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An Architecture of

Distributed Pub/Sub Systems
Using Structured Overlay Networks

Abstract

In the context of event-driven application development, techniques of pub/sub mes-
saging are promising candidates. Its paradigm provides not only real time dissemination
by push-based delivery, but also high tolerance to the transition of relations between
publishers and subscribers by their decoupling, e.g., each publisher does not need to be
concerned about the location or status of subscribers that will receive its message. How-
ever, since a typical architecture has a centralized broker which gathers all published
messages and forwards them to corresponding subscribers, it could be a bottleneck and
a single point of failure. Especially when we consider handling IoT data, their charac-
teristic of low value density makes the above issue much harder. Namely, a tremendous
amount of data is concentrated on the broker with oppressing the network bandwidth,
even though most of it will be discarded.

For overcoming the problem, this dissertation focuses on topic-based pub/sub sys-
tems which are one of the best known and widely used type of pub/sub systems, and
introduces structured overlay networks into them. We assume an architecture, in which
many brokers are placed on the edge of a wide area network and they cooperate with
each other by composing a structured overlay network. This edge-based architecture
makes latency lower as well as avoiding congestion on cloud resources, especially when
producing and consuming data have geographical locality. We discuss about the archi-
tecture from the following three points of view.

At first, we propose a topic-based pub/sub method using Skip Graph, which is one
of the algorithms of structured overlay networks supporting range queries. Although
there are some existing studies of topic-based pub/sub messaging based on structured
overlay networks, they have the problem of wasting network resources because of lacking
adaptability to the characteristic of low value density in IoT data. In particular, the
behavior that each publisher node continues to forward messages to a relay node even
if there are no subscribers causes redundant messages between brokers. The proposed
method regulates publishers and subscribers of the same topic to compose connected
subgraphs so that publishers can detect the absence of subscribers and suspend sending
messages. This mechanism reduces the redundant messages and thereby can minimize
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the load of wide area networks. We confirm the effectiveness of the proposed method
quantitatively by simulation experiments.

Secondly, this dissertation focuses on the latency. The above proposed method
involves the increase of the required time from publishers to subscribers, even though it
brings about high scalability. This could impair the advantage of real time dissemination
of pub/sub messaging. We discuss about the improvement of the latency from two
aspects. The first one is routing algorithms of Skip Graph. There are several existing
algorithms for handling range queries, but they are inefficient regarding the latency.
We propose a new algorithm named Split-Forward Broadcasting (SFB), and indicate
that it can improve the latency by reducing the average number of hops. The second
one is client assignment strategies. The latency is widely influenced by how to assign
subscribers to each broker. There are two possible approaches: the intensive assignment
by which subscribers having a same topic are accommodated on a same broker, and the
extensive assignment by which the subscribers are accommodated on different brokers as
far as possible. We formulate the difference of the latency between these two approaches,
and discuss about the optimization of subscriber assignment.

Finally, this dissertation gives a discussion about developing the proposed method
as a middleware, including the capability of a practical protocol. We focus on MQTT,
which is one of the promising protocols for exchanging IoT data. Considering the edge-
based architecture, heterogeneity could be a vital issue, i.e., an appropriate product of
the MQTT broker could vary according to the different environment of each network
edge. We propose Interworking Layer of Distributed MQTT brokers (ILDM), which
enables arbitrary kinds of MQTT brokers to cooperate with each other. ILDM provides
APIs which facilitate rapid development of variety of cooperation algorithms, including
the proposed method. To clarify the feasibility of ILDM, we show two primitive coop-
eration algorithms which use the APIs, and evaluate on an actual environment. The
evaluation is conducted by a benchmark method which we design to have the capability
of measuring both a single broker and multiple brokers. Experimental results show that
the throughput of multiple brokers running together by ILDM is improved significantly
than that of a single broker.
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1
Introduction

Development of information and communications technology has brought about several
paradigm shifts. In the early days of the Internet, the World Wide Web has enabled
people to acquire various information helpful for their life from all over the world. In
the past two decades, information originating has become easier gradually; after the
prevalence of personal web pages among certain people, blogs have become popular, and
then micro-blogs and social networking services have followed. These services achieved
that everyone can originate his/her information quite easily. And nowadays, our life is
steadily getting programmable. A variety of smart devices have appeared such as smart
phones, wearable devices, and smart speakers. These devices provide us the opportunity
to choose applications and install on them according to lifestyles. Arising of many kinds
of frameworks which facilitate quick development of cooperative applications, e.g., flow-
based application platforms [Node-RED], are accelerating the programmability.

Adding to that, the number of things having network connectivity is estimated to
reach 100 billion by 2020 [Hodges et al. 2013]. In the near future, it is expected that
massive volume of information is exchanged between such things so that various useful
smart services not only visualizing information but also actuating things in physical
space are provided. This sort of services composed of cooperative things are typically
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event-driven, i.e., things are actuated by real time information.
To develop such event-driven applications, the techniques of pub/sub messaging [Eu-

gster et al. 2003] is promising candidates. In pub/sub systems, senders of messages do
not specify receivers directly. That is, senders make messages to include some informa-
tion about the contents of themselves, while receivers specify interests in advance. Here,
senders and receivers are called publishers and subscribers. This scheme provides conve-
nient decoupling between publishers and subscribers, e.g., each publisher has no concern
with the location or the status of subscribers that will receive a published message.

Typical pub/sub systems have a server called a “broker” [Snyder et al. 2008; Videla
and Williams 2012; HiveMQ], whereas publishers and subscribers are called clients. The
broker gathers all published messages and forwards them to subscribers according to
their interests. In other words, these systems form a centralized architecture. Since
such architecture is easy to implement, it is used for a wide variety of applications e.g.,
web syndication, disaster prevention systems, and social networking services.

However, in this sort of architecture, the broker could be a bottleneck and a sin-
gle point of failure. Especially when we consider the future smart service systems as
mentioned above, there is a difficulty of handling so-called “data exhaust”, which is
predicted to occupy most of the IoT data [Manyika et al. 2011]. The characteristics of
data exhaust can be summarized as follows:

Low value density
Data are generated as byproducts and often without specific uses. These data
have low or no value most of the time, but at times they are highly useful.

High generation frequency
Data are automatically and continuously generated by IoT devices, unlike the
traditional Internet in which people generate most of the content.

Breadth of generation area
Data are generated over a wide area, since those are from things in the physical
space.

Namely, a tremendous amount of data is concentrated on the broker with oppressing
the network bandwidth. This is unprofitable because the data arriving at the broker
are mostly discarded due to its low value density as depicted in Figure 1.1. Such
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Broker

Publishers

Wide area 
network

Subscribers

Worthful data

Worthless data

Figure 1.1: Centralized architecture of pub/sub messaging.

characteristics of IoT data are also called “edge-heavy” [Okanohara et al. 2013], and
they become an obstacle to achieving future large scale cooperative systems.

Accordingly, we suppose an efficient architecture using edge brokers as shown in
Figure 1.2. Edge brokers are placed at the edge of the wide area network, i.e., they
are installed over a wide area. Publishers and subscribers connect to the closest one.
In this architecture, locally consumed data which are both sent from and received by
the clients connected to a same edge broker do not encroach on the wide area network.
In addition, by exchanging only worthful data among edge brokers, this architecture
can prevent imprudent forwarding of data exhaust to the wide area network. Such
concepts of focusing on placing computational resources at the outer edge of wide area
networks has become increasingly important as can be seen from the proposal of “Edge
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Wide area network

Publishers or subscribers of data exhaust

Edge brokers

Worthless data

Worthful data

Figure 1.2: Edge-based architecture.

computing” [Shi et al. 2016]. Our basic idea in this dissertation is to compose an
autonomous distributed system by the edge brokers so that it has high scalability by
avoiding a single point of failure and a performance bottleneck. Note that an edge
broker plays the role of a publisher or a subscriber in the network of edge brokers, if
it has a publisher or a subscriber as its client. Hereafter, a publisher or a subscriber
means an edge broker, except when we explicitly mention the user end client like an IoT
device.

We focus on topic-based pub/sub which is the best known and the most widely
used pattern of pub/sub messaging, and aim for realizing the edge-based architecture.
Figure 1.3 shows example software components of an IoT application based on the
architecture. Data consumer denotes a software module which receives data from other
IoT devices via edge broker(s), and actuates things and/or visualizes by the results of
processing the data. Data producer denotes a software module which sends out data
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towards other IoT devices via edge broker(s). Interest handler manages what kind of
data is required by the local IoT device, namely the interest of the local IoT device, and
converts the interest as subscribe requests.

We assume that an application vendor deploys the distributed pub/sub middleware
to the edge brokers which belong to it, while the IoT devices belong to the end users.
The edge brokers may be prepared by the vendor or lent out by other service vendors
as like IaaS (Infrastructure as a Service) of the present day. To operate the deployed
distributed pub/sub system, the application vendor decides system specification such as
the definition of topic names, the format of messages, and so on. We also assume that
the vendor develops the software components depicted on the IoT device in the figure as
a client application. This application may be provided to users as an embedded device
or a software program which they can install it on their devices.

This dissertation aims to provide techniques required for realizing the distributed
pub/sub middleware in the figure. The middleware should achieve high throughput
and low latency, since the assuming IoT services consist of vast number of cooperative
things and are typically event-driven. Considering such middleware is applicable to
constructing not only a single integrated system, but also a platform like distributed
data flow platform [Teranishi et al. 2017], scalability regarding the throughput and the
latency are quite significant. As mentioned above, we focus on topic-based pub/sub, and
discuss from three points of view: getting high throughput by introducing structured
overlay networks, improvement of latency, and development as a middleware including
the capability of a practical protocol.

At first, we introduce structured overlay networks into distributed pub/sub systems.
They have not only scalability effective for high throughput, but also suitable properties
such as robustness, elimination of a single point of failure, etc. Methods of topic-based
pub/sub using structured overlay networks have already been proposed [Castro et al.
2002; Zhuang et al. 2001; Ratnasamy et al. 2001b]. However, these methods do not
work efficiently for data exhaust; they are not adaptive to the value of data, so that
they waste network resources by gratuitously exchanging worthless data. This could
make overall throughput lower.

For overcoming the inefficiency, we propose a topic-based pub/sub method using
Skip Graph [Aspnes and Shah 2007], which is one of the algorithms of structured over-
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Figure 1.3: Example of software components of edge-based architecture.

lay networks supporting range queries. The proposed method regulates publishers and
subscribers of the same topic to compose connected subgraphs so that publishers can
detect the absence of subscribers and suspend sending messages. To evaluate the pro-
posed method, we implemented simulated programs for the proposed method and one
of the existing methods, and conducted some experiments with up to approximately
100, 000 nodes. We confirmed that the proposed method can reduce consumption of
network resources by suspending publish messages adaptively, so that consequently can
increase the overall throughput.

Secondly, this dissertation focuses on the latency. The above proposed method
involves the increase of the required time from publishers to subscribers, even though it
brings about high scalability. This could impair the advantage of real time dissemination
of pub/sub messaging. We discuss about the improvement of latency from the following
two aspects:

Routing algorithms of Skip Graph
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There are existing routing algorithms for range queries, but they are inefficient
regarding the latency or the traffic volume. We propose a new algorithm named
Split-Forward Broadcasting (SFB), and indicate it can reduce the average number
of hops.

Client assignment strategies
The latency is widely influenced by a way to assign subscribers to each broker.
We show two possible strategies: the intensive assignment by which subscribers
having a same topic are accommodated on a same broker, and the extensive
assignment by which the subscribers are accommodated on different brokers as
far as possible. We formulate the difference of the latency between these two
strategies, and discuss about the optimization of subscriber assignment.

Finally, this dissertation gives considerations about developing the proposed method
as a middleware, including the capability of a practical protocol. We focus on MQTT,
which is standardized and one of the promising protocols for exchanging IoT data. There
are a lot of MQTT broker products: open source, proprietary, embedded appliance, etc.
Utilizing existing products is a reasonable way to provide high quality implementation,
but heterogeneity could be a vital issue when we consider the edge-based architecture.
In other words, an appropriate product of MQTT broker could vary according to the
different environment of each network edge. To address this issue, we propose Inter-
working Layer of Distributed MQTT brokers (ILDM), which enables arbitrary kinds of
MQTT brokers to cooperate with each other. For clarifying the feasibility, we provide
two basic cooperation algorithms, including the way to furnish MQTT-specific functions
such as QoS and Retain. We also formulate a benchmark method which can be used for
both a single broker and multiple brokers. Experimental results show that the through-
put of five brokers running together by ILDM is improved 4.3 times at maximum than
that of single broker.

1.1 Structure of This Dissertation

The contributions of this dissertation are threefold:

• First, we propose a topic-based pub/sub method using Skip Graph for achieving
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Development as middlewareEstablishment of basic theories

Edge-based distributed pub/sub architecture
=> Chapter 1

Pub/sub method
using structured overlay networks

=> Chapter 3

Improvement of latency
=> Chapter 4

Flexibility for heterogeneity of edge environments
and

capability of MQTT protocol
=> Chapter 5

Related techniques

Pub/sub systems and structured overlay networks
=> Chapter 2

Figure 1.4: Relation between chapters.

high throughput. It enables publishers to detect the absence of subscribers and
suspend sending messages.

• Second, we present two techniques for improving the latency in the distributed
pub/sub architecture; an efficient routing algorithm of Skip Graph, and a formu-
lation regarding client assignment strategies.

• Third, we show the result of feasibility study towards developing the proposed
method as a middleware. We provide a new mechanism which enables arbitrary
kinds of MQTT brokers to cooperate with each other. We also formulate a bench-
marking method.

Figure 1.4 shows the relation between chapters in this dissertation. In Chapter 2,
we explain some techniques commonly related to the research topics composing this
dissertation. In Chapter 3, we illustrate our method using structured overlay networks
for achieving high throughput. In Chapter 4, we introduce techniques for improving
the latency. In Chapter 5, we show the approaches towards developing as a middleware.
Finally, we summarize and conclude this dissertation in Chapter 6.
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2
Pub/Sub Systems and

Structured Overlay Networks

In this chapter, we explain some techniques commonly related to our studies in this
dissertation.

2.1 Pub/Sub Systems

As previously stated, pub/sub systems can provide convenient decoupling between pub-
lishers and subscribers. Different from the traditional request-reply paradigm, publish-
ers do not specify subscribers directly, and subscribers also do not specify publishers
directly. Alternatively, subscribers specify their interests regarding the contents of mes-
sages in advance. When a publisher sends a message, it involves some information
about the contents of the message. The message will be delivered to subscribers whose
interests are matched to the information.

Eugster et.al., [Eugster et al. 2003] says the paradigm of pub/sub messaging provides
the following three decoupling dimensions between publishers and subscribers:

• Space decoupling: publishers and subscribers need not to know each other.
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Figure 2.1: Message flow of topic-based pub/sub.

• Time decoupling: publishers and subscribers need not to be actively participating
at the same time.

• Synchronization decoupling: publishers and subscribers process messages asyn-
chronously.

2.1.1 Patterns of Pub/Sub Messaging

There exist two principle patterns of pub/sub messaging: topic-based pub/sub and
content-based pub/sub. Topic-based pub/sub uses logical channels called “topics” for
exchanging messages as shown in Figure 2.1. Publishers are required to give a topic to
each message they send out. Subscribers specify topics of interest, and receive messages
published on those topics. On the other hand, in content-based pub/sub, subscribers
can specify their interests more flexibly than in topic-based pub/sub. For example,
Gryphon [Aguilera et al. 1999] provides a mechanism of matching tree so that subscribers
can specify their interests as a set of conditions regarding attributes such as “(city =

NewY ork) ∧ (temperature < 40)”.
In this dissertation, we focus on topic-based pub/sub. This is because topic-based

pub/sub is more primitive, so that it has well applicability for distributed environments.
Namely, it is suitable for the large scale systems we are assuming as mentioned in
Section 1. Although content-based pub/sub is more flexible for expressing the interests
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Figure 2.2: Messaging models in JMS.

of subscribers, the prevalence of key-value stores in recent years reflects that handling
data by using labels like topics is enough versatile.

Topic-based pub/sub systems are most often implemented over TCP/IP. In partic-
ular, there exist some studies of implementing topic-based pub/sub as overlay networks.
We explain about these studies later in Section 3.1. On the other hand, there is another
approach of implementing it in lower network layers. LIPSIN [Jokela et al. 2009] is
one of such studies. LIPSIN is a multicast forwarding fabric for large-scale topic-based
pub/sub messaging. It achieves efficient energy consumption by its simple forwarding
decisions and small forwarding tables. In this dissertation, we assume implementing
over TCP/IP, since it is tolerant to the change of lower layer networks and has a wider
application range.

2.1.2 Existing Pub/Sub Systems

There are some well-known protocols of topic-based pub/sub: JMS [Deakin 2015],
AMQP [Vinoski 2006], MQTT [Banks and Gupta 2015] and so on.

JMS is a specification describing a common way of messaging for Java language. It
supports two messaging models as shown in Figure 2.2. Pub/sub model is the pattern of
topic-based pub/sub messaging. On the other, point to point (PTP) model is somewhat
different. In PTP, there is only a single receiver for one message queue, even though
there might be multiple senders. A receiver needs to read actively from the queue.

AMQP is an open standard protocol standardized by OASIS. It is fundamentally
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Figure 2.3: Message flow in AMQP.

based on the concept of message queues, but can realize various patterns by using a
module called “exchange” (Figure 2.3). At first, a sender, called “producer” in AMQP,
sends a message to an exchange. The exchange which receives the message is respon-
sible for routing the message towards queues bound to it. The behavior of routing is
determined by the type of the exchange. There are the following three types:

Direct Delivers the message to queues which have exactly the same label called “key”
of the message.

Topic Delivers the message to queues which have exactly or partially match the key of
the message.

Fanout Delivers the message to all queues bound to the exchange.

Eventually the messages in queues are consumed by receivers, called “consumer” in
AMQP.

Regarding MQTT, we describe it later in this section.
The above protocols are implemented in many middleware, so-called Message-Oriented

Middleware (MOM), such as ActiveMQ [Snyder et al. 2008], RabbitMQ [Videla and
Williams 2012], MessageSight [Chen et al. 2014], etc. There are also implementations
assuming specific use, e.g., Kafka [Kreps et al. 2012] is focusing on processing a large
amount of log data.
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In recent years, some cloud-based messaging services have appeared [Google Cloud
pub/sub; Amazon Simple Notification Service]. These services are easy to use, but have
a difficulty in handling data exhaust as described in Section 1. Redundant forwarding
of worthless data to the cloud broker lowers the throughput, and the latency also tends
to be higher compared to the edge-based architecture.

MQTT

MQTT [Banks and Gupta 2015] is a protocol of topic-based pub/sub, standardized by
OASIS. It is known for lightweight design such as a minimum of two bytes header size.
Below is an example flow of using MQTT.

1. A client X sends CONNECT message to a broker. This establishes a connection
between X and the broker.

2. X sends SUBSCRIBE message to the broker. This message informs the topics
of interest of X to the broker.

3. Another client sends PUBLISH message to the broker, with specifying a topic.
If the topic is included in the above topics of interest, this message is forwarded
to X by the broker.

4. X sends DISCONNECT message to the broker, to terminate the connection.

MQTT provides several useful functions for clients, such as “QoS”, “Retain” and
“Will”.

QoS provides capability of configuring the level of delivery confirmation. A client
and a broker try to confirm the delivery of a PUBLISH message and resend it if needed,
according to the QoS level. Three levels are defined: “At most once delivery”, “at least
once delivery”, and “exactly once delivery”.

Retain is for delivering a latest message in the past to a new subscriber. A PUBLISH

message has a flag of Retain. If the flag is set to true, a broker stores the message until
a new PUBLISH message whose Retain flag is true of the same topic arrives. This
stored message will be forwarded to new subscribers of the topic.

Will enables to inform unexpected close of a connection. CONNECT message has
a flag of Will. If the Will Flag is set to true, a broker stores a Will message and Will
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Figure 2.4: Architecture of MQTT-S.

topic which are also included in the CONNECT message. The Will message will be
published from the broker, when it detects the connection with the client is unexpectedly
closed.

In addition to the general MQTT protocol, MQTT-S (also called MQTT-SN) has
been proposed as a specialized extension for wireless sensor networks [Hunkeler et al.
2008]. MQTT-S is oriented toward more lightweight design, and has the following
features:

• It can be used with transport protocols other than TCP, such as UDP and ZigBee.

• The size of a PUBLISH message can be reduced by replacing a topic name to a
two-byte long “topic ID”.

MQTT-S assumes the architecture as shown in Figure 2.4. MQTT-S clients connect
to an MQTT broker via an MQTT-S gateway. An MQTT-S gateway may or may not
be integrated with an MQTT broker.

Such protocol is helpful to enable various small devices to participate in systems
constructed with the edge-based architecture.

2.2 Structured Overlay Networks

A structured overlay network is a kind of overlay networks, i.e., a computer network
constructed on top of another computer network (Figure 2.5). Each node has a routing
table, and the neighborhood relations defined by the table form a structural topology.
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Figure 2.5: Structured overlay network.

One of the best known types of structured overlay networks is distributed hash table
(DHT). DHT builds a hash table over multiple nodes. Namely, the place where each
key-value pair is stored in is determined by the hash value of the key. Nodes have node
IDs which are also hash values calculated from such as their IP addresses, and they are
responsible for a part of the range of hash values according to their IDs.

By using cryptographic hash functions such as MD5 [Rivest 1992] and SHA-1 [FIPS
PUB180-1 1995], keys and node IDs are mapped uniformly over the range of hash values
as shown in Figure 2.6, so that the number of key-value pairs stored on each node is
almost equalized.

2.2.1 Chord

Chord [Stoica et al. 2001] is one of the earliest algorithms of DHT. Chord uses a ring-
style one-dimensional ID space. A key-value pair with a key k is assigned to the first
node whose ID is equal to or follows hash(k) in the ID space. This node is denoted as
successor(hash(k)).

In the case that the size of ID space is 2m, a node with an ID x has a routing table

15



key6 key7

key3

key2 key11

key8 key5

key4

key1

key9

key10

Node A Node BNode C

ID (Hash value)

Assigned to node C Assigned to node A Assigned to node B

Figure 2.6: Example of ID space of DHT.

composed of the following entries:

{successor(x+ 2i mod 2m)} where 0 ≤ i ≤ m− 1.

When the node wants to find a key-value pair with a key k, it issues a query to the
node who has largest ID smaller than hash(k) in the routing table. Note that “large”
and “small” mean distant and nearby respectively in the direction of successors in the
circular ID space.

By recursively forwarding the query in the same manner, arbitrary node can be
found with O(logN) messages where N is the number of nodes. The size of the routing
table on each node is also suppressed to O(logN).

For example, we assume an ID space with its size of 24 as shown in Figure 2.7. The
routing table of the node of ID 0 is

{successor(1), successor(2), successor(4), successor(8)} = {2, 6, 9}.

When the node 0 want to find a key 12, it issues a query to the node 9 because it has
largest ID smaller than 12 in the routing table. The routing table of the node of ID 9 is

{successor(10), successor(11), successor(13), successor(1)} = {11, 13, 2}.
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Figure 2.7: Example of ID space of Chord.

Node 9 forwards the query to the node 11. Finally, the successor of the node 11, i.e.,
node 13, is the node who stores the key-value pair with the key 12.

2.2.2 Pastry

Pastry [Rowstron and Druschel 2001] is an algorithm of DHT based on Plaxton’s al-
gorithm [Plaxton et al. 1999]. It uses an ID space of 128 bits, and IDs are expressed
as sequences of numbers which have 2b as their base. For example, if b = 4, IDs are
expressed as 32-digit hexadecimal numbers. Pastry enables to find an arbitrary node
with at most ⌈log2b N⌉ hops, where N is the number of nodes.

A routing table of a node consists of ⌈log2b N⌉ rows, and each of them has 2b − 1

entries. Entries in nth row have the same n-digit prefixes as the ID of the node and also
have the different n+1th digit from that of the ID of the node. If there is no appropriate
node, the corresponding entry becomes empty. Figure 2.8 shows an example of routing
table where the ID space is 216, parameter b is 2, and the ID of the local node is
10233102.

Finding nodes in Pastry is processed by gradually extending the length of the com-
mon prefix of IDs. We denote the length of the common prefix between id1 and
id2 as L(id1, id2). We also denote the target ID as idt. When a node x which has
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Routing Table (ID of local node: 10233102)

0th row 02212102 1 22301203 31203203

1st row 0 11301233 12230203 13021022

2nd row 10031203 10132102 2 10323302

3rd row 10200230 10211302 10222302 3

4th row 10230322 10231000 10232121 3

5th row 10233001 1 10233232

6th row 0 10233120

7th row 2

Figure 2.8: Example of routing table of Pastry.

an ID idx receives the query, it selects a node y which has an ID idy and satisfies
L(idt, idy) = L(idt, idx) + 1 from its routing table. Subsequently, the node x forwards
the query to the node y.

Figure 2.9 shows an example of finding nodes when ID space is 3-digit quaternary
numbers. Note that the original design of Pastry uses a 128-bit ID space, but we assume
a smaller ID space in this example for simplicity. In this example, the node S (ID: 312)
issues a query of finding ID 312. It is processed as follows:

1. Node S checks the 0th row of its routing table, and finds the node A which has
an ID beginning at 3.

2. Node A checks the 1st row of its routing table, and finds the node B which has
an ID beginning at 31.

3. Node B checks the 2nd row of its routing table, and finds the node C which has
an ID beginning at 312.

The size of routing tables in Pastry is approximately ⌈log2b N⌉ · (2b − 1), and the
required number of hops for finding nodes is ⌈log2b N⌉.
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Figure 2.9: Pastry.

2.2.3 Other DHT algorithms and their extensions

Other than Chord and Pastry, many algorithms of DHT are proposed; CAN [Ratnasamy
et al. 2001a] based on N-dimensional torus, Kademlia [Maymounkov and Mazieres
2002] based on binary tree, Koorde [Kaachoek and Karger 2003] based on De Bruijn
Graph [de Bruijn and Erdős 1948], Symphony [Manku et al. 2003] based on small world
network [Watts and Strogatz 1998], and so on. A common feature of most of these algo-
rithms is that each node has dense information for nearby nodes and sparse information
for distant nodes so that a query can be processed by gradually narrowing down the
range including the target hash value.

There are some studies of extensions of DHT, such as query bundling mechanisms [Mizu-
tani et al. 2012; Shudo 2017] and methods for handling partial match queries [Huebsch
2008; Zhuge and Feng 2008]. There are also some studies which try to have capabil-
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ity of handling range queries, e.g., Prefix Hash Tree [Ramabhadran et al. 2004] and
Mercury [Bharambe et al. 2004].

2.2.4 Skip Graph

Skip Graph is an algorithm of structured overlay networks providing the capability of
handling range queries. Each node has a key and can issue a query by specifying a
range or a value in the key space. Issued queries are delivered to nodes whose keys are
included in the range or exactly matched with the value.

Skip Graph is based on skip list [Pugh 1990]. Skip list is a data structure which has
hierarchical lists as shown in Figure 2.10. The lowest list, called Level 0 list, includes
all elements in a sorted order. An element in Level i also exists in Level i + 1 with a
predefined probability. Finding an element starts from the first element in the topmost
level and processed as follows:

1. Find the largest element in elements smaller than the target element in the top-
most level.

2. If the corresponding element is not the target element, move one level down.

3. Repeat the above two steps until reaching the target element.

This algorithm provides O(logN) time to find an element where N is the number
of elements.

Skip Graph composes a multiplex structure of skip list as depicted in Figure 2.11.
Level 0 is a doubly linked list that consists of all nodes sorted in the order of keys. Each
node has a random sequence in base b∗ called a membership vector, and composes a
doubly linked list with nodes whose membership vectors have the same first i digits in
level i.

When a node issues a query, the search process starts from the maximum level of
the node. The query is forwarded among nodes in the same manner as the skip list, i.e.,
skips long distance at the higher level and gradually moves down to level 0.

The size of the routing table that each node must have is O(logN) of the N partic-
ipants, while the path length of forwarding queries is also O(logN).

∗ In this dissertation, we consider the case of binary digits except when we explicitly mention
other cases.
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Figure 2.11: Example of Skip Graph

There are some studies of extensions of Skip Graph: FRT-Skip Graph [Hojo et al.
2016] is a method to constructing routing tables more flexibly with keeping the range
queriable feature of Skip Graph. Self-Refining Skip Graph [Kawaguchi et al. 2016] adds
a functionality of refining routing tables dynamically so that the path length becomes
shorter.
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2.2.5 Multi-key Skip Graph

Multi-key Skip Graph [Konishi et al. 2008] is an expansion of Skip Graph, which enables
nodes to possess multiple keys. Each node (hereafter, called a physical node) inserts its
keys onto Skip Graph as virtual nodes. Virtual nodes created from the same physical
node have an equivalent membership vector, namely membership vectors are unique to
physical nodes.

If a query is forwarded among virtual nodes in the same way as normal Skip Graph,
there is a possibility that the query passes through one physical node multiple times. To
avoid an increase in hops by such possibility, Multi-key Skip Graph includes an efficient
routing mechanism called multi-range forwarding.

In multi-range forwarding, a query with its target range R is forwarded as follows:
when a virtual node whose key is outside R receives the query, the virtual node selects
one from the virtual nodes of its physical node on the basis of proximity to R, and hands
the query over to it. If the nearest is itself, it processes forwarding in the same way as
normal Skip Graph. When a virtual node whose key is within R receives the query, the
virtual node divides R into subranges by the keys of its physical node. The query is
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duplicated, and forwarded with each subrange instead of R to other physical nodes.
Figure 2.12 shows an example. There are three physical nodes whose membership

vectors are 00, 01, and 10. When the virtual node, whose key is 0, receives a query
of target range 0 ≤ key ≤ 6, the range is divided into three subranges: A, B, and C.
Subrange B and C are forwarded to physical node 01 from 00, then are divided into
subranges: B into B1 and B2, C into C1 and C2. Finally, subrange C2 is forwarded to
physical node 10 from 01 and divided into C2α and C2β.

By these rules, each physical node having virtual nodes within a target range receives
the same query only once. The path length of forwarding queries is O(logN), where N

is the number of physical nodes but not virtual nodes.
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3
Distributed Pub/Sub Method

Using Structured Overlay Networks

In this chapter, we illustrate our method of distributed pub/sub messaging using struc-
tured overlay networks.

Although there are some existing studies of topic-based pub/sub systems based
on structured overlay networks, they have the problem of wasting network resources
because of lacking adaptability to the “data exhaust”. The problem contains two aspects.
One is that each publisher node continues to forward messages to a relay node even
if there are no subscribers. The other is that excessively large multicast trees are
constructed for topics which have only a small number of subscribers.

Our method regulates publishers and subscribers of the same topic to compose con-
nected subgraphs. This provides not only shrunk multicast trees but also enabling pub-
lishers to detect the absence of subscribers and suspend sending messages. We confirm
the effectiveness of the proposed method quantitatively by simulation experiments.
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3.1 Related Work

In this section, we provide an explanation of current methods of topic-based pub/sub
systems using structured overlay networks [Castro et al. 2002; Zhuang et al. 2001; Rat-
nasamy et al. 2001b; Zhao et al. 2013]. These methods use DHTs in common and have
been proposed as application layer multicast (ALM), where multicast groups correspond
to topics in topic-based pub/sub.

3.1.1 Topic-based Pub/Sub Method using DHT

Scribe [Castro et al. 2002] is a method of topic-based pub/sub using Pastry [Rowstron
and Druschel 2001]. In Scribe, nodes form a tree for every topic. Each topic has a
unique ID computed from a topic name by using a hash function, e.g., SHA-256. A node
responsible for the ID on the Pastry network becomes the root node of the tree of that
topic. The root node is called the rendezvous point while the other nodes of the tree are
called forwarders. A node that attempts to subscribe to a topic sends a JOIN message
towards the rendezvous point, according to the routing protocol of Pastry described
in Section 2.2.2. A node that receives the message adds the information of the sender
node to its children table. If it had not been a forwarder of the topic before receiving
the message, it forwards the JOIN message towards the rendezvous point. Therefore,
the multicast path from the rendezvous point to the joining node is constructed in
the reverse order of the routing path of Pastry as shown in Figure 3.1. Publishers of
the topic send messages towards the rendezvous point whose address can be found by
using the normal routing protocol of Pastry. Publishers can cache the address and send
messages to the rendezvous point directly. Published messages are forwarded along the
tree and delivered to all the corresponding subscribers.

Bayeux [Zhuang et al. 2001] is built on top of Tapestry [Zhao et al. 2004] and realizes
topic-based pub/sub in a similar way to Scribe. The primary difference is that Bayeux
uses the forward-path forwarding scheme, while Scribe uses the reverse-path forwarding
scheme [Zhang and Hu 2003]. In Bayeux, a node attempting to subscribe to a topic
sends a JOIN message towards the root node, and each intermediate node in the path
from the joining node to the root node simply forwards the message. When the root
node receives the message, it sends a TREE message towards the joining node. Each
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Figure 3.1: Topic-based pub/sub by Scribe.

node in the path from the root node to the joining node registers the joining node in
its table.

CAN-MC [Ratnasamy et al. 2001b], built on top of CAN [Ratnasamy et al. 2001a],
has presented a somewhat different style compared to the above two methods. CAN-MC
consists of two types of CAN networks: the entire CAN and the mini CAN. The entire
CAN is joined by all of the nodes and provides the function of looking up an introducer
node, which is specific for each topic. The mini CAN is constructed for each topic
independently and joined by the nodes of the topic. A published message is delivered
by flooding over the corresponding mini CAN as follows:

• A publisher sends a message to all its neighbors.

• Each node receiving the message from its neighbor along dimension i forwards it
to nodes as follows: the neighbors along dimension 1 to (i− 1), and those along
dimension i in the opposite of the receiving direction.

• Each node does not forward the message along a particular dimension if it has al-
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ready traversed at least half-way across the space from the publisher’s coordinates
along the dimension.

• Each node caches the sequence number of messages and does not process a dupli-
cated message.

DYNATOPS [Zhao et al. 2013] is an approach to extend rendezvous-based pub/sub
methods like Scribe or Bayeux by using following two dynamic mapping algorithms.

• Similarity-based user placement

• Broker network reconfiguration

The former is an algorithm which aims to map users with similar subscriptions
to nearby brokers. It is useful for reducing the subscription management overhead at
brokers. This algorithm can also be applied to our approach, but it is out of the scope
of this dissertation. The latter is an algorithm for dynamic reconfiguration of overlay
networks of brokers, which aims to reduce the unrelated relay brokers on topic routing
trees. The goal of this algorithm is somewhat similar to our research which succeeds in
eliminating unrelated relay brokers. One of the major differences is that DYNATOPS
drives the reconfiguration process with overhead subsequent to the establishment of
topic routing trees.

3.1.2 Inadequacy for Handling Data Exhaust

In the edge-based architecture, it is preferable that the pub/sub messaging works effi-
ciently even when the number of subscribers is small or zero, because data exhaust has
low value densities as described in Chapter 1. However, conventional methods have the
following inefficiencies for handling data exhaust, though they achieve high scalability.

Forwarding Messages Towards Absent Subscribers

Conventional methods cannot suspend publishing even if there are no subscribers. In
Scribe and Bayeux, publishers have no way to detect the absence of subscribers, and
have to continue to constantly send messages towards the root node of the corresponding
topic. Even in DYNATOPS, there is the same problem. In CAN-MC, nodes join the
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mini CAN of the topic of interest without any distinctions between subscribers and
publishers. As a result, each publisher is forced to continue to flood messages as long
as there are other publishers.

Excessively Long Forwarding Path for Small Topic

Scribe and Bayeux construct a multicast tree for each topic. The path length from the
root node to each subscriber is the same as the path length of finding other nodes in
Pastry and Tapestry, namely O(logN) where N is the number of entire nodes. Because
this length does not depend on the number of nodes that are of the topic, published
messages are forced to be forwarded along the excessively long path even if there are
only few subscribers. This wastes network resources and increases the delay time of
delivery.

Figure 3.2 illustrates this problem. As a primitive consideration, a heavy load
is applied to the root node if it undertakes forwarding messages to all corresponding
subscribers, as shown in the upper left of the figure. Scribe and Bayeux construct
multicast trees to avoid this heavy load, as shown in the lower left of the figure. However,
when there are only few subscribers, these methods force messages to be forwarded
along the trees that have the same depth as the case of numerous subscribers (see the
lower right of the figure). Regarding the case of few subscribers, the zero-hop delivery
described in the upper right of the figure can forward more economically. It is also
thought that most of the topics usually have few subscribers because of the low value
density of data exhaust.

Thus, an efficient method is preferred, which achieves both economical forwarding
for few subscribers and load distribution for numerous subscribers.

3.2 Topic-based Pub/Sub Method Using Skip Graph

We first clarify the requirements for overcoming the problems described in Section 3.1.2.

• To prevent the forwarding towards absent subscribers, it is required that pub-
lishers can detect the switching between corresponding subscribers’ absence and
presence.
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Figure 3.2: Difference in the load and latency of forwarding
by the number of subscribers.

• To prevent the excessively long forwarding path, it is required to shorten the
path length for a small number of subscribers, while maintaining efficient load
distribution of dissemination for a large number of subscribers.

Each requirement can be met in simple ways, such as broadcasting queries to deter-
mine the presence of subscribers, switching delivery mechanisms as shown in Figure 3.2
for each topic, and so on. However these ways lack the global perspective and lead to
other inefficiencies, e.g., negative effect on scalability.

In this section, we propose a method for constructing overlay networks that satisfy
the above requirements by using Skip Graph [Aspnes and Shah 2007]. Subsequently, we
describe the mechanism of suspending publishing on the constructed overlay networks.
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3.2.1 Overview

As mentioned in Section 2.2.4, nodes in Skip Graph are sorted by keys, i.e., the set of
keys must be totally ordered set. In this sections, we use the notation below for the key
of ith node:

keyi = {subkeyj | j = 0, 1, 2, . . . , k} where k ≥ 0

The order of keys is determined by the order of subkeyj . That with a smaller value
of j has higher priority to decide the order. For instance, if k = 2 and each subkeyj

is a character string whose order is lexicographic order, we can use a character string
“subkey0_subkey1_subkey2” as the key.

We first assume that each node possesses the names of topics of interest as a sub-
scriber or a publisher. By using the names as subkey0 and constructing Multi-key Skip
Graph, topic-based pub/sub is possible. Publishers can deliver messages to subscribers
by range queries of Multi-key Skip Graph.

We also use the type of nodes, i.e., a subscriber or a publisher, as subkey1. Accord-
ingly, in addition to the fact that the units of every topic are sorted, units of every
node type (subscriber or publisher) are also sorted inside the topic units at level 0 as
shown in Figure 3.3. In this figure, GS

ti denotes a subgraph induced by nodes which are
subscribers of the topic ti, whereas GP

ti denotes a subgraph induced by nodes which are
publishers∗. rp(ti) denotes the rendezvous point, described later in Section 3.2.1.

Furthermore, to make keys being totally ordered set, keys of nodes need to have
subkey2 which are unique among nodes. For example, this is possible by using the IP
address or the MAC address of each node.

Note that nodes possessing multiple combinations of topics and types can partic-
ipate in this overlay network by having multiple virtual nodes corresponding to the
combinations. On the other hand, nodes possessing no combinations of them can
participate in this overlay network by having a virtual node with predefined key like
“default_key_< random number >”. This key must be defined so that it will not
conflict with other keys.

Since the proposed method utilizes the topology of Skip Graph, we can easily add
or remove nodes by using the join/leave mechanisms of Skip Graph. This feature con-

∗ Strict definitions are described in Section 3.3.2.
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Figure 3.3: Ordered relation of nodes in the proposed method

tributes to that a service vendor using our method can increase or decrease the number
of edge brokers in response to the changes in the service scale.

Publish, Subscribe, Unsubscribe

When a publisher sends a message to a topic t, the range search mechanism of Multi-key
Skip Graph is used with the target range of GS

ti . The process of subscribing/unsubscrib-
ing is possible by the insertion/deletion mechanisms of virtual nodes in Multi-key Skip
Graph (essentially similar to those of Skip Graph).

Definition of Rendezvous Point

For ∀t ∈ T , it is ensured that there exists a unique publisher contiguous to GS
t at level

0 as long as one or more publishers of t exist. We call this publisher a “rendezvous
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point” with an expression of rp(t). For example, the position of the rendezvous point of
topic ti is illustrated in Figure 3.3. rp(t) can conclude whether subscribers are absent
without any meta information about topic t. Specifically, if the only neighbor v of rp(t)
at level 0 in the direction of GS

t satisfies

v ∈ Sub(t),

there are one or more subscribers. Otherwise, there are no subscribers.
When a new publisher is inserted between rp(t) and GS

t , the new publisher takes
the place of the rendezvous point thereafter. On the other hand, when an existing rp(t)

leaves topic t and there are other publishers, the neighbor of rp(t) at level 0 in the
direction of GP

t takes over the position of the rendezvous point.

Suspending and Resuming

Suspending and resuming according to the switching between subscribers’ absence and
presence is possible by the rendezvous point, which is responsible for detecting the
switching and notifying other publishers. Figure 3.4 and Figure 3.5 show flow charts
regarding the behavior of rp(t).

When all subscribers of topic t leave, rp(t) can detect it passively by using a handler
which catches the update of routing tables of Multi-key Skip Graph. When rp(t) detects
the absence of subscribers, it sends a signal dictating suspension to publishers, by using
the range search mechanism with the target range of GP

t , as described in Figure 3.4.
Conversely, when new subscribers appear in topic t, which has had no subscribers,

rp(t) can detect it passively in the same way and is responsible for sending a signal
dictating resuming to publishers (see Figure 3.5).

Inserting Publishers

Newly joining publishers need to conclude whether they should start publishing imme-
diately after finishing participation†.

† Concerning a node which is both a subscriber and publisher of a topic, such node just needs
to insert a virtual node only into GS

t and continue publishing towards GS
t . The reason is that

there exist both subscribers and publishers as long as the node itself is alive. Therefore, such
node can be irrelevant to suspending/resuming mechanisms.
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Publisher 𝑃2
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Figure 3.4: Flow chart with respect to switching publishers’ behavior
(Suspending).

In case that there has been any publisher of the corresponding topic, the joining
publisher is certain to exchange messages with at least one existing publisher in the
process of inserting in Multi-key Skip Graph. In the proposed method, information
about the suspending status is piggy-backed on the messages, and the joining publisher
determines the correct status by checking it.

33



Subscribe:
𝑇

Join
Skip Graph

Update routing 
table

𝑃1 is 𝑟𝑝 𝑇

𝑃1 is 
suspending

Send signal
to 𝐺𝑇

𝑃

Resume
publishing

Resume 
publishing

Receive signal

Yes

No

No

Yes

Start

Subscriber 𝑆1
(Topic: 𝑛𝑜𝑛𝑒)

Publisher 𝑃1
(Topic: 𝑇)

Publisher 𝑃2
(Topic: 𝑇)

End

Figure 3.5: Flow chart with respect to switching publishers’ behavior
(Resuming).

If there were no publishers, the joining publisher will be the rendezvous point. Hence,
it can determine the correct status by itself after finishing insertion.

Figure 3.6 is a flow chart regarding node insertions including the above mechanisms.
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Figure 3.6: Flow chart of node insertion.

Eliminating Inconsistencies

In the proposed method, two types of inconsistencies described below can occur by the
undelivered signals from rendezvous points caused by the sudden disappearance of nodes
on the notifying path.

1. There exists a publisher continuing to publish even if there are no subscribers.

2. There exists a publisher suspending even if there are subscribers.
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Table 3.1: Analytical comparison with existing methods.

Suspend publish Path length Storage cost
Proposed 3 O(log(pubt + subt)) O(pubt+subt

N
M logN)

Scribe/Bayeux 7 O(logN) O(pubt
N

M + subt
N

M logN)

CAN-MC 7 O(d(pubt + subt)
1/d) O(pubt+subt

N
Md+ d)

These inconsistencies can occur on every publisher, except for rendezvous points.
We describe the solutions for the inconsistencies.

In 1, a published message from a publisher of topic t is certain to pass through
rp(t) as long as there are no subscribers. When rp(t) receives a message from other
publishers during suspend, rp(t) checks the absence of subscribers and sends a signal
dictating suspension to the source publisher.

In 2, on the other hand, each publisher that is suspending actively confirms the
status concerning the suspension of the neighbor at level 0 by periodically sending a
dedicated message. As a result of the confirmation, if there is a conflict between the
status of the neighbor and itself, the publisher sends a reporting message towards rp(t).
When rp(t) receives the report, it checks the presence of subscribers and sends a signal
dictating resuming to GP

t .

3.2.2 Analytical Assessment

We give an analytical assessment of the proposed method in comparison with the meth-
ods described in Section 3.1.1‡. We assume the following notations: M denotes the
number of topics, N denotes the number of nodes, pubt denotes the number of pub-
lishers per topic, subt denotes the number of subscribers per topic, and d denotes the
number of dimensions in CAN. To simplify, we also assume that each node is not both
a subscriber and publisher of the same topic.

Table 3.1 shows the comparison of the methods. “Suspend publish” denotes the
ability to suspend publish messages. Only the proposed method has this ability.

“Path length” denotes the maximum length of paths from publishers to subscribers.
‡ In this section, we refer to Scribe, Bayeux, and CAN-MC. As for DYNATOPS, the funda-

mental property is considered to be same as Scribe and Bayeux.
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The proposed method needs
O(log(pubt + subt)),

because a published message of topic t is forwarded over the subgraph which consists of
GS

t and GP
t . Scribe/Bayeux uses lookup paths of DHTs, so the path length is

O(logN).

CAN-MC requires
O(d(pubt + subt)

1/d),

due to flooding over the corresponding mini CAN. Because the path length of the
proposed method does not depend on N unlike Scribe/Bayeux, it can reduce the con-
sumption of network resources and the delay time of delivery, especially regarding topics
having a small number of participants. CAN-MC also excludes N , and its path length
depends on d which can adjust the tradeoff between the path length and storage cost.

“Storage cost” denotes the average size of routing tables of all nodes. This cost
affects the consumption of memory and the maintenance overhead on each node. With
the proposed method, each publisher or subscriber is inserted onto Multi-key Skip Graph
as a virtual node which must have

O(logN)

neighbors in the routing table. Here, the total number of virtual nodes is

(pubt + subt)M,

which means that each physical node has

(pubt + subt)M

N

virtual nodes on average. Thus, the average size of routing tables is

O(
pubt + subt

N
M logN).
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Regarding Scribe/Bayeux, each subscriber forces intermediate nodes on the forwarding
path to possess children tables. This storage cost is

O(
subt
N

M logN)

on average. Besides this, each publisher caches the root node of the corresponding topic,
then the average cost is

O(
pubt
N

M).

Accordingly, the total average cost is

O(
pubt
N

M +
subt
N

M logN).

With CAN-MC, each publisher or subscriber is inserted onto mini CAN with the cost
of

O(d),

so the average cost is
O(

pubt + subt
N

Md).

Each node also composes the entire CAN, thus

O(
pubt + subt

N
Md+ d)

is required as a whole. The proposed method requires slightly large cost compared to
Scribe/Bayeux, but is not extremely inferior. Concerning CAN-MC, the cost depends
on d.

There is another viewpoint that should be discussed. Node(s) that are responsible for
the storage cost are different between the methods. Regarding the proposed method and
CAN-MC, when a subscriber or publisher is added, the joining subscriber or publisher
itself is responsible for the storage cost. Some other nodes are forced to update routing
tables, but no one is basically forced to increase the size of its routing table except for
the joining node. On the other hand, with Scribe or Bayeux, the joining of a subscriber
or publisher forces intermediate nodes on the forwarding path to take responsibility of
the storage cost. This seems to be preferable from the viewpoint of load distribution,
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but it also means that each node cannot predict its forwarding load. In other words,
the fact that multiple nodes are responsible for storage cost may lead to inconvenience
in terms of the load predictability. The details will be discussed later with experimental
results, in Section 3.4.3.

3.3 Desirable Design of Overlay Networks

In this section, we give discussions about the desirable design of overlay networks for
distributed pub/sub systems, based on the idea of the proposed method.

3.3.1 Relay-free Property

A property called “relay-free”, also called “Topic-connected Overlay”, has been proposed
as an effective design of overlay networks [Chockler et al. 2007]. It is primarily discussed
in studies based on unstructured overlay networks [Setty et al. 2012]. The definition is
as follows:

Given a set of nodes V and a set of topics T , we define sets of nodes
Pub(t) ⊆ V and Sub(t) ⊆ V with a topic t ∈ T as input. Pub(t) is a set
of nodes which are publishers of a topic t, whereas Sub(t) is a set of nodes
which are subscribers of a topic t. We also define a set of nodes Int(t) ⊆ V

as follows:
Int(t) = Pub(t) ∪ Sub(t).

Given an overlay network:

G = (V,E) where E ⊆ V × V ,

G is relay-free if a subgraph

Gt = (Vt, Et) where Vt = Int(t) and Et = Vt × Vt ⊆ E

is connected for all t ∈ T .

In overlay networks that satisfy the relay-free property, a published message is for-
warded only between nodes that are interested in the corresponding topic. It is expected
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that this property can contribute to shortening the path length for topics that have a
small number of subscribers, because the diameter of the subgraph corresponding to
each topic should become shorter in response to the decrease in subscribers.

The proposed method is relay-free, because it is ensured that subscribers and pub-
lishers joining the same topic are contiguous at level 0 in Skip Graph. Out of the existing
methods explained in Section 3.1.1, CAN-MC also satisfies this property.

3.3.2 Strong Relay-free Property

Satisfying the relay-free property provides suitability for shortening path length, but it is
still difficult for publishers to determine whether there is any corresponding subscriber.
By introducing the distinction between subscribers and publishers into the relay-free
property, we can express the essentials of the ability to suspend publish messages in
the proposed method. Accordingly, we newly define a desirable property called “strong
relay-free” as an expansion of the relay-free property.

The definition is as follows, where T, Pub(t), Sub(t), G,E,Gt have the same mean-
ings as above.

An overlay network G is strong relay-free if all the following three con-
ditions are satisfied for all t ∈ T :

• A subgraph

GS
t = (V S

t , ES
t ) where V S

t = Sub(t) and ES
t = V S

t × V S
t ⊆ E

is connected.

• A subgraph

GP
t = (V P

t , EP
t ) where V P

t = Pub(t) and EP
t = V P

t × V P
t ⊆ E

is connected.

• A subgraph Gt is connected.

In the overlay network constructed by the proposed method, subscribers and publish-
ers of each topic are contiguous respectively at level 0, and the subgraph of subscribers
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and that of publishers are also contiguous. Thus, it satisfies the strong relay-free prop-
erty.

In overlay networks satisfying the strong relay-free property, subscribers of each
topic compose a connected subgraph. This means that the presence or absence of
subscribers is synonymous with that of one subgraph. This is suitable for detecting the
absence of subscribers under the constraint that each publisher has information only on
its neighbors. Specifically, a publisher at the connection boundary between GS

t and GP
t

seems possible to conclude whether subscribers are absent by checking only its neighbors.
Furthermore, publishers of each topic also compose a connected subgraph, so one can
easily disseminate the information about the absence of subscribers to others.

3.4 Evaluation

We evaluated our method through experiments with a simulation program implemented
in Java. This section gives the details of each experiment and its results.

As mentioned in Section 1, we are aiming to provide techniques for the distributed
pub/sub middleware which requires high throughput. Therefore, we evaluate the pro-
posed method from two viewpoints having a large influence on the throughput: the
number of messages exchanged on the overlay network, and the length of the forward-
ing path. The less messages required for processing a one publish message, the more
messages per unit time (i.e., the throughput) we can expect that the whole distributed
system composed by the middleware can handle. Regarding this relation between the re-
quired number of messages and the throughput, we also discuss later in Section 5.6. The
length of the forwarding path is also important because it directly affects the number of
messages exchanged on the overlay network. In addition, we also evaluate regarding the
load of each node by measuring the correlation between the number of sending/receiving
and forwarding messages, and the size of routing tables.

We chose Scribe as the comparison target in these experiments, mainly because its
idea can be applied on top of any DHTs. Skip Graph can be used to construct a DHT
by using a kind of routing which is referred to as “Routing by Numeric ID” in Skip-
Net [Harvey et al. 2003]. Indeed, this type of DHT is implemented by PIAX [Teranishi
2009]. Using a DHT on top of Skip Graph is convenient for harmonizing the experimen-
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tal conditions such as the size of routing tables with the proposed method§. Therefore,
we implemented Scribe on top of Skip Graph in the simulation program.

Note that our experiments were aimed to show essential tendencies because the
actual performance is affected by parameters, e.g., the radix of membership vectors can
adjust the tradeoff between the path length and size of routing tables.

3.4.1 Number of Messages Associated with Publishing

To confirm the ability to suspend publishing, we measured the number of forwarded
messages on the overlay network with several numbers of subscribers including zero.
The simulator generated 100, 000 nodes and constructed an overlay network regarding
the proposed method and Scribe respectively.

We determined this number of nodes by considering a rough estimation of large
scale systems: The largest services today have billions of users. If we assume each user
send or receive one message per second, the required throughput is billions of messages
per second. As shown in Section 5.6.1, existing products of the broker of a lightweight
protocol can handle tens of thousands of messages per second. Therefore, we set 100, 000
nodes to compose the overlay network.

We set a topic with the following two patterns:

• A topic has 100 publishers and 1, 000 subscribers.

• A topic has 10 publishers and 1, 000 subscribers.

The simulator made subscribers unsubscribe in turns. At the timing of that the
number of subscribers matches 1, 000, 100, 10 and 0, the simulator forced publishers of
the topic to publish a message and counted the number of messages forwarded on the
overlay network.

Figure 3.7 and Figure 3.8 shows the results of the averages of five repeated mea-
surements. The term “p/t” in them denotes the number of publishers per topic. From

§ Bayeux can also be built on top of any DHTs, unlike that CAN-MC is specialized for
using CAN. But Bayeux has almost the same characteristics as Scribe from the viewpoint of the
experiments described in this section, i.e., the number of messages, the length of the forwarding
path and the correlation between the number of sending/receiving and forwarding messages.
Therefore, we have chosen Scribe which was proposed later than Bayeux.
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Figure 3.7: Number of messages associated with publishing.
(Number of subscribers is more than 0)

Figure 3.7, the number of messages becomes large according to the number of publish-
ers or subscribers in both methods. The number of messages of the proposed method
is smaller by approximately one digit than Scribe. This result is due to the difference
of the length of forwarding path. In the proposed method, the length depends on the
number of participants of the corresponding topic. On the other hand, the length in
Scribe depends on the number of whole nodes, thus longer paths which cause a lot of
messages are constructed. Experiments for confirming the difference of the path length
will be described in Section 3.4.2.

Figure 3.8 is in the case of the number of subscribers is 0, and it indicates the number
of messages drops to 0 regarding both patterns of the proposed method. Regarding
Scribe, messages are forwarded even if the number of subscribers is 0.
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Figure 3.8: Number of messages associated with publishing.
(No subscriber)

Table 3.2: Patterns of the experiment.

pubt subt Number of total nodes
α 10 990 1, 000 or 10, 000 or 100, 000

β 500 500 1, 000 or 10, 000 or 100, 000

γ 990 10 1, 000 or 10, 000 or 100, 000

δ 1 9 1, 000 or 10, 000 or 100, 000

ϵ 5 5 1, 000 or 10, 000 or 100, 000

ζ 9 1 1, 000 or 10, 000 or 100, 000

3.4.2 Length of Forwarding Path of Publishing

We also evaluated the effectiveness against gratuitous forwarding mentioned in Sec-
tion 3.1.2. In this experiment, we calculated the average length of paths from each
publisher to each subscriber. Here pubt and subt denote the same as described in Sec-
tion 3.2.2.
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Figure 3.9: Length of forwarding path of publishing (Proposed method).

In this experiment, every topic was the same size, i.e., the sum of the number of
publishers and subscribers was equivalent. We assumed two topic-sizes: small and large.
We also assumed three combinations of pubt and subt: pubt < subt, pubt = subt, and
pubt > subt. Thus, we set six patterns in total, as listed in Table 3.2. Each pattern
had three different node amounts, 1, 000, 10, 000 and 100, 000. The number of topics
in each pattern was keyed to the number of nodes, i.e., it can be obtained by dividing
“Number of total nodes” by the sum of pubt and subt. For example, the number of topics
in pattern α was 10 when the number of nodes was 10, 000.

The simulator constructed overlay networks for every pattern and calculated the
average length of the forwarding path from a publisher to every corresponding subscriber
for all publishers.

Figure 3.9 and Figure 3.10 show the results. Regarding the proposed method, Figure
3.9 illustrates that the path length was not affected by the total number of nodes and
was decreased in response to the reduction of the size of topics. This means the proposed
method has high scalability for the increase in the total number of nodes and can prevent
gratuitous forwarding. On the other hand, the results for Scribe shown in Figure 3.10
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Figure 3.10: Length of forwarding path of publishing (Scribe).

indicate that the path length is not affected by the size of topics, which causes gratuitous
forwarding.

For example, when focusing on patterns of δ, ϵ and ζ with 100, 000 nodes, the path
length is less than 4 hops in the proposed method while Scribe requires more than four
times the hops (16 hops). The path length affects the latency between publishers and
subscribers, and also the number of messages as shown in Section 3.4.1.

Focusing on the pattern α of which the path lengths are most similar between the
proposed method and Scribe, we also confirmed the cumulative distribution function
(CDF) of path length as shown in Figure 3.11. It can be seen that there was no significant
difference between the two curves, i.e., the above convenient features of the proposed
method do not cause a serious undesirable effect on the distribution of path length.

3.4.3 Predictability of Load of Edge Brokers

We focused on the correlation between the number of sending/receiving and forwarding
messages. This viewpoint is important for predicting the load of each node, namely
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Figure 3.11: CDF of path length of pattern α.

edge broker.
In distributed pub/sub using structured overlay networks, each node is responsible

for forwarding messages to relevant succeeding destinations. The forwarding load is
determined according to properties of topics which the node is on the paths of. For
example, the load must be heavy regarding a node responsible for forwarding messages
of a topic whose publishers frequently send large amounts of data. The forwarding load
is closely related to routing tables, which store the forwarding path information on each
node. The information is registered on nodes in a different way for every method, as
described in Section 3.2.2.

If the forwarding load correlates with the transmission load as publishers or receiving
load as subscribers, each edge broker can easily predict the necessary specifications of
hardware resources. For instance, if there is a device attempting to subscribe to a topic
of video streaming, an edge broker which the device joins will be under a heavy load
and should be strengthened.

Conversely, if the forwarding load does not correlate, it is difficult to predict from
local information. Such a case is unsuitable when it is assumed that edge brokers
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compose autonomous distributed networks such as the Internet, namely edge brokers
are not managed by a single enterprise intensively but are arbitrarily added/removed
by various enterprises or individuals.

In this regard, we conducted an experiment in which the simulator counts the num-
ber of forwarding and sending/receiving messages for every node. Precisely, “number of
forwarding” is the number of times that a physical node forwards a message to others,
including the initial hops from publishers. “number of sending” is the number of times
that a publisher sends a message created on itself. “number of receiving” is the number
of times that a subscriber receives a message associated with the topic the subscriber is
subscribing to.

The conditions of this experiment are as follows: pubt was 1 and subt was 1, 000.
The number of topics was 100, thus the total number of nodes was 100, 100. The
100 publishers joining different topics were assigned different time intervals of sending.
The intervals were calculated so as to make the number of transmissions during the
simulation period become 1, 2, ..., 100.

The simulator constructed overlay networks with the above conditions, and forced
publishers to publish at respective intervals. After completion of counting the number
of forwarding and sending/receiving, we normalized the data. The normalizing function
for a data x in a data set X is as follows:

Normalize(x) =
x−min(X)

max(X)−min(X)

Figure 3.12 shows the results obtained by plotting all publishers, and Figure 3.13
shows those by plotting 1, 000 subscribers which are randomly selected from all of sub-
scribers. Regarding the proposed method, both the number of sending and receiving
messages are clearly correlated with the number of forwarding messages. In Figure 3.13,
nodes of the proposed method are plotted linearly on three different angled lines. This is
because of the characteristic of multi-range forwarding in Multi-key Skip Graph, which
forces each node to forward at most twice for each dissemination of a published message¶.
In contrast, the results of Scribe indicate that there are no correlations.

¶ Specifically, the forwarding paths in Multi-key Skip Graph compose incomplete binary trees.
Each root node or intermediate node has one or two children, and each leaf node has no child.
This is why each node forwards a message at most twice.
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Figure 3.12: Correlation between the number of sending and forwarding.

The correlation coefficients and their confidence intervals at the 99% level were
calculated‖, as shown in Table 3.3. Note that the confidence interval of proposed method
in Figure 3.12 is written as N/A because the Fisher transformation cannot be applied
on the correlation coefficient value of 1.0.

Considering practical applications, it is natural that the frequency of publishing
is unbalanced. For example, Twitter is a famous and large service based on pub/sub
messaging. It has been reported that the number of tweets for every user follows the
power law distribution, and 20% of users account for 84% of tweets [Welhuis]. Scribe
or similar methods receive a negative effect from such an imbalance in terms of load
predictability. In fact, there was a node that was forced to forward more than one
thousand times the number of receiving count regarding Scribe in the experiment. In
contrast, nodes in the proposed method forwarded at most twice the number of receiving
count.

‖ We used original data before normalization. Regarding Figure 3.13, we used all of the data,
not sampled data.
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Figure 3.13: Correlation between the number of receiving and forwarding.

Table 3.3: Correlation coefficients and confidence intervals.

Correlation
coefficients 99% Confidence intervals

Figure 3.12 - proposed 1.0 N/A
Figure 3.12 - Scribe 0.1310 −0.1290 ≤ ρ ≤ 0.3742

Figure 3.13 - proposed 0.5483 0.5426 ≤ ρ ≤ 0.5540

Figure 3.13 - Scribe −0.0045 −0.0126 ≤ ρ ≤ 0.0037

3.4.4 Size of Routing Tables

Furthermore, we conducted experiments for observing the size of routing tables on each
node. Routing table size affects maintenance cost including the consumption of memory
space.

At first, we focused on the transition of the average size of routing tables in response
to the number of topics which each node publishes or subscribes to. The simulator
constructed overlay networks with 100, 000 nodes. Half of them joined as publishers,
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Figure 3.14: Size of routing tables.

and the remaining half joined as subscribers. Each node published/subscribed to specific
number of topics uniformly: 2, 4, 6, 8 and 10. The topics are randomly selected from
predefined 1, 000 topics. For each number of topics, the simulator calculated the average
number of entries in routing tables of each node.

Figure 3.14 shows the result. For each method (“Proposed” or “Scribe”), the sim-
ulator counted two kinds of numbers: allow or disallow redundancy. In the legend of
the graph, “w/o redundancy” denotes that the simulator counted the number of unique
physical nodes in routing tables. The other data series which “w/o redundancy” is not
attached to show the results of counting the number of entries in routing tables by
allowing redundancy. The number of unique physical nodes in routing tables affects a
kind of maintenance cost, when each node actively checks the existence of neighbors,
i.e., periodically sends messages to them for confirming their activity.

In the Figure, the absolute values of the vertical axis of the proposed method are
larger than Scribe, but the values do not increase intensively because they change lin-
early with the number of topics just like Scribe. Note that the proposed method based
on Skip Graph can reduce the size of routing tables with a trade-off of the increase of
the path length, by configuration of the base number of a logarithm.
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Subsequently, we focused on the CDF of the size of routing tables, to confirm the
difference of the responsibility for the storage cost which is described in Section 3.2.2
and 3.4.3. The simulator constructed overlay networks with 1, 000 nodes, which all
joined as subscribers. The number of topics to which each node subscribed was decided
by selecting one from 1 to 1, 000 without duplication. The topics on each node were
different one by one. The simulator counted the number of entries in routing tables of
each node by allowing redundancy.

The obtained data were normalized by the function described in Section 3.4.3, and
plotted as shown in Figure 3.15. It can be seen that the percentage of nodes in the
proposed method is linearly increased compared to Scribe. This is caused by a charac-
teristic by which the storage cost of a node is sensitive to the number of topics to which
the node subscribes. On the other hand, in Scribe, the storage cost is shared among
nodes. It leads to difficulty regarding load predictability as described in Section 3.2.2.
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3.5 Conclusion of This Chapter

In this chapter, we proposed a method using Skip Graph which regulates publishers and
subscribers of the same topic to compose connected subgraphs so that publishers can
detect the absence of subscribers and suspend sending messages.

The proposed method utilizes a single overlay network to provide the pub/sub func-
tionality, so that it is relatively easy to implement. There could be another approach
where an overlay network is used as an infrastructure and a small overlay network
for every topic is constructed onto it, but such approach makes implementation more
complex. In particular, the mechanism of recovery from failure of nodes becomes com-
plicated, since the influence on all of the overlay networks and connections among them
must be considered. This leads to the lowering of fault tolerance or the increase of the
maintenance cost, such as replicating some information additionally. In the case that
above demerits are allowed, the approach of constructing multiplex overlay networks
may have some advantages, e.g., flexibility in the topology. Since the easiness of im-
plementation, the fault tolerance and the maintenance cost are generally essential for
developing applications, clarifying the effectiveness of this sort of approach is out of the
scope in this dissertation; it is one of the open issues.

From the results of simulation experiments, we confirmed that the above character-
istics worked effectively with the proposed method and the path length of the proposed
method was shorter than that of Scribe. It was also shown that the proposed method
could predict the forwarding load, which Scribe could not.

As described in Section 1, the middleware we are aiming at is required to have high
throughput. The proposed method in this chapter enables the middleware on the edge
brokers to compose an autonomous distributed pub/sub system, and can achieve higher
throughput than existing methods.
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4
Improvement of Latency

In this chapter, we discuss issues of the latency. Although the proposed method de-
scribed in Chapter 3 brings about high scalability and throughput, it involves the
increase of the required time from publishers to subscribers. This could impair the
advantage of real time dissemination of pub/sub messaging.

The distributed pub/sub middleware we are aiming at is expected to achieve low
latency in addition to high throughput as mentioned in Section 1. Therefore, we present
two techniques for improvement of latency; a routing algorithm of Skip Graph, and a
formulation regarding client assignment strategies.

4.1 Routing Algorithm of Skip Graph

In Skip Graph, each node has a key and can issue a query by specifying a target range
in the key space. Issued queries are delivered to nodes whose keys are included in the
range.

Although Skip Graph enables a query to be delivered to one of the nodes inside the
target range efficiently, it does not have definite methods of delivering the query to all
nodes within the range from that node. Several simple ways, e.g., sequential forwarding,
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can be considered as mentioned in [Beltran et al. 2008], but they are inefficient from
the viewpoint of the latency or traffic volume.

Accordingly, we propose a novel algorithm named Split-Forward Broadcasting (SFB).
It improves the average number of hops of Multi-Range Forwarding (MRF) used in
Multi-key Skip Graph, which is described in Section 2.2.5.

4.1.1 Related Work

Beltran et al. [Beltran et al. 2008] have compared some methods of handling range
queries with respect to the average number of messages and hops. The compared meth-
ods are as follows:

Sequential
Queries are forwarded along the doubly linked list at level 0, until the upper or
lower bound of the range is found.

Broadcasting w/o memory
Each node within the range forwards the received queries to all its neighbors
within the range.

Broadcasting w/ memory
It is an improvement in the number of messages of the broadcasting w/o memory
method. Each message stores the list of nodes that have been visited so that it
is avoided that nodes within the range receive the query several times.

Tree-based
Queries are forwarded by using links which are peculiar to Skip Tree Graph [Bel-
tran et al. 2007].

The tree-based method assumes that there are additional links which are defined in the
algorithm of Skip Tree Graph. We consider methods of handling range queries on normal
Skip Graph for versatility, so this method is outside the scope of this dissertation.

The sequential method takes expected

O(NR + logN)
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messages and hops, where NR is the number of nodes within the target range R. On
the other hand, both broadcasting methods require

O(NR logNR + logN)

messages and
O(logN)

hops. Though the sequential method outperforms the broadcasting methods with re-
spect to the number of messages, it requires a larger number of hops. That is, sup-
pressing both the number of messages and hops by using these simple ways involves
difficulties.

On the other hand, MRF used in Multi-key Skip Graph has both strong points of
the sequential method and the broadcasting methods. It requires only

O(NR + logN)

messages and
O(logN)

hops as described in Section 2.2.5.

4.1.2 Split-Forward Broadcasting

We propose a novel method named Split-Forward Broadcasting (SFB), which can re-
duce the average number of hops of MRF. The basic idea is to change the position
of dividing the target range into subranges. The difference of forwarding processes of
queries between SFB and MRF is depicted in Figure 4.1. SFB makes the target range
divided into subranges by the key of neighbor nodes of the query receiver, whereas MRF
makes it divided by the key of the receiver itself. Figure 4.2 and Figure 4.3 shows the
pseudo-code of SFB and MRF respectively. The function uponReceiving is called
when a node within the target range receives a query.

We explain the algorithm of SFB by using the example shown in the upper half of
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Figure 4.1: Difference of forwarding processes between SFB and MRF.

Figure 4.1. When node A receives a query with its target range

R = {0 ≤ key ≤ 50},

node A searches for neighbors which are connected to node A at the highest level among
neighbors placed within R, one on each side. Regarding the right side, node E is the
corresponding neighbor at level 2. Then node A divides R into subranges by the key of
node E:

RA = {0 ≤ key < 36} and RE = {36 ≤ key < 50}.
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1 uponReceiving(range, query) {
2 //Get delegate nodes of both the left side and the right side.
3 leftDelegateNode = getDelegateNode(range, LEFT)
4 rightDelegateNode = getDelegateNode(range, RIGHT)
5
6 if(leftDelegateNode != null OR rightDelegateNode != null) {
7 //If delegate nodes exist, transfer the query and the subrange to it.
8 if(leftDelegateNode != null) {
9 //Divide the target range into subranges by the neighbor's key.

10 subRange = getSubRanges(range, leftDelegateNode.key)[LEFT];
11 range = getSubRanges(range, leftDelegateNode.key)[RIGHT]
12 send(subRange, query) to leftDelegateNode;
13 }
14 if(rightDelegateNode != null) {
15 subRange = getSubRanges(range, rightDelegateNode.key)[RIGHT];
16 range = getSubRanges(range, rightDelegateNode.key)[LEFT]
17 send(subRange, query) to rightDelegateNode;
18 }
19
20 //Call uponReceiving() recursively for lower levels.
21 uponReceiving(range, query);
22 }
23 }
24
25 getDelegateNode(range, direction) {
26 delegateNode = null;
27
28 //Get a set of neighbor nodes of the specified direction from the routing table.
29 neighborNodes = routingTable.get(direction);
30
31 //Find a delegate node which has the highest level in nodes having keys within the range.
32 maxLevel = -1;
33 for each entry in neighborNodes {
34 if (entry.level > maxLevel && range.contain(entry.key)) {
35 maxLevel = entry.level;
36 delegateNode = entry;
37 }
38 }
39
40 return delegateNode;
41 }

Figure 4.2: Algorithm of SFB.

RE is attached to the query and forwarded to node E from node A, while RA is still
possessed by node A.

Next, node A searches for another neighbor on its right side in the same way as
mentioned above, but at levels lower than the level at which node A forwarded the
query to node E. As a result, node A chooses node C at level 1. Then node A divides
RA into subranges by the key of node C:

RAA = {0 ≤ key < 27} and RAC = {27 ≤ key < 36}.
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1 uponReceiving(range, query) {
2 //Get delegate nodes of both the left side and the right side.
3 leftDelegateNode = getDelegateNode(range, LEFT);
4 rightDelegateNode = getDelegateNode(range, RIGHT);
5
6 //If delegate nodes exist, transfer the query and the subrange to it.
7 if(leftDelegateNode != null) {
8 //Divide the target range into subranges by the local key.
9 leftSubRange = getSubRanges(range, localKey)[LEFT];

10 send(leftSubRange, query) to leftDelegateNode;
11 }
12 if(rightDelegateNode != null) {
13 rightSubRange = getSubRanges(range, localKey)[RIGHT];
14 send(rightSubRange, query) to rightDelegateNode;
15 }
16 }

Figure 4.3: Algorithm of MRF.

RAC is attached to the query and forwarded to node C from node A, while RAA is still
possessed by node A.

Similarly, node A forwards the query to node B at level 0. Node A also executes
such process on its left side. Every node within R except for node A will receive the
query and execute the same process on the opposite side of the forwarder of the query.
For example, node E receives the query from node A on its left side, and forwards the
query to the corresponding nodes on its right side. (In Figure 4.1, node G and F .)

4.1.3 Analytical Comparison

In SFB, each node within the target range receives the same query only once. Hence,
SFB requires expected

O(NR + logN)

messages. A query is forwarded from the issuer to one of the nodes within the range
with expected

O(logN)

hops, and subsequently it is forwarded from the node to every node within the range
with expected

O(logNR)
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hops. Thus, SFB requires expected

O(logNR + logN) = O(logNR ·N) = O(logN)

hops, given that
N ≥ NR ≥ 1

∴ logN ≥ logNR ≥ 0.

Difference of Tree Structures

The expected performances described in the preceding section are same as MRF, but
SFB can reduce the actual average number of hops of MRF. Indeed, in Fig. 4.1, the
number of hops from node A to each node within R which is depicted below the node
name is relatively smaller than that of MRF. This is caused by the difference of structure
of multicasting trees as shown in Figure 4.4.

In SFB, each node which receives a query forwards it to all of possible neighbors
within the specified range or subrange. In contrast, in MRF, each node forwards it to at
most two neighbors. As a result, SFB composes an unbalanced tree as shown in the left
side of Figure 4.4, while MRF composes a balanced binary tree as shown in the right
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side.
To compare analytically, we use following assumptions in this section:

• Skip Graph is composed with ideal membership vector, namely each list at each
level consists of a row of evenly spaced nodes on the basis of the number of nodes.

• NR is exponentiation of 2.

• The leftmost node is the first receiver of the query within the target range.

With these assumptions, the followings can be said: the number of nodes at each
depth of the tree of SFB is the same as binomial coefficient, whereas that of MRF is
exponentiation of 2. This tree structure of SFB is known as a binomial tree, which
is used in a binomial heap [Vuillemin 1978]. For example, in Figure 4.4, the number
regarding SFB is 1, 3, 3, 1, while the number regarding MRF is (1,) 1, 2, 4.

When NR = 131, 072∗ , the difference of the number of nodes at each depth of the
trees is shown in Figure 4.5. Regarding MRF, the number of nodes whose depth is
deepest 17 is the largest. On the other hand, the SFB’s tree has the largest number of
nodes at the depth 8 and 9. This difference makes the superiority of SFB regarding the
average number of hops.

Comparison of Average Number of Hops

From above assumptions, the average number of hops of SFB HSFB can be calculated
as below:

HSFB =
1

NR

logNR∑
k=0

{logNR
Ck · k}

=
logNR

2

∗ This is based on the rough estimation of large scale systems in Section 3.4.1.
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For MRF, the average number of hops HMRF can be calculated as below:

HMRF =
1

NR

logNR−1∑
k=0

{(k + 1) · 2k}

= logNR − 1 +
1

NR

Figure 4.6 illustrates values of HSFB and HMRF , where the horizontal axis repre-
sents NR

† . From these, if NR is enough large, it is clear that the average number of
hops of SFB is approximately half of that of MRF.

As mentioned in Section 1, the distributed pub/sub middleware we are aiming at is
expected to achieve low latency. Even though SFB increases the number of forwarding
which each node handles, it less affects the latency compared to the average number of
hops, since communication delays are generally more dominant than processing delays.
Therefore, the fact that SFB can reduce the average number of hops is quite effective
to achieve low latency.

† The maximum value of NR is 131, 072, which is same as the value of NR in Figure 4.5.
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4.2 Client Assignment Strategies

In our architecture described in Chapter 1, multiple brokers are possible to be placed
in a same place so that keeping enough computing resources. In addition, the proposed
method in Chapter 3 is also applicable to the case that all brokers are placed in a
specific local area, e.g., data centers. Discussions on such architecture have been brisk
e.g., SDN-aware pub/sub systems [Akiyama et al. 2014, 2016].

In such cases, there is a range of alternatives about how to assign user end clients
to each broker, as shown in Figure 4.7. In this section, we focus on the assignment of
subscribers‡ and compare two possible approaches: intensive assignment and extensive
assignment. Since determining the subscriber assignment method affects the distribu-
tion delay time, we formulate the difference of it between the two. Subsequently, we
derive the exchange of the superiority, and discuss about the optimization of subscriber
assignment.

‡A subscriber means a user end client here, but not one of the brokers.
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4.2.1 Subscriber Assignment Methods

Throughout this section, we assume the followings:

• Each subscriber joins one topic.

• There is a necessary and sufficient number of brokers to accommodate subscribers.

• Each broker accommodates the same number of subscribers.

• Brokers compose an overlay network by our method described in Section 3.2.

In the method of Section 3.2, published messages are forwarded along the skip list
composed by the publishers and subscribers of the corresponding topic. As described
in Section 4.1, the forwarding paths configure a binary tree. To simplify, we assume the
following in addition:

• For each topic, published messages are forwarded along the binary tree which is
composed by a root node of a broker accommodating a publisher and the other
nodes of brokers accommodating subscribers.

Based on the above preliminaries, there are two possible approaches; the intensive
assignment and the extensive assignment.
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Intensive Assignment

The intensive assignment is a method by which subscribers having a same topic are
accommodated on a same broker as far as possible, as shown in the left side of Figure 4.8.
As described in Section 4.2.1, a binary tree is composed for each topic, and published
messages are forwarded along the tree. Each broker receiving the messages forwards
them to subscribers, e.g., smartphones, actuators, etc., which are accommodated on the
broker.

Extensive Assignment

The extensive assignment is a method by which subscribers having a same topic are
accommodated on different broker as far as possible, as shown in the right side of
Figure 4.8. As with the intensive assignment, published messages are forwarded by
using a binary tree and finally delivered to the corresponding subscribers.

Qualitative Comparison

Because the tree size of the intensive assignment is smaller than that of the extensive
assignment, network resources in the overlay network of brokers are less wasted. In
addition, reduction of the size of the routing table of each broker leads restraining the
consumption of computational resources of brokers.

If we assume that the traffic of all topics are uniform, the resource consumption of
communication between brokers and devices is much the same regardless of the assign-
ment methods. Accordingly, the intensive assignment has superiority from a viewpoint
of resource consumption.

On the other hand, the superiority of the two methods is unclear from a viewpoint
of the distribution delay time, which means the time required for delivering a published
message to all corresponding subscribers. The intensive assignment brings about the
reduction of the forwarding delay time because the path length on the tree is shorter.
However, each broker has more subscribers so that the delay times of internal processing
of brokers increase. Conversely, the extensive assignment reduces the delay time of
internal processing of brokers and enlarges the forwarding delay time.
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Figure 4.8: Subscriber assignment methods.

To consider the optimal subscriber assignment, it is required to clarify the superi-
ority of the two methods regarding the distribution delay time. From next section, we
formulate the difference of the distribution delay time between the two.
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Table 4.1: Definitions of notations.

m number of brokers
S total number of subscribers
st number of subscribers of topic t

tc delay time of communication between brokers
tp delay time of internal processing of brokers for each subscriber

4.2.2 Formulation of Distribution Delay Time

By using notations as defined in Table 4.1, the ideal number of brokers for each topic
regarding the intensive assignment can be calculated as

⌈st/(S/m)⌉.

Hence the distribution delay time Ti of the intensive assignment is at most as follows:

Ti =


tc · ⌊log2(⌈st/(S/m)⌉+ 1)⌋+ tp · (S/m) (st ≥ S/m)

tc + tp · st (otherwise)

Regarding the extensive assignment, the distribution delay time Te can be calculated
as follows:

Te =


tc · ⌊log2(m)⌋+ tp · (st/m) (st ≥ m)

tc · ⌊log2(st)⌋+ tp (otherwise)

Therefore, the difference Td = Ti−Te can be calculated as follows, based on approx-
imation by ignoring the floor and ceiling functions.
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Td =



tc · (1− log2(st)) + tp · (st − 1)

if st < S/m ∧ st < m (4.1)

tc · (1− log2(m)) + tp · st · ((m− 1)/m)

if st < S/m ∧ st ≥ m (4.2)

tc · log2((m · st + S)/(st · S)) + tp · (S/m− 1)

if st ≥ S/m ∧ st < m (4.3)

tc · log2(st/S + 1/m) + tp · ((S − st)/m)

if st ≥ S/m ∧ st ≥ m (4.4)

Discussions

In the equations (4.1) to (4.4), there are three constants which are determined by the
environment of vendors providing the brokers: m, tc and tp. We assume the values of
these constants as follows§ :

m = 10, 000

tc = 1 [msec]

tp = 0.01 [msec]

Figure 4.9 shows the change of Td depending on st with above constants, for four
patterns of S.

It can be seen that Td becomes larger as S becomes large. Note that the maximum
value of st is S. If Td > 0, it can be said that the extensive assignment is superior to
the intensive assignment regarding the distribution delay time.

As described in Section 4.2.1, the intensive assignment has superiority from a view-
point of resource consumption. Therefore, if Td < 0, the intensive assignment is basi-
cally preferred over the extensive assignment. On the other hand, if Td > 0, subscribers

§ We used 100, 000 nodes in Section 3.4.1, by considering the rough estimation of large scale
systems. Since the client assignment strategies focus on the situation that each edge environment
has multiple brokers, we set the value of m as 10, 000.
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should be assigned considering the trade-off between distribution delay time and re-
source consumption.

Focusing on the area of Td > 0 in Figure 4.9, there are striking curves. For instance,
the case of S = 2 · 107, Td(st) is upward-convex in the range [10,000, 20,000,000], while
it is downward-convex in the range [1, 2,000).

The values of st corresponding to the maximum value of the upward-convex curve
can be calculated as follows by differentiating Td shown in the equation (4.4) with respect
to st:

Td(st)
′ =

m · tc
(m · st + S) · loge(2)

− tp
m

= 0

... st =
m · tc

tp · loge(2)
− S

m
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In our assumption, st ≈ 1,440,695 for S = 2 · 107.
It can be said that subscribers joining to topics of which the numbers of subscribers

are close to the above value are desired to be assigned by the extensive assignment, from
the viewpoint of the distribution delay time. Note that the graph may change by the
values of m, tc and tp.

4.3 Conclusion of This Chapter

In this chapter, we first proposed SFB which is a routing algorithm for range queries
on Skip Graphs. SFB requires only the smaller number of hops and messages compared
to the sequential method and the broadcasting methods. In addition, SFB can reduce
the average number of hops of MRF. This is not only effective for reducing the average
latency, but also for improving the churn tolerance because the reduction of hops lowers
the probability of message loss by nodes’ disappearing.

Subsequently, we focused that there is a range of alternatives about how to assign
user end clients to each broker. We presented two assignment methods: the intensive
assignment and the extensive assignment. By formulating the distribution delay time for
each method, we derived the difference of the delay time between them, and discussed
about the optimization of the subscriber assignment.

By the techniques in this chapter, we can reduce the latency of the proposed method
described in Section 3 with keeping its high scalability and throughput. This contributes
to meeting the requirements previously mentioned in Section 1; the distributed pub/sub
middleware we are aiming at should achieve high throughput and low latency.
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5
Development of

Distributed Pub/Sub Systems

To develop the proposed method as a middleware, considering the actual environment
brokers are placed at and supporting a practical protocol are inevitable. We focus on
MQTT, a standardized protocol of topic-based pub/sub messaging. It has attracted
much academic and industrial interest in recent years as one of the key technologies of
IoT services [Al-Fuqaha et al. 2015].

Assuming the edge-based architecture, there is an issue of heterogeneity of brokers.
Namely, an appropriate product of a broker is different according to an environment
of each network edge. There are many choices: open source or proprietary, software
or embedded appliance, difference in supported OSs or functional features, and so on.
Even though some of existing products have functions of cooperation between multiple
brokers, e.g., “bridge” of Mosquitto [Light 2017] and “cluster” of HiveMQ [HiveMQ],
there is no interoperability between different products because any cooperation protocols
are not standardized in the MQTT specification [Banks and Gupta 2015].

In this chapter, we propose Interworking Layer of Distributed MQTT brokers (ILDM),
which enables arbitrary kinds of brokers to cooperate with each other. ILDM provides
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APIs which facilitate rapid development of variety of cooperation algorithms. By us-
ing the APIs, we can easily implement the method proposed in Chapter 3, so that
the distributed pub/sub architecture we aiming at can support the practical protocol.
To clarify the feasibility, we show two basic algorithms using the above APIs in this
Chapter.

In addition to the heterogeneity, there is another issue of benchmark. To evaluate
and determine an appropriate architecture, benchmark method which can be used for
both a single broker and multiple brokers is needed. For this matter, we formulate a
benchmark method which ensures that error ratios of resulted performance are not more
than 5 percent.

In this chapter, we explain the following three contributions:

• First, we give a fundamental idea of ILDM with two basic cooperation algorithms.

• Second, we provide a practical method for benchmark of MQTT broker/brokers.

• Third, we show the feasibility of ILDM-based cooperation through experiments.

5.1 Related Work

Dynomite [Dynomite] makes existing non distributed data stores, e.g., Redis and Mem-
cached, into a distributed data store. The aim is to provide high availability and re-
siliency on storage engines which do not have those functionalities. BondFlow [Bala-
sooriya et al. 2005] proposes a system enables encapsulated web services to interconnect.
These are similar to ILDM from the viewpoint of modularizing functionality of inter-
work, while the target is different from ILDM.

As far as we know, there are no existing proposals of connecting heterogeneous
MQTT brokers.

5.2 Interworking Layer of Distributed MQTT Brokers

In this section, we propose Interworking Layer of Distributed MQTT brokers (ILDM).
ILDM-based cooperation is composed by multiple brokers and ILDM nodes. An ILDM
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Figure 5.1: Interworking Layer of Distributed MQTT brokers.

node is arranged between a broker and clients as shown in Figure 5.1. As well as relaying
MQTT clients and a broker as if it were a proxy, an ILDM node can connect with other
ILDM nodes so that multiple and arbitrary kinds of brokers can communicate with each
other via ILDM nodes.

Regarding an ILDM node, we assume the following notations: local client denotes
a client which directly connects with the ILDM node, local broker denotes a broker
which directly connects with the ILDM node, remote ILDM node denotes one of the
other ILDM nodes included in the whole cluster, neighbor ILDM node denotes one
of the remote ILDM nodes which directly connects with the ILDM node, remote client
denotes a client which connects with a remote ILDM node, remote broker denotes a
broker which connects with a remote ILDM node.

As there can be a variety of cooperation algorithms, an ILDM node provides APIs
which facilitate rapid implementation. Figure 5.2 illustrates the components of an ILDM
node.

We abstracted commonly used functions as five components: session manager, mes-
sage listener, event listener, status listener, and message generator. These components
have programming interfaces so that algorithm developers can implement their algo-
rithms easily. By using these APIs, we can easily implement the method proposed in
Chapter 3 with improving by techniques of Chapter 4. In this Chapter, we use two basic
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algorithms “Publication flooding” and “Subscription flooding” to clarify the feasibility
of ILDM. Details of them are discussed later in Section 5.3.

This architecture is useful not only for improving the performance such as through-
put, but also for comparing cooperation algorithms. Unlike implementing a broker with
capability of cooperation from scratch, ILDM-based implementations do not have dif-
ferences in quality or design of implementations of functions irrelevant to cooperation.
By utilizing this characteristic, we can fairly compare cooperation algorithms.

Major APIs which are provided by the components are listed in Table 5.1. Details
of these APIs are described in the following sections.

5.2.1 Session Manager

Session manager manages communication sessions connecting with a local broker, local
clients and neighbor ILDM nodes.

createSession is used to create a new session. The type SessionInfo indicates
meta-information regarding a session, including session identifier, session status, and
input/output streams.

closeSession is used to close an existing session.
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Table 5.1: Major APIs of ILDM.

Component API

Session manager

SessionInfo createSession(Address ip, int port)

void closeSession(SessionInfo session)

boolean sendMessage(SessionInfo session, byte[]

message)

SessionInfo getPairedSession(SessionInfo session)

Message listener void mqttMessageArrived(SessionInfo session,

MsgType type, byte[] message)

Event listener
void onTcpDown(SessionInfo session)

void onRecvFailure(SessionInfo session, Exception

exception)

Status listener

void onSessionEstablished(SessionInfo session)

void onSessionClosed(SessionInfo session)

void onIldmStop()

void onIldmAdd(Address ip, int port)

void onIldmRemove(Address ip, int port)

Message generator byte[] createMqttMessage(MsgType type, MqttParam

parameters)

sendMessage sends out a message to a specified session. It returns a boolean value
indicating that the transmission is succeeded or not. The message argument is a byte
array, e.g., an MQTT message.

getPairedSession is for obtaining a session making a pair with a specified session.
When an ILDM node receives a TCP connection request on the listening port for local
clients, it automatically creates a session with the local broker. These two sessions make
a pair.
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5.2.2 Message Listener

Message listener has an asynchronous callback API: mqttMessageArrived. It is called
when an ILDM node receives an MQTT message. The type MsgType indicates the type
of MQTT messages, e.g., CONNECT, CONNACK, and PUBLISH. This callback API
is typically a start point of the algorithm-specific processes. If session is a local client’s
session, the ILDM node can relay the MQTT message to the local broker by using
getPairedSession and sendMessage, and can behave according to a cooperation
algorithm by using the copy of the message.

5.2.3 Event Listener

Event listener has asynchronous callback APIs.
onTcpDown is called when an ILDM node detects unexpected termination of a

TCP connection, while onRecvFailure is called when an ILDM node failed to receive
a message on a TCP connection.

5.2.4 Status Listener

Status listener enables developers to insert arbitrary processes in the middle of status
transitions.

We define three statuses regarding sessions as shown in Figure 5.3. When an ILDM
node established a TCP connection, the status of the session changes from CLOSED to
ESTABLISHED. When terminating the TCP connection begins, the status changes to
TERMINATING. After finishing the termination process, it changes to CLOSED.

We also define four statuses regarding the process of an ILDM node, as shown in
Figure 5.4. When an ILDM node is started, the status changes from STOPPED to
RUNNING. When the ILDM node begins to add or remove a neighbor ILDM node, it
changes to ILDM_ADDING or ILDM_REMOVING. After finishing the process
to add or remove, it changes back to RUNNING.

Status listener has following synchronous callback APIs.
onSessionEstablished is called after the status of the session specified as the

argument changes to ESTABLISHED. Similarly, onSessionClosed is called after
the status changes to CLOSED.
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onIldmStop is called when the status of an ILDM node changes to CLOSED, i.e.,
just before the ILDM node is terminated.

onIldmAdd is called when the status of an ILDM node changes to ILDM_ADDING.
The process of adding a neighbor ILDM node will be coded in this callback. onIldm-
Remove is used in the same manner for removing.

5.2.5 Message Generator

Message generator is a utility component.
createMqttMessage returns an MQTT message as a byte array. The type MqttParam

indicates the parameters of MQTT messages, e.g., client identifier and keep-alive inter-
val.

5.3 Cooperation Algorithms

In this section, we propose two basic cooperation algorithms: Publication Flooding (PF)
and Subscription Flooding (SF). These algorithms suppose ILDM nodes are connected
in a tree structure which does not include closed paths.

5.3.1 PF-based Cooperation

PF is a method to share each PUBLISH message among all brokers via ILDM nodes.
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Each ILDM node relays a SUBSCRIBE message received from a local client to its
local broker. Regarding a PUBLISH message, an ILDM node does not only relay, but
also transfers to its neighbor ILDM nodes. ILDM nodes, which receive the transferred
PUBLISH message, send it to their own local broker. They further transfer the message
to their neighbor ILDM nodes, if exist. Eventually, all connected brokers receive the
PUBLISH message and forward it to their local clients subscribing to the corresponding
topic.
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Figure 5.5 shows an example. There are five sets of a broker and an ILDM node: B1

and I1 to B5 and I5. There are also three clients: C1 to C3. We consider the following
three steps.

1. Step 1: C1 subscribes to a topic t.

2. Step 2: C2 subscribes to the same topic t.

3. Step 3: C3 publishes to the same topic t.

Dotted arrows represent the flow of SUBSCRIBE messages, while solid arrows are
the PUBLISH messages’.

When I2 and I3 receive a SUBSCRIBE message from C1 and C2, they just relay it
to their local broker. As well as being relayed alike, a PUBLISH message from C3 is
transferred by I5 to I3, and spread to all ILDM nodes in a chain reaction.

5.3.2 SF-based Cooperation

Unlike PF, the basic idea of SF is to share subscription information among ILDM nodes.
When an ILDM node receives a SUBSCRIBE message, it informs the subscription

information, e.g., topic name and QoS level to its neighbor ILDM nodes, as well as
relays the message to its local broker. We call this operation “inter-subscribe”, because
it is as if it were the subscribe operation of the MQTT protocol between two ILDM
nodes. For example, when an ILDM node X informs the information to another ILDM
node Y , it means that “ILDM node X inter-subscribes against ILDM node Y ”.

When an ILDM node is about to inter-subscribe against a neighbor ILDM node, it
checks overlapping with existing subscriptions. If an overlap is judged to be present,
the ILDM node will not inter-subscribe redundantly. That is, inter-subscribe operations
between ILDM nodes are to share only the difference from existing subscriptions.

Regarding a PUBLISH message, as well as relaying to the local broker, an ILDM
node transfers it to neighbor ILDM nodes which have inter-subscribed to the topic of
the message. ILDM nodes which receive the transferred PUBLISH message send it to
their own local broker. They further transfer the message to their neighbor ILDM nodes
which have inter-subscribed to the topic. Eventually, all brokers which have local clients
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subscribing to the topic receive the PUBLISH message and forward it to corresponding
subscribers.

Figure 5.6 shows an example. The topology and scenario is same as Figure 5.5.
When I2 receives a SUBSCRIBE message from C1, it does not only relay the message
to its local broker, but also inter-subscribes against I1, I3 and I4. I3 further inter-
subscribes against I5. In the next step, I3 receives a SUBSCRIBE message from C2 and
subsequently inter-subscribes against I2. I3 does not inter-subscribe against I5, because
I3 has already inter-subscribed in the first step. Similarly, I2 does not inter-subscribe
against I1 and I4.

A PUBLISH message from C3 is transferred by I5 to I3, because I3 has inter-
subscribed to the topic t against I5. I3 also transfers the message to I2, and finally
C1 and C2 receive the message.

5.3.3 Furnishing MQTT-specific Functions

As we described in Section 2.1.2, MQTT has some specific functions. We show the way
to enable clients to use these functions transparently over multiple brokers with PF and
SF method.

QoS

Both in PF and SF, An ILDM node relays QoS-related messages such as PUBACK
so that QoS level configuration is available between a local broker and local clients.
Further, we can apply the idea of QoS control to transferring a PUBLISH message
between adjacent ILDM nodes. This enables distributed brokers to adjust a tradeoff of
reliability and performance.

Retain

PF method can provide Retain function without adding special processes, because each
broker receives all PUBLISH messages and stores them if they have retain-flag being set
to true. In case of SF method, when an ILDM node receives a PUBLISH message with
retain-flag set to true, it needs to transfer the message to adjacent ILDM nodes even
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though the topic is not inter-subscribed. This makes sure each broker can send out an
appropriate retained message when a new subscriber of the corresponding topic comes.

Will

As described above, an ILDM node transfers a PUBLISH message when it receives it
from local clients, not from a local broker. Hence, a will-message which comes from a
local broker is not transferred to the neighbor ILDM nodes within the basic procedures
of PF and SF methods.

According to the MQTT specification of version 3.1.1, a PUBLISH message from a
broker does not have any information to know whether it is a will-message or not. Con-
sequently, an ILDM node itself needs to store a will-message and a will-topic internally
when it receives a CONNECT message.

When an ILDM node detects the unexpected closing of a network connection with
a local client or the local broker, and if the will-flag of the connection is set to true, it
sends out the corresponding will-message to its neighbor ILDM nodes. The ILDM node
needs not to send the will-message to local clients, because the local broker sends it. In
case of SF method, sending will-messages to neighbor ILDM nodes is executed only if
the will-topics are inter-subscribed.

5.3.4 Qualitative Comparison

In PF method, each broker receives all PUBLISH messages regardless of the presence
of corresponding subscribers. This means that the total number of ingress messages
on each broker is basically same as the case of a single broker. Therefore, the effect of
load distribution mainly depends on a dispersion condition of subscribers. The more
scattered the subscribers are, the more effective this method is.

In SF method, a PUBLISH message is delivered to brokers which have subscribers of
the same topic as the PUBLISH message. Brokers, which do not have such subscribers
and are not in the paths of delivering the message, do not receive it. Hence this method
is effective when publishers and subscribers of a same topic are convergently placed on
a small sub-tree.
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5.4 Implementation of ILDM

We implemented an ILDM node in Java, based on the MQTT version 3.1.1 specification.
Our implementation has a configuration file and some shell commands which can

be executed at runtime. By these, we can specify neighbor ILDM nodes to add or
remove not only statically but also dynamically. The process of adding or removing
can be implemented by using onIldmAdd or onIldmRemove callbacks described in
Section 5.2.4.

5.4.1 Implementation of PF and SF

We implemented PF and SF by using the APIs. Both implementations enable MQTT
clients to use MQTT’s functions such as QoS, Will, Retain, and Clean-session transpar-
ently over multiple brokers.

Unless otherwise specified, the descriptions in this section are common to PF and
SF.

Communication between ILDM Nodes

We diverted the message format of MQTT to the communication between ILDM nodes,
because of its lightness. That is, adjacent ILDM nodes establish TCP connections and
use PUBLISH message for transferring PUBLISH messages, while using SUBSCRIBE
message for inter-subscribing. They also use PINGREQ/PINGRESP messages to con-
firm connections of communication.

As a feature, we implemented a multi-session mechanism. An ILDM node can
have multiple TCP connections for each neighbor ILDM node. Before the ILDM node
transfers a PUBLISH message, it selects one connection to be used in a round-robin
fashion. Since an ILDM node has to handle all of PUBLISH messages sent from its
local clients, this mechanism is quite effective for improving entire throughput.

To distinguish connections with one neighbor ILDM node from with others, adjacent
ILDM nodes exchange their identifier by using client-ID field of CONNECT message.
The number of connections per one neighbor ILDM node can be set by a configuration
file.
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An ILDM node creates the same number of sessions for the local broker as the
number of sessions it created for each neighbor ILDM node. These sessions are used for
forwarding the transferred PUBLISH messages to the broker.

Relaying between Clients and Broker

An ILDM node relays MQTT messages from its local clients to its local broker, including
messages of retransmission caused by QoS control. PINGREQ/PINGRESP messages
are also relayed so that clients and the broker can confirm connections.

An ILDM node processes relaying in parallel to improve performance, except for
SUBSCRIBE/UNSUBSCRIBE messages and their acknowledgement messages. Regard-
ing those messages, relaying is processed serially because switching the order can cause
unexpected status, e.g., a topic which was supposed to be unsubscribed is still sub-
scribed.

Transferring between Adjacent ILDM Nodes

When using PF method, an ILDM node transfers a PUBLISH message received from a
local client to adjacent ILDM nodes, asynchronously with relaying to the local broker.
Like MQTT protocol, QoS control for transferring a PUBLISH message between adja-
cent ILDM nodes is available. The QoS level is set in the configuration file statically.

In case of SF method, an ILDM node receiving a SUBSCRIBE message inter-
subscribes when it has not inter-subscribed to corresponding topics yet, after it has
successfully finished relaying a SUBACK message to the local client. When the ILDM
node receives a PUBLISH message, it transfers the message in the same manner as
in PF method if the topic of the message is inter-subscribed by adjacent ILDM nodes.
If it receives a PUBLISH message with the retain flag on, it transfers the message to
adjacent ILDM nodes even though the topic is not inter-subscribed. This makes sure
each broker can send out an appropriate retained message when a new subscriber of the
corresponding topic comes.
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Will-messages

According to the MQTT specification, PUBLISH messages from a broker do not have
any information to know whether they are will-messages or not. However, an ILDM
node is desired to be able to transfer will-messages to its neighbor ILDM nodes as
necessary. To do this, we implemented the ILDM node so as to store a will-message and
a will-topic internally when it receives a CONNECT message.

When an ILDM node detects the unexpected closing of a network connection with
a local client or the local broker, and if the will flag of the connection is set to be true,
it sends out the corresponding will-message to its neighbor ILDM nodes. The ILDM
node needs not to send the will-message to local clients, because the local broker sends
it. In case of SF method, sending will-messages to neighbor ILDM nodes is executed
only if the will-topics are inter-subscribed.

Clean-session

When using PF method, there is no specific process regarding the clean-session.
In case of SF method, an ILDM node keeps the status of inter-subscribing related

to a local client whose connection has the clean-session flag set to be false, even if the
connection is unexpectedly closed.

Adding/Removing Neighbor ILDM Nodes

In case of PF method, the only thing an ILDM node has to do is creating/closing
sessions when adding/removing neighbor ILDM nodes.

When using SF method, an ILDM node additionally needs to synchronize the status
of inter-subscribing. For adding, the ILDM node calculates the set of topics to which
it has already inter-subscribed. Subsequently, it inter-subscribes to all the topics of the
set against the new neighbor ILDM node. If the ILDM node does not have existing
neighbor ILDM nodes, the set of topics to which its local clients have subscribed is
used instead. The new neighbor ILDM node also inter-subscribes against the ILDM
node in the same manner. Afterward, both ILDM nodes newly paired proceed the
normal process of being inter-subscribed. For removing, ILDM nodes, which are about
to disconnect, inter-unsubscribe against each other.
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Figure 5.7: Adding/removing neighbor ILDM nodes.

Figure 5.7 shows an example. I2 and I4 are initially not connected. When I2 and
I4 add each other as a new neighbor, I2 inter-subscribes to the topic t1 and t2 against
I4, because I1 and I3 have inter-subscribed to these topics. I4 inter-subscribes to the
topic t3 to which C3 has subscribed. I2 subsequently inter-subscribes against I1 and I3

by adding the topic t3.

5.5 Benchmark System for MQTT Brokers

To verify the effects of ILDM, we formulate a benchmark method which can be applied
for both a single broker and multiple brokers.

5.5.1 Performance Indexes

We consider the following four viewpoints as performance indexes of MQTT brokers.
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Table 5.2: Spec of servers.

Type S1 Type S2

Processor Atom C2750 (8 core, 2.4
GHz)

Xeon E5-2690V3 (12 core, 2.6
GHz)×2

Memory 16 GB 256 GB
OS Ubuntu 14.04 Ubuntu 14.04
NW 1 GbE 10 GbE

ingress throughput
Number of messages brokers receive from publishers per unit time.

egress throughput
Number of messages brokers send out to subscribers per unit time.

latency
Required time since a publisher sends a message until a subscriber receives it.

loss rate
Ratio of the number of missed messages to that which subscribers should receive.

Figure 5.8 shows the components of the benchmark system. Multiple publishers and
subscribers are run for measuring throughput and loss rate. We denote these clients by
t-client. Another pair of a publisher and a subscriber is also placed on a server different
from those for t-clients. We denote these clients by l-client. They specify same topic so
that latency can be acquired by calculating the turn around time. In parallel, resource
usage on each server is recorded, e.g., CPU usage.

5.5.2 Hardware Environments

In the benchmark system, we connected servers described in Table 5.2 by using a non-
blocking L2 switch. Ten type S1 servers and one type S2 server were prepared, and we
used an appropriate number of servers for each evaluation pattern.

Power saving functions such as EIST (Enhanced Intel SpeedStep Technology) are
disabled to avoid unexpected performance control and to clarify the relation between
the spec of the servers and the results of measurement.
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The time of servers on the benchmark system are synchronized by using an NTP
server placed in the same network segment.

5.5.3 Load Testing Tool

We implemented a load testing tool, which is operated as t-clients and l-clients. We
used the client library of SurgeMQ [SurgeMQ] known for its high performance so that
the tool can send/receive PUBLISH messages with high frequency.

Functions which this tool has are as follows:

• Subscribe to topics according to a pre-defined scenario.

• Send PUBLISH messages to topics at a certain interval during certain period of
time, according to a pre-defined scenario. t-clients and l-clients can be configured
with different intervals.

• Record logs of sending and receiving PUBLISH messages.

• Gather logs recorded on multiple servers after the duration.
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• Calculate performance indexes from the gathered logs.

During the measurement period of time, this tool records a timestamp when: (i) a
publisher sends a PUBLISH message, and (ii) a subscriber receives a PUBLISH message.

By using (i) of t-clients, the tool calculates the ingress throughput for each second.
Similarly, the egress throughput for each second is also calculated by using (ii).

For acquiring latency, the tool uses the difference between (i) and (ii) of l-clients.
Since the tool sets identifiers of a client and a message to a payload, it can determine
the correspondence of timestamps.

Regarding loss rate, the tool firstly calculates the sum of the number of PUBLISH
messages to be received by each t-client as a subscriber, against the number of produced
messages calculated by (i). This can be derived analytically by considering the scenario,
i.e., the number of subscribers belonging to each topic. Secondly the tool finds the
difference between the above sum and the number of arrived messages calculated by (ii).
This is the number of missed messages. Finally, the tool calculates the loss rate as the
ratio of the number of missed messages to the sum.

5.5.4 Definition of Performance Limit

The aim of this benchmark system is to obtain the limit of performance of broker/bro-
kers. Supposing every t-client acting a publisher sends PUBLISH messages at a same
interval, we define the limit of performance as follows.

Definition 1. If measured throughput satisfies the following restriction, the performance
is under the limit.

{egress throughput}
{ingress throughput} · {sp-ratio} ≥ 0.99

where

sp-ratio =

∑
i P (ti) · S(ti)∑

i P (ti)
,

P (ti) = {number of publishers of ith topic},

S(ti) = {number of subscribers of ith topic}.

This is based on the idea that if egress throughput is less than ingress throughput
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multiplied by sp-ratio, the number of pending messages in the brokers is monotonically
increasing. In other words, this definition represents the limit of allowable continuous
load.

5.5.5 Benchmark Procedure

To find the maximum performance satisfying the restriction defined in Definition 1, we
introduce a new benchmark method. This method tries to find the point of the very
limit by varying the interval of PUBLISH messages. It is conducted along with the
following steps.

Step 1: Conduct measurement repeatedly with doubling the interval of sending a PUB-
LISH message. For example: 1 ms, 2 ms, 4 ms, 8 ms, 16 ms, ….

Step 2: From the results of Step 1, find the minimum interval satisfying the restriction
stated in Definition 1.

Step 3: Divide the segment between the minimum interval and the smaller interval next
to the minimum interval into 20. For example, if the minimum interval is 4ms,
we divide the segment between 4ms and 2ms like as : 2 ms, 2.1 ms, 2.2 ms, …,
3.9 ms, 4 ms.

Step 4: Conduct measurement for each interval calculated in Step 3.

Step 5: From the results of Step 4, find the minimum interval satisfying the restriction
in Definition 1.

Finally, the result by using the minimum interval clarified in Step 5 indicates the
limit of performance.

This result is ensured that the error ratio is not more than five percent. In other
words, the throughput resulted by using the smaller interval next to the minimum
interval is at most 1.05 times larger than using the minimum interval. We can prove it
as follows:

Proof. We assume that x is the minimum interval in Step 2. Therefore x/2 is the smaller
interval next to the minimum interval. Here the stepping width calculated in Step 3 is

(x− x/2)/20 = x/40.
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We denote the width as y. The error ratio is at least

x/(x− y)− 1

and at most
(x/2 + y)/(x/2)− 1.

Consequently, the highest error ratio is 0.05.

To evaluate the performance appropriately, it is also important whether there is a
bottleneck caused by things other than the performance of broker/brokers. We consid-
ered the following viewpoints:

• TCP flow control caused by overloaded receiving on subscribers.

• Ethernet flow control caused by lacking bandwidth of subscribers’ side.

• TCP retransmission caused by packet loss on the network.

In our benchmark system, we monitored above matters by checking the window size
in TCP ACK frames, occurrence of PAUSE frames, and retransmission logs.

5.6 Evaluation

We conducted some experiments by using the benchmark method described in Sec-
tion 5.5. As mentioned in Section 1, we are aiming to provide techniques required for
realizing the distributed pub/sub middleware which should achieves high throughput
and low latency. Therefore, the experiments are designed to confirm the feasibility of
ILDM mainly from the viewpoint of improvement of throughput, which is carried from
reducing consumption of resources with the edge-based architecture. Additionally, we
also evaluate the latency compared to a single broker.

In each experiment, we ran the load testing tool for 80 seconds. The performance
indexes stated previously were calculated by excluding the first and last 10 seconds, i.e.,
substantial measurement time was 60 seconds. QoS level was set to 0, and the size of
payload of each PUBLISH message was 32 bytes. This is because actual IoT services
generally handle small data with high frequency. Since the configuration of QoS has a
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Figure 5.9: Configuration of topics and clients.

large influence on the throughput, large scale systems tend to set QoS level to 0 and have
external recovery mechanisms in the upper layer, i.e., “Data consumer” in Figure 1.3,
against loosing messages.

Figure 5.9 shows the configuration of topics and clients. There are five topics for
measuring throughput and loss rate: from topic1 to topic5. These topics have 10 pub-
lishers and 10 subscribers respectively, thus the sp-ratio is 10. There also be topic6 with
a publisher and subscribers for measuring latency. This publisher sends a PUBLISH
message for each one second.

As previously stated, we denote the clients of topic1 to topic5 by t-clients, and the
clients of topic6 by l-clients. In case of multiple brokers, we used additional l-clients.
We describe about this later.

We calculated the average of ingress/egress throughput and latency in the measure-
ment time of 60 seconds, and found the limit of performance by using the benchmark
method.

5.6.1 Evaluation of Single Brokers

As preliminary experiments, we evaluated the performance of open-source MQTT bro-
kers alone. The aim is to get a reference of choosing a broker in evaluation of ILDM,
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Figure 5.10: Evaluation of single brokers: ingress throughput.
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Figure 5.11: Evaluation of single brokers: egress throughput.

as well as providing knowledge of performance characteristics of well-known MQTT
brokers.

We used the following four brokers: Mosquitto 1.4.5, Moquette 0.8 [Moquette], Rab-
bitMQ 3.6.0 [Videla and Williams 2012], and ActiveMQ 5.13.3 [Snyder et al. 2008]. We
measured the performance by changing the types of servers, S1 and S2, on which we
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Figure 5.12: Evaluation of single brokers: latency.

ran the brokers.
Figure 5.10 and 5.11 shows the results of throughput. As the benchmark method

indicates, egress throughputs are almost equal to ingress throughputs multiplied by the
sp-ratio 10.

When using type S1 server, the performance of ActiveMQ and Mosquitto are the
tops. ActiveMQ is slightly larger, but almost even. Regarding type S2 server, Mosquitto
is the largest and its egress throughput reaches over 600, 000.

Figure 5.12 shows the result of latency. As for latency, the shorter the better. In case
of type S1 server, Mosquitto has the shortest latency. On the other hand, using type
S2 server, every broker has approximately less than 1 millisecond latency. ActiveMQ is
the best, but the difference is quite small.

In these measurements, the loss rate was zero for all patterns.

5.6.2 Evaluation of ILDM-based Cooperation

We evaluated the performance of ILDM-based cooperation. Although the principal
feature of ILDM is the capability of connecting heterogeneous brokers, we used one
kind of broker to clarify the performance characteristics of ILDM itself. We chose
Mosquitto because it indicated relatively better performance among the four brokers in
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Table 5.3: Patterns of measurments.

Pattern Description
A Using one broker with one ILDM node.
B Using 5 brokers with ILDM. t-clients are placed with no local-

ity.
C Using 5 brokers with ILDM. t-clients are placed with low lo-

cality.
D Using 5 brokers with ILDM. t-clients are placed with high

locality.

Section 5.6.1.
Table 5.3 states the patterns of measurements. In these patterns, pairs of a broker

and an ILDM node are placed on one or five S1 servers.
Pattern B, C, and D use 5 pairs of a broker and an ILDM node connected in a

row. Each ILDM node has the same number of local t-clients, i.e., 20 t-clients. These
patterns have a difference of locality of those 100 t-clients. The number of t-clients
placed on each ILDM node is as follows:

Pattern B: two publishers and two subscribers for every five topics.

Pattern C: Eight publishers and eight subscribers of a topic, one publisher and one
subscriber of a different topic, one

Pattern D: 10 publishers and 10 subscribers of a topic. publisher and one subscriber
of another different topic.

In pattern B, C, and D, each of five ILDM nodes has a l-client as a subscriber of
topic6. Only one ILDM node placed at the end of the list of the five ILDM nodes has
one more l-client as a publisher of topic6. Hence, five data of latency are obtained every
second in the measurement time of 60 seconds.

Figure 5.13 and 5.14 shows the results of throughput. “PF” and “SF” in the legend
denote the cooperation algorithms. The results of single Mosquitto broker are depicted
again for comparison, on the right side of the graphs. Same as results in section 5.6.1,
egress throughputs are almost equal to ingress throughputs multiplied by the sp-ratio
10.
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Figure 5.13: Evaluation of ILDM-based cooperation: ingress throughput.
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Figure 5.14: Evaluation of ILDM-based cooperation: egress throughput.

By comparing patterns A and S1, we can see that the overhead of using an ILDM
node was suppressed to approximately 10 percent. Results of pattern B, C, and D
indicate that ILDM-based cooperation can provide better throughput compared with
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Figure 5.15: Evaluation of ILDM-based cooperation: latency.

using a single broker. Especially in pattern D with SF method, the throughput overtook
the case of using a single broker on type S2 server. Since the spec of type S2 is quite
higher than type S1, this is an impressive result.

It can be said that locality of placing clients affects the performance, by comparing
patterns B, C and D. High locality made throughput larger, especially with SF method.
This is due to the characteristic of SF method described in Section 5.3.4. Considering
edge-heavy data, having high locality of utilization, such tendency could be effective.

The fact that SF method achieves higher throughput than PF method also indi-
cates that the less messages required for processing a one publish message, the more
throughput we can get, as mentioned in Section 3.4.

Figure 5.15 shows the result of latency. Here also the results of single Mosquitto
broker are depicted again for comparison. Basically the patterns using multiple brokers
are inferior, because a PUBLISH message is forwarded with multi-hop until it arrives
at corresponding subscribers.

Patterns A shows approximately 10 msec. Although this is larger than S1, the result
is considered not to impair the effect of reducing latency in the edge-based architecture,
since RTT between IoT devices and data centers could be over 100 msec if it across
different countries.

In pattern B, both cases of PF and SF seem to have the same load of throughput.
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Therefore, the latency of SF method is a little longer due to its complicated processing
compared to PF method probably. On the other hand, pattern C and D show that
latency of PF method is longer than that of SF method. The reason for this is considered
that more redundant messages are propagated in PF method compared to SF method.
Pattern D is the case with the highest throughput, so that brokers and ILDM nodes
running with PF method tend to be busy and take much time for handling PUBLISH
messages.

In these measurements, the loss rate was zero for all patterns.

5.7 Conclusion of This Chapter

In this chapter, we proposed a novel mechanism called ILDM which enables heteroge-
neous MQTT brokers to cooperate with each other. The APIs provided by ILDM enable
to develop a variety of cooperation algorithms easily. Two basic algorithms, PF and
SF, and a practical benchmark method for MQTT brokers were also presented. The
benchmark method ensures that the error ratios of performance are no more than 5
percent.

We evaluated the feasibility of ILDM with the benchmark method. By connecting
five brokers via ILDM, the throughput increases approximately two to four times than
using a Mosquitto broker alone. This result indicates that the architecture based on
edge brokers is useful for reducing consumption of cloud resources.

By using the APIs of ILDM, we can easily implement the method proposed in Sec-
tion 3 as a cooperation algorithm. The study in this chapter shows that the distributed
pub/sub middleware we are aiming at can be developed for actual environments, i.e., it
can support a practical protocol and have the flexibility for the heterogeneity of edge
environments.
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6
Conclusion

Considering the coming of large scale smart services composed of cooperative things,
scalable and adaptive techniques for exchanging messages between devices are indis-
pensable. In this dissertation, we explained our studies aiming to provide techniques
required for realizing the distributed pub/sub middleware in the edge-based architec-
ture.

At first, we presented a novel method of topic-based pub/sub messaging using Skip
Graph. The proposed method is effective for getting high throughput, since it can
suspend publishing by detecting the absence of subscribers and prevent the excessively
long forwarding path. From the results of simulation experiments, we confirmed the
superiority in comparison with Scribe.

Subsequently, we discussed about the latency. We first proposed SFB which is a
routing algorithm for range queries in Skip Graph. SFB can reduce the number of
hops and messages compared to existing methods. Second, we focused on how to assign
user end clients to each broker. We proposed two assignment methods: the intensive
assignment and the extensive assignment. By formulating the distribution delay time
for each method, we derived the difference of the delay time between the two methods.

Finally, we gave consideration for developing the proposed method as a middleware
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with the capability of a practical protocol. We proposed a mechanism called ILDM
which enables heterogeneous MQTT brokers to cooperate with each other. The APIs
provided by ILDM enable to develop a variety of cooperation algorithms easily. In this
dissertation, we introduced two basic algorithms; PF and SF. A practical benchmark
method for MQTT brokers were also presented, and we evaluated the feasibility of
ILDM. By connecting five brokers via ILDM, the throughput increases approximately
two to four times than using a Mosquitto broker alone.

By these studies, we clarified the feasibility of an architecture using edge brokers.
As mentioned in Section 1, large-scale future services are considered to require high
throughput and low latency. Different from the centralized architecture, our techniques
enable to compose an autonomous distributed system without a single point of failure
and a performance bottleneck, so that they have quite high scalability. Even in compar-
ison with existing decentralized techniques, our techniques are superior regarding the
above requirements since they have unique features such as the suspendability and the
smaller average number of hops.

We believe that the studies in this dissertation accelerate the development of a wide
variety of applications of information technologies which make our society smarter and
more affluent.
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