] + d, — d, = cost[t,][p] + (p, q).cost

However, there is a contradiction to Lemma 5.2.
The inequality d,, < cost [t,][n] is an immediate consequence of the optimality of d,,

resulting in cost[t,][n] = d,. O

5.3 Experiments

5.3.1 Dataset

In this study, the existing and proposed methods are evaluated with two types of

datasets.

Real data: graphs generated from fragment decomposition results

Assuming fragment data reuse in a docking calculation based on fragment extension
with tree search such as FlexX, we generated realistic request sequences of the fragment
docking results with compounds in the ZINC database [48]. The protocol of generation

is shown below:

1. {10000, 100000, 1000000} compounds were randomly obtained from the ZINC
Purchasable subset (version 2014-11-28; 22,724,825 compounds).

2. Fragments were generated by decomposing sampled compounds at rotatable

bonds. The decomposition method described in Chapter 2 was utilized.

3. Assuming that the tree search is reused, the compounds were sorted based on
their partial structures, followed by the partial deletion of the fragment sequence

identical to the compound immediately previous to that one (Fig. 4.2).
4. Fragment sequences of compounds are concatenated to form a request sequence.

Random sampling was performed three times for each of the number of compounds.
Since the number of fragments varies depending on the compound, the lengths of
request sequences are different. Thus, when comparing the calculation results, the

lengths of request sequences must be specified.
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Artificial data: randomly generated graphs

The weighted offline cache problem has three elements: the number of requests, the
weight of pages, and the number of types of pages. However, as the real data did not
include a sufficient variety of patterns, further assessment of the performance of the
methods required data to be randomly generated. Data were randomly generated by

changing the parameters as follows:
e The number of page requests are {10000, 100000, 1000000}.

e The maximum weight of pages is 100, where each weight is set uniformly by

assigning a random integer value.

e The number of different kinds of pages are {1000, 10000, .. ., W}.

5.3.2 Related methods

This section introduces existing exact algorithms for the minimum cost flow problem.
At first we compare general-purpose existing algorithms implemented in LEMON [103,
104], and the best algorithm is used as a baseline method in the comparison 