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Abstract

This thesis is concerned with a nonlinear optimization problem that naturally
arises in population biology. We consider the effect of spacial heterogeneity on the
total population of a biological species at a steady state, using a reaction-diffusion
model, or multi-patch model with logistic growth. Our objective is to maximize
the total population when resources are distributed in some patches to control the
intrinsic growth rate, but the total amount of resources is limited. It is shown that
global maximizer is of “bang-bang” type under some constraint. Further, global
maximizer can be expressed in a patchy environment for any number of patches
with sufficiently small and large diffusion constant. To this purpose, we compute
asymptotic expansion of the total population by using perturbation theory in a
reaction diffusion model. In the case patchy environment, we use Taylor expansion
and recurrence relation.
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Summary

This is a summary of the author’s Ph.D thesis [19] at Tokyo Institute of Technology.

Reaction-diffusion model with logistic growth

In this thesis, we first consider the boundary value problem for a semilinear elliptic
equation ∆u+ u(m(x)− u) = 0 in Ω,

∂u

∂ν
= 0 on ∂Ω.

(1)

Here, Ω is a bounded domain in Rd with a smooth boundary ∂Ω, ν is an outward
unit normal vector on ∂Ω, and m is a bounded Lebesgue measurable function. Our
interest is in the dependency of

∫
Ω
udx on the weight m, specifically with relation

to the reaction-diffusion logistic equation.
The problem (1) appears as a stationary problem for the following model of

biological population growth introduced by Skellam [23], which plays an important
role in studying the effects of dispersal and spatial heterogeneity in population
dynamics: 

vt = ∆v + v(m(x)− v) in Ω× R+,
∂v

∂ν
= 0 on ∂Ω× R+,

v(x, 0) ≥ 0, v(x, 0) ̸≡ 0 in Ω,

(2)

where v(x, t) represents the density of a species at location x and time t, and
v(x, 0) ∈ C(Ω) is the initial data. In regards to biology, Ω is the habitat of a
species and the function m(x) represents the intrinsic growth rate of a species at
location x. If m(x) > 0, then it is favorable to the species, whereas if m(x) < 0,
then it is unfavorable. The zero-flux boundary condition in (1) means that no
individuals cross the boundary of the habitat.

The trivial steady state u ≡ 0 corresponds to the extinction of the species. If
the trivial solution is unstable, then the species can survive, that is, there is a
unique positive steady state. Conversely, if u ≡ 0 is stable, then the species has
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no chance to survive, that is, the solution tends to 0 as t → ∞ uniformly on Ω.
Therefore, the stability of the trivial steady state is crucial for the survival of the
species. We refer to [2, 4, 5, 14, 15] and reference therein for previous works on
(2).

Thus, if v ≡ 0 is unstable, the total population satisfies∫
Ω

v(x, t)dx →
∫
Ω

u(x)dx as t → ∞,

where u is the positive solution of (1). Note that the solution u of (1) depends
only on the function m. Hence we may denote the total population at steady state
as

J(m) :=

∫
Ω

udx.

Our objective is to maximize the total population J(m) under the following
constraints on m:

(M1) m(x) ≤ m(x) ≤ m(x) a.e. in Ω,

(M2)

∫
Ω

m(x)dx ≤ M,

(M3) v ≡ 0 is unstable,

where m, m are given bounded and continuous functions in Ω, and M is a given
constant satisfying ∫

Ω

m(x)dx < M <

∫
Ω

m(x)dx.

We define the feasible set of m by

M := {m ∈ L∞(Ω) : m(x) satisfies (M1), (M2), and (M3)} , (3)

and assume that M is not empty.
These constrains (M1), (M2), and (M3) are derived from preservation of an

endangered species which may not be able to survive without protection. The
constraint (M1) implies that the intrinsic growth rate at location x is given by
m(x) if there is no protection, and that the growth rate becomes at most m(x) if
some protection is provided. The integral

∫
Ω
mdx represents the total amount of

resources for protection, and (M2) implies that the resource is not enough. Though
(M3) does not impose constraint on the function m explicitly, it is a necessary and
sufficient condition for the existence of a positive solution of (1) [4, 5, 10, 15]. We
also refer to [3, 11, 22] for related work on the existence and stability conditions
for the population.
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If a function m∗ ∈ M satisfies

J(m∗) = max
m∈M

J(m),

we call m∗ a maximizer (or an optimal control) of J . Ding et al. [6] carried out
numerical simulation in the case where m ≡ 0 and m ≡ 1, and addressed the
following conjecture:

Conjecture A. Assume that weight m ∈ L∞(Ω) satisfies 0 ≤ m(x) ≤ 1 and∫
Ω
mdx = M , where 0 < M < |Ω|. Then there exists a measurable set E such that

the optimal control of J(m) satisfies m(x) = 0 on E and m(x) = 1 on Ω \ E.

Here m ∈ M is said to have a “bang-bang” property if m is expressed as
m(x) = m(x)χE + m(x)χΩ\E a.e. for some measurable set E ⊂ Ω, where χA

denotes the characteristic function. In this paper, we show that a similar situation
of this conjecture holds true in a more general situation where the upper bound
m and lower bound m of (M2) are not constant.

Our main result can be stated as follows:

Theorem 1. m ∈ M is not a local maximizer of J(m) if there exists δ > 0 and a
nonempty open set Ωδ such that m(x) + δ < m(x) < m(x)− δ almost everywhere
in Ωδ.

As is well known, if m is Riemann integrable, then m is continuous almost
everywhere. Hence the following corollary follows immediately.

Corollary 2. Suppose that m ∈ M is Riemann integrable. If m is a local maxi-
mizer of J(m), then m is of bang-bang type.

When m is not of bang-bang type, the set

{x ∈ Ω : m(x) < m(x) < m(x)}

has a positive measure, but may not have an interior point. In this case, it is very
difficult to show the bang-bang property of local maximizers.

To show the bang-bang property, it might be useful to consider rearrangement
argument when upper and lower bound of m are constant (see, e.g., [17, 18]).
However, this method is not effective in our case. In this paper, we adopt a
different approach, namely, we apply the perturbation method, and carry out
careful analysis on the first and second variations of J when m ∈ M varies.
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Multi-patch model

Understanding the effect of dispersal in heterogeneous environment on population
dynamics is an important issue in spatial ecology [5]. Generally large diffusion
tends to reduce the spatial variations in population distributions, while small dif-
fusion might help organisms adapt to the local environment. In this paper we are
interested in the impact of dispersal upon the total population of a single species
residing in a spatially heterogeneous patchy environment. More specifically, we ask
the following question: Given the total amount of resources, how should we dis-
tribute the resources across the habitat in order to maximize the total population
of a species?

To address this question, we consider the following system of ordinary differ-
ential equations for a single species with logistic growth in a patchy environment:

d

dt
vi(t) = vi(mi − vi) + δ(vi−1 + vi+1 − 2vi), i ∈ Ω∗, t ∈ R+,

v0(t) = v1(t), vN+1(t) = vN(t), t ∈ R+,

vi(0) ≥ 0,
∑N

i=1 vi(0) > 0, i ∈ Ω∗,

(4)

where N ≥ 2, Ω∗ := {1, 2, . . . , N}, and {mi}i∈Ω∗ ⊂ R is a sequence which satisfies

mi ≥ 0,
N∑
i=1

mi = m > 0. (5)

The problem (4) was first studied by Levins [13], as a multi-patch model for a
single species, where N is the total number of patches and δ > 0 is the diffusion
rate. The unknown function vi(t), i ∈ Ω∗, t ∈ R≥0 := [0,∞), denotes the number
of individuals in i-th patch at time t. The constant mi, i ∈ Ω∗, represents the
intrinsic growth rate of the species in i-th patch. If mi > 0, then i-th patch is
favorable to the species. The second equation in (4) means that no individuals
cross the boundary of the habitat, so system (4) is closed. The constraint (5)
means that the total amount of resources is limited.

Under assumption (5) it is well known that (4) has a unique positive steady
state {ui}i∈Ω∗ , which satisfies{

ui(mi − ui) + δ(ui−1 + ui+1 − 2ui) = 0, i ∈ Ω∗,

u0 = u1, uN+1 = uN .
(6)

Furthermore, the unique positive steady state is globally stable and the total pop-
ulation of (4) satisfies

N∑
i=1

vi(t) →
N∑
i=1

ui as t → ∞.
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Our purpose is to maximize the total population U :=
∑N

i=1 ui at equilibrium
under the constraint (5). See [7, 9, 12, 24] for related works.

This sort of multi-patch model is called “island chain” model or “stepping
stone” model. Such model views the space as a collection of discrete patches. We
treat each patch as a point, and view the overall population of a single species
as a vector, with each component corresponding to the number of individuals in
each patch. Furthermore, we can treat the dispersal in this model as a discrete
analogue of the continuous diffusion. For more details see [1, 5, 8] and references
therein. For this reason, this work is closely relevant to the investigation of the
reaction-diffusion equation (2) in one-dimensional case. We also refer to [5, 15]
and references therein for previous works of (2).

The maximization of the total population for the steady state of (2) has recently
been studied by [16, 21] in Ω ⊂ Rd. They showed under some conditions that any
global maximizer of the total population for the steady state must be of “bang-
bang” type, which gives a partial answer to the conjecture raised by Ding et al.
[6]. More recently, Mazari et al. [16] proved that if δ > 0 is sufficiently large,
then the global maximizer is given by m(x) := χE, where either E = (0,m)
or (1 − m, 1). Their numerical simulation results indicated that if the diffusion
constant is sufficiently small, then fragmentation may occur in the one-dimensional
case. However, it is extremely difficult to explicitly determine the maximizer for
the steady state of (2) in general.

This motivates us to study the maximization problem for the difference equa-
tion (6), for which the computations of the total population can be done (but
still fairly non-trivial) for small and large diffusion rates. Our results show that
the global maximizer depends crucially on the diffusion rate δ, and the answers
are completely different for small δ and large δ. In several cases we are able to
show that the global maximizer is of the “bang-bang” type and to determine the
maximizers explicitly by finding the specific guiding rules of fragmentation in the
multi-patch model (6). In particular, fragmentation occurs when the diffusion rate
is sufficiently small, which echoes the numerical findings in [16]. In this paper, we
do not assume the upper bound for the resource distribution in each patch.

We define the set

M := {{mi}i∈Ω∗ | {mi}i∈Ω∗ satisfies (5)} ⊂ RN .

For convenience, we express {mi}i∈Ω∗ by m or (m1,m2, . . . ,mN). Note that the
solution of (6) depends on the diffusion constant δ > 0 and resources m ∈ M. We
denote the total population at stable equilibrium as U = U(m, δ).

Our first main result is stated as follows:

Theorem 3 (Global maximizer for large δ). Suppose that m ∈ M is given by

m = (0, 0, 0, . . . ,m) or m = (m, 0, 0, . . . , 0).
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Then there exists a positive constant ∆N,m > 0 such that for any δ > ∆N,m and
for any m̃ ∈ M \ {m}, the total population satisfies U(m, δ) > U(m̃, δ).

Note that this theorem is consistent with the result of [16] for (2).
The next theorem shows that the global maximizer for sufficiently small δ is

fragmented, and there are some rules of fragmentation in the multi-patch model
(6).

Theorem 4 (Global maximizer for small δ). Let p > 0 and r > 0 be any two pos-
itive integers. Define Pm = (0,m/p, 0), Pm∗ = (0,m∗, 0), m

∗ = (0,m∗, 0,m∗, 0),
where

m∗ =
(1 +

√
2)2m

2{4(p− 1) + (1 +
√
2)2}

, m∗ =
4m

4(p− 1) + (1 +
√
2)2

.

Choose η ∈ (0, p∗] arbitrarily, where

p∗ :=

{
m/p if N = 3p, 3p+ 1,

m∗ if N = 3p+ 2.

Define a set

Mη := {m ∈ M | mi ≥ η or mi = 0 for all i ∈ Ω∗}.

Suppose that m ∈ Mη is given as follows:

(i) If N = 3p, then
m = (Pm,Pm, . . . ,Pm︸ ︷︷ ︸

p

).

(ii) If N = 3p+ 1, there are 3 cases:

(a) For p = 1, then
m = (0,Pm), or m = (Pm, 0).

(b) For p = 2r, then

m = (Pm, . . . ,Pm︸ ︷︷ ︸
r

,
3r+1

0̌ ,Pm, . . . ,Pm︸ ︷︷ ︸
r

).

(c) For p = 2r + 1, then

m = (Pm, . . . ,Pm︸ ︷︷ ︸
r

,
3r+1

0̌ ,Pm, . . . ,Pm︸ ︷︷ ︸
r+1

),
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or

m = (Pm, . . . ,Pm︸ ︷︷ ︸
r+1

,
3(r+1)+1

0̌ ,Pm, . . . ,Pm︸ ︷︷ ︸
r

).

(iii) If N = 3p+ 2, there are 3 cases:

(a) For p = 1, then

m =
(
0,

m

2
, 0,

m

2
, 0
)
.

(b) For p = 2r, then

m = (Pm∗ , . . . ,Pm∗︸ ︷︷ ︸
r−1

,m∗,Pm∗ , . . . ,Pm∗︸ ︷︷ ︸
r

),

or
m = (Pm∗ , . . . ,Pm∗︸ ︷︷ ︸

r

,m∗,Pm∗ , . . . ,Pm∗︸ ︷︷ ︸
r−1

).

(c) For p = 2r + 1, then

m = (Pm∗ , . . . ,Pm∗︸ ︷︷ ︸
r

,m∗,Pm∗ , . . . ,Pm∗︸ ︷︷ ︸
r

).

Then there exists positive constant δN,m,η > 0 such that for any δ ∈ (0, δN,m,η) and
any m̃ ∈ Mη \ {m}, it follows that U(m, δ) > U(m̃, δ).

Remark 5. Let m ∈ M be given as in Theorem 4. Choose m̃ ∈ M \ {m}
arbitrarily. The proof of theorem 4 implies that there exists positive number δm̃
such that for any δ ∈ (0, δm̃), it follows that U(m, δ) > U(m̃, δ). Hence m̃ ∈
M \ {m} is not global maximizer for sufficiently small δ.

This theorem refers to a global-maximizer when there is minimum amount of
resources η > 0 for each patches. When η = 0, it is very difficult to determine a
global maximizer. However, in the two patches case, we obtain global maximizers
for all δ > 0.

Theorem 6 (Global maximizer for two patches). In the case N = 2, Suppose that
m ∈ M is given as

m = (0,m), or m = (m, 0).

Then for any m̃ ∈ M \ {m}, it follows that U(m, δ) > U(m̃, δ) for all δ > 0.

Remark 7 (Global minimizer). It is known that a global minimizer of the total
population of (2) is constant. It still holds when we use the multi-patch model, that
is, mi ≡ m/N for all i ∈ Ω∗ is the global minimizer for all δ > 0.

We conclude this summary by noting that the author’s Ph.D thesis [19] is based
on [20, 21].
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