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Abstract
We propose a new algorithm to estimate the phase of speech
signal in the mixture of audio sources under the assumption
that the magnitude spectrum of each source is given. The pre-
vious method, multiple input spectrogram inversion algorithm
(MISI), often performs poorly when the magnitude spectro-
grams estimated are not accurate. This may be because it im-
poses a strict constraint that the summation of source wave-
forms should be exactly the same as the mixture waveform.
Our proposing algorithm employs a new objective function in
which this constraint is relaxed. In this objective function, the
difference between the summation of source waveforms and the
mixture waveform is the target to be minimized. The perfor-
mance of our method, modified MISI is evaluated on two dif-
ferent experimental settings. In both settings it improves the
audio source separation performance compared to MISI.
Index Terms: Phase estimation, MISI, source separation, syn-
thesis

1. Introduction
Single channel source enhancement (SCSE) has been widely
applied in hearing-aids, teleconferencing and speech recogni-
tion systems. In these applications, a mixture of target signal
and background noise is collected by a single microphone, and
noise reduction methods are applied to remove the background
noise.

SCSE has been intensively studied (for a detailed survey,
see [1]). Most approaches use short time Fourier transform
(STFT) to transfer time domain mixture signals to spectra, then
estimate the magnitude of target source by several different
ways. Next, they recover the waveform of target source by the
inverse short time Fourier transform (iSTFT) where the phase
of mixture is used for the phase of each individual sources. Of
course the phase of each source is different from that of the
mixture, and so, this process cannot be justified.

The STFT of a signal is its redundant representation when
we use an analysis window which largely overlaps with nearby
windows; The spectral coefficients of successive frames are cor-
related. Griffin and Lim [2] utilizes this fact to recover phase
from magnitude spectrum. For multi-source situation, however,
separated sources are not independent with each other, i.e. all
of the individual sources should exactly add up to the mixture
signal. Gunawan and Sen [3] proposed multiple input spectro-
gram inversion (MISI) to utilize this information. While this
approach works well when the true magnitude of each source is
given, the performance significantly degrades when inaccurate
magnitudes are given.

To address this problem, different approaches have been
proposed for different settings. A method named ISSIR is intro-

duced in [4] for informed source separation (ISS), where mag-
nitudes and phases are jointly updated only when the T-F bin is
“active”. Another joint estimation approach named consistent
wiener filtering [5] combines the consistency constraint with a
loss between the magnitude estimation and classical wiener fil-
ter output, resulting in a promising performance when the given
magnitude spectra are estimated from spectral subtraction. In
recent research [6], MISI procedure is unfolded and integrated
into the chimera++ network, which improves the magnitude-
only methods. We still have a strong motivation of finding a
robust algorithm for the phase estimation, since it can be used
in a source separation setting, as a post-processing procedure
after applying magnitude oriented approaches, such as [7–13].

In this paper, we propose an algorithm which is robust
against the inaccurate magnitude spectrum, by relaxing the
strict constraint as an additional term in the objective function.

2. Griffin & Lim Algorithm
Let x = [x(0), . . . , x(T − 1)]� ∈ R

T be a time domain sig-
nal, f = 1, . . . , F and n = 1, . . . , N be frequency and frame
indices, respectively, where F is the number of frequency bins
in each frame, T is the length of the signal, and N is the num-
ber of frames. Also let wf,n = [wf,n(0), . . . , wf,n(T − 1)]�

be a complex sinusoid of frequency ωf modulated by the win-
dow function of the n-th frame. Note that wf,n is padded with
zeros over the range outside the frame window. Then, the com-
plex Fourier coefficient cf,n of the f -th bin at the n-th frame is
the inner product between x and wf,n, namely cf,n = wH

f,nx,

where ·H denotes Hermitian transpose. Let c ∈ C
FN be a vec-

tor obtained by stacking cf,n over all the frequency bins F of
all the N frames. Then the relationship between c and x can be
written as

c = Wx. (1)

Here W is a FN × T matrix in which each row is wH
f,n, c

is a complex spectrogram and W is the the matrix of complex
exponentials functions used in the short time Fourier transform
(STFT) modulated by the window function.

We typically use overlapping windows, FN is larger than
T , and accordingly, c is a redundant representation of the signal
x. The inverse STFT of c can be written using the pseudo-
inverse matrix W+ of W:

W+c = argmin
x

‖c−Wx‖22
= (WHW)−1WHc.

(2)

c is consistent iff c = WW+c. Griffin and Lim [2] utilize this
consistency constraint to estimate the phase of each frequency
component.
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Let a and φ be the magnitude and phase spectra of c, re-
spectively. Namely c = a � φ, where φf,n ≡ eiθf,n and �
denotes an element-wise product. Here we estimate φ assum-
ing a is known. Then we can obtain the phase φ by minimizing
the following objective function J (φ):

J (φ) =
∥∥a� φ−WW+(a� φ)

∥∥2

2
. (3)

Instead of solving Eq.(3) directly, we introduce another variable
c̃ and minimize the following function:

J+(φ, c̃) ≡ ‖a� φ−Wc̃‖22 . (4)

We iteratively update φ and c̃ using the principle of majoriza-
tion and minimization [14]:

c̃← argmin
c̃∈RT

‖a� φ−Wc̃‖22 = W+(a� φ), (5)

φ← argmin
φ

‖a� φ−Wc̃‖22 = ∠Wc̃, (6)

where ∠· denotes an operation that divides each element of a
vector by its absolute value.

3. Multiple Input Spectrogram Inversion
For reconstructing individual source signals that compose a
mixture signal, Gunawan and Sen [3] proposed a closed loop
method called multiple input spectrogram inversion (MISI)
where the magnitude spectra of each source is assumed to be
given.

Let ỹ be the mixture of each source, aj and φj be the mag-
nitude and phase spectra of source j, respectively. We introduce
another variable c̃j for source j, then MISI iteratively updates
c̃j and φj :

c̃j ←W+ (aj � φj) +
1

J

⎛
⎝ỹ −

∑
j′

W+ (aj′ � φj′)

⎞
⎠ ,

(7)

φj ← ∠Wc̃j , (8)

Although it is not explicitly stated in [3], this algorithm
solves the following constrained optimization problem:

minimize J (φ, c̃) =
∑
j

‖aj � φj −Wc̃j‖22 , (9)

subject to
∑
j

c̃j = ỹ. (10)

The derivation can be checked in

In MISI, the summation of individual sources should ex-
actly be the mixture signal. This constraint is often too hard
to be satisfied and may lead to incorrect updates when only er-
roneous magnitude spectra are available. Another observation
from (7) is that the error between mixture signal ỹ and the sum
of estimated signal

∑
j′ W

+(aj′ � φj′) is equally distributed
over all sources. This also may not be practical since this error
can be different from source to source. While we assume that
the true magnitude spectrum for each source is given, the mag-
nitude spectrum of one source may be more reliable than that of
other sources in real situations.

4. Modified MISI
To mitigate the two problems above, we propose a new algo-
rithm, Modified MISI (M-MISI) which minimizes the following
objective function:

I(φ) =
∑
j

∥∥aj � φj −WW+(aj � φj)
∥∥2

2

+λ

∥∥∥∥∥y −
∑
j

aj � φj

∥∥∥∥∥
2

2

.

(11)

Here y is a vector of the complex spectrogram of the mixture
signal. The first term in I(φ) measures how exactly aj � φj

satisfies the constraint from the redundancy, which corresponds
to (9) and the second term represents the error between y and∑

j aj � φj , which plays a similar role as (10), but transferred
into time-frequency domain. The motivation is that in the T-
F domain, we can handle each T-F bin separately. While (11)
has the same consistency constraint with [5] where it is denoted
as F , the second term of (11) is different with [5] where they
calculate the quadratic loss between the current estimation and
the classical wiener filter output.

Instead of equally distributing the error into each source,
here we introduce weight β for each T-F bin:∑

j

βj,f,n = 1, 0 < βj,f,n < 1. (12)

To solve this optimization problem, we also employ
majorization-minimization as in Section (2). We first find an
auxiliary function of the objective and solve it iteratively.

First let yf,n be

yf,n =
∑
j

xj,f,n, (13)

then from Jensen’s inequality, we can show that∥∥∥∥∥y −
∑
j

aj � φj

∥∥∥∥∥
2

2

=
∑
f,n

∣∣∣∣∣yf,n −
∑
j

aj,f,nφj,f,n

∣∣∣∣∣
2

=
∑
f,n

∣∣∣∣∣
∑
j

βj,f,n

βj,f,n
(xj,f,n − aj,f,nφj,f,n)

∣∣∣∣∣
2

≤
∑
f,n

∑
j

βj,f,n

∣∣∣∣ 1

βj,f,n
(xj,f,n − aj,f,nφj,f,n)

∣∣∣∣
2

=
∑
f,n,j

1

βj,f,n
|xj,f,n − aj,f,nφj,f,n|2 ,

(14)

Here, the equality in (14) holds when

xj,f,n = aj,f,nφj,f,n + βj,f,n

⎛
⎝yf,n −

∑
j′

aj′,f,nφj′,f,n

⎞
⎠ .

(15)
In the same way as in Section 2, we have∥∥aj � φj −WW+(aj � φj)

∥∥2

2

≤ ‖aj � φj −Wc̃j‖22 =
∑
f,n

|aj,f,nφj,f,n − cj,f,n|2 ,

(16)
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where cj,f,n = wH
f,nc̃j . Here the equality in (16) holds when

c̃j = W+(aj � φj). (17)

From (14) and (16), we can use

J (Φ,x, c̃) =
∑
j,f,n

|aj,f,nφj,f,n − cj,f,n|2

+
∑
j,f,n

λ

βj,f,n
|xj,f,n − aj,f,nφj,f,n|2

(18)

as an auxiliary function for optimizing I(φ). where d is other
terms that are not related to the solution.

We have discussed how to update c̃j and xj respectively.
Next we explore how to update the parameters φj , and βj .

First, for φj , since this term appears in both of the terms
in (18), we merge those two terms together. Since the opti-
mal value of φj,f,n can be found independently, we omit the
subscript in order to keep the notation uncluttered. Then the
objective function for each (j, f, n) is given by

|aφ− c|2 + λ

β
|x− aφ|2 . (19)

By expanding it to a second order polynomial of aφ, (19) be-
comes

(β + λ)

β

[
a2 |φ|2 − (βc̄+ λx̄)aφ+ (βc+ λx)aφ̄

(β + λ)

+

(
β |c|2 + λ |x|2)

(β + λ)

]
.

(20)

Here ·̄ denotes the complex conjugate. Then by completing the
square, (20) becomes

(β + λ)

β

∣∣∣∣βc+ λx

β + λ
− aφ

∣∣∣∣
2

+ d, (21)

where d is other terms that does not related to the optimal solu-
tion of φ. (21) achieves its minimum value when both terms in-
side have the same phase which is φ = ∠βc+λx

β+λ
. For β, by min-

imizing (14) with constraint (12) when fixing xj,f,t and φj,f,n,
we have

βj,f,t =
|xj,f,t − aj,f,tφj,f,t|∣∣∣∑j′ xj′,f,t − aj′,f,tφj′,f,t

∣∣∣ . (22)

Thus we can iteratively update the parameters:

c̃j ←W+(aj � φj) (23)

xj ← aj � φj + βj �
⎛
⎝y −

∑
j′

aj′ � φj′

⎞
⎠ (24)

φj ← ∠
(
(βj �Wc̃j + λxj)� (βj + λ1)

)
(25)

βj ←
⎛
⎝abs(xj − aj � φj)�

∑
j′

abs(xj′ − aj′ � φj′)

⎞
⎠ ,

(26)

where 1 is an all-ones vector, � denotes the element-wise di-
vision and abs(·) denotes an operation that takes the absolute
value of each element of a vector. As for the value of λ, it is set
to be a hyperparameter to be optimized.
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Figure 1: Output SDR, SAR and SIR of different λ values in
Spectral Subtraction case, averaged over all mixtures for each
input SNR, subtracting the mean value for each input SNR.
Numbers on the x-axis stand for different λ values in M-MISI.

5. Experimental Evaluation
5.1. Setup

We evaluate the signal reconstruction performance of M-MISI
in two different conditions, 1) Binary Mask and 2) Spectrum
Subtraction. In both conditions, we assume that only imperfect
magnitude spectra is known beforehand. In 1), The magnitude
spectrum of each source is estimated by applying a binary mask
to the mixture magnitude spectra. Here the ideal binary mask is
computed with

IBM(t, f) =

{
1 if SNR(t, f) ≥ θ

0 otherwise
(27)

where t and f are the time and frequency indices respectively,
the local SNR for each T-F bin is defined by

SNR(t, f) = 10 log10
|S(t, f)|2
|N(t, f)|2 , (28)

where S and N are the spectrogram of the clean speech and
noise, respectively. θ is a local criterion(LC) in dB, which is
chosen to be 0 dB. To add errors to the IBM values, we ran-
domly flip the value with different rate between 0 and 20%,
with 5% step. In 2), we only assume knowing the time average
of power spectrum of the noise signal, and use power spectrum
subtraction to recover the value of speech signal.

For both conditions, the mixtures are generated by mixing
a speech signal taken from the ATR speech database [15], and a
stationary noise from the noise database published by Japanese
Standards Association (JSA) [16]. All of the conversational
sentences in ATR (115 audio clips in total) are used for gen-
erating mixtures. The noise dataset contains 20 types of in-door
noises including air conditioner, washing machine, and dryer.
All utterances are re-sampled to 16kHz. The overlap ratio of
each frame is set to 50%. The window size is set to 20ms.

For each condition, the Signal-to-Distortion, Interference
and Artifacts ratio (SDR, SIR and SAR) are used as evaluation
metrics. The performance of the proposed method is compared
with MISI and Griffin & Lim algorithm.
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Table 1: Comparison of the SDR, SAR and SIR for the G&L[2] algorithm, MISI[3] and proposed Modified-MISI, with λ set to 103 for
each input SNR, in 1) Binary Mask and 2) Spectral Subtraction conditions

Input SNR −10 dB 0 dB +10 dB

SDR SAR SIR SDR SAR SIR SDR SAR SIR

Binary

Mask

G&L[2] 5.74 10.59 9.88 13.62 16.81 17.67 20.19 22.11 25.00
MISI[3] 5.76 10.11 10.18 13.40 16.07 17.87 19.03 20.36 25.10
MMISI (Proposed) 6.01 10.27 10.33 13.68 16.46 18.02 19.71 21.27 25.20

Spectral

Subtractioin

G&L[2] −6.46 5.28 −4.91 3.83 9.98 5.55 13.25 17.96 15.26
MISI[3] −6.34 3.79 −3.88 3.93 9.30 6.40 13.44 17.93 15.85
MMISI (Proposed) −5.52 4.55 −3.44 4.79 10.25 6.91 14.26 18.82 16.46

MISI G\&L MMISI
-10

-8

-6

-4

MISI G\&L MMISI
1

2

3

4

5

6

MISI G\&L MMISI
11

12

13

14

15
-10 dB 0 dB 10 dB

S
D

R

Figure 2: The box plot showing the SDR performance of the
Spectral Subtraction case
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Figure 3: Output SDR of MISI, G&L(λ = 0), and M-MISI with
different λ, as a function of number of iterations.

5.2. Experimental Results

Figure 1 compares different λ values in terms of SDR, SAR and
SIR, relative to the average value of each input SNR. Note that
the G&L algorithm corresponds to the case where λ = 0. It is
shown for each input SNR, the proposed method outperforms
MISI when λ > 10. While the proposed method achieves sim-
ilar performances when λ > 102, we find that the convergence
becomes slower when λ becomes greater, which could be fur-
ther confirmed from Figure 3. In other experiments, we choose
λ = 103 for a best trade off between execution time and perfor-
mance. Another observation from Figure 3 is that it is difficult
to stop MISI when it achieves the best performance, since the
performance degrades drastically after it reaches the peak at the
very beginning of the execution, while M-MISI is assured to
improve the SDR by running for more iterations, at a cost of
more computational time.

Table 1 shows the comparison between M-MISI, MISI, and
Griffin & Lim algorithm. For each experiment, the phase spec-
tra of each source is computed by running 200 iterations of
all of the 3 algorithms. In condition 1), the same experiment

is conducted with different error rate, as mentioned in Section
5.1, and the upper rows show the average values of all exper-
iments. Since G&L algorithm does not involve error distribu-
tion, it achieves the best SAR values in most of the times. For
condition 2), we show further the statistics in Figure 2 for each
input SNR. While in both conditions, the separation quality is
dominated by the quality of magnitude estimations, our pro-
posed method still achieved 0.4 dB in condition 1) and 1 dB in
condition 2) compared with MISI.

6. Conclusion
We have proposed a new phase recovery algorithm, M-MISI,
which employs a soft objective function. This algorithm is
robust against imperfect magnitude spectra of the estimated
sources. In our experiment, the proposed method achieved 1 dB
improvement when we only use spectral subtraction to recover
the magnitude spectrograms, and 0.4 dB on average when we
use binary mask as the magnitude estimator. In future, we need
to combine our method with recent source separation methods
involving deep learning. Also, we would like to tackle the case
when the number of recording channels (microphones) is more
than one.

7. Appendix
7.1. The derivation of MISI

To confirm that (9) and (10) lead to the solution given in (7) and
(8), we first define the Lagrangian as

L(φ, c, γ) = J (φ, c̃) + γH

(∑
j

c̃j − ỹ

)
.

By setting the partial derivative of the Lagrangian with respect
to c̃∗j at zero, we obtain

WHWc̃j = WH(aj � φj)− γ.

By summing this expression over j, we get

Jγ =
∑
j

WH(aj � φj)−WHWỹ.

Hence, when {φj}j is fixed, (9) is minimized with respect to
c̃j subject to (10) when

c̃j = W+(aj � φj) +
1

J

(
ỹ −

∑
j

W+(aj � φj)

)
.

It is straightforward to show that when {c̃j} is fixed, (9) is min-
imized with respect to φj when

φj = ∠Wc̃j .
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