T2R2東京工業大学リサーチリポジトリ Tokyo Tech Research Repository

論文 / 著書情報

論題(和文)	落下対策を施した自動ラック倉庫における対策効果のエネルギー的検 証 (その1)解析条件および自動ラック倉庫でのエネルギーの釣合い と耐震自動ラック倉庫における解析結果
Title(English)	The Effect of Countermeasures about Cargoes Falling from an Automated Warehouse by Energy Balancing Part1 Analysis Conditions and Energy Balancing
著者(和文)	高木政美, 安川真知子, 北村春幸, 佐藤大樹, 松田頼征
Authors(English)	Masayoshi Takaki, Machiko Yasukawa, Haruyuki Kitamura, Daiki Sato, Yoriyuki Matsuda
出典(和文)	 日本建築学会大会学術講演梗概集, , , pp. 1007 -1008
Citation(English)	Summaries of technical papers of annual meeting, , , pp. 1007 -1008
発行日 / Pub. date	2019, 9

落下対策を施した自動ラック倉庫における対策効果のエネルギー的検証

(その1)解析条件および目動ラック倉庫でのエネルギーの釣合いと耐震目動ラック倉庫における解析結果	未
--	---

正会員	○高木政美*1	同	安川真知子*1
同	北村春幸*2	同	佐藤大樹*3
同	松田頼征*2		

自動ラック倉庫	積荷	地震応答解析
荷すべり	エネルギー法	

1. はじめに

筆者らは自動ラック倉庫内積荷でのエネルギーの釣合 いに基づいて落下予測を行う方法(以降,簡易法と呼ぶ) を提案し,積荷への入力エネルギーを把握できれば,簡 易法により積荷の落下予測が可能となることを示した¹⁾。 本報では,自動ラック倉庫全体でのエネルギーの釣合い に基づく積荷の落下予測法の提案に向け,積荷とラック, 落下対策の連成挙動が各部の消費エネルギーの総量およ び配分比に与える影響を確認する。その1では,解析条件 および自動ラック倉庫全体でのエネルギーの釣合いにつ いて説明し,既報²⁾で報告した耐震自動ラック倉庫での解 析結果を概観する。

2. 解析条件

解析に用いた自動ラック倉庫,積荷モデル,地震波, 地震波倍率。Rの条件は、既報に示した通りとした。図1に 自動ラック倉庫の解析モデルを示す。自動ラック倉庫構 造体は、弾性の Beam 要素によるフレームモデルとした。 図 1(b)に制振対策を施した場合の解析モデルを示す。制振 対策にはマスダンパーを用いることを想定し、自動ラッ ク倉庫の最頂部(16 段目)にマスダンパーを設置する条 件とした。可動質量部とマスダンパーを支える腕木間は, 摩擦を考慮した非線形ばねおよびダッシュポットで結合 した。可動質量は 400kg, 摩擦係数は 0.005, 非線形ばね の2次剛性はマスダンパーのコイルばね剛性とし、ダッシ ュポットの減衰定数は19%とした。図1(c)に免震対策を施 した場合の解析モデルを示す。免震対策は、自動ラック 倉庫のラック下部が剛性の高い基礎梁によって連結され, 2列のラックの両端にリニアスライダーおよびオイルダン パーが設置されている状態を想定した。支点はピンロー ラーとして上下方向の変位のみ拘束し、リニアスライダ ーの浮上りは考慮しない条件とした。免震周期は全体重 量に対して 4 秒となるように設定した。免震装置の摩擦 係数は0.01,粘性減衰係数は40%とした。

3. 自動ラック倉庫におけるエネルギーの釣合い

自動ラック倉庫におけるエネルギーの釣合いを整理す ると、以下のようになる。

図 1(a)に示す耐震自動ラック倉庫において,地震継続中 に生じるエネルギーの釣合式は式(1)により表される。な お, nは自動ラック倉庫段数を示す。

$$\begin{split} \sum_{1}^{n} {}_{r}W_{h} + \sum_{1}^{n} {}_{r}W_{e} + \sum_{1}^{n} {}_{c}W_{h} + \sum_{1}^{n} {}_{c}W_{e} + \sum_{1}^{n} {}_{c}W_{slide} = E \quad (1) \\ \sum_{1}^{n} {}_{r}W_{h} : 時刻tでのラック構造体の構造減衰による消費エネルギ$$
- の総和

 $\sum_{i=1}^{n} W_{e}$:時刻tでのラック構造体の弾性振動エネルギーの総和

 $\sum_{i=1}^{n} {}_{c}W_{h}$:時刻tでの段ボール部の減衰エネルギーの総和

 $\sum_{1}^{n} {}_{c}W_{e}$:時刻tでの段ボール部の弾性振動エネルギーの総和

 $\sum_{1}^{n} {}_{c}W_{slide}$:時刻tでのパレットの摩擦消費エネルギーの総和

E:時刻tでの自動ラック倉庫への入力エネルギー

- 制振自動ラック倉庫において,地震継続中に生じるエ ネルギーの釣合式は式(2)により表される。
- $\sum_{1}^{n} {}_{r}W_{h} + \sum_{1}^{n} {}_{r}W_{e} + \sum_{1}^{n} {}_{c}W_{h} + \sum_{1}^{n} {}_{c}W_{e} + \sum_{1}^{n} {}_{c}W_{slide} + {}_{d}W_{h} + {}_{d}W_{e} + {}_{d}W_{\delta} = E$

aWb:マスダンパーの減衰エネルギー

(2)

_aW_e:マスダンパーの弾性振動エネルギー

_aW_δ:マスダンパーの歪みエネルギー

免震自動ラック倉庫において、地震継続中に生じるエネ ルギーの釣合式は式(3)により表される。

 $\sum_{1}^{n} {}_{r}W_{h} + \sum_{1}^{n} {}_{r}W_{e} + \sum_{1}^{n} {}_{c}W_{h} + \sum_{1}^{n} {}_{c}W_{e} + \sum_{1}^{n} {}_{c}W_{slide} + {}_{i}W_{h} + {}_{i}W_{e} + {}_{i}W_{\delta} = E$ (3)

 $_{i}W_{h}$:オイルダンパーの減衰エネルギー $_{i}W_{e}$:リニアスライダーの弾性振動エネルギー

*W*_δ:リニアスライダーの歪みエネルギー

地震継続時間_et₀をとすると, 地震終了時の各エネルギ ーは, 上式において $\sum_{1}^{n} W_{h_{e}t_{0}}$, $\sum_{1}^{n} W_{e_{e}t_{0}}$, $\sum_{1}^{n} W_{e_{e}t_{0}}$, $\sum_{1}^{n} W_{h_{e}t_{0}}$, $\sum_{1}^{n} W_{e_{e}t_{0}}$, $\sum_{1}^{n} W_{slide_{e}t_{0}}$, $E_{et_{0}}$, $dW_{h_{e}t_{0}}$, $dW_{e_{e}t_{0}}$, $dW_{\delta_{e}t_{0}}$, $iW_{h_{e}t_{0}}$, $iW_{e_{e}t_{0}}$, $iW_{\delta_{e}t_{0}}$ と置き換えられる。ここでは特に

E_{ot}をラックへの総入力エネルギーとする。

4. 既報における耐震自動ラック倉庫の解析結果

(1) 自動ラック倉庫と積荷の応答性状と各エネルギーの 時刻歴応答性状

図2に神戸位相におけるE, $\sum_{1}^{n} {}_{c}W_{slide}$, $\sum_{1}^{n} {}_{r}W_{e}$, $\sum_{1}^{n} {}_{r}W_{h}$,

The Effect of Countermeasures about Cargoes Falling from an Automated Warehouse by Energy Balancing Part1 Analysis Conditions and Energy Balancing TAKAKI Masayoshi, YASUKAWA Machiko, KITAMURA Haruyuki, SATO Daiki, MATSUDA Yoriyuki

-1007-

 $\sum_{1}^{n} {}_{c}W_{e}, \sum_{1}^{n} {}_{c}W_{h}$ の時刻歴波形, 16 段目の段ボール部加速 度_{16 c}A, 16 段目の荷すべり変位₁₆ $\delta, \sum_{1}^{n} {}_{c}W_{slide}, \sum_{1}^{n} {}_{r}W_{h}, \sum_{1}^{n} {}_{c}W_{h}$ の時刻歴波形を示す。なお図 2(b)~(f)は荷すべり

*1 大成建設㈱

- *2 東京理科大学
- *3 東京工業大学

による大きな変化が確認できる 12~22 秒間を示している。

各弾性振動エネルギー $\sum_{1}^{n} {}_{r}W_{e}, \sum_{1}^{n} {}_{c}W_{e}$ は解析時間中,耐 震自動ラック倉庫の振動に伴って増減を繰り返す。 $\sum_{1}^{n} {}_{c}W_{slide}$ は積荷の滑動により増大し,積荷が滑動してい ない状態においては増加しない。代わりに $\sum_{1}^{n} {}_{r}W_{h}, \sum_{1}^{n} {}_{c}W_{h}$ がラック構造体および積荷の振動に伴い増大する。 $\sum_{1}^{n} {}_{c}W_{slide}, \sum_{1}^{n} {}_{r}W_{h}, \sum_{1}^{n} {}_{c}W_{h}$ は終了時に最大となり, $\sum_{1}^{n} {}_{r}W_{e}, \sum_{1}^{n} {}_{c}W_{e}$ は0に収束した。そのため $\sum_{1}^{n} {}_{r}W_{h} + \sum_{1}^{n} {}_{r}W_{e} + \sum_{1}^{n} {}_{c}W_{h} + \sum_{1}^{n} {}_{c}W_{slide}$ の最大値は,地震波 終了時の入力エネルギー $E_{et_{0}}$ と同等となった。16段目荷す べり変位の最大値₁₆ δ_{max} は529mmであった。

(2) 総入力エネルギーとその他のエネルギーの関係

図3に告示波神戸位相において、入力加速度を変化させた場合における地震終了時の $\sum_{1}^{n} W_{slide_{e}t_{0}}$ 、 $\sum_{1}^{n} W_{h_{e}t_{0}}$ 、 $\sum_{1}^{n} W_{h_{e}t_{0}}$ を、図4に $E_{et_{0}}$ に対する $\sum_{1}^{n} W_{slide_{e}t_{0}}$ 、 $\sum_{1}^{n} W_{h_{e}t_{0}}$ 、 $\sum_{1}^{n} W_{h_{e}t_{0}}$ の配分比を示す。

 E_{eto} , $\sum_{1}^{n} {}_{c}W_{h_{eto}}$ は, 概 $a_{e}R^{2}$ 倍で増大する。 $\sum_{1}^{n} {}_{r}W_{h_{eto}}$ は E_{eto} の増大に伴って増加するが, 積荷が滑動すると頭打ち となり, この分 $\sum_{1}^{n} {}_{c}W_{slide_{eto}}$ が増加する。

次に配分比を確認する。 $\sum_{1}^{n} {}_{c}W_{h_{eto}}/E_{eto}$ は概ね35%で一 定の値となるが、積荷の滑動により僅かに減少する。こ れに対し $\sum_{1}^{n} {}_{r}W_{h_{eto}}/E_{eto}$ は、積荷が滑動しない場合に一定 となる。積荷が滑動する場合、 ${}_{e}R$ が大きくなる(荷すべ り変位が大きくなる)に従って $\sum_{1}^{n} {}_{r}W_{h_{eto}}/E_{eto}$ が減少し、 代わりに $\sum_{1}^{n} {}_{c}W_{slide_{eto}}/E_{eto}$ が増大する。

参考文献

1) 安川ほか(2018.3),構造工学論文集, Vol.64B, pp.187-197.

2) 安川ほか(2018.9),日本建築学会大会学術講演梗概集,構造 II, pp.1-4.

3) 北村春幸:性能設計のための建築振動解析入門, 彰国社, 2002.

*1 Taisei Corporation

- *2 Tokyo University of Science
- *3 Tokyo Institute of Technology