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Abstract. As we move towards higher-density, larger-scale, and lower-
power computing hardware, new types of failures are being experienced
with increasing frequency. Hardware designed for the post-Moore gen-
eration are also bringing about novel resiliency challenges. In order to
improve the efficiency of resiliency methods, fault injection plays an im-
portant role in understanding how errors affect the OS and application.
Memory-state-aware fault injection, in particular, can be used to in-
vestigate the memory-related faults caused by using current and future
hardware under extreme conditions and assess the costs/benefit trade-off
of resiliency methods. We introduce MH-QEMU, a memory-state-aware
fault injection platform implemented by extending a virtual machine
(VM) to intercepting memory accesses. MH-QEMU supports collect-
ing the physical and virtual addresses of memory accesses and defining
appropriate injections condition using the collected information. MH-
QEMU incurs a 3.4× overhead, and we demonstrate how row-hammer
faults can be injected using MH-QEMU to analyzing the resiliency mod-
ified NPB CG’s algorithm.

Keywords: fault injection · resilience · virtual machine

1 Introduction

As computing systems increase in scale while simultaneously trending towards
higher-density and lower-power hardware, new types of failures are becoming
more prevalent and significant. Failures due to Silent Data Corruption (SDC)
are examples of such failures that are increasing in frequency. SDC produces
incorrect results without raising any errors during an application’s execution.
Furthermore, hardware designed for the post-Moore generation, such as 3D-
stacked memories [6,13], and their usage may introduce new failures, such as the

⋆ This work was partially supported by JST CREST Grant Numbers JPMJCR1303
and JPMJCR1687, Japan and conducted as research activities of AIST - Tokyo Tech
Real World Big-Data Computation Open Innovation Laboratory (RWBC-OIL)
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degradation of flash memory devices caused by frequent writes to a specific loca-
tion. In order to improve the efficiency of resiliency strategies, it is necessary to
know how errors affect the OS and application in order to apply the appropriate
resiliency method based the target and the impact of the resiliency method.

Fault injection is an important technique that is used for investigating the
effectiveness of resiliency strategies. However, fault injection on real hardware is
very costly since injecting hardware faults typically involves breaking the hard-
ware. Previous work [8, 10] has achieved low-cost fault injection by emulating
hardware fault with VM’s software fault. As a result, some simple faults can be
injected easily, such as bit-flip on CPU and memory. Nonetheless, faults that de-
pend on memory state, such as the flash memory degradation mentioned above,
is difficult simulated using only the approach described in that work.

We introduce a new fault injection platform, MH-QEMU, which can inject
memory-state-aware fault. MH-QEMU is implemented by extending the memory
management system of VM and can achieve the following:

– Injection and flexible description of memory-state-aware fault: MH-
QEMU can emulate various hardware faults affected by memory state and
access patterns, such as Row-Hammer [14] on DRAM and the cell degrada-
tion on flash memory, by the VMM which can call external modules from
VM memory manager.

– Physical-Virtual placement aware fault injection: MH-QEMU can
modify memory access pattern and its mapping to the physical location by
calling external module for each memory access. MH-QEMU also can define
the next generation memory module.

– Supporting analysis of the effects of faults on the system: For ob-
serving the effects of fault on OS and application in the target architecture,
it is important to locate the virtual memory address of faults injected by
physical memory addresses. MH-QEMU can map such memory addresses
and get the information of OS and application without using processes that
are executed on a target node.

1.1 Necessity for state-aware memory fault injection

MH-QEMU aims to simulate SDCs, especially the ones depending on memory
access patterns. We focused primarily on the physical location and frequency of
access patterns. Examples of this class of corruptions are as follows:

– Disturbance Error: As the density of DRAM increases, access to a specific
memory cell causes electric interference to surrounding cells, which destroys
data.

– Row-hammer fault in DIMM: Frequent access to a specific memory row
causes fluctuation of the signal voltage of the row-selection line, leading to
an increase discharge rate of surrounding rows and loss of data.

– Deterioration of flash memory: Memory cells of flash devices are known
to become unreliable after a limited number of erase cycles. Either the unreli-
able cells cannot serve as memory elements or they work as memory elements
but cannot provide correct value.
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MH-QEMU: Memory-State-Aware Fault Injection Platform 3

To emulate such hardware-specific errors, it is important to consider the
physical properties of the hardware, the electrical and magnetic interactions be-
tween multiple components. Flexibility in the descriptions of relationships among
components is also required in order to adopt not-well-known error mechanism
of emerging hardware architecture, like next-generation memory. Examples of
possible new error mechanisms are as follows:

– Hierarchical usage of different memory architectures: As a result
of the trade-off between cost, speed, and capacity, we often use multiple
memory architectures in combination, such as DRAM and NVMe, . In such
memory systems, memory performance and the error mechanism depend on
which physical memory address is accessed.

– 3D structured memory: Memory architectures achieving high-bandwidth
and high-capacity by stacking memory cells vertically to form a 3D structure
are currently under active development. As the physical structure is com-
pletely different from traditional DIMM, new kinds of disturbance error can
occur.

2 Related Work

2.1 Fault Injection to Physical Hardware

Some work simply inject errors by causing physical damage to hardware. Other
work inject errors to hardware by neutron beams [19], electromagnetic field [12],
heavy-ion beams [9], and so on. Additional hardware has also been employed to
inject faults in some manner [1,18]. In these approaches, a fault can be injected
easily, but with higher cost: the high cost of procuring additional hardware or
causing unrecoverable damage to the system. Furthermore, it is hard to control
the location and intensity of the faults being injected.

2.2 Fault Injection by Program Modification

It is possible to inject a code snippet that emulates certain fault behavior into
a user program [16]. LLVM-based methods [20] can automatically encode errors
to an application without source code modification. These methods can analyze
fault effects easily because a user can get detailed information of application
processes, such as how the values in memory are used. On the other hands, this
method cannot inject hardware specific fault because hardware specific access
patterns cannot be determined at program modification time.

2.3 Fault Injection by Virtual Machine (VM)

Error injection to VMM’s memory and CPU manager can produce fault on the
system executed on VM. In addition, because VMM can dump the state of CPU
register and memory value, fault effects can be analyzed in this method without
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any modification to source code of OS and applications. However, it takes a long
time to analyze the effects of injected faults because VMM have to emulate all
hardware behavior by software. F-SEFI [8] can inject errors to the logic circuit
of CPU, register, and memory modules by this method. D-Cloud [10] is another
fault injector by QEMU [4] for hard disk and network controller. D-Cloud can
also inject a bit-flip error in memory. Our method, MH-QEMU, also follows this
method and the difference from F-SEFI is that MH-QEMU focuses on memory
module faults caused by memory state and access pattern. MH-QEMU has APIs
that help to analyze memory access behavior, such as a function which maps
physical address to virtual address and the reverse in real-time.

3 Design

MH-QEMU is a platform for analyzing memory access patterns of applications
and OS and injecting faults depending on the characteristics of the memory
modules. The analysis is important for selecting which memory region needs
resiliency and what types and levels of resiliency are requested. We assume the
following requirements for MH-QEMU’s fault injection: 1) no damage to the
physical hardware, 2) emulating memory module faults flexibly including those
dependent on the memory state and access pattern, and 3) supporting the anal-
ysis of the effects of a fault on the OS and application. We choose the VM
approach to meet requirement #1 as in previous work (described in 2.3).

3.1 Emulation of fault injection to memory module

In order to emulate faults that are dependent on memory state, MH-QEMU
gathers memory access pattern, analyses them to create an appropriate fault
injection plan, and applies it to target VM memory. To avoid side effects to
the target system, the analysis and injection should be done from host OS. To
achieve these functionalities, MH-QEMU consists of the following three modules,
which is illustrated in Fig. 1:

Memory Mapper of VM to Host (MM) In order to access the VM’s mem-
ory from the host environment, the MM identifies where the VM’s physical
memory is located in host’s address space and exposes its content to the host.
The VM’s physical memory is modified when a process on the host OS modifies
the exposed place.

Memory Access Handler (MH) User-defined handler functions (MH) can be
registered as hooks to load and store accesses to the target VM’s memory space.
The MH is invoked with trapped memory addresses and arbitrary operations can
be executed. Users can collect and analyze memory access patterns and inject
faults from MH function.
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Fault Injection Scheduler (FS) The FS manages the MM and the MH by
following a scenario file that describes the time of fault injection and configu-
rations of MH. To avoid expensive performance losses in the MH execution, FS
can enable and disable MH.

Fault Injection 

Scheduler 

Guest OS

Application

Normal Access MH-QEMU-based Access 

VMM

MH

A
D

M

MM

Memory Manager

Host OS Memory for VMM Shareable Memory Area

Memory Access 

Fault Injection 

Providing

Phys.-Virt. Mapping

MH-QEMU

modules

Fig. 1: Overview of MH-QEMU

3.2 Assistance API for analysis of fault effects inside VM

For detailed analysis and well-controlled injection of faults, MH-QEMU needs to
know how the physical memory is used by the guest OS. In addition, MH-QEMU
should inject fault based on the memory usage of the guest OS.

Address-Data Mapper (ADM) The ADM retrieves information about the
guest OS, such as memory page table and process information. A user can use the
ADM from the MH via an API. The ADM can also be called in the configuration
script invoked by the target VM for initializing other MH-QEMU modules. In
addition, the ADM can dump the process information to storage for off-line data
analysis.

3.3 Fault Injection Scenario on MH-QEMU

MH-QEMU invokes the user fault injection code defined by the MH by extended
the VMM. For memory-state-aware fault injection, MH-QEMU uses each com-
ponent in the following manner:
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1. User starts a VM extended by MH-QEMU and enables FS.
2. At the appropriate time, the FS invokes the target application in the VM

and enables MH using the extended the VMM.
3. When an application process accesses memory, VMM calls the MH with the

physical and virtual address of the memory that has been accessed.
4. The MH injects errors and collects various information in cooperation with

the ADM.
5. For better performance, the FS disables the MH that will no longer be used

since the error is injected only once.

Moreover, the MH should not be used for transient and non-memory-state-
aware fault injection since the calling the MH has a high cost. In this case,
MH-QEMU can inject fault via the FS as follows:

1. FS suspends the VM via the VMM.
2. FS injects faults via the MM following the user-specified fault injection sce-

nario.
3. FS resumes the VM via the VMM.

To illustrate how the MH can simulate a specific type of fault, we show how a
fault can be triggered in the frequently-accessed region of an application’s heap.
The pseudocode is presented in fig.2

1. MH retrieves the heap memory region by using the ADM with the target
application name.

2. MH records (position, counts) of the access to heap region.
3. MH injects an error to frequently-accessed memory bit via MM.
4. MH dumps the process information of the target application and the address

where the error was injected. The MH gets the process information from
ADM using target application’s name.

5. MH reports the injection to the FS.

4 Implementation

MH-QEMU is implemented on top of QEMU 2.3.1. Due to the ADM’s imple-
mentation, Linux is the only supported guest OS on MH-QEMU. The imple-
mentation of each MH-QEMU module (MM, MH, FS, and ADM) is described
in the following subsections. API functions for calling other modules from MH
module are described in Table 2.

4.1 MM: Memory Mapper

The memory space of a QEMU VM can be mapped into a file in host OS
(-mem-path option). The MM uses this functionality to enable access to guest
OS’s memory image from host OS. For performance reason, guest OS’s memory
space will be mapped to files in tmpfs, which is a virtual file system that uses
the host system’s memory as a data store.
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memory_access_handler(physaddr, virtaddr){

range←ADM_get_heep_addr(target_name)

if (virtaddr is in range){

count[virtaddr]++

}

for(addr←each range){

if (count[addr] >= threshold){

records addr

MM_flipbit(addr)

ADM_write_processinfo(target_name)

FS_turnoffMe()

}

}

}

Fig. 2: Pseudo code of MH

Table 1: Structure of MHinfo
target ulong is the alias of unsinged long

Name Type

val uint64 t a value which is stored or loaded
dsize size t a size of data which are accessed
gvAddr target ulong virtual memory address on guest OS
gpAddr target ulong physical memory address on VM
hvAddr uintptr t physical memory address on host server
isLoad bool true:on load operation, false:on store operation
isBigEndian bool GuestVM’s endian: true:Big, false:Little

4.2 MH: Memory Access Handler

The MH is implemented as an extension to TCG (Tiny Code Generator), which
is a part of QEMU. TCG is a virtualization module for CPU operations. In the
TCG layer, all memory access operations are expressed as either ld(load) or
st(store) operations. We added call to the MH (Fig. 3) in the implementation of
these operations. The MH is called either before an actual memory store occurs
or after an actual load finishes. The MH function takes an argument that is a
pointer to the MHInfo structure. This structure contains the information on
memory access listed in Table 1.

In KVM [15], which utilizes hardware virtualization extensions of CPU to
accelerate VM emulation, the TCG is replaced by hardware extensions and MH
implementation does not work. However, MH-QEMU can benefit from the ac-
celerated performance in KVM by incorporating other code insertion method.
Specifically, memory accesses must be trapped with binary level translator such
as Intel Pin [11,17] or dyninst [2].

SCFA_SCA_2019, 001, v5 (final): ’MH-QEMU: Memory-State-Aware Fault Injection Pla� . . . 7
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(a) MH disabled
(b) MH enabled, load oper-
ation

(c) MH enabled, store oper-
ation

Fig. 3: Code generation by TCG

4.3 FS: Fault Injection Scheduler

The FS is a process using extended QMP (QEMU Machine Protocol) and HMP
(Human Monitor Protocol). QMP and HMP are protocols for controlling the
state of QEMU such as shutdown, making a snapshot, and adding new virtual
hardware. We add new entry points to manage MH-QEMU components and the
FS calls them to interact with MH-QEMU.

4.4 ADM: Address-Data Mapper

The ADM gets page table and process states from the guest OS. Although this
information can be obtained easily in the guest OS, the ADM read them from
the outside of VM in order to not modify the memory state of guest OS. The
ADM analyzes the VM’s memory, via the MM, and gets process information and
their page table as follows:

Page Table The ADM gets the physical address of the kernel page table from
the symbol table of the kernel binary by using QEMU and the GDB function. The
ADM is able to convert physical memory addresses to virtual memory addresses
using this page table if the memory has not been reallocated.

8 SCFA_SCA_2019, 001, v5 (final): ’MH-QEMU: Memory-State-Aware Fault Injection Pla� . . .



MH-QEMU: Memory-State-Aware Fault Injection Platform 9

Process Information Process information in the Linux kernel is managed by
a circular list. The ADM can get all process information in the guest OS if
ADM accesses the process information structure of any process. The ADM uses
information of the idle process of Linux, since the location of idle process infor-
mation is stored in a global variable. The ADM can also get process information
from the kernel binary with symbols by using QEMU and the GDB function
(Fig. 4) in a similar manner as with the page table information described above.
The same limitation that memory cannot be reallocated also applies to process
information retrieval.

(a) Page table of process

(b) Memory state of process

Fig. 4: Process Information of Linux Internals: a) Page table of process,
b)Memory state of process

5 Evaluation and Use case

We present the overhead of the MH-QEMU platform using the NAS Parallel
Benchmark, and we use the CG kernel to illustrate how to use MH-QEMU.

SCFA_SCA_2019, 001, v5 (final): ’MH-QEMU: Memory-State-Aware Fault Injection Pla� . . . 9
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Table 2: API to MH module from other modules
MM

MM set(st,fin,val) Write value to memory

FS

FS turnoff me() FS disable MH

ADM

ADM write pagetable(app) Write a page table to storage
ADM write filemapping(app) Write a file mapping info. to storage
ADM get addrange(app, file) Get addr. range used by app.
ADM conv virtaddr(physaddr) Convert virt. addr. to phys. addr.
ADM conv physaddr(app, virtaddr) Convert phys. addr. to virt. addr.

5.1 Evaluation Environment

All evaluations described in this section use a single host server. Eight MH-
QEMU VM instances are executed on the server. The specification of the host
server and the VM are shown in Fig. 3.

Table 3: Execution Environment
Host Server

CPU 2 * Intel X5650 (2.67GHz, 6core/12thread) with VT-x

Memory ECC DDR4 SDRAM 46GB

OS CentOS 7.1 (Linux Kernel 3.10.0)

VM Server (8VM/host)

CPU x86 64 Architecture

Memory 512MB

OS Scientific Linux 7.4 (Linux Kernel 3.10.0)

5.2 Overhead of MH-QEMU platform

To evaluate the overhead of MH-QEMU platform, we compared the execution
time of NAS Parallel Benchmark on native QEMU and on MH-QEMU with
empty an MH function. We decomposed the overhead of MH-QEMU to overhead
caused by the MM and the overhead caused by MH; the overhead of MM was
found to be negligible. Therefore, the overhead of MH-QEMU is almost the same
as the overhead of MH. The EP, CG, MG, FT and IS kernels of NAS Parallel
Benchmark 3.3.1 were used with the class B problem size. The average execution
time of five runs for each kernel is shown in Fig. 5 and Table 5. The overhead of
MH-QEMU is normalized to the overhead of naive QEMU. MH-QEMU was up
to 3.4 times slower than native QEMU.
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Fig. 5: MH-QEMU overhead toward native QEMU

Table 4: Execution Time of QEMU and MH-QEMU(sec.)
QEMU MH-QEMU

EP 345.65 596.626
CG 38.676 130.652
MG 98.844 266.458
FT 201.47 428.078
IS 24.38 79.378
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5.3 Use case: resiliency analysis of modified NPB CG

We use NPB CG [3] to demonstrate the usage of MH-QEMU for resiliency anal-
ysis. We expect CG already has some algorithm-level resilience to SDC because
it uses the inverse power method, an iterative method. In this scenario, we want
to reveal which memory region is weak due to SDC. In the original NPB CG
implementation, the number of iteration is fixed as it is intended to be used as
a performance benchmark. To evaluate resiliency of the iterative method, we
modified NPB CG to continue the iteration until it converges, that is, until the
residual becomes less than the 10−20. We inject Row-Hammer faults, which cor-
rupts data in the memory line next to a frequently accessed memory line. We
executed 2443 CG runs for this analysis.

Implementation of Row-Hammer MH The Row-Hammer MH injects the
fault as follows:

1. The physical address of each memory access is decomposed into the loca-
tions of the physical memory channel, the bank, and the line, following the
mapping rule of Intel 82955X-MCH memory structure [5] described in Fig.
6. The MH counts the access for each memory line.

2. If the access counter exceeds the threshold α, the MH determines whether
an error is injected with probability λ.

3. If the error is to be injected, the MH retrieves the process memory infor-
mation using the ADM and randomly changes a single bit in the adjacent
line of the accessed region to 0. We choose parameters as α = 1000 and
λ = 5× 10−10

Fig. 6: Mapping rule of Intel 82955X-MCH
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Distribution of computation error A histogram of the computation errors
in the results is shown in Fig. 7. The last category labeled as ”Abort” represent
the number of detectable failed executions. These include when the VM hangs,
abnormal termination of the application, and the result containing NaN. Other
than such failed execution, all the results fall into one of two categories. We
judged that the results with more than 5% error is caused by SDC. In most
SDC results, the error is around 166%. It is unknown why they converge to
that value as the inverse power method does not have a local solution. On the
other hand, 60% of execution return the correct result even after the injection
of memory hammer error. This means the CG algorithm has a certain resiliency
to SDC.
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Fig. 7: Histogram of errors

Relationship between fault and process memory region To investigate
the cause of SDC, we select 825 runs at random and mapped the modified data
region and execution results, as shown in Fig. 8. The results show that SDC
occurs only when the BSS section of CG’s binary is modified. The BSS region
stores global and static variables with an initial value. Most of the data in BSS
region of the CG application kernel are input matrices and intermediate data,
modification to which does not lead the application to abnormal termination.
In the execution of CG, most of the data are stored in the BSS region, not
in the stack. If we analyze the access pattern of each variable to determine its
importance, we can specify which variables should be protected to avoid SDCs,
without knowledge of CG’s algorithm.
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6 Conclusion

Brand-new hardware architectures, which has different usage and characteristics
from current architectures, are emerging in the post-Moore era. We need fault
injectors that can emulate errors in such new architectures in order to develop
resiliency methods with the appropriate scope.

We developed MH-QEMU, a fault injector that can generate errors by emu-
lating memory access patterns and the physical structures of memory modules,
to accommodate new memory architectures. With MH-QEMU, we can verify
resiliency against SDCs brought by architecture-specific properties as well as
incidental SDCs.

Currently, the overhead of MH-QEMU is significantly large. It can be reduced
by narrowing the memory region that is monitored by the memory handlers. MH-
QEMU can also be accelerated by employing hardware-level VM acceleration in
KVM when supported by other code insertion methods like Intel Pin [11,17] and
dyinst [2].

We are focusing on the the flexibility of fault injection and obtaining the
memory location of injected errors at the process level; MH-QEMU does not
trace application behavior after fault injection. In future work, we are planning
to evaluate application level resiliency for new memory architectures, such as
flash memories, 3D stacked memories [6, 13], and hierarchical combination with
them and DIMMs [7], after enhancement of MH-QEMU for such tracing func-
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MH-QEMU: Memory-State-Aware Fault Injection Platform 15

tionality. If CPU state can be controlled with tools like F-SEFI [8], MH-QEMU
approach can be generalized to other types of devices, including network devices
and emerging hardware architectures.
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