TERE | ﬁi_ﬁ]ﬁ%ﬁﬁuﬁ-_} TR R U |

Tokyo Tech =

esearch Repository

Od/dodn
Article / Book Information

oo(@o)

Citation(English)

Type(English)

Large-Scale Visual Localization Based on Image Retrieval and Local
3D Reconstruction

OO0

Hajime Taira

O0:00@0),

oOooooo:0oo0ooa,

O000:00114210,

000 00:20200 30 260,

ooooo:0o0o0a,

OO00:00 00,00 00,00 00,00 00,00 00

Degree:Doctor (Engineering),

Conferring organization: Tokyo Institute of Technology,
Report number:J [0 1142107,

Conferred date:2020/3/26,

Degree Type:Course doctor,

Examiner:,,,,

Doctoral Thesis

Powered by T2R2 (Tokyo Institute Research Repository)



http://t2r2.star.titech.ac.jp/

Doctor Thesis 2019

Large-Scale Visual Localization Based on
Image Retrieval and Local 3D Reconstruction

Tokyo Institute of Technology
Dept. of Systems and Control Engineering, School of Engineering
Hajime Taira

December, 2019

Supervisor: Masatoshi Okutomi



Abstract

Finding an accurate location and direction of a robot in the 3D real world is a key ability of
robotic intelligent system and autonomous navigation. One approach for solving the localiza-
tion problem is to use a camera attached to the target device to estimate the current pose
of the target (visual localization). Because of the wide spreading of image data and internet
sharing, the scale (reference scenes) for the problem becomes larger in both indoor (including
multiple rooms, floors, and buildings) and outdoor (including the whole cities, regions) scenar-
ios. At the same time, new applications, such as Mixed Reality (MR) including Augmented
Reality (AR), often require an accurate 6-Degree-of-Freedom (6DoF) camera pose of the input
image. Previous visual localization approaches that require a 3D database capturing the whole
scene to estimate the camera pose are impractical or sometimes infeasible for such large-scale
visual localization problem, regarding memory consumption and maintenance/updates of the
database.

In this thesis, we introduce a visual localization pipeline designed for large-scale environ-
ments. In contrast to other approaches using the large 3D database, we first seek the relevant
locations of an input image using an image database, which allows scaling to the larger scene.
We next compute an accurate 6DoF camera pose using local geometric information around the
relevant location. Contributions of this thesis can be divided into three parts; 1) We propose
two feature matching algorithms for local image features. They are designed for the general
purpose of wide-baseline image matching, but can also be beneficial for database construction
and camera pose estimation for visual localization. 2) We construct a large-scale image dataset
in an urban city-scale scene while preparing precise 6DoF camera poses of input images to eval-
uate the performance of visual localization. Using this new dataset, we evaluate state-of-the-art
approaches for visual localization and show the large-scale 3D model is actually not necessary
for accurate camera pose estimation in a large-scale scene. 3) We also evaluate our pipeline on
a large-scale indoor scenario. To deal with several difficulties raised in indoor scenes such as
weakly textured appearances and repetitive structures, we propose a new algorithm verifying
the estimated camera pose using a pre-captured local 3D point cloud. Our method achieves
state-of-the-art performance on our indoor dataset. Altogether, we tackled for scaling visual

localization problem to much larger environments. We confirmed our approach effectively ad-



dresses the issue based on efficient image retrieval and local 3D reconstruction. Also, two new
datasets we constructed through the thesis depict several challenging situations for visual lo-
calization induced in large-scale scenarios and will be beneficial for further researches in this

area.



Acknowledgement

First of all, the author would like to express the sincerest thank to the supervisor, Professor
Masatoshi Okutomi, for providing the opportunities and environments to focus on this research
topic. The author would also like to thank Professor Torii for his kindful and suggestive advice
related to the project.

Other members in Okutomi-Tanaka laboratory, including Professor Masayuki Tanaka, Doc-
tor Yusuke Monno, and master/bachelor students, always allowed the author to spend joyful
and constructive times in the laboratory. The author would like to thank all of the colleagues
for their understandings and kindnesses.

This project has been supported by many collaborators, from Chalmers University of Tech-
nology, Inria, Czech Institute of Informatics, Robotics and Cybernetics, Czech Technical Uni-
versity in Prague, and E'TH Ziirich. The author would like to thank Professor Torsten Sattler,
Professor Josef Sivic, Professor Tomas Pajdla, Professor Marc Pollefeys, Doctor Mircea Cim-
poi, Doctor Jiri Sedlar, and Ignacio Rocco, for having insightful discussions and many supports,
during these beautiful times to co-author. The author would also like to express the deep ap-
preciation to Professor Yasutaka Furukawa for his arrangement to capture query photographs
at Washington University in St. Louis, for composing a new dataset that takes on an essential
role of this thesis.

Finally, the author would like to thank his families, Masato, Sachiko, Riko, Niko, and Koko,
in all aspects.

This work was supported by JSPS KAKENHI Grant Number 17J05908.



Contents

1

2

Introduction 7
1.1 Background . . . . . .. 7
1.2 Large-scale visual localization . . . . . . .. .. .. ... .00 8
1.21 Overview . . . . . . . 8
1.2.2  Feature matching . . . . .. . ... oo 10
1.2.3 Image retrieval . . . . . . .. L 11
1.2.4 Camera pose estimation . . . . . . . . .. ... ... ... 13
1.2.5 Dataset . . . . . .. 15
1.3 Related works . . . . . . .. 17
1.3.1 Feature matching . . . . . . . .. ... oo 17
1.3.2 Image retrieval-based localization . . . . . . . .. .. .. ... .. ..., 18
1.3.3 Camera pose estimation in large-scale environments . . . . . . . . .. .. 19
1.3.4 Dataset . . . . . . . 19
1.4 Thesis overview and contributions . . . . . . . .. ... o000 20
Robust feature matching 25
2.1 Robust feature matching for image deformations . . . . . . .. ... .. ... .. 25
2.2 Feature matching for spherical panoramic images . . . . . .. .. .. ... ... 27
2.2.1 Properties of image distortion on spherical cameras . . . . . . ... ... 27
2.2.2  Panoramic image rectification and matching . . . . . . .. ... ... 28
2.2.3 Experiments . . . ... 30
2.3 Feature matching robust to large viewpoint changes . . . . . . .. . ... ... 33
231 Overview . . . .. 33
2.3.2 Feature extraction and grouping . . . . .. .. ..o 34
2.3.3 Learning descriptor covariance through view synthesis . . . . . .. . .. 36
2.3.4 Feature matching using descriptor variations . . . . . ... .. ... .. 39
2.3.5 Experiments . . . ... 40
2.4 SUIMMATY . . . . o v e e 45



CONTENTS

3

4

Visual localization in a large-scale urban environment

3.1 Background . . . ...

3.2 Dataset for visual localization in an urban environment . . . . . . .. ... ..
3.2.1 Review for current evaluation protocols . . . . . . . . .. ... ... ...
3.2.2  Generating reference poses . . . . . . ..o

3.3 Existing visual localization methods . . . . . . . . ... ... ... .
3.3.1 2D image-based localization . . . . . . .. ... ... ... ... .....
3.3.2 3D structure-based localization . . . . . . ... ... ... L.

3.4 Image-based visual localization providing accurate 6DoF camera pose . . . . . .
3.4.1 Approximation for camera location . . . . . .. ... ... L.
3.4.2 Local 3D reconstruction for camera pose estimation . . . . . .. ... ..

3.5 Experiments . . ... L
3.5.1 Experimental setup . . . . . . ..o
3.5.2  Quantiative Evaluation . . . . . . . ... .. oo
3.5.3 Relevance of the Results . . . . . .. .. ... ... ...
3.5.4  Qualitative Results . . . . . . . . ...

3.6 Summary ... ..o

Visual localization in a large-scale indoor environment

4.1 Indoor visual localization scenarios with dense 3D database . . . . . . ... ..

4.2 The InLoc dataset for indoor visual localization . . . . . . .. ... .. .. ...
4.2.1 Overview . . . . ..
4.2.2 Reference pose generation . . . . .. .. .. Lo

4.3 InLoc: indoor visual localization with dense matching and view synthesis . . . .
4.3.1 Concept . . . . . . e
4.3.2 Candidate pose retrieval . . . . . . . . ...
4.3.3 Pose estimation using dense matching . . . . .. ... ...
4.3.4 Pose verification with view synthesis . . . . .. . ... ... ... ..

4.4 Similarity metrics for pose verification using multiple modalities . . . . . . . ..
4.4.1 Integrating scene structures . . . . . . . . ...
4.4.2 Integrating scene semantics . . . . . .. ..o
4.4.3 Trainable pose verification . . . . . . . . . ... ... ...

4.5 Experiments . . . . . ...
4.5.1 TImplementation details . . . . . .. ...
4.5.2 Ablation study . . . .. ..
4.5.3 Comparison with the state-of-the-art methods . . . . . . ... ... ...
4.5.4 Evaluation on other datasets . . . . .. .. ... ... ... ... ...

4.5.5 Measuring scalability . . . ... ..o

46
46
48
49
20
54
54
25
57
57
57
o8
o8
59
66
67
68



CONTENTS 6

4.5.6 Computational cost . . . . . .. ... 104

4.5.7 Qualitative results . . . . . ... 105

4.5.8 Pose verification using geometric semantic information . . . . . . . . .. 107

4.6 SUMIMATY . . . . o vt e e s e 110

5 Conclusion 112

Bibliography 114



Chapter 1

Introduction

1.1 Background

Finding accurate location and direction of a robot in the 3D real world is a key ability of robotic
intelligent system [1], e.g., autonomous driving in an urban city. Also, localizing a mobile device
can benefit recent Mixed Reality (MR) applications, including Augmented Reality (AR) [2,3],
e.g., for a smartphone, Google Glass or any other types of a wearable device.

Fig. 1.1 shows several known approaches for the localization problem. One common ap-
proach to localize the target device is Global Positioning System (GPS) that determines the
position by triangulating signals from multiple satellites. Similarly, Wifi signals from calibrated
transmitters can be used for localization mainly in indoor environments [4-8|. In addition,
Inertial Measurement Unit (IMU) is often used to find an accurate pose of the device [9, 10].
Other approaches use observation of the environments surrounding the device, e.g., color images
from a camera, 3D points captured by LIDAR. One of the popular fields here is Simultaneous
Localization and Mapping (SLAM) that incrementally estimates current 6-Degree-of-Freedom
(6DoF) pose of the device and 3D environments, assuming a sequence of the input images or
3D points from LIDAR [11-13]. In contrast, visual localization approach assumes a single
image input and estimates the 6DoF pose of the target. Assuming a database that represents
a known 3D space, e.g., image collection that has taken from known viewpoints, one can esti-
mate the current location by registering the query (input) image to the database. As well as the
use of other modality sensors like GPS and IMU, which are sometimes unavailable or provide
erroneous measures, this purely image-based approach is also highly relevant for applications
above, and is beneficial regarding device costs.

In the last decade, the database which is available for visual localization become larger [14-
22] because of wide spread of image data and internet sharing, e.g., user photos uploaded to
Flickr, and city or region scale image database on Google Street View. Furthermore, thanks

to recent multi-modal sensors, additional information that can contribute to find 6DoF pose
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Figure 1.1: Localization problem. The goal for localization is to find an accurate location
(and orientation) for an input consisting of sensor signals or observations for the surrounding
environments, e.g., GPS signals, IMU information, and color images. As a key of the location,
sensor signal-based localization generally requires pre-constructed infrastructures, e.g., GPS
satellites, calibrated Wifi. On the other hand, visual localization approaches determines the
position and orientation of the camera using pre-observed database in the format of image

collection or 3D structures.

of the camera, e.g., accurate and dense 3D map captured by a laser range scanner, become
also be available. However, large-scale database often includes many challenging scenarios for
visual localization, e.g., visually similar places that obviously hurt the uniqueness of the images,
and less textured or highly symmetric scenes that makes queries difficult to be localized to the
correct positions (Typical image examples are also shown in Fig. 1.5). At the same time,
effective usage of additional information such as 3D model along with image database is not

trivial, thus is a opening issue to be investigated.

1.2 Large-scale visual localization

1.2.1 Overview

As illustrated in Fig. 1.2, existing visual localization approaches can mainly be divided into two

streams; 2D image-based methods and 3D structure-based methods, both assume a pre-collected
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Large 3D model
= .

2D image database

B "; SRR SNCN - LN
(b) 3D structure-based method

(a) 2D image-based method

Figure 1.2: Two main approaches for visual localization. (a) 2D image-based methods
cast the localization problem as the ranking among the geotagged database images (red high-
lighted images). For a given query image (Top left image), they perform image retrieval and
approximate the query location by the location of the most relevant database image. (b) On
the other hand, 3D structure-based methods assume a large 3D model (point cloud) depicting
the whole scene and directly register the input image into the model. Registration is done
by establishing 2D-3D correspondences between the query and the 3D model (red dots in the
image and red lines in the 3D model) and estimating 6DoF camera pose of the query (blue cone
in the 3D model).

Table 1.1: System-level summary of visual localization approaches.

2D image-based localization 3D structure-based localization

Database Database of geotagged images 3D points with associated

image descriptors

Approach Image retrieval Descriptor matching followed by pose estimation
Output Set of database images related to query, | 6DoF camera pose of the query image
coarse position estimate (position and orientation)
Advantage Easy to maintain / update database Directly provides pose estimates
Disadvantage || Requires extra post-processing Needs to construct a consistent 3D model

to obtain 6DoF poses
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database for the target environment but in different styles (also see Tab. 1.1). 2D approaches
(Fig. 1.2 (a)) cast the localization problem as a ranking problem among the geometrically
annotated (geotagged) image database and employ image-based similarity measurements such
as image retrieval and feature matching. On the other hand, 3D methods (Fig. 1.2 (b)) assume
a 3D model of the scene as the database and estimate a 6DoF camera pose of the input image
regarding the model. This section summarizes key components of these approaches, feature
matching (Sec. 1.2.2), image retrieval (Sec. 1.2.3), and camera pose estimation (Sec. 1.2.4),
together with the database construction process (Sec. 1.2.5), which is another fundamental
part of both methods.

1.2.2 Feature matching

Visual localization is often be treated as image ranking problem, i.e., assuming a database of
geotagged images {Zpp}, the (approximated) location of an input image Z, can be presented
by the geotag of a database image Zpp that is visually similar to the query. One of the simplest
approaches for ranking the database images is to perform feature matching M that finds a set
of local correspondences between Zy and each Zpp and to count the number of the matches n
(illustrated in Fig. 1.3 (a)).

M(Zg,Zpp) = {Zo(®:i), Ipp(yi) }} (1.1)

x; and y; represent the i—th corresponding keypoint found in Zg and Zpp, respectively. Inp
is then selected as the most matched images. Also, establishing local correspondences between
given images is a fundamental step in many computer vision tasks, including Structure from
Motion (SfM) [23-25], image retrieval [26,27], and camera pose estimation [28-30], which are
used to construct an image database for visual localization.

Most algorithms of feature matching compose of three steps: keypoint detection, feature
description, and matching, where each of them basically relies on the consistency (invariance)
of local regions in the images. The first step extracts a set of keypoint from each of Z, and
Ipp that potentially be matched to the ones extracted from the other image regarding the
characteristic regions in the image, e.g., edges and corners [31-35]. Each keypoint (region)
is then described as a feature vector that represents the image point in the high-dimensional
feature space. It is usually done using the image intensities in the local patches or regions
around the keypoint, e.g., computing image gradients in the image patch [32]. Finally, feature
matching is performed for each feature in the feature space by searching the nearest feature
extracted from the other image. Those potential correspondences are verified and filtered by
fitting any geometrical model, i.e., via Random Sample Consensus (RANSAC) [28], for the
tasks that require an accurate set of matches, e.g., StM [23-25].
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Query image
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Query image

Database image

Database image

(a) Feature matching (b) Image retrieval

Figure 1.3: Place recognition using image database. For a given query image, visual
localization has often been performed by seeking the most relevant database image to the
query. (a) One of the simplest approaches for ranking the database images is to build local
correspondences (green lines) between database and query images by feature matching. The
number of matches can represent the relevance of each database image to the query. (b) On
the other hand, image retrieval approaches provide a more efficient solution for ranking by
measuring per-image similarities (red arrows) rather than measuring the similarity of each
local region. Feature matching is often performed as a stricter ranking process on top of the

image retrieval.

Challenges. Feature matching seeks image matches relying on the invariance of local regions
in the images. However, this assumption often is violated when the viewpoint (image location)
has significantly changed. Substantial view changes can cause appearance changes even in the
local regions and lead keypoints miss-detection and feature variations, which prevent match-
ing algorithms from finding accurate correspondences. At the same time, as partly shown in
Fig. 1.3 (a), view changes between pre-captured database images and the query are actually

inevitable regarding the difference in capturing times and camera devices [20].

1.2.3 Image retrieval

Rather than counting the number of local matches, image retrieval-based approaches [27,36-41]
provide a more efficient solution for ranking database images w.r.t. the similarity to the input
image (illustrated in Fig. 1.3 (b)). An encoder F' converts an image to a feature vector that
presents the image in the feature space. The most relevant database image Zpp is selected as
the nearest one in the space to the feature of query:

Ipp = argmin d(F(Zg), F(Zps)) (1.2)

IpB

where d is the distance function for high-dimensional feature vector, e.g., the Euclid distance.

The encoder F' is usually composed of some efficient representations of a set of local features,
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such as Bug-of-Words (BoW) [42,43] and Vector of Locally Aggregated Descriptors (VLAD) [44,
45].

Omne general technique to improve the ranking is geometric verification [42] that employs
feature matching as post-processing for image retrieval, for proving a geometric relationship
between the query and the database image, rather than relying only on the per-image metric
provided by image retrieval. For the set of top-retrieved N database images, it performs pairwise
feature matching against the query image and verifies correspondences by fitting homography
or any type of geometric model via RANSAC [28]. Then the database images are reranked

regarding the number of inlier matches:

Ipp = argmax | M (Zo, Ips)| (1.3)
IppeN
where | M(Zg,Zpg)|| is the number of matches, which is equal to n in Eq. (1.1).

This purely image-based ranking process carries a key technology of 2D image-based
localization approaches (Fig. 1.2). The location where the input image Z has been taken can
be approximated by the location where Zpp has been taken, i.e., the geotag of the database
image (summarized in Fig. 1.2 (a)).

Image-based localization methods are often adopted to place recognition tasks in urban
scenarios [27,36-40]. Assuming a large-scale (city-scale or more) image database annotated
to a known city map, i.e., a set of geotagged images, image retrieval provides an efficient
location searching since it basically relies on a simple distance computation of the feature
vectors (Eq. (1.2)). Also, it can naturally be scaled to a database expansion (an expansion
of the target scene by storing new images) since it only requires to store geotags and feature

vectors as the database, which allows manageable and maintenance-able database construction.

Challenges. Image retrieval-based localization methods provide only the relevant location of
the image. If one can assume that a query image follows a spatial distribution quite similar to
that of database images, i.e., taken from the same street and from very similar viewpoint, the
approximated location (the location of the database image) can present a sufficiently relevant
position of the query (the bottom example in Fig. 1.5). This approximation, however, leads a
limitation to the accuracy of the estimated locations when query image and database images
have been captured from far distant spatial distribution, e.g., assuming queries taken by users
on pedestrians, whereas database images have been collected as street-view dataset captured by
car-mounted cameras. The top examples in Fig. 1.5 shows a typical example of such situations.
The query (a) and retrieved database image (b) certainly see the same object (building). Still,
the structures in the image are large, and query captures it from a relatively far viewpoint,
inducing significant spatial uncertainties of the estimated location. As a result, partly due
to sparse distributions of the database images, image retrieval-based localization [27] gives a

street-level inaccurate position. In addition, some applications of visual localization require an
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Large 3D model
£~

+ depth image

1. 2D-3D matching 2. Solving PnP problém

(a) Camera pose estimation using an SfM model (b) Camera pose estimation
using an RGBD image

Figure 1.4: Camera pose estimation using 3D database. (a) Assuming a 3D point cloud
obtained via SfM, 3D structure-based localization methods firstly build correspondences be-
tween image features and 3D points by feature matching. They then compute a 6DoF camera
pose of the image (blue cone in the 3D model) by solving a PnP problem. (b) An RGBD image
captured by a depth sensor can build another type of the 3D database. Matches between the
query and the database image are translated as 2D-3D matches using the depth information

and formulate the camera pose of the query.

accurate position and orientation (6DoF pose) of the query, rather than the approximated one.
Additional post-processing for estimating the accurate camera pose is therefore required while

it costs additional computation resources.

1.2.4 Camera pose estimation

Theoretically, the minimal solution of a 6DoF camera pose is provided by three correspondences
between 2D image points (keypoints) and 3D scene points [28,47] (Perspective-three-points
(P3P) problem, which is in a series of Perspective-n-Point (PnP) problem). This pose estimation
is usually done in incremental SfM pipeline [23-25] that estimates 3D scene points and camera
poses using a set of images input. They first perform pairwise feature matching among the
input images and initialize the 3D model (3D points and relative camera pose of a selected pair
of images) by epipolar fitting and triangulation for local feature correspondences between the
images. The model is then incrementally updated by registering other images also using local
feature matches. A 2D image point match between a registered image and a new image can
be interpreted to a 2D-3D correspondence if the feature in the registered image associates a
3D point. Subsequently, the registration can be robustly done by solving the P3P problem in
the RANSAC [28,29,48] scheme. At the same time, new 3D points are added to the model via
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(a) Query (b) 2D method [27] (¢) 3D method [46]
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Figure 1.5: Examples of challenging situations for visual localization in an outdoor
urban environment [21]. Each column shows: (a) Query image fed to 2D image-based [27]
and 3D structure-based [46] localization methods. (b) The best matched database image se-
lected by image retrieval [27] (left) and its location (red dot in right map), together with query
ground-truth location (blue dot). (c¢) 3D points projected to the query with respect to an es-
timated camera pose obtained by [46] (red dots in the image) and its corresponding 2D image
points (blue dots). Numbers in (b) and (c) present the positional and orientational errors of

the camera pose obtained by each method.

point triangulation with respect to the relative camera poses and 2D matches, resulting in a
large 3D point cloud at the end.

Similarly, assuming a pre-constructed database of 3D points, one can estimate a 6DoF
camera pose of a query using the 3D point cloud. Several works [46,48-55] provide such solutions
consisting of the other visual localization stream, 3D structure-based localization, namely
(illustrated in Fig. 1.2 (b)). These (hand-crafted) methods offer an accurate 6DoF camera
pose, assuming a pre-constructed 3D point cloud depicting the street-level target scene. 3D
points are usually constructed via SfM reconstruction using database images. As illustrated
in Fig. 1.4 (a), the 6DoF camera pose of a given image can be estimated by collecting the
correspondences between 2D local features and 3D points via feature matching and solving the
PnP problem.

As well as the sparse 3D points obtained via StM, a 3D scene can also be represented by an
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RGB image together with pixel-wise depth information (RGBD image) captured by a multi-
modal sensor such as LIDAR [22,56-58]. As illustrated in Fig. 1.4 (b), dense 3D structures
depicted by the RGBD image can benefit to the camera pose estimation tasks. Since each pixel
of the RGBD image corresponds to a 3D coordinate, local feature matches between a database
image and a query (RGB) image are translated as 2D-3D matches between the target 3D scene
and the query. The 6DoF camera pose of a query can subsequently be computed by solving
the PnP problem.

Alternatively, recent deep learning technology using the convolutional neural network (CNN)
architectures allows directly predicting the 2D-3D correspondences [59,60] or camera pose [55,

61,62], regarding a known 3D database.

Challenges. While providing accurate 6DoF pose estimation in the query time, storing 3D
points and its descriptors as a database for large-scale (city-scale) visual localization requires
an extra memory consumption compared to image retrieval-based methods. CNN-based rep-
resentation of a 3D database can potentially offer a more efficient database [61]. Yet, scaling
CNN-based approaches to large-scale scenes is still an open challenge [60, 63, 64]. Also, up-
dating a large 3D database requires more effort than constructing a 2D image database. The
incompleteness of the 3D point cloud (or sparsity of the 3D points) can be a severe limitation
for pose estimation since it relies on explicit 2D-3D matches, thus cannot be generalized to
unknown scenes, i.e., the scenes that are not associated by 3D database.

Another challenge, induced with the difficulties of local feature matching, is shown in an
example at the bottom of Fig. 1.5. The query includes highly repetitive and symmetric ap-
pearances, e.g., structures of a building, occlusions induced by moving objects, e.g., cars, and
reflective surfaces, e.g., windows, which often appear in large-scale urban environments, and
make local features difficult to be matched correctly. As a result, the 3D-based method (c) fails
to find corresponding 3D scene points from the (large) 3D database and obtains a completely

wrong camera pose.

1.2.5 Dataset

As mentioned in previous parts (Sec. 1.2.3 and Sec. 1.2.4) and summarized in Tab. 1.1, existing
visual localization methods assume two types of the database regarding the required output;
2D image database with geotags for seeking a location where the query has been taken, and 3D
database for estimating accurate 6DoF camera pose of the query. As illustrated in Fig. 1.6 (a),
the 2D image database consists of RGB color images and its locations, i.e., positions and
orientations. Database capturing for urban scenes is often collected using a car-mounted camera
and a GPS device [17,37], resulting in a large-scale geotagged image database representing a

city-scale visual localization scenario. The feature vector for image retrieval F(Zpg) usually
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Figure 1.6: Three types of the database for visual localization. The database for visual
localization can mainly be divided into two types of domains: 2D image database and 3D
database. The image database (a) for a place recognition task (Fig. 1.3) consists of a set of
RGB images annotated by geotags regarding a known scene geometry, ¢.e., map. On the other
hand, the 3D database for camera pose estimation task (Fig. 1.4) depicts known 3D structures
of the target scene, as a 3D point cloud obtained via SfM (b) or a set of RGBD images (c).
associates the images and scales the database to a reasonable size!.

On the other hand, the SfM using database images can provide the 3D database for visual lo-
calization [23-25], which builds a 3D point cloud representing the scene structures (Fig. 1.6 (b)).
Each 3D point is estimated based on feature matching between database images and triangu-
lation [25], thus be associated with two or more local features in the database images. As
the constructed 3D model is scale-indefinite, additional registration to a real-scale coordinate
system such as the GPS coordinate system is performed as the post-processing [65].

Mainly in indoor scenarios, new multi-modal sensors such as LIDAR and laser range finder
enable to capture scene structures directly, along with color information. They provide fur-
ther accurate and dense 3D point cloud for the scene (Fig. 1.6 (c)), represented as an RGBD
image [19,56,66-69]. Since one-time capturing of these devices can only depict a small local
area, e.g., a single room or section in a building, a large-scale RGBD database (depicting the
whole floor) consists of a set of RGBD images, together with relative transformations to each

other [56,69], or registration to a known floor map [19].

Challenges. A general problem of the dataset for visual localization is the lack of input
images for evaluation. To validate the performance of localization in practical situations such
as autonomous navigation, one should use the query images representing several challenging
situations, e.g., captured differently from the database, in terms of viewpoints, devices, and
timings. Also, accurate ground-truth for the query image is essential for evaluation. Construct-

ing an SfTM model using both database and query images can potentially provide an accurate

'For example, storing 4096-dimensional feature vectors for entire San Francisco city requires 17.4GB or less
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6DoF camera poses for evaluation. However, this workaround still is limited for challenging
scenarios, e.q., weakly textured scene, because SfM is also challenging such scenarios due to
the lack of local features, thus can provide an inaccurate reconstruction of the camera poses.
RGBD sensors can provide more accurate 3D representations than SfM 3D point clouds
even in weakly textured scenes. They also serve denser 3D points since each pixel in the image
associates a 3D scene point defined by depth information, whereas the SfM model represents
the scene only by sparse local features. However, adapting those dense structures to visual

localization is still an opening issue, which has been only partly addressed [70,71].

1.3 Related works

1.3.1 Feature matching

Scale-invariant features. In the pioneering work related to local feature detection, scale-
invariant keypoint detectors using Laplacian-of-Gaussian (LoG) or Difference-of-Gaussian (DoG)
scale space representation were proposed [31,32], which were designed for seeking scale-invariant
regions from multiple-scales representation of the image. Other approaches include Harris-
Laplacian or Hessian-Laplacian [33], which measure the cornerness of the keypoint also in a
multiple-scale images.

For describing the local regions/patches detected by the keypoint detector, SIFT [32] is a
popular feature descriptor that computes histograms of gradients in the scaled patch around
the keypoint. Variants include acceleration or approximation of SIFT [34,35] or binarized
description [72, 73] to improve memory efficiency. These approaches based on scaled patch
representation are less effective when matching largely skewed image pairs, as they are not

designed to handle them.

Affine covariant region estimation. One approach that can provide accurate matching
in cases with relatively large viewpoint changes is to detect affine covariant regions. Harris
(or Hessian)-Affine [33] are popular methods to estimate elliptical regions around the initial
keypoints as the additional process for the scaled patch detectors, i.e., post-processing of scale
invariant regions detection by Harris-Laplacian or Hessian-Laplacian. Detected elliptical regions
are then warped to circular regions to describe affine invariant feature vectors. These approaches
still have limitations when the views are markedly different, e.g.seeing a plane from an extremely

slanted view direction, because of the weakness of the initial keypoint detector.

View synthesis. Rather warping each local region, ASIFT [74] warps the whole image to
match, resulting in an image matching framework that is robust to changes in viewpoints. It
synthesizes multiple slanted views covering full affine space and extracts SIFT features from

every synthesized image. The full affine simulation for both keypoint detection and feature



CHAPTER 1. INTRODUCTION 18

description significantly improves the performance against large view changes. However, this
brute-force method has low computational efficiency, because it requires full image synthesis and
use a greater number of features. Moreover, it might generate numerous mismatches because of
its heuristic feature generation. Several works have attempted to decrease its computational cost
by balancing the image synthesis and matching performance. MODS [75] iteratively synthesizes
warped images and performs feature matching. In each iteration, it checks the reliability of
matches and stops iteration if a sufficient number of matches is obtained.

Metric learning. Feature matching is performed by computing similarities among feature
descriptors. Numerous metrics have been proposed for improving discriminability and matcha-
bility. PCA-SIFT [76] is a widely known metric learning strategy for SIFT features. It projects
feature descriptors onto a pre-trained low-dimensional space learned with principal component
analysis (PCA), which fundamentally preserves the discriminability of features. To provide a
strategy that is more specific to the image retrieval problem, [77] proposed descriptor projection
learned by automatically generated training data. Recently, RootSIFT [26] has been widely
used because of its simplicity and effectiveness. RootSIFT computes the Hellinger distance,
which is accomplished by computing the Euclidean distances among L1 normalized and square
rooted SIFT descriptors.

The Mahalanobis metric is used for adopting feature variations into similarity measure-
ments [78]. [79] proposed Relevant Component Analysis (RCA), which learns a common co-
variance from all features in a training set. As a different approach to the feature matching
problem, [80] proposed a method to learn the Mahalanobis metric for every patch without

explicitly generating synthesized images.

1.3.2 Image retrieval-based localization

Image-based approaches (Left column in Tab. 1.1) model localization as an image retrieval
problem. The location of a given query image is predicted by transferring the geotag of the
most similar image retrieved from database [27,36-41]. This approach scales to entire cities
thanks to compact image descriptors and efficient indexing techniques [26, 44,45, 81-85] and
can be further improved by spatial re-ranking [42], informative feature selection [81,86] or
feature weighting [37,39,87,88]. Most of the above methods are based on image representations
using sparsely sampled local invariant features. While these representations have been very
successful, outdoor image-based localization has recently also been approached using densely
sampled local descriptors [38] or (densely extracted) descriptors based on CNN [40,41,89,90].
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1.3.3 Camera pose estimation in large-scale environments

3D Structure-based localization methods (Right column in Tab. 1.1) assume that a scene is
represented by a 3D model. The map is usually composed of a 3D point cloud constructed
via Structure-from-Motion (SfM) [18], where each 3D point is associated with two or more
local feature descriptors. The query pose is then obtained by feature matching and solving a
Perspective-n-Point problem (PnP) [46,48-54].

Descriptor matching quickly becomes a bottleneck and three (partially orthogonal) ap-
proaches exist to accelerate this stage: i) Prioritized search strategies [16,49,51] terminate
correspondence search early on, ii) model compression schemes use only a subset of all 3D
points [16,48, 54], iii) retrieval-based approaches restrict matching to the 3D points visible in
the top-ranked database images [46,48,52,91,92].

Alternatively, pose estimation can be formulated as a learning problem, where the goal is
to train a regressor from the input RGB(D) space to camera pose parameters [55,93] or 3D
point positions [56,59,60,64]. However, these methods do not yet achieve the same pose ac-
curacy as structure-based methods on outdoor scenes [93]. In addition, scaling these methods
to large-scale datasets is still an open challenge [60,63]. Rather than reformulating the whole
localization problem, several works replace each individual component of it with learned feature
extractor or matcher. Traditional hand-crafted local features for feature matching can be re-
placed with learned alternatives [94-98]. There are also some works aiming to directly establish
matches between images [99-101]. NetVLAD [40] provides a learned image representation for
image retrieval that revisits the dense feature extraction and aggregation process with a CNN
architecture. In general, those approaches are better generalized compared to learned direct

pose estimator, and can potentially be incorporated to large-scale scenarios.

1.3.4 Dataset

In the last decade, image dataset for visual localization are mostly provided for urban environ-
ments [17,20,37]. San Franciso Landmark dataset [17] provides about 1.06M database images
capturing the entire San Francisco city by car-mounted camera, and its accurate positions in
the GPS coordinate system. They also include 803 query images taken by hand-held cam-
eras, which have different properties (image resolution, camera intrinsics, and viewpoints) from
database images. However, those image database only provide coarse locations or poor GPS
positions of the queries. Therefore, evaluation on them are limited to place recognition task,
i.e., finding street-level location where the input image has been taken. One workaround to
get an accurate 6DoF ground-truth camera pose for a query image is to construct a large 3D
model via SfM using image database and to divide images to database and validation set. [16]

provides two dataset, Dubrovnik6K and Romel6K, namely, which consists of internet photos
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and associating 3D point clouds. While providing an accurate camera pose for each query,
those dataset are sometimes limited in terms of image distribution in the scene, i.e., variety of
the image appearances.

Compared to outdoor urban situations, visual localization in indoor environments has re-
ceived less attentions in the last years, while the increased availability of new sensor devices such
as laser range scanners and time-of-flight (ToF') sensors allows to get additional depth data be-
sides RGB images [66-68,102-105], which gives more complete and accurate 3D database. Some
datasets also also provide reference camera poses registered into the 3D point cloud [67,68,104],
though their focus is not on localization. Datasets focused specifically on indoor localiza-
tion [56, 57, 106] have so far captured fairly small spaces such as a single room (or a single
floor at largest) and have been constructed from densely-captured sequences of RGBD im-
ages. More recent datasets [19,69] provide larger scale (multi-floor) indoor 3D maps containing
RGBD images registered to a global floor map. However, they are designed for object retrieval,
3D reconstruction, or training deep-learning architectures. Most importantly, they do not con-
tain query images taken from viewpoints far from database images, which are necessary for

evaluating whether visual localization can generalize beyond the database images.

1.4 Thesis overview and contributions

Scenario.  In this thesis, we introduce our research on visual localization for large-scale
environments. From a single input image, we aim to find an accurate 6DoF camera pose
using a large-scale database. While existing methods usually assume 3D point cloud capturing
the whole of the huge target environment for pose estimation [46,49,50,92], it requires huge
memory consumption and is hard to maintain/update. Considering computational efficiency
and potential expansions to further large-scale environments, we motivate to use a more efficient
format of the database that provides sufficient information to determine the camera pose of the
query.

Also, large-scale environments naturally lead to a diversity of input images, e.g., changes
in viewpoints, timings, and camera devices. Therefore, evaluation from the perspective of the
robustness to the variations of the input images is essential to seek a general pipeline for visual
localization in large-scale environments. At the same time, evaluating the accuracy of the
estimated poses requires accurate camera poses given separately from the method, whereas
that is sometimes impossible to observe ground-truth camera pose for practical input image,
e.g., the input from hand-held devices or past pictures archive. Therefore, the quantitative
evaluation protocol for practical situations assuming general images input is one of the less

focused areas in existing works [17,20,37,56].

Contributions.  Our contributions in this thesis can be divided into four parts (and be
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® Place recognition @ Local 3D reconstruction
(Image retrieval)

. RGBD database (Chap. 4)

Figure 1.7: Proposed localization pipeline and contributions. For a given input image,
our localization pipeline firstly performs image retrieval using a 2D image database to determine
the coarse relevant location(s) of the query. We next estimate 3D camera pose by reconstructing
the local 3D scene around the query location using retrieved images. If available, a 3D database
depicting accurate 3D structures of the scene, e.g., RGBD database, provides a more accurate
reconstruction than using only 2D images. We test this pipeline both in outdoor (Chap. 3)
and indoor (Chap. 4) scenarios that assume a 2D image database and an RGBD database,
respectively. In addition, we also propose robust feature matching algorithms (Chap. 2) that

are beneficial to database construction and camera pose estimation for visual localization.

visually abstracted in Fig. 1.7);

1. We firstly propose two feature matching methods for general purposes but can ben-
efit to visual localization and database construction. The first one is designed for feature
matching of spherical panoramic images, which are often used to construct a large 3D
model. While spherical panoramic image captures the scene efficiently by representing
the entire spherical view in a single image, non-negligible distortion on the image is pro-
duced and affects the keypoint detection and local feature description for matching. Our
method mitigates the distortion by synthesizing multiple undistorted images and achieves
accurate feature matching between two panoramic images. We also show that the pro-
posed matching algorithm can benefit 3D reconstruction using panoramic images. The
second method is proposed for a pair of images that have been taken from far-distant
viewpoints, e.g., feature matching between database and query images. Wide viewpoint
changes produce large appearance changes between images, which also hurts the perfor-
mance of feature matching. We again exploit the use of synthetic images that imitate the

potential appearance variation on the images due to viewpoint changes. Furthermore,
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we show that the simple metric learning using the Mahalanobis distances can efficiently

improve the performance of local feature matching.

2. We next focus on visual localization in large-scale urban environments. Because of the
wide spreads of the 2D image database, outdoor environments are often represented by a
set of database images (and its geometric locations). An efficient place recognition for an
input image can be approximately done by image retrieval among those database images
(image retrieval-based methods). On the other hand, aiming to find a 6DoF camera
pose for the input image, existing 3D structure-based methods additionally require a
large 3D model, i.e., constructed via SfM, which subsequently depend upon much efforts
to maintain/update the model. To tackle this trade-off between the efficiency and the
quality of estimated locations, we propose a general pipeline for visual localization
in large-scale environments, which takes advantage of both image retrieval-based and
3D structure-based approaches (illustrated in Fig. 1.7). Our pipeline firstly performs
an efficient image retrieval-based localization to determine the relevant location of the
query, i.e., set of best-matched database images and its locations in the known map.
We then estimate an accurate location (6DoF pose) of the query using those retrieved
database images and the geometric properties around them, e.g., feature correspondences,
relative poses of database images in the 3D space, and 3D points (depth images), if
available. While providing 6DoF camera pose as the 3D structure-based methods do, the
proposed pipeline does not necessarily require a large 3D database that contains the whole
referenced scene since it uses the 3D information only in the local (relatively small) area
around the retrieved locations. Our method based purely on 2D images outperforms 3D-

based methods that rely on a large 3D model, and computational burdens are negligible.

3. We also generalize the proposed pipeline for large-scale indoor environments. Compared
to the urban scenarios, the indoor environment consists of relatively small structures,
e.g., rooms, corridors, and pieces of furniture and decoration placed in them.Thus, visual
localization in an indoor environment can take advantage of recent ranging sensors such
as laser range scanners, together with color sensors (camera devices). Large-scale indoor
environments are often be represented by a set of high-quality 3D scans, ¢.e., RGBD im-
ages, registered to a known floor map. While quite accurate and dense 3D structures are
available, visual localization in indoor scenes is still challenging; weakly textured scene
natures and highly repetitive structures make it difficult to determine a unique location
of a query. To address these uncertainties, we propose a localization method that
takes advantage of the high-quality 3D structures to estimate and validate the
6DoF camera pose of the query. The whole flow of the proposed method is constructed in
the same manner as in outdoor scenarios. We first employ image retrieval to determine

coarse locations of a query and then estimate (candidates of) camera pose using known
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3D structures of each local area. We also propose a new ranking method (pose ver-
ification) that select the best-matched camera pose using a rich 3D database,

which gives a significant performance gain when combined with the proposed pipeline.

4. In addition, through the validations of our localization pipeline, we introduce two new
datasets for outdoor and indoor scenarios. The dataset for the outdoor scene in-
cludes a 2D image database, which represents a city-scale scenario of visual localization.
On the other hand, the indoor dataset consists of multiple rooms, floors, and buildings
and represents a remarkably large-scale scenario compared to existing datasets [56,57].
It includes an accurate and dense 3D point clouds for each local area captured by laser
range finder, thus presents a 3D database composed of RGBD images. Most importantly,
both datasets contain sets of input images (query images) captured in various conditions
separately from the database collection, depicting the several challenging situations
arisen from the diversity of the input. Furthermore, we carefully prepare a man-
ually annotated camera pose for each of these queries that can be used to evaluate the
performance of visual localization. To the best of our knowledge, our datasets are the first
to accomplish the quantitative evaluation for visual localization in large-scale
environments, which provide further new insights of its performance on the diverse

inputs.

This thesis is organized as follows. In Chap. 2, we propose two feature matching algorithms
that can potentially contribute to visual localization. Sec. 2.2 introduce a feature matching
for spherical panoramic images which capture the scene efficiently despite of large image dis-
tortion. Our method synthesizes multiple undistorted images for each panoramic image and
perform feature matching on them to mitigate the side effect of image distortion. We show
that our method provides accurate and rich correspondences between panoramic images and
can contribute to build a rich 3D model via SfM pipeline. We also propose a feature matching
designed for image pairs taken from very different viewpoints (Sec. 2.3). We again generate
multiple synthetic images that approximate potential appearance changes on the image induced
by view changes, to collect the variations of keypoints and feature vectors. Chap. 3 gives a
detailed description of our contributions for outdoor city-scale visual localization. We first
create a new dataset for visual localization in an urban situation that includes a set of accu-
rate camera poses for evaluation (Sec. 3.2). We propose a localization pipeline that computes
6DoF camera pose of a query using only 2D image database (Sec. 3.4), which constructs our
main contribution in this thesis. Sec. 3.5 provides various evaluation of our method and others
on our new dataset, and shows the benefits of our approach on large-scale outdoor scenarios.
Chap. 4 describes our contributions for large-scale indoor visual localization, on which the rich
3D point clouds and additional information are available. Because of the lack of existing dataset

for indoor scenario, we again create a dataset composed of RGBD database images and user
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photos taken by smartphone, along with its accurate camera poses (Sec. 4.2). In Sec. 4.3, We
propose a localization pipeline exploiting rich 3D database to estimate and verify the camera
pose for the input image. Sec. 4.4 additionally provides details of our investigations for pose
verification step. We validate our method effectively scales to a large-scale indoor environment
and achieves state-of-the-art performance (Sec. 4.5). Finally, we add concluding remarks and
potential future works of this area in Chap. 5.

In what follows, we provide a list of our publications related to this thesis.

e H. Taira, Y. Inoue, A. Torii, and M. Okutomi, “Robust feature matching for distorted
projection by spherical cameras,” IPSJ Computer Vision and Applications, vol. 7, pp. 84-
88, 2015.

e H. Taira, A. Torii, and M. Okutomi, “Robust Feature Matching by Learning Descriptor
Covariance with Viewpoint Synthesis,” in Proc. ICPR, 2016.

e T. Sattler, A. Torii, J. Sivic, M. Pollefeys, H. Taira, M. Okutomi, and T. Pajdla, “Are
Large-Scale 3D Models Really Necessary for Accurate Visual Localization?” in Proc.
CVPR, 2017.

e H. Taira, M. Okutomi, T. Sattler, M. Cimpoi, M. Pollefeys, J. Sivic, T. Pajdla, and A.
Torii, “InLoc: Indoor Visual Localization with Dense matching and View synthesis,” in
Proc. CVPR, 2018.

e H. Taira, I. Rocco, J. Sedlar, M. Okutomi, J. Sivic, T. Pajdla, T. Sattler, and A. Torii,
“Is This The Right Place? Geometric-Semantic Pose Verification for Indoor Visual Lo-
calization,” in Proc. ICCV, 2019.
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Chapter 2

Robust feature matching

2.1 Robust feature matching for image deformations

Establishing visual correspondence is a fundamental step in many computer vision applications,
including StM, image retrieval, and place recognition. Especially, public incremental SfM soft-
ware such as Bundler [15] and VisualSFM [24] have made it possible to build a great 3D model
using standard perspective images alone, which can also be used as a 3D database for visual
localization composed of 3D points and associating image descriptors. These softwares require
input images to have many common view fields, i.e., requires to use many images (with a
narrow field of view camera), to achieve a high-quality 3D model for a large-scale scene. One
way to reduce the number of images required is to use spherical imaging systems such as Point
Grey Ladybug or RICOH THETA. These cameras allow the user to capture images with large
amounts of common views with little effort. However, one fatal drawback of using these cam-
eras is the large distortions (changes of appearances) in the captured images as a result of the
spherical projection, shown in Fig. 2.1 and Fig. 2.2. This distortion makes feature matching
difficult, which could critically affect the qualities of the 3D model since all the geometric esti-
mation (and RANSAC) in SfM relies on the local feature correspondences among input images
collection.

Another source of error in feature matching is large viewpoint changes between image pairs
to be matched (Fig. 2.7 (a) and (b)) because it again induces significant changes of appear-
ances, which hurt commonnesses (repeatabilities) of local keypoints and feature descriptors
(Fig. 2.7 (c) and (d)). Still, the large view changes often happen when building 3D points via
SfM or estimating a 6DoF pose of a camera with respect to a pre-built 3D model. A well-known
approach for viewpoint-invariant representation is to approximate changes in the appearance
via an affine transformation. ASIFT [74] establishes a large number of correspondences by
simulating affine warping for both feature detection and description. A shortcoming of this

framework is that it requires additional computational costs for affine warped view synthesis
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Figure 2.1: Tmaging with equirectangular projection. (a) Spherical coordinates. (b) Image

coordinates of equirectangular projection image.

and matching. Several works have improved the framework’s computational efficiency by limit-
ing the range of view synthesis [75,107]; However, additional affine warped view synthesis must
still be performed for each image.

To address these common challenges, we propose two new feature matching framework ex-
ploiting view synthesis and efficient metric learning for feature descriptors. Sec. 2.2 describes
a feature matching designed for spherical panoramic images, namely, equirectangular images.
The key idea is to synthesize less-distorted images by rotating the spherical coordinate sys-
tem. We then compute features only on the less distorted area in the rectified panorama. The
method can be used as a preprocessing step for most standard feature extraction algorithms.
Through experiments on synthetic and real images, we show our method improves the matching
performance on equirectangular images and benefits to build a rich 3D model via SfM. Sec. 2.3
introduces another feature matching framework for standard perspective images that have been
taken from largely different viewpoints. It again conducts view synthesis (but for either one
of the two images) and extracts features from synthetic views to improve keypoint detection
performance. Furthermore, we learn how the feature descriptor varies according to viewpoint
changes using those synthesized images, and incorporate this knowledge into the similarity mea-
surement scheme. As shown in Fig. 2.7, our trained Mahalanobis metric improves matchability
by ignoring the descriptor variations caused by viewpoint changes. We show the performance of
our matching framework on several standard image matching datasets. We finally summarize

this chapter and add discussions in Sec. 2.4.
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Figure 2.2: Image distortion by equirectangular projection. The orange discs have the same

size on the sphere (a) but mapping to the equirectantular image severely distorts them (b).

2.2 Feature matching for spherical panoramic images

In this section, we first describe the properties of image distortion induced by spherical panoramic
projection (Sec. 2.2.1). We next provide the details of proposed method for feature detection
and description with panoramic image rectification (Sec. 2.2.2). Finally, we validate our method

on synthetic and real images (Sec. 2.2.3).

2.2.1 Properties of image distortion on spherical cameras

This section formulates the problems on image distortions induced by spherical cameras associ-
ated with the camera motion. We focus on the equirectuangular images captured by spherical
cameras but the same approach can be applied to any wide FoV cameras such as omnidirectional
and fisheye cameras.

An equirectangular image taken by a spherical camera is represented as
u=cl@+m), v=c(p+7/2) (2.1)

where u and v are the coordinates on the image (Fig. 2.1 (b)), 6 and ¢ denote the longitude
and latitude in the spherical coordinates (Fig. 2.1 (a)), and c¢ is a constant defined by the image
width w and height h = w/2 such that ¢ = w/2r = h/m. This equirectangular projection has
the property that the lines of longitude and latitude are evenly spaced. Therefore, as shown
in Fig. 2.2, if we map circular regions (discs) of same size on the sphere to an equirectangular
image plane, the discs close to the equators are less distorted but the ones close to the poles are
heavily distorted. In other word, the image region close to the equator (|¢| < /3, where 5 is a
small constant) is less distorted, i.e., similar to perspective projection, whereas the region close
to the poles is severely elongated. The region of interest looks very different in two images when
features move from the equator to the pole as a result of camera rotation and/or translation.

This reduces the matchability of local features.
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We tackle this problem by introducing a simple algorithm:

1. We generate a set of rectified images by rotating the camera (spherical) coordinate system
along z-axis (Fig. 2.3). We detect and describe features only from weakly distorted region
in the rectified images.

2. When matching features between a pair of images, we perform step (1) for both images

and use nearest neighbor search with Lowe’s ratio test [32].

We next describe each step in more detail.

2.2.2 Panoramic image rectification and matching

Panoramic image rectification (PR). We generate n rectified images by rotating around

an axis pointing at the equator (z-axis throughout the experiments) by the angle o = mm/n
form =0,1,...,n — 1, with respect to the relationship between a point on the sphere and a
point on the equirectangular image in Eq. (2.1). As Figure 2.3 (a) shows, this rotation transfers
the positions of features in the image, and all the features will eventually appear nearby the
equator in the range of § = 7/2n.

We next define masks for detecting features in the rectified images. We detect features in

the region D of each rectified equirectangular image;
{(0, )" € D | — B < arctan (tan ¢/ cos 6) < B} (2.2)

where = 7/2n is the angle determined by the number of rectifications n as described above.
Furthermore, this feature detection with panoramic image rectification can find the features
from the entire sphere without duplication, as illustrated in Fig. 2.3 (b). Finally, we assemble
the features detected from the region D for every rectification angle o by back-rotating the
keypoint positions to the original coordinate system. Note that the keypoints are detected
strictly in the masked areas to exclude duplicated detections but the masks are not used for

descriptions of local patches to isolate effects by mask boundaries.

Feature matching. Feature matching for a pair of images is fairly simple. For each image,
we detect and describe features using the panoramic image rectification described in Sec. 2.2.2.
Although not a necessary condition, it is reasonable to use the same division number n for both
images. We match the features using the descriptors by searching nearest neighbors followed
by Lowe’s ratio test (we use the threshold of 0.7 throughout the experiments). Note that
any post-processing to refine the feature matches can also be applied such as RANSAC or its
variants [108].
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Figure 2.3: Example of panoramic image rectification. The rectified equirectangular images (a)
obtained by rotation of 0°, 60°, and 120° w.r.t. xz-axis. We detect features from masked regions
(cyan) in each rectified image. The masked regions on the rectified image correspond to the

colored region (cyan) on the spherical coordinates (b).
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Figure 2.4: Experimental result of feature matching. Graphs show the fraction of matching
precision on y-axis for each rotation angle (a) or distance of cameras (b) on x-axis. The boxplot

shows the statistics (y-axis) of the fraction of matching precision for each method (z-axis).

2.2.3 Experiments

First, we evaluate performance of the proposed method combined with a standard feature
matching algorithm for perspective images (DoG keypoint detection and SIFT description).
We compare it on both real and synthetic data with the state-of-the-art baseline methods. We
next evaluate the performance when combined with affine adaptation. Finally, we evaluate the
benefit of the proposed method in the incremental SfM using real images in the Pittsburgh

Research dataset.

Dataset. We use 50 equirectangular images of 2896 x 1448 pixels. 25 of them are indoor and
outdoor scenes captured by ourselves using a commercial spherical camera, RICOH THETA!

and 25 images randomly chosen from the Google Pittsburgh Research Data Set?.

Evaluation protocol. For correspondences (y,7’) obtained by the nearest neighbor search
followed by the ratio test, we define an evaluation function f(y,y’) with threshold 7. We
deem the features as correctly matched if f(y,y') < T. We then measure the performance by

precision defined as
#correct matches

precision = (2.3)

# feature matches

Comparisons. We select SIFT [32] as the baseline comparison, which is designed for standard
perspective images. Another comparison is spherical SIFT [109] which is a state-of-the-art
feature matching pipeline for spherical images. It converts images on the sphere and describes
SIFT-like features using the spherical scale-space. We use VLfeat [110] for SIFT, and the
implementation of the original authors for spherical SIFT.

Feature matching with pure rotation. We first simulate a set of motion by rotating the

'https://theta360.com
2Provided and copyrighted by Google.
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Figure 2.5: A comparison of the average fraction of cameras reconstructed (y — axis) when
SIFT (red) and the proposed method (PR+SIFT) (blue) are used in incremental SfM. z-axis

indicates the number of frames skipped from the original sequence.

camera around z-axis at the interval of 10°. Notice that this axis differs to the z-axis used for
the proposed panoramic image rectification. For each rotation angle, we generate 50 pairs of
images by coupling the original image and the image after the rotation. Using these pairs of
images, we evaluate matching precision. To measure the correctness of the match we define f
as frot(y,y") = Z(y, R"(y')) where R is the rotation matrix obtained from the ground truth
rotation. If f(y,y’) < 0.1°, we deem the features as correctly matched.

Fig. 2.4(a) show the results of matching precision, respectively, for SIFT (red), spherical
SIFT (orange), and SIFT with the proposed panoramic rectification (PR) (blue). Our method
maintains high precision regardless of the rotation angles. whereas the baseline methods drops

in performance when the appearance changes by rotation are large.

Feature matching with camera translation. To validate matching performances against
camera translation, we prepare virtual cubes of 10% to render perspective cutouts taken from
indoor and outdoor scenes. We simulate a set of translation by moving the camera from the
initial position (5,5,1) to (5,5,9) at the interval of 1.

For each step of translation, we test 50 pairs of images by coupling the image at the initial
position and the image after the motion. We evaluate precision with camera translation in
the same way as camera rotation. To measure the correctness, we define f as fians(y,9') =
1Y (y) = Y'(¢/)||2 where Y and Y’ are the 3D points associated to y and y’ obtained from the
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Figure 2.6: Experimental results with SfM. (a) shows examples of input equirectangular images
used for incremental SfM. The SfM results reconstructed with standard SIFT (top) and the
proposed method with panoramic image rectification (bottom) using all the frames (b) and

every 7 frames (c).

ground truth values. We deem the matching is correct if fiqns(y,3y') < V0.1.

The results in Fig. 2.4(b) show that the feature matching with camera translation is more
challenging for all comparisons. However, similar to the rotation results, our method maintains
higher precision than the baseline methods as the proposed method removes artifacts caused
by distorted projection.

Next, for evaluation with random camera motion, we generate 100 pairs of images by gen-
erating 2 random rotations and translations for 50 scenes, then match them with the initial
panorama where the camera position is (5,5,5) with zero rotation. The results in Fig. 2.4(c)
shows that the proposed method is the most effective (PR+SIFT) in comparison with baseline
methods (sph SIFT and SIFT).

Proposed method combined with affine adaptation. We also evaluate the performance
of the proposed method when combined with affine adaptation [33,110], which has often been
used for matching perspective images with large viewpoint changes. Fig. 2.4(a) shows that
feature matching combined with affine adaptation (black) have no superiority to baseline SIFT
(red) at pure camera rotation. This means that affine adaptation is not able to deal with
distorted projection. Fig. 2.4 (b) and (c) show the results of matching precision in camera
translation. Affine adaptation constantly outperforms all the baseline methods when the camera
is translated. Notice that the proposed method combined with affine adaptation gives the best

performance and the difference is significant on larger motions.

Proposed method for 3D reconstruction by SfM. We finally evaluate the performance of
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the proposed feature matching when used as a component of incremental SfM. We generated
50 sets of 100 consecutive frames randomly chosen from the 8999 equirectangular panoramic
images of 3328 x 1664 pixels in the Google Pittsburgh Research Data Set. We implemented an
incremental SfM pipeline similar to [111,112] and evaluate the performance by measuring the
numbers of cameras recovered in each set.

Fig. 2.5 shows the fraction of average numbers of recovered cameras over the input cameras
(y-axis). To compare the performance on different baseline lengths, we skip k frames in each
subset (z-axis) and run the SfM. The results clearly show that the incremental SfM combined
with the proposed method (blue) gives consistently better performance than the one with the
standard SIFT matching (red).

Fig. 2.6 shows examples of 3D reconstructed model. Figure 2.6(a) shows examples of input
images. Figure 2.6(b) and (c) show 3D points and camera poses reconstructed by incremen-
tal StM with standard SIFT (top) and the proposed robust matching with panoramic image

rectification (bottom), respectively.

2.3 Feature matching robust to large viewpoint changes

2.3.1 Overview

In this section, we introduce our feature matching algorithms robust to large viewpoint changes.
Fig. 2.10 shows the outline of the proposed feature matching. Key idea of proposed method

can be divided into two phases;

1. The most failures of feature matching when matches images taken from very different
views arise from the variations of keypoints and feature vectors, i.e., one feature in the
image can be appeared very differently in another image (illustrated in Fig. 2.7 (e)),
or can even be lost in other images. This can be addressed by fully simulating image
warping against possible viewpoint changes [74]. Assuming the either one of the two
images is pre-processable, e.g., feature matching between input and database images for
visual localization, we synthesize multiple slanted views of the image in the same manner
as in [74]. To observe the variations of feature vectors, we extract features from all

synthesized views and group repeated features.

2. Storing all keypoints and descriptors extracted from multiple synthesized views and using
them in matching require high computational cost compared to standard matching using
features only from original views. Instead, we aim to learn the feature variations using

synthetic features, and use them as the weighting factors for similarity metric between
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correspondences. The variations are represented by a covariance matrix, and used for

Mahalanobis metric (illustrated in Fig. 2.7 (f)) in our feature matching stage.

Sec. 2.3.2 provides details of our feature sampling scheme exploiting slanted view synthesis.
Using sampled features, we learn how the descriptors vary regarding view changes (Sec. 2.3.3).
Details of our feature matching algorithm are described in Sec. 2.3.4. We finally demonstrate

the performance of the proposed feature matching framework in Sec. 2.3.5.

2.3.2 Feature extraction and grouping

Slanted views sampling. One common formulation of image deformations induced by view-

point changes is the approximation via affine transformation [33, 74,113, 114]. Assuming as

affine transformation matrix A, deformed image 7’y can be represented using original image Z:
T\)(x) =Z(A 'x) (2.4)

where = [u,v]T is the image point in Z’. Regarding viewpoint moving around the original

view, A can be decomposed into four parameters:

A:)\lc?sw —sinzﬁ] [t 0] [c?sqb —singzﬁ] (2.5)
siny)  cos 0 1| [sing cos¢

Therein, At > 0 denotes the scale parameter, ) € [0,27) and ¢ € [0, 7) represent the camera
rotation around the optical axis and optical axis longitude, and ¢ > 1 signifies the parameter
for absolute tilt. Since most local features are designed to be invariant to ¢ and A, we sample
absolute tilt ¢ and optical axis longitude ¢ to generate several slanted views. We set the
sampling steps of each parameter as t = {1,v/2,2,2v/2,4,4v2} and Ap = ¢py1 — ¢p = 27/5t,
resulting in 47 affine transformed images generated for one original image.

Feature extraction. From each synthesized image, we extract SIFT [32] features which are
associated by keypoint position u; € R?, scaling factor s;, € R indicating circular region around
the keypoint, and orientation vectors v, € R?. To associate all features by the keypoints on
the original image, we warp them onto the original image plane. In other word, each feature
is represented in original image by geometric information Gy, which is composed of warped
keypoint u) = A luy, covariance matrix E, = s?(A] Ay)~! indicating the elliptical region
around the keypoint, and orientation vector v}, = A vy,

Feature grouping with respect to geometric information. Detecting features from mul-
tiple synthesized views often produces multiple features originating from the same keypoint,
which have very similar but varied descriptors. In contrast to the other works [74,75] that
remove such repeated features, we employ the feature grouping process to sample varied de-

scriptors.
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(c¢) Features from target image. (d) Features from input image.

(e) Descriptors in Euclidean space. (f) Descriptors in Mahalanobis space.

Figure 2.7: Learning Mahalanobis metric for feature matching. (a, b) Images captured
from different views. (c, d) Some typical SIFT features. Matching colors indicate corresponding
features. (e) 2D PCA projection of SIFT descriptors for visualization. Highlighted points
represent the descriptors of the features shown in (c¢) and (d) (circle: left features, square:
right features). Feature descriptors vary according to changes in appearance. (f) We learn the
descriptor variation caused by viewpoint changes in order to improve feature matching. Our

metric clearly decreases the relative distances between the correct pairs of descriptors.
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Algorithm 1 Feature grouping algorithm.

N
Require: Ny features {f;c}k:f1 from affine warped images
Ensure: Set of feature chunklets {Cz}iici

N N
1. Project features onto the original image plane: {fk}kil — G ={u], Ek’”;c}kil

2. 140
3. while G # @ do
4. i<+ i+1
5.  Select one feature from G randomly: {u}, E;, v}}
6. for all {u, Ej,v;} in G do
7. if {u}, Ei,vj} and {u}, Ej, v} satisfy Eq. (2.6) then
8. Add f; to the i-th chunklet C;
9. else
10. Add {u}, Ej, v’} to G
11. end if
12.  end for

13. Update G: G + G’

14. end while

The workflow of our feature grouping process is shown in Alg. 1. We evaluate the consis-
tencies between the geometric information of the features, and group similar features into the
same set. The i-th and j-th features are grouped when their geometric information sets (G;

and G;) have similar properties:

lw, — || < Tu, \/|EBEY| >T,, Z(v),v))<T, (2.6)

We set thresholds T, T, T), for each of geometric information by 3 pixels, 0.7, and 7/8, respec-
tively.

Fig. 2.8 shows examples of grouped features extracted from slanted views. Features pointing
to similar regions are grouped and linked to the new keypoint at the center of their position w.
We finally obtain a set of grouped features (chunklet) for each keypoint that contains multiple
feature vectors described in slanted views.

2.3.3 Learning descriptor covariance through view synthesis

We next learn how feature vector (descriptor) will be varied by viewpoint changes, using a
set of features (chunklet) seeing a keypoint from many aspects. We represents the predicted
variation as the covariance matrix. Fig. 2.9 illustrates two types of our training methods. We
first estimate the covariance matrix for each keypoint representing the per-feature descriptor
variation. We also propose an approach based on the Relevant Component Analysis (RCA) al-
gorithm [79], which estimates one covariance matrix representing the characteristics common to
all features. Learned covariances are used to improve similarity measurements in the matching

stage.

Per-feature covariance matrices. The i-th chunklet contains NN; descriptors {z;; }jvzl cap-

turing the same keypoint from multiple viewpoints. Using these descriptors, the descriptor
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Figure 2.8: Some results of the feature grouping process. The top row shows the original image
(left column) and affine warped images (right three columns). The bottom three rows present
feature groups obtained by our feature grouping. The left column shows the new keypoint
associated with each feature group; the right three columns show the features extracted from

the image in each column.

variation in the ¢-th chunklet is formulated by covariance matrix 3; as shown below.

N,
1 « _ _
Therein, &; denotes the mean descriptor of the i-th chunklet. X, indicates the covariances of

descriptors that extract the same object from different views.

RCA-based common covariance matrix. The per-feature approach incurs high compu-
tational costs for estimating the metric of each feature because it computes the descriptor
variation for each feature. We also propose another training method that estimates the de-
scriptor variations common to all features.

Assuming that K is the number of chunklets, the RCA algorithm calculates a covariance

matrix X.ommon DY:

R 1
common - N Z Z Lij — i wzj - iz)—r - N Z NzEz (28)
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(a) Per-feature covariance estimation.
Features from the images Covariances common to
for pre-training all features

- %/ 'S
’%/‘ Mean subtracted vector

(b) RCA-based common covariance estimation.

Figure 2.9: Our two approaches for metric learning. Descriptor variation is estimated as the
covariance matrices. (a) In our per-feature approach, we estimate a covariance matrix for each
feature group using the mean subtracted vectors of feature groups sampled from the target
image. (b) In another approach, we conduct pre-training by gathering the mean subtracted
vectors from the set of images to estimate a covariance matrix, which represents the common

descriptor variation.
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Figure 2.10: Overview of our feature matching framework designed for matching largely view-

changed images.

where N denotes the total number of features extracted. The mean subtracted vector (x;; —&;),
which is also used in Eq. (2.7) to calculate covariance matrix 3; for the i-th chunklet, is used
here to indicate the sampled variations of descriptors that relate to a common characteristic of

all features.

2.3.4 Feature matching using descriptor variations

We propose a new feature matching framework that considers descriptor variations associated
with viewpoint changes; the framework is summarized in Fig. 2.10. Because we are proposing
two approaches for covariance learning, the proposed framework has two property types (Per-
feature and Common). Both methods follow the diagram shown in Fig. 2.10; however, they use
different similarity measurement metrics, according to their learning approaches.

We first extract feature chunklets from the target image as described in Sec. 2.3.2. The
i-th chunklet associating the i-th keypoint in the target image has properties of descriptors
{Z;,X;} where &; denotes the mean descriptor of the chunklet and 3; denotes the estimated
covariance matrix for the descriptor variation. The proposed method that uses the per-feature
approach for covariance learning (Proposed (Per-feature)) calculates the covariance matrix ¥;
for each chunklet according to Eq. (2.7). The other approach is the common approach (Proposed
(Common)), which assumes the same properties ¥; = X ,mon for all features and computes
Y common Using all chunklets.

When the input image for matching appears, we extract features only from the original
image. The similarity between the i-th target chunklet {Z;, ¥;} and the j-th query feature «;

is computed using the Mahalanobis distance.

Dy (@, {50, 50)) = \/ (@5 — 70) 57 (w; — ) (2.9)

High-variance elements are suppressed, whereas low-variance elements are emphasized. We
therefore upweight the elements having lower variances, which can be regarded as the non-

sensitive elements associated with viewpoint changes.



CHAPTER 2. ROBUST FEATURE MATCHING 40

(a) Graffiti (b) Wall (c) Fountain (d) Herzjesu

Figure 2.11: Examples of image pairs used in performance evaluation: (Top) target image and

(Bottom) one of the input images for each scene.

Table 2.1: Details of image datasets used for performance evaluation.

Scene Pixels Input images
Gralffiti 800 x 640 5 frames
Wall 880 x 680 5 frames
Fountain 3072 x 2048 2 frames
Herzjesu 3072 x 2048 2 frames

33, sometimes becomes a singular matrix, such that an exact inverse matrix ;' cannot be
determined. A psuedo-inverse matrix that neglects the dimensions having lower singular values
is often used in such case. However, this modification does not fit to our case because we aim
to emphasize the dimensions having lower variances. Instead, we modify the covariance matrix
by rounding the eigenvalues with minimum threshold € so that 3; ! can be determined. We set
€ = 107° experimentally.

After finding correspondences by nearest neighbor searching, tentative correspondences are
built using a standard distance ratio test [32], which evaluates whether the distance between the
first nearest target feature and the query feature is sufficiently less than the distance between

the second nearest neighbor and the query feature.

2.3.5 Experiments

We evaluate the performance of our feature matching framework with respect to matching
precision and computational time. We match images captured from different viewpoints and
evaluate the accuracy of correspondences. We also measure the matching time required by each

method, to demonstrate the computational simplicity of our feature matching framework.
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Implementation details. The DoG detector and SIFT descriptor were provided by VLFeat [110].
We implemented the SIF'T matching framework and the proposed matching framework with
MATLAB (SIFT, Proposed (Per-feature), Proposed (Common)). We compared our
methods with ASIFT, which was implemented by the authors [74] using C+4. The compu-
tational time for each method was then evaluated on a machine equipped with an Intel Core
i7-5930K CPU at 3.5 GHz and 64 GB RAM. We also evaluated our methods using the Root-
SIFT descriptor, which showed more accurate matching results (Proposed (Per-feature,
RootSIFT descriptor), Proposed (Common, RootSIFT descriptor)). We compared
them against the ASIFT implementation, which was modified to use the RootSIFT descriptor
(ASIFT (RootSIFT descriptor)).

Datasets. Tab. 2.1 and Fig. 2.11 provide information regarding the image pairs we used in
the experiments. We selected four image sequences from widely known datasets. Each scene
contains one target image and multiple input images. The Graffiti and Wall [115] scenes contain
images capturing planar walls from a fronto-parallel viewpoint (for the target image) and from
slanted viewpoints (for the input images). Fountain and Herzjesu [116], which are subsets
of fountain-P11 and Herz-jesu-P8 [117], capture more three-dimensional scenes. We selected
these scenes because they are more challenging situations for features that capture local affine

regions.

Matching performance. Table 2.2 shows the average matching precision and the number
of correct matches for each scene, and for all 14 image pairs. Figure 2.12 shows some typical
feature matching results. SIFT and RootSIFT generate a lower matching precision and
number of matches, because they do not provide a view synthesizing process for both target
and input images. ASIFT generates a larger number of correct matches because it extracts
numerous features from affine warped images for both target and input images. However, it
also produces a large number of false matches. The proposed methods with the RootSIFT
descriptor outperform ASIFT for all scenes, including challenging scenes such as Fountain and
Herzjesu.

Figure 2.13 shows more detailed feature matching results obtained by each method, using
the SIF'T descriptor for the scene “Graffiti.” The matching precision of SIFT decreases as the
viewpoints of the input images deviate further from the viewpoint of the target image. The view
synthesis process clearly prevents the decline in precision (ASIFT). Furthermore, our Maha-
lanobis metric effectively improves feature matching (Proposed (Per-feature, Common)).
Proposed (Per-feature) provides the highest precision values for all images. It indicates that
our per-feature Mahalanobis metric effectively improves matchability without requiring a view
synthesis process for the input image. Proposed (Common) gives constantly comparable re-
sults with Proposed (Per-feature). That is to say, our common covariance learning method

successfully estimates the descriptor variations associated with viewpoint changes, using pre-
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Table 2.2: Quantitative matching results obtained by each method. The top four methods use
the SIFT descriptor and the bottom four use RootSIFT. The average matching precision (and

number of correct matches) is shown for each scene. The best precision value is highlighted.

Graffiti Wall Fountain Herzjesu All

SIFT 44.5 (169) 82.5 (382) 68.4 (274) 62.8 (340) 64.1 (284)

ASIFT  83.1 (1704)  96.0 (5055)  80.9 (6863)  59.2 (3284)  84.0 (3863)

Proposed (Per-feature) 91.4 (290) 97.3 (476) 79.7 (304) 80.9 (376) 90.3 (370)

Proposed (Common) 89.1 (253)  98.2 (474) 80.0 (294) 77.0 (346) 89.3 (351)

RootSIFT 48.3 (173) 90.0 (386) 72.0 (281) 68.2 (351) 69.4 (290)

ASIFT (RootSIFT descriptor)  85.0 (1796)  96.3 (5081) 83.6 (7279)  67.2 (3877)  86.3 (4050)

Proposed (Per-feature, RootSIFT descriptor) 90.7 (291) 97.4 (479) 83.9 (313) 86.8 (380) 91.6 (374)
Proposed (Common, RootSIFT descriptor) 90.1 (263) 97.8 (476) 83.6 (306) 80.7 (371) 90.6 (361)

Table 2.3: Average computational time (seconds) required by each feature matching method

to process the input images for each scene.

Graffiti Wall Fountain Herzjesu

SIFT (w/o FLANN) 0.306 0.360 1.641 1.722

SIFT (w/ FLANN) 0.268 0.305 1.618 1.622

ASIFT (w/o FLANN) 7.527 15.267 96.128 142.186

Proposed (Common, w/o FLANN) 0.770 0.675 2.114 2.802
Proposed (Common, w/ FLANN) 0.271 0.311 1.623 1.632

training that is separated from the matching process.

Computational time. Table 2.3 shows the average computational time, i.e., the time period
between the appearance of a new input image and the establishment of the correspondences.
Notice that SIFT and Proposed (Common) were implemented using MATLAB; ASIFT
was implemented using C++. ASIFT still incurs a significant computational cost to per-
form full view synthesis and matching. On the other hand, our method extracts features only
from the original input image. The computational overhead of Proposed (Common, w/o
FLANN) added to the baseline SIFT (w/o FLANN) is incurred by the similarity measure-
ments for target features extracted from multiple synthesized images. Results show that the
computational time required for these measurements is only fractional. We also evaluate fea-
ture matching combined with a fast approximate nearest neighbor technique [118]. Our feature
matching framework accelerated with FLANN (Proposed (Common, w/ FLANN)) shows
comparable computational time to the original SIFT (SIFT (w/ FLANN)).
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(e) Proposed (Per-feature): (f) Proposed (Per-feature):

100 correct / 126 matches (79.4%) 86 correct / 114 matches (75.4%)

Figure 2.12: Matching results obtained using SIFT (top), ASIFT (middle), and our method
(bottom) for the scenes “Graffiti” (left) and “Herzjesu” (right). For each scene, the left image
is a target and the right image is an input. Green dots represent correctly matched features;

red dots represent incorrect matches.
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Figure 2.13: Matching precision for each image pair in the scene “Graffiti.” A higher image

index indicates a more slanted input image.
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2.4 Summary

In this chapter, we discussed about view synthesis-based techniques for matching images which
sometimes look very differently from each although seeing the same scene. We focused on two
types of deformations; induced by image projection format and camera viewpoint changing. We
addressed both situations by simulating possible deformations on the images and combining
them with standard feature matching algorithms [32]. As shown in experiments, this approach
enables us to generalize our methods to other feature matching frameworks [26,33] and to easily
combine our methods with existing applications exploiting feature matching such as SfM.

Sec. 2.2 discussed about our feature matching algorithm focusing on image distortion in-
duced by spherical panoramic projection. We simulated potential deformations by generating
multiple synthetic images that rotates around an axis vertical to polar axis. By extracting
features only from less distorted areas in the synthetic images, we succeeded to collect a set of
stable features for each image to be matched. Several experiments on synthetic data (Fig. 2.4)
revealed the robustness of our feature matching against to the camera rotation and translation.
We also demonstrated the benefit of our method when combined with SfM reconstruction,
which provide more rich and complete 3D point cloud of the scene (Fig. 2.6) that could be
useful as the 3D database for visual localization.

Sec. 2.3 discussed about feature matching for images taken from largely distant from its tar-
get image. While standard local features are not generalized to deformations induced by such
images, view changing is often inevitable in practical applications including visual localization,
e.g., geometric verification [42] and 3D-based localization methods [46,48-50, 52, 54] requires
matches between database and input image, and the accuracy of correspondences is crucial
for its reliabilities. We addressed the issue again exploiting view synthesis. We sampled local
features while simulating full affine space and gathered multiple descriptors that see the same
keypoint from different aspects. Rather performing exhaustive matching among all features, we
achieved an efficient feature matching by learning the Mahalanobis metric to describe the fea-
ture variations against to the potential camera motions. Experiments on several public image
sets confirmed the robustness and accuracy of our pipeline on severe conditions for match-
ing. Proposed pipeline provides image correspondences with high accuracy rate in comparable
computational times to the baseline method [32]. Since our matching pipeline (illustrated in
Fig. 2.10) designed to reduce computation processes for input image, i.e., view synthesis and
metric learning is performed only for target image, it can naturally be combined with some

visual localization pipelines, e.g., geometric verification.
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Visual localization in a large-scale

urban environment

3.1 Background

Determining the location from which a photo was taken is a key challenge in the navigation of
autonomous vehicles such as self-driving cars and drones [1], robotics [119], mobile Augmented
Reality (AR) [2,3], and Structure-from-Motion (SfM) [18,25,120, 121]. In addition, solving
the visual localization problem enables a system to determine the content of a photo. This
can be used to develop interesting new applications, e.g., virtual tourism [15] and automatic
annotation of photos [122,123].

Currently, vision-based localization problems have often been addressed by wvisual place
recognition approaches [17,20,27,39, 88, 124, 125], which represent a scene as a database of
geotagged images and cast the problem as an image retrieval task. Given a query photo,
they employ 2D image-based localization methods that operate purely on an image level
to determine a set of database images similar to the query. The geotag of the most relevant
retrieved photo then often serves as an approximation to the position from which the query was
taken. On the other hand, some applications, including autonomous driving and AR, require
an accurate 6DoF pose, i.e., position and orientation, of the query image, rather than rough
location of a query. Image-based localization approaches [46,49-52,126] cast the localization
problem as a camera resectioning task while assuming a database of the scene represented
via an SfM model, i.e., a 3D point cloud with associating image descriptors [127,128]. 3D
structure-based localization methods then use the database (set of image descriptors) to
establish a set of 2D-3D matches. In turn, these matches are used to recover the full 6DoF
camera pose [129,130]. Tab. 1.1 provides the system-level summaries of these two approaches.

A common perception is that 2D image-based approaches can be used by 3D structure-based

methods to determine which parts of a scene might be visible in the query [46, 52,91, 131].

46



CHAPTER 3. VISUAL LOCALIZATION IN A LARGE-SCALE URBAN ENVIRONMENT 47

Large-scale 3D model

Geotagged images Local 3D model

Figure 3.1: The state-of-the-art for large-scale visual localization. 2D image-based
methods (bottom) use image retrieval and return the pose of the most relevant database image.
3D structure-based methods (top) use 2D-3D matches against a 3D model for camera pose
estimation. Both approaches have been developed largely independently of each other and

never compared properly before.

Purely 2D-based techniques are considered unsuited for accurate visual localization due to
only approximating the true camera position of the query. Consequently, 2D- and 3D-based
localization methods are only compared in terms of place recognition performance [39, 46,
126]. However, this ignores the fact that a more accurate position, together with the camera
orientation, can be computed if two or more related database images can be retrieved [132-134].
This naturally leads to the question of whether 2D image-based localization approaches can
achieve the same pose accuracy as 3D structure-based methods. This is a compelling question
due to the way both types of methods represent scenes: especially for large-scale scenes, building
and maintaining the 3D models required by structure-based techniques is a non-trivial task.
At the same time, image-based techniques just require a database of geotagged images, which

is significantly easier to maintain.

Scenario. In this chapter, we want to answer whether large-scale 3D models are actually nec-
essary for accurate visual localization or whether sufficiently precise pose estimates can already
be obtained from a database of geotagged images. Fig. 3.1 illustrates the general scenario of
visual localization in city-scale urban environments. The objective of visual localization is to
determine the 6DoF pose of the camera using known 2D or 3D database depicting the target
environment. While several approaches assumes sequential images input to incrementally seek

the current locations, e.g., SLAM [11-13], we focus on a single image input as it is a basic
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problem and also extendable for sequential inputs. At the same time, since large-scale environ-
ments naturally contain various circumstances, e.g., urban or residential areas, richly or weakly
textured scenes, quiet narrow streets or crowded downtown, visual localization for large-scale
environments are required to suit for more general situations, rather than fitting to a specific

situation.

Contributions.  Considering the outdoor scenario, our work makes the following contri-
butions: i) We generate reference camera pose annotations for the query images of the San
Francisco Landmarks dataset [17], resulting in the first city-scale dataset with such informa-
tion. ii) We use this new dataset for the first comparison of 2D- and 3D-based localization
approaches regarding their pose accuracy. To this end, we combine 2D image-based meth-
ods with an SfM-based post-processing step for pose estimation. Our results clearly show
that 2D image-based methods can achieve a similar or even better positional accuracy than 3D
structure-based methods. As such, we refute the notion that purely 2D image-based approaches
are inaccurate. iii) We demonstrate that the previously used strategy of evaluating localization
methods via a landmark recognition task is unsuitable for predicting pose accuracy. Also, we
show that pose precision results obtained on smaller landmark datasets do not translate to
large-scale localization. Thus, our new benchmark closes a crucial gap in the literature and will
help to drive research on accurate and scalable visual localization.

This chapter is organized as follows; Sec. 3.2 reviews existing dataset for visual localiza-
tion and provides details of our new dataset including manually annotated 6DoF camera poses
for queries which can be used for validation; Sec. 3.3 next reviews existing visual localization
methods in the spirit of 2D image-based and 3D structure-based approaches, which in this
chapter we aim to compare; We also propose an efficient camera pose estimation technique
for 2D image-based methods that provides an accurate 6DoF camera pose for the query based
on SfM pipeline, i.e., using only 2D images (Sec. 3.4); Sec. 3.5 gives several validations on our
dataset. We compare methods in each of 2D- and 3D-based methods, including 2D-based meth-
ods combined with our camera pose estimation method as post-processing; Sec. 3.6 concludes

this chapter.

3.2 Dataset for visual localization in an urban environ-

ment

In this section, we first motivate our new pose dataset by reviewing the currently used evaluation
protocols. Next, we review the San Francisco dataset before detailing how we generate reference

poses for some of its query images.



CHAPTER 3. VISUAL LOCALIZATION IN A LARGE-SCALE URBAN ENVIRONMENT 49

3.2.1 Review for current evaluation protocols

3D structure-based localization approaches are typically evaluated by counting how many query
images have an estimated pose with at least X inliers, where X is some threshold. This is based
on the observation, made on smaller datasets, that wrong pose estimates are rarely supported
by many inliers. However, this observation does not transfer to large-scale datasets [39,46,126].
At scale, repetitive structures and sheer size increase the chance of finding more wrong matches
that are geometrically consistent [46,126]. Simply counting the query images with at least X
inliers thus overestimates the performance of structure-based methods. As such, it is necessary
to also consider pose accuracy.

The datasets commonly used to evaluate the localization accuracy of structure-based ap-
proaches, 7 Scenes [56], Arts Quad [121], Cambridge Landmarks [135], Dubrovnik [16], and the
recent Aachen Day-Night, RobotCar Seasons, and CMU Seasons benchmarks [136], all depict
small- to medium-scale scenes with significant texture. Consequently, it is often possible to
find many matches, which aids pose accuracy. Richly textured scenes are less frequent in urban
environments due to the prevalence of reflecting or texture-less surfaces. This creates a need
to also evaluate pose accuracy for truly large-scale datasets characterized by more ambiguous
structures. Creating a benchmark for such a scene is one of the contributions of this work.

2D image-based localization methods are mostly evaluated in the context of landmark or
place recognition [17,20,27,39,40,124,125,133,137]. For landmark recognition, the goal is to
retrieve at least one database image that depicts the same landmark or scene element as the
query photo [17]. Vision is a long-range sensor and as such, a relevant database image might
depict the same landmark while being taken tens or hundreds of meters away from the position
of the query image. Thus, the geotag of such an image is not necessary a good approximation
to the position of the query. Still, it might be possible to accurately determine this position
through camera pose estimation (c.f. Sec. 3.3.1). One of the contributions of this work is to
evaluate to what extend landmark recognition performance translates to accurate localization.

In terms of place recognition, image-based localization methods are tasked to find a database
image whose geotag is within a certain radius of the query’s GPS position [125,133]. The fact
that vision is a long-range sensor again causes problems in this setting as it is can be hard to
distinguish between database images depicting the same part of the scene taken close to or far
away from the query position [39]. In addition, the GPS positions associated with the query
images can be rather inaccurate, especially in urban environments [17], requiring the use of a

high threshold of tens or even hundreds of meters.

The San Francisco dataset. The publicly available San Francisco (SF) dataset, originally
presented in [17], consists of 1,062,468 street view images, cutout of panoramas using per-
spective projection from panoramas and denoted as PCI images, taken from the top of a car

and 803 query images taken with cell phones by pedestrians. All photos depict downtown San
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Francisco (see the gray points in Fig. 3.2 for the distribution of the PCI images). Each PCI is
associated with an accurate GPS position and a building ID, generated by back-projecting a
3D model of the city into the image [17]. Similarly, most query images have a GPS position and
a list of IDs of the buildings visible in them. Unfortunately, the GPS coordinates of the query
photos are not very precise and thus cannot be used as ground truth to measure localization
accuracy.

There exist two SfM reconstructions of the San Francisco models [50]. The SF-0 ver-
sion of the dataset contains around 30M 3D points, associated with SIFT descriptors [32],
reconstructed from 610,773 images. To create the SF-1 variant, the database images were
histogram-equalized before extracting upright SIFT features, resulting in a model containing
roughly 75M points reconstructed from 790,409 images. For both 3D models, each 3D point
can be associated with the building IDs from the database photos it was reconstructed from.
Thus, the SF dataset is commonly used to evaluate and compare structure- and image-based
localization methods in the context of landmark recognition. However, both models do not
provide reference poses for the query images. Using the reference poses we generated enables

to evaluate camera pose accuracy on the SF dataset.

3.2.2 Generating reference poses

Without any precise geotags, which are hard to obtain in downtown areas due to multi-path
effects, the easiest way to obtain ground truth poses at scale is to use SfM algorithms. We
follow this approach. Yet, instead of adding the query images to an existing model, which
would require us to solve the localization problem, we generate local reconstructions around
the queries which we subsequently geo-register. While we took great care to ensure the accuracy
of our pose estimates, there is still a certain error in them. We thus use the term “reference
poses” rather than “ground truth poses” to indicate that our poses are a rather precise reference

than a centimeter accurate ground truth.

Generating local reconstructions. The first step is to generate SfM reconstructions from the
database images around the query images. Unfortunately, the GPS coordinates for the query
images provided by the SF dataset are inaccurate with errors up to hundreds of meters [17].
Thus, we determine relevant PCI images for each query photo by exploiting the readily available
building IDs. For each query, we perform feature matching against all database photos with
a relevant building ID, followed by approximate geometric verification [42,125]. We visually
inspect the 20 images with the largest number of inliers, as long as they have at at least 5 inliers,
and select the photo that is visually most similar to the query image for a later consistency
check.

There is a strong change in viewpoint between the PCI (taken from the road) and query

(taken mostly from sidewalks) images. Thus, finding sufficient matches to include the query
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Figure 3.2: The San Francisco dataset with the reference poses of query images. We

provide the reference poses of query images (blue) which can be used as the ground truth for

large-scale localization benchmarks on the SanFrancisco dataset.



CHAPTER 3. VISUAL LOCALIZATION IN A LARGE-SCALE URBAN ENVIRONMENT 52

image in the local reconstruction can be challenging. To increase the chance of finding enough
matches, we thus include additional images that are not part of the original SF dataset. More
precisely, we use Google Street View Time Machine (GSVTM) data [20, 40, 88] that covers
the same area as the San Francisco dataset. We chose GSVTM instead of GSV images as
they provide a denser spacial sampling. GSVTM provides panoramas of 13,312 x 6,656 pixels
associated with geotag information, more precisely, longitude, latitude, and orientation (heading
to the north)!. Similar to [17,125], we cut 24 perspective images of 1,920 x 1,440 pixels, with
a 60° field-of-view and 50% overlap to the neighboring views, from each panorama. For each
query image, we use the 240 perspective images corresponding to the 10 GSVTM panoramas
spatially closest to the most relevant PCI image.

We run SfM on the query, PCI images, and GSVTM perspective images. For redundancy,
both COLMAP [25] and VisualSFM [23,24] are used to obtain two SfM reconstructions.

Geo-registration with gravity constraint. In order to obtain the global positions and
orientations of the cameras in each local reconstruction, we transformed the local model coor-
dinate system to UTM coordinates. We first convert the GPS tags of the PCI and GSVTM
images to UTM. Since the geotags do not include the height of the cameras above ground, we
set it to zero. We then estimate the similarity transform between the camera positions in the
model and their UTM coordinates.

A naive approach to geo-registration is to calculate a TDOF similarity transform (scale, rota-
tion, translation) between the SfM camera positions and the UTM coordinates of the database
images [65]. However, this results in unstable estimates in degenerated camera configurations.
A common degenerate configuration in our setting is that the cameras used for an SfM recon-
struction align on a straight line since the car drives down a road.

This degenerated camera configuration problem can be addressed using the gravity direction
computed from the SfM model. We first assume that all the PCI and GSVTM perspective
images are aligned with respect to the gravity direction in UTM coordinates. Each camera
pose in the SfTM model and its pitch angle in UTM give a mapping of the gravity direction in
UTM to the StM coordinates. We determine the gravity direction in the SfM coordinates by
taking a median of all the mapped gravity directions. Using this median gravity direction, we
rotate the SfM model and finally compute a 5DOF similarity transform (1D scale, 1D rotation,
and 3D translation), using LO-RANSAC with a 1 meter tolerance threshold?.

Verification. Besides not being able to register the query image in the model, there are

multiple ways a SfM reconstruction might provide an inaccurate estimate for a query’s camera

LGSVTM provides two location and orientation estimates, the original GPS information and geotags obtained

via some alignment. We use the former as they are better aligned with the geotags of the PCI images.
2We experimented with three registration approaches based on the geotags of (1) only the PCI images, (2)

only the GSVTM images, and (3) all images. All variants show a similar pose accuracy, but the last version

registers the largest number of query images.
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pose. For example, only few matches might be found or the correspondences might be in an
unstable configuration, e.g., all matches are situated in a small region of the query image.
Consequently, we verify the poses after the registration process through consistency checks.

Let Q be the query image for which we want to verify the estimated pose and let D be the
PCI image we selected for it. Using D and the SF-0 model, also registered to UTM coordinates,
we generate a set of 2D-3D matches for the query image Q. From the SF-0 model, we obtain a
list of 3D points visible in D. We project these 3D points into D to obtain 2D pixel positions,
which we use to manually annotate the corresponding image positions in the query image.
This results in a set of 2D-3D matches and, as a side product, also produces a set of 2D-
2D correspondences between Q and D. To obtain additional correspondences, we manually
annotate 20 to 50 2D-2D matches between D and Q. We use all these 2D-2D matches to
compute the relative pose between the two images and use the 2D-3D matches to determine
the scale of the translation. The resulting pose in UTM coordinates is then refined using bundle
adjustment [138]. Ideally, this procedure should result in a precise estimate of Q’s camera pose.
However, it is hard to obtain accurate manually annotated pixel matches, resulting in some
inaccuracy on the pose. We thus use it for a consistency check on the absolute camera pose.
The check accepts a SfTM pose if it is inside 10 meters of the position and within 15° of the view
angle of the pose obtained from the manual matches.

A second consistency check employs the manually annotated 2D-2D matches between D
and Q. From each of the two SfM models, we extract the essential matrix E describing the
relative pose between the two images. For a given 2D-2D match (xg, xp), we measure the pixel
distances from the epipolar lines defined by E and E~!. E is considered to be consistent with
the match if both errors are less than 3 pixels each. We consider a pose obtained by SfM to be
consistent with this relative check if E is consistent with at least 10 of the manually annotated
matches.

For each query image, a pose obtained by COLMAP or VisualSFM is accepted as a reference
pose if it passes one of the two consistency checks. If poses from both COLMAP and VisualSFM
pass this test, we select the one estimated by COLMAP.

Statistics. We created manual annotations for 687 out of the 803 query images from the SF
dataset. Tab. 3.1 shows statistics on how many SfM poses, obtained with either COLMAP or
VisualSFM, pass the two consistency checks. Finally, we obtain 598 reference poses that are
consistent with our manual annotations. For comparison, we only obtained 442 reference poses
without using the additional GSVTM images.

Reference pose accuracy. In the next section, we present the image- and structure-based
localization methods that we evaluate using our reference poses in Sec. 3.5. In order to draw
valid conclusions, it is however necessary to understand the accuracy of these poses. We

thus measure the uncertainty of the estimated poses as follows: Using RANSAC, we compute
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Table 3.1: Statistics on the consistency of the reconstructed SfM poses with our manual anno-

tations.
Method \Consistency Test || Absolute | Relative | Both
COLMAP 311 553 306
VisualSFM 269 279 170
COLMAP & VisualSFM 228 245 142

multiple poses from a subset of the 2D-3D matches used for each reference pose. From the
resulting 100 poses, those supported by more than 80% of the 2D-3D matches are used to
measure the differences to the reference pose. The mean median position and orientation errors
are 1.01 meters and 2.19°.

The accuracy of any pose estimation approach, including SfM, that minimizes reprojection
errors depends on the distance of the camera to the scene. More precisely, the uncertainty of
the estimated pose grows roughly quadratically with the distance to the scene. On average, a
query image is 10.5 meters away from its selected PCI image and 35.6 meters away from the 3D
structure estimated during SfM. We thus consider the reference poses to be reasonably accurate.
We also measured the positional gap between the geotags of the PCI and the reconstructed
PCI cameras registered in UTM coordinates. The mean average positional discrepancy is
0.39 meters, i.e., the UTM coordinates estimated by SfM reconstruction and registration are

consistent with the geotags of the PCI images.

3.3 Existing visual localization methods

The introduction posed the question whether 2D image-based localization approaches can
achieve the same pose accuracy as structure-based methods. In other words, we are inter-
ested in determining whether an underlying 3D representation is necessary for high localization
precision or whether a database of geotagged images can be sufficient.

This section gives summaries of existing localization methods designed in the spirit of 2D
image-based approaches (Sec. 3.3.1) or 3D structure-based approaches (Sec. 3.3.2). We evaluate

these methods using our new dataset in Sec. 3.5.

3.3.1 2D image-based localization

Disloc [27,39] is a state-of-the-art method based on the BoW paradigm and Hamming em-
bedding [82]. During the voting stage of the retrieval pipeline, Disloc takes the density of the
Hamming space into account to give less weight to features found on repeating structures while

emphasizing unique features.
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We also use the combination of Disloc with the geometric burstiness weighting scheme
recently proposed in [39]. Given a list of spatially verified database images found by Disloc,
the weighting strategy clusters these photos into places based on their geotags. It identifies
features in the query image that are inliers to database photos coming from different places, i.e.,
features found on repeating structures. Finally, the strategy performs a second re-ranking step
where such features have less influence, which has been shown to improve landmark recognition

performance.

DenseVLAD [20]. Disloc is based on the BoW paradigm and thus needs to store one entry
per each image feature in an inverted file. This quickly leads to high memory requirements for
large-scale scenes such as San Francisco. The DenseVLAD descriptor [20] is an example for a
state-of-the-art localization algorithm based on compact image representations. Each image is
represented by a single VLAD vector [44,45], resulting in a more compact database represen-
tation. The DenseVLAD descriptor is constructed by aggregating RootSIFT [26] descriptors
densely sampled on a regular grid in each image. As such, the method foregoes the feature
detection stage, which has been shown to lead to more robust retrieval results, especially in the

presence of strong illumination changes [20, 136].

NetVLAD [40]. The DenseVLAD descriptor is based on hand-crafted RootSIFT descriptors.
In contrast, the NetVLAD representation uses a convolutional neural network to learn the
descriptors that are aggregated into a VLAD vector. Training this representation in an end-to-
end manner using a weakly supervised triplet loss has been shown to improve place recognition

performance over DenseVLAD and other compact image descriptors.

3.3.2 3D structure-based localization

Camera Pose Voting (CPV) [126]. Following [139], CPV assumes that the gravity direction,
both in the local coordinate system of the camera and the global coordinate frame of the 3D
model, is known together with a rough prior on the camera’s height above the ground and
its intrinsic calibration. In this setting, knowing the height of the camera directly defines
the distance dist(p) of the camera to a matching 3D point p up to e, where ¢ is a small
distance modeling the fact that the point might not re-project perfectly into the image. Thus,
the camera’s center falls into a circular band with minimum radius dist(p) — ¢ and maximum
radius dist(p) + & around p. As shown in [126], fixing the final® orientation angle of the camera
also fixes the position of the camera inside the circular band.

The last observation directly leads to the camera pose voting scheme from [126]: Iterating
over a set of discrete camera heights (defined by the coarse height prior) and a set of discrete

camera orientations, each 2D-3D match votes for a 2D region? in which the camera needs to

3The other angles are already fixed by knowing the gravity direction.
4Regions account for the discretization of the pose parameters.
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be contained. The matches voting for the cell receiving the most votes define a set of putative
inliers and the position of the cell, together with the corresponding height and orientation,
provides an approximation to the camera pose. This approximation is then refined by applying
RANSAC with a 3-point-pose (P3P) solver on these matches. If available, a GPS prior can be
used to further restrict the set of plausible cells and thus possible camera positions.

CPV was selected for our evaluation as [126] report state-of-the-art pose accuracy on the
Dubrovnik dataset [16] and the state-of-the-art landmark recognition performance on the San

Francisco dataset among structure-based localization methods.

Hyperpoints (HP) [46]. Rather than using Lowe’s ratio test, which enforces global unique-
ness of a match in terms of descriptor similarity, the HP method searches for locally unique
matches [46]. It uses a fine visual vocabulary of 16M words [140] to define the similarity be-
tween the descriptor d(f) of a query image feature f and the descriptor d(p) of a 3D point
p based on a ranking function: p has rank r(p, f) = ¢ if d(p) falls into the i-th nearest visual
word of d(f). The point’s rank is r(p, f) = oo if d(p) does not fall into any of the k = 7 nearest
words of d(f). A 2D-3D match (f,p) is locally unique if there exists no other 3D point p’ that
is co-visible with p and has r(p/, f) < r(p, f). Two points are co-visible if they are observed
together in one of the database images used to reconstruct the model.

Each locally unique 2D-3D match (f,p) votes for all database images observing p and the
top-N images with the most votes are considered for pose estimation. Let D be one of these
database images. All matches whose 3D point is visible in D as well as all matching points visible
in nearby images are used for RANSAC-based pose estimation. Two images are considered
nearby if they share at least one jointly observed 3D point in the SfM model. Considering points
outside D increases the chance of obtaining more correct matches. Restricting the additional
matches to nearby cameras avoids considering unrelated matches, thus avoiding high outlier
ratios in RANSAC.

After computing a camera pose for each retrieved database image, the pose with the highest
effective inlier count is selected. The effective inlier count takes both the number of inliers and
their spatial distribution into account [52].

HP was selected as it represents a hybrid between 2D image-based and 3D structure-based
localization methods. In addition, HP also outperforms other structure-based approaches em-

ploying retrieval techniques [48,52,91] at large scale.
Active Search (AS) [49]. CPV and HP have been designed to operate at large-scale. We

compare their performance with Active Search, a state-of-the-art method for efficient localiza-
tion at small-to-medium scale [49,93]. AS relies on Lowe’s ratio test to identify and reject
ambiguous matches. As the ratio test rejects more and more correct matches at scale [50], we
expect AS to localize significantly fewer images than CPV and HP. The comparison with AS

thus serves to demonstrate the challenges encountered when scaling to larger, more complex
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scenes.

3.4 Image-based visual localization providing accurate

6DoF camera pose

As mentioned in Sec. 3.1 and summarized in Tab. 1.1, 2D methods are based on image retrieval
which only provide a list (ranking) of database images that are relevant to the input image.
Therefore, they mostly serve a coarse position estimation of the query approximated by the
location of retrieved database images, instead of the accurate camera pose consistent to the 3D
model.

In this section, we break down this limitation by showing that the camera pose of a query
can be estimated using only 2D image database. We first review baseline location estimation
techniques for 2D image-based methods which suggest query location approximated by relevant
database images. During experiments in Sec. 3.5, we regard them as baseline methods of pose
estimation. We next describe proposed method based on SfM pipeline, which can provide an
accurate camera pose of a query using only the query image and a set of retrieved database

images.

3.4.1 Approximation for camera location

Nearest neighbor (NN). Traditionally, most 2D image-based methods approximate the pose
of the query image by the pose of the most relevant database image, i.e., the database photo
with the most similar BoW or VLAD descriptor. We use this strategy as a baseline and refer
to it as Nearest Neighbor (NN) pose.

Spatial re-ranking (SR). Re-ranking the retrieved database images after spatial verification
is known to improve image retrieval performance. As a second baseline, we use the pose of the
best-matching database image after verification and refer to this strategy as Spatial Re-ranking
(SR) pose. We perform spatial verification [42] for the top-200 retrieved images. For Disloc,
we exploit the matches computed during the retrieval process while we extract and match
RootSIFT features for both VLAD-based methods. For the VLAD-based methods, we re-rank
based on the raw number of inliers. For Disloc, we also experiment with re-rank based on the

geometric burstiness score.

3.4.2 Local 3D reconstruction for camera pose estimation

The previous two pose estimation strategies only consider the top-ranked database image. They

ignore that each 2D-based approach typically retrieves multiple database images depicting the
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same place. In addition, the geotags of the database photos can also be used to identify a larger
set of potentially relevant images. The relative knowledge of database and query images, e.g.,
local keypoint correspondences and relative camera pose estimated using them, can therefore
serve a 3D reconstruction of the local area around the query, which includes 6DoF camera pose

of the query.
SfM-on-the-fly (SfM). Inspired by [120], who generate a SfM model from a single photo by

repeatedly querying an image database, we use small-scale SfM to obtain a local 3D model
around the query image. Poses in the local model can then be converted into global poses by
registering the SfM reconstruction into UTM coordinates based on the geotags of the database
images. We refer to this strategy as SfM-on-the-fly (SfM). For 2D image-based methods, we
generate a small subset from the top-200 retrieved images which are located within 25 meters
from the pose obtained via the NN or SR strategy. We use COLMAP on the selected photos
to obtain the 3D reconstruction. If COLMAP fails to recover the pose of a query camera, e.qg.,
when the reconstruction fails, we resort to the NN or SR pose.

A naive implementation of SfM-on-the-fly constructs a local model from scratch and ignores
the fact that the poses of the database images are available. We thus also evaluate a version
(SfM init.) that uses these known poses for initialization. This accelerates the reconstruction
process and also makes it more stable. Compared to 3D-based methods, this approach achieves
a higher pose accuracy.

Another technique to accelerate the local SfM process is to avoid exhaustive matching
between all images. In order to reconstruct the query pose, database images with feature
matches to the query image are most relevant. We thus also experiment with a transitive
matching strategy (trans.). We first match the query image against all retrieved database
images. We then match two database images against each other only if each has a sufficient

number of matches with the query image.

3.5 Experiments

This section uses our new reference poses to compare the localization accuracy of 2D image-
and 3D structure-based methods. After describing the experimental setup and the evaluation
protocol, we quantitatively evaluate the different approaches. We then discuss the results and

their relevance.

3.5.1 Experimental setup

For Disloc [27,39], DenseVLAD [20], and NetVLAD [40], we use source code provided by

the authors for our evaluation. Disloc uses a visual vocabulary of 200k words trained on a
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subset of all database images. DenseVLAD uses a dictionary with 128 words also trained on
the SF dataset, while NetVLAD uses 64 words. Unfortunately NetVLAD does not provide
a version fine-tuned on San Francisco. Instead, we use the variant trained on the Pitts30k
dataset [40]. Both DenseVLAD and NetVLAD generate 4,096 dimensional descriptors. For
Hyperpoints (HP) [46], Camera Pose Voting (CPV) [126], and Active Search (AS) [49], we use
poses estimated on the SF-0 dataset [50] as all methods use an large SfM model to represent
the scene. We run AS with vocabularies with 10k and 100k words, trained on the 3D point
descriptors of the SF-0 dataset. We denote structure-based models by “(3D)” in the tables and
legends.

Evaluation metric. We are mostly concerned with the pose accuracy achieved by the different
methods. We measure the positional error in UTM coordinates since the local models used
to construct the reference poses and the SF-0 reconstruction are registered to this coordinate
system. However, the SF' dataset only provides geodetic latitudes and longitudes of the cameras
and not the altitudes. Thus, there is one degree of freedom in these registrations, namely the
height above the plane defined by graticule. Accordingly, we measure the position error in 2D
coordinates and evaluate how many images can be correctly localized by the different methods
within a certain distance threshold.

In addition to the positional error, measured in meters, we also measure the orientation
error. Given the reference camera orientation R,es and the estimated query orientation Rg, both
expressed as rotation matrices, we measure the angular error |a| between the two orientations
as 2cos(|a) = trace(R/ ;Rq) — 1 [141].

3.5.2 Quantiative Evaluation

We first evaluate the positional and orientational accuracy achieved by the 2D image-based
methods. We compare the accuracy obtained when using the pose of the best-matching database
image after retrieval (NN), the pose of the best-matching image after spatial verification (SR),
and after local SfM reconstruction (SfM). The latter resorts to the NN (NN-SfM) and SR
(SR-SfM) strategies if a pose cannot be estimated from the local model.

Fig. 3.3 and Fig. 3.4 show results for BoW-based methods (a) and VLAD-based methods
(b). As can be seen, spatial re-ranking (SR) increases the chance that the top-ranked database
image is related to the query, i.e., that the position and orientation of the retrieved database
photo is close to the reference pose of the query. As a result, more query images can be correctly
localized for larger distance thresholds. However, SR does not improve performance much in
the high-accuracy regime. The reason is that the database images of the SF dataset were
captured from a car driving on the road while the query photos were taken by pedestrians on
the sidewalks. Thus, there is a certain minimal distance between their respective locations.

A much better estimate can be obtained when using local StM models (SfM), boosting the
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Figure 3.3: Evaluation of the positional localization accuracy for BoW-based methods
(a), VLAD-based approaches (b), and when comparing 2D- and 3D-based methods (c¢). Each
plot shows the fraction of correctly localized queries (y-axis) within a certain distance to the
reference pose (x-axis). As can be seen, using local SfM reconstructions (SfM) to estimate the
camera poses allows 2D-based methods (Disloc, DenseVLAD) to achieve a positional accuracy
similar or superior to 3D-based methods (Hyperpoints (HP), Camera Pose Voting (CPV)).

percentage of queries localized correctly within 5m from below 20% to about 60%. Similarly,
local SfM improves the orientation accuracy by a large margin for smaller thresholds (0° to
20°). Interestingly, SR-SfM degrades the orientation accuracy compared to SR for angular
errors above 20° (c.f. Fig 3.4). This indicates that the orientation estimates provided by SfM
can sometimes be rather inaccurate. As can be seen from the results in (c), using known poses
for the database images (SfM init.) rater than computing them from scratch improves pose
accuracy.

We observe that Disloc with inter-place geometric burstiness [39] (Disloc (SR*)) shows no
additional improvement in comparison with the original Disloc (SR) [27] in this dataset. Disloc
(SR*-SfM) uses relatively smaller subsets of images because Disloc (SR*) clusters relevant im-
ages by their geotags. This changes the quality of local reconstructions. This is an interesting
result as [39] showed that accounting for geometric burstiness leads to a better location recogni-
tion performance. Our result thus indicates that better location recognition performance does
not automatically translate to better camera pose accuracy.

For the VLAD-based representations, we notice that NetVLAD with the NN strategy per-
forms worse than DenseVLAD (NN). DenseVLAD has the advantage that its vocabulary was
trained on SF, while NetVLAD was trained on another dataset. However, their performance is
virtually the same in combination with spatial re-ranking and local SfM. In the following, we
focus on DenseVLAD and do not use NetVLAD for further experiments.

Fig. 3.3 (c¢) and Fig. 3.4 (c) compare the positional and orientational accuracy of the best-
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Figure 3.4: Evaluation of the orientational localization accuracy for BoW-based methods
(a), VLAD-based approaches (b), and when comparing 2D- and 3D-based methods (c¢). Each
plot shows the fraction of correctly localized queries (y-axis) within a certain angular distance
to the reference orientation (x-axis). Using local SfM reconstructions (SfM) to estimate the
camera poses also allows 2D-based methods (Disloc, DenseVLAD) to achieve a orientational

accuracy similar or superior to 3D-based methods (Hyperpoints (HP), Camera Pose Voting

(CPV)).

performing 2D-based approaches with the two structure-based methods, Hyperpoints (HP) and
Camera Pose Voting (CPV). As can be seen, both Disloc and DenseVLAD perform as good as
HP for queries with an smaller error (2m and 5°) when using SfM as a post-processing step.
2D-based approaches are able to localize more images overall. If a pose cannot be estimated
via local SfM, the 2D-based methods resort to reporting the position of the highest-ranking
database image. The overall lower percentage of localized images observed for HP and CPV
comes from such cases. For these images, their 2D-3D matching stage fails to produce enough
matches for pose estimation. The interesting implication is that it is still possible to find
relevant database images even when pose estimation itself fails due to a lack of matches.
Many interesting applications, e.g., self-driving cars, require highly accurate poses. In order
to better understand the behavior of 2D-based and 3D-based methods in the high-precision
regime, we compare their performance on two subsets of our reference poses. The first subset,
containing 334 poses, is constructed from all reference poses for which either COLMAP or
VisualSFM provides a pose that passes both consistency checks explained in Sec. 3.2. This
subset represents the more accurate among all of our reference poses. The second subset
contains all 142 poses where both reconstructed poses pass both tests, thus containing the
reference poses most likely to be highly accurate. Fig. 3.5 depicts the performance of the
different methods on both subsets. We again observe that HP performs better in the error
range 2.5m to 9.0m than DenseVLAD (SfM) and Disloc (SfM). Yet, the best performance

is again obtained using the SfM init. strategy. This clearly demonstrates that using known
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Figure 3.5: Localization accuracy for subsets of the reference poses, selected to include
more accurate camera poses: (a) reference poses from either COLMAP or VisualSFM passing
both consistency checks (334 reference poses) and (b) reference poses where both reconstruc-
tions pass both checks (142 poses). For each subset, we evaluate both positional (left) and
orientational (right) accuracy for 2D- and 3D-based localization methods.

database poses for initialization increases the robustness of the SfM process. Based on the

results, we conclude that large-scale 3D models are not really necessary for highly accurate
visual localization.

Other metrics. The previous experiment considered the orientation and position errors sepa-
rately. Following [56,136], we next jointly consider both errors. Tab. 3.2 shows the percentage of
query images that are localized within certain thresholds on the position and orientation error.
The best results are clearly obtained by DenseVLAD (SR-SfM init.). The transitive match-
ing strategy accelerates the local SfM process, but also decreases pose accuracy slightly. For
more relaxed thresholds (25-30 meters, 20 degrees), 2D-based methods (DenseVLAD / Disloc
(SR-SfM)) show better a recall than 3D-based methods (HP and CPV). Overall, image-based
method can achieve a similar or higher performance than structure-based methods without a
single consistent 3D model.

We next evaluate positional and orientational accuracy in a single unit, i.e., pose accuracy,
by computing reprojection errors. As described in Sec. 3.2, the accuracy of any approach that
estimates a camera pose by minimizing a reprojection error depends on the scene. Consequently,
we can expect larger errors if the image is taken rather far away from the scene. In contrast,
the mean reprojection error does not depend the distance to the scene.

To compute the reprojection errors, we retrieve 2D-3D correspondences associated with
the query reference pose. The reprojection errors are calculated by projecting 3D points to
the image plane of the estimated query pose and computing the distances to the reference 2D
points. Tab. 3.3 shows the mean reprojection error for each method. Not surprisingly, the
patterns of results are similar to the positional and orientational accuracy evaluations. The
higher errors of DenseVLAD / Disloc (SR-SfM) for the 75% quantile result from resorting to
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Table 3.2: Localization performance depending on the positional and orientational
errors. For each pair of thresholds, we provide the percentage of queries that are localized
within the thresholds by each method.

Time Thresholds [meters, degrees]

Method [sec] | 5,5 10,5 15,10 20,10 25,20 30, 20

DenseVLAD (SR-SfM) 18.38 1 57.02 58.03 68.56 69.73 80.43 80.77
DenseVLAD (SR-SfM init.) | 9.08 |66.89 67.39 77.76 78.43 85.79 86.12

~+trans. 7.26 | 63.71 64.55 T7.26 77.93 85.62 85.95
Disloc (SR-SfM) 18.38] 57.19 58.53 69.06 70.40 81.94 82.11
AS, 10K w/o GPS (3D) 0.62 | 27.42 27.76 33.44 33.44 35.79 35.79
AS, 10K w/ GPS (3D) 0.66 | 35.79 36.62 43.81 43.98 44.98 45.15

AS, 100K w/o GPS (3D) 0.09 | 29.43 29.93 35.95 36.12 37.46 37.46
AS, 100K w/ GPS (3D) 0.12 | 34.28 35.28 42.64 42.64 43.81 43.81

Hyperpoints (3D) ~3 | 55.85 57.53 72.24 7241 76.76 76.92
CPV w/ GPS (3D) ~3 |38.63 43.14 6221 62.71 70.23 70.74
CPV w/o GPS (3D) ~3 [38.63 42.98 61.20 62.04 69.06 69.23

Table 3.3: Quantiles for mean reprojection errors.

Method 25% 50% 75%

DenseVLAD (SR) 100.09 155.75 233.56
DenseVLAD (SR-SfM) 10.92  33.78  165.30
DenseVLAD (SR-SfM init.) 9.04 22.35 85.43
DenseVLAD (SR-SfM init.)+trans. || 9.90 24.03  86.95
Disloc (SR) 100.09 157.22 246.18
Disloc (SR-SfM) 1046 38.60  160.02
Hyperpoints (3D) 14.93 3221  124.82
CPV w/ GPS (3D) 21.05 46.87 116.99
CPV w/o GPS (3D) 9118 44.74 122.36

image retrieval if local SfM fails.

Using positional priors. At large scale, it is often reasonable to assume that some coarse
positional prior is given, e.g., via GPS / WiFi localization. This prior can then be used to
simplify the localization problem by restricting the search space. For example, image-based
methods can restrict the search for relevant images to a certain radius around the positional
prior of a given query [17]. Similarly, CPV can use such a regional prior to restrict the voting
space [126]. We extend AS to use a position prior by restricting 2D-to-3D matching to points
within 200 meters of the prior.

As can be seen in Tab. 3.2 and Tab. 3.3, using a pose prior for CPV has little impact on
camera pose accuracy. This is an interesting observation and its relevance will be discussed in
detail in Sec. 3.5.3. In contrast, AS clearly benefits from the prior, which is due to its use of

Lowe’s ratio test. The prior allows AS to ignore some 3D points during matching. This results
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Figure 3.6: 2D image-based localization with and without positional priors. (a) Each
plot shows the percentage of query images (y-axis) localized within a certain distance to the
reference pose (x-axis). “+GPS” indicates restricting the search to a 100 meter radius around
the given GPS prior. (b) The percentage of queries localized within 10, 20, 30 meters of the
reference position (y—axis) obtained by DenseVLAD when varying the search radius (x—axis)
around the GPS prior.

in a sparser descriptor space and thus decreases the chance that the ratio test rejects correct
matches. Still, AS localizes significantly fewer images than CPV, even with the prior.

The original GPS measurements provided with the SF dataset are rather noisy, with errors
of up to 150 meters [17]. These measurements were obtained with rather old hardware and soft-
ware. We thus generate a more accurate positional prior by randomly sampling a position from
a region which centers our reference pose and has a radius of 50 meters. We then incorporate
the GPS priors into the 2D image-based methods.

Fig. 3.6 (a) evaluates the localization performances for a search radius of 100 meters. As can
be seen from the plots, using a GPS prior improves the localization performance of DenseVLAD.

We next evaluate the robustness of the localization to the search radius. In Fig. 3.6 (b),
both DenseVLAD (SR+GPS) and DenseVLAD (SR-SfM+GPS) show the best performances
with the 50 meters radius, which is equal to the GPS uncertainty. This result is in line with the
observation reported by Chen et al. [17]. DenseVLAD (SR-SfM) robustly retains its localization
rate at the larger searching radius as it accurately estimates the pose of the query image. In
contrast, we notice a significant drop in performance for DenseVLAD (SR) as it approximates

the pose of the query through the pose of the top-retrieved database image.

Memory requirements. When dealing with large-scale datasets, the memory required to
represent the scene is no longer a negligible issue. In the following, we summarize the memory
requirements of each method. Here, we focus on the amount of data that needs to be kept in

main memory during processing. For example, the image-based methods need access to the
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original images for the local SfM stage. However, these images could be read from disk after
the initial retrieval step.

Storing 4096-dimensional VLAD [20,40] for all 1,062,468 database images requires 17.4GB,
and the requirements can be reduced further, e.g., using product quantization [142], with
negligible loss in performance [20]. For comparison, the DisLoc implementation from [39]
requires about 20GB, although its memory footprint could be reduced to about 9.4GB by
storing quantized feature geometry [86]. As reported in [46], the Hyperpoints approach requires
4.9GB to store the 3D model information and the visual vocabulary. In contrast, camera pose
voting [126] uses all 149.3M SIFT descriptors of the SF-0 model for matching, thus requiring
more than 18GB of memory. The memory footprint could be reduced to about 4.9GB by
storing a single mean descriptor for each of the 30M 3D points, although this might reduce the
localization performance. The two best-performing methods (Disloc and Hyperpoints) show
similar localization accuracy but Hyperponts has five times smaller memory footprint. AS
requires about 15GB of storage space and the difference in memory requirements for different

vocabulary sizes is negligible.

Timings. Tab. 3.5 shows timings for the online components of the different algorithms, evalu-
ated on Dubrovnik dataset. As can be seen, DenseVLAD (SR-SfM) is significantly slower than
all other methods. This is unsurprising as it avoids the need for generating and maintaining a
single 3D model by computing small 3D models on the fly. It thus trades flexibility for run-time.
The corresponding run-times for the San Francisco dataset are shown in Tab. 3.2. Note that
local SfM is less efficient on the Dubrovnik dataset due to larger image resolutions, resulting
in more extracted features.

Computing the DenseVLAD and NetVLAD descriptors for Dubrovnik’s 6044 database im-
ages took 2.4h and 0.85h, respectively. While we use existing 3D models for Dubrovnik and
SF-0, we expect that reconstructing the datasets from scratch takes less than 1 day and about
1-2 weeks, respectively. HP requires about 3s per image for online processing on SF-0.

Tab. 3.4 provides more detailed timings for the different variants of SfM-on-the-fly discussed
in Sec. 3.4, together with the impact of the modifications on pose accuracy. These timings were
obtaining for COLMAP, using a GPU for feature extraction and parallelization for matching
and reconstruction. As can be seen, most of the time is spent on the incremental reconstruction
process. Using known database poses for initialization decreases the reconstruction time by a
factor of about 3 while also increasing localization performance. Using transitive matching
improves the matching times at a slight reduction of pose accuracy at the stricter thresholds.
Feature extraction could be accelerated at the price of memory by pre-extracting features for

the database images.



CHAPTER 3. VISUAL LOCALIZATION IN A LARGE-SCALE URBAN ENVIRONMENT 66

Table 3.4: Impact of different variations of SfM-on-the-fly on timings and perfor-
mance. We provide the average computation time for each component of SfM-on-the-fly, and

the percentage of queries that are localized within the thresholds by each method.

Time [sec] Thresholds [meters, degrees|
Method feature ext. feature match. reconstruction| 5,5 10,5 15,10 20, 10 25, 20 30, 20
DenseVLAD (SR-SfM) 1.13 2.23 15.03 57.02 58.03 68.56 69.73 80.43 80.77
DenseVLAD (SR-SfM init.) 1.13 2.23 5.73 66.89 67.39 77.76 7843 85.79 86.12
DenseVLAD (SR-SfM init.)+trans. 1.13 1.80 4.33 63.71 64.55 77.26 77.93 85.62 85.95

3.5.3 Relevance of the Results

To put the results obtained at large scale with our references poses into context, we provide
results on the medium-scale Dubrovnik dataset [16]. The 3D model consists of 1.9M 3D points
reconstructed from 6044 database images.

Tab. 3.5 compares the DenseVLAD variants with CPV and AS. In addition, we also provide
results for PoseNet [55,135], a learning-based approach. HP is not applicable for this dataset
as it was designed for larger-scale scenes where memory consumption and matching quality
are issues. On the Dubrovnik dataset, the fine vocabulary of 16M words used by HP already
requires more memory than the complete dataset.

As can be seen from Tab. 3.5, combining DenseVLAD with local SfM results in a localization
accuracy comparable to Active Search but worse than CPV. The opposite is the case for the
larger SF-0 model, where DenseVLAD (SR-SfM) is clearly more precise. The reason is that
finding good matches is easy on the smaller and well-textured Dubrovnik dataset while it is
extremely challenging for the significantly larger SF-0 model. This is evident when comparing
CPV’s median positional accuracy on Dubrovnik (0.56m) and SF-0 (>2m). The matching step
of local SfM is able to recover matches lost by CPV, enabling more accurate poses at large
scale. The pose accuracy of DenseVLAD (SR-SfM) strongly depends on the quality of the
local 3D models. Here, the SF-0 model is better suited due to the regular spatial distribution
of its database images. In contrast, the spatial density of Dubrovnik’s database photos varies
strongly, making it harder to obtain good local models for some query images.

An interesting observation can be made from the relative performance between HP and CPV
on SF-0. Previously, the SF dataset was used to evaluate the performance of structure-based
localization methods in a landmark recognition scenario [46,50,126]. In this scenario, an image
was considered correctly localized if it observed the correct building as specified by the building
IDs provided by the SF dataset. Methods are evaluated based on their recall@95% precision,
i.e., based on the percentage of correctly localized images if the algorithm is allowed to make a
mistake in 5% of all cases. In this scenario, CPV achieves a recall of 67.5% and 74.2% without
and with a GPS prior, respectively. In contrast, HP only obtains a recall of 63.5%. This shows

that good performance on the landmark recognition task does not necessarily translate to pose
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Table 3.5: Additional comparison on the Dubrovnik dataset [16].

Time | Quantile errors [m]
Method [sec] 25% 50% 5%
DenseVLAD [20] (NN) 142 | 14 39 112
DenseVLAD [20] (SR) 1.43 09 29 90
DenseVLAD [20] (SR-SfM) ~200 03 1.0 5.1
DisLoc [27] (NN) 1128 | 1.1 37 111
DisLoc [27] (SR) 1129 | 0.9 29 89
DisLoc [27] (SR-SfM) ~200 | 05 19 94
Camera Pose Voting (CPV) (3D) [126] 3.78 | 0.19 0.56 2.09
Active Search (3D) [49] 0.16 05 13 5.0
PoseNet [55,135] ~0.005 - 7.9 -

accuracy.

Another interesting observation can be made from the results obtained with CPV and a
pose prior. In [126], including a pose prior improved landmark recognition performance. Yet,
we observe no improvement in pose accuracy. This behavior is due to a peculiarity of the
landmark recognition protocol: In order to increase the recall@5% precision, a large margin
between the scores of correct and incorrect results is desirable. CPV uses the GPS prior to
restrict the camera pose voting space, thus reducing the number of votes for incorrect poses.
This, in turn, allows CPV to better distinguish between correct and incorrect poses. As such,
our new dataset closes a crucial gap in the literature as it enables measuring pose accuracy at
a large scale.

Regarding the performance of PoseNet, we observe that simply approximating the pose of
a query image via the pose of the top-retrieved database image (DenseVLAD (NN)) already
provides more accurate pose estimates. This shows that pose regression techniques such as
PoseNet currently do not scale well. This is in line with reports from other work, which reports
problems when trying to train such methods in more complex scenes [22,97,136].

Comparing the results obtained with Active Search on SF-0 (Tab. 3.2) and Dubrovnik
(Tab. 3.5), we observe that AS scales well in terms of run-time. Part of this is due to the fact
that the query images for Dubrovnik contain about five times more features on average, which
compensates for the larger model size of SF-0. Yet, AS localizes significantly fewer images on
the larger dataset. This demonstrates the need to also consider pose accuracy when evaluating

the scalability of localization methods.

3.5.4 Qualitative Results

We next show some qualitative examples to visually investigate when and how 2D image- and

3D structure-based methods work. Based on the quantitative results, we choose the methods
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for 2D image- and 3D structure-based localization as Disloc (SR-SfM) and Hyperpoints (HP).
We chose (SR-SfM) rather than (SR-SfM init.) to illustrate potential failure cases and since
the former only requires coarse geotags for the database images.

Fig. 3.7 and Fig. 3.8 show examples of query images correctly localized within 5m of the
reference position by Disloc (SR-SfM) but not HP, respectively localized within 5m by HP but
not by Disloc. Similarly, Fig. 3.9 and Fig. 3.10 show examples for which Disloc respectively HP
provide pose estimates within 30m whereas the other method is less accurate. HP uses quantized
decriptors for matching. As a result, it has problems handling scenes with dominantly repetitive
and similar structural elements. In contrast, Disloc (SR-SfM) uses the full feature descriptors
and thus handles these scenes better.

However, Disloc (SR-SfM) has problems with accurately localizing images taken rather far
away from the scene. This problem is compounded if the scenes are weakly textured. In this
scenario, the local 3D models build from a few PCI images via SfM are less precise than the
global model build used by HP. This reflects in the localization accuracy of Disloc (SR-SfM). If
the viewpoint change between the retrieved PCI images and the query image is too large, the

local SfM reconstruction process often fails to register the query image. In these cases, Disloc

(SR-SfM) defaults to the pose provided by the (SR) strategy.

3.6 Summary

In this chapter, we have presented the first comparison of 2D image-based and 3D structure-
based localization methods regarding their localization accuracy at a large scale. To facilitate
this comparison, we have created reference poses for some query images from the San Francisco
dataset [17]. As shown in Sec. 3.2, the camera poses in our dataset (reference poses) were
computed using relative relationships between query and database images, i.e., via SfM for local
areas around the query, and verified using manually annotated correspondences. Therefore, the
reference poses can provide reliable 6DoF camera properties which can be used for evaluating
visual localization results regarding the general indices to both 2D and 3D methods, i.e., errors
of estimated camera poses. To the best of our knowledge, ours is the first dataset that can be
used to measure the pose estimation accuracy on a large, complex dataset. Our results show
that our dataset closes a crucial gap in the literature as this case is not covered by previous
benchmarks and evaluation protocols. For reproducing our results and for further researches
in this area, we make our reference poses together with all data and evaluation scripts publicly
available®.

Through the benchmarking on this new dataset (c.f. Fig. 3.3 (¢), Fig. 3.4 (¢), and Fig. 3.5),

we observed a principal about the performances of existing 2D and 3D methods in an urban

Shttp://www.ok.sc.e.titech.ac.jp/~torii/project/vlocalization/
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Figure 3.7: Examples of query images localized within 5m of the reference poses
by a 2D image-based method (Disloc (SR-SfM)) (left) but not by a 3D structure-
based method (Hyperpoints) (middle). Colored dots are the reference 2D points used for

computing the reference pose (blue) and the 3D points, associated to the reference 2D points,

reprojected at the pose estimated by each method (red). The numbers below the images show

the positional and orientational errors. The right column shows manually selected database

PCI images that are most relevant to the queries.
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Disloc (SR-SfM) | Hyperpoints (3D) | Most relevant PCI

59.16m, 10.57° 2.19m, 0.75°

11.36m, 21.53° 1.19m, 0.71°

1.64m, 8.75°

6.59m, 12.98° 3.84m, 5.28°

Figure 3.8: Examples of query images localized within 5m of the reference position
by a 3D structure-based method (Hyperpoints) (middle) but not by a 2D image-
based method (Disloc (SR-SfM)) (left). See caption of Fig. 3.7 for details.
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Disloc (SR-SfM) | Hyperpoints (3D) | Most relevant PCI

AT

6.27m, 23.28° (*) | 70.253m, 32.15°

14.80m, 15.04° (*) | 694.70m, 177.67°

Figure 3.9: Examples of query images localized within 30m of the reference po-
sition by a 2D image-based method (Disloc (SR-SfM)) (left) but not by a 3D
structure-based method (Hyperpoints) (middle). The right column shows manually se-
lected database PCI images that are most relevant to queries. ”(*)” besides the results for
Disloc (SR-SfM) indicate that local SfM fails so the results are the same as Disloc (SR). See
also the caption of Fig. 3.7.
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Disloc (SR-SfM) ‘ Hyperpoints (3D) ‘ Most relevant PCI

30.87m, 6.83° (*) 13.02m, 4.16°

307.66m, 8.20° 8.76m, 12.39°

6

*)

4444444444

947.34m, 132.97° (*)| 12.07m, 34.85°

Figure 3.10: Examples of query images localized within 30m of the reference position
by a 3D structure-based method (Hyperpoints) (middle) but not by a 2D image-
based method (Disloc (SR-SfM)) (left). See the caption of Fig. 3.9 for details.
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large-scale environment; While 3D structure-based methods give good recall at severe thresh-
olds, i.e., provide accurate camera poses for queries, 2D image-based methods show better
recall at coarser thresholds, i.e., 2D methods can provide precise location robustly to image
conditions. This is partly because of most 3D structure-based methods (assuming 3D database
constructed via SfM) require a set of 2D-3D correspondences for the query, which is sometimes
violated in urban environments, e.g., repetitive structures shown in Fig. 3.7 and Fig. 3.9 can
cause the lack of local features in images, which results in inaccurate camera pose estimates due
to the sparity of 3D database or inaccurate 2D-3D correspondences. To make matters worse,
the reference environments depicted in the database can be sometimes changed in query times,
e.g., texture changes of buildings, occlusions caused by moving objects such as pedestrians and
driving cars. Updating 3D database for these conditions requires high efforts or sometimes just
infeasible. On the other hand, 2D image-based methods based on image retrieval (in BoW or
VLAD spirits) also use local features in images but rely on more robust image representations
(as the histogram of local features or the aggregated feature vector) rather than explicit corre-
spondences. This property can contribute more robust localization performance (c.f. Fig. 3.3,
Fig. 3.7, and Fig. 3.9) in terms of the place recognition task, i.e., regarding the recall at rough
thresholds. Also, 2D image database is generally much easier to maintain / updating against
the scene changes, compared to 3D database. However, they only provide an approximation of
query location.

The fact led us to design a visual localization pipeline combining both 2D and 3D approaches
to take the advantages of both worlds. Our pipeline (discussed in Sec. 3.4) estimates the
query camera pose in coarse-to-fine manner; we estimates the coarse location of the queries at
first, and then computes fine camera pose using 3D properties in relatively small areas around
the location. Inspired by the successes of the local feature matching-based reranking (SR in
Fig. 3.3 (a) and (b)) employed as the post-processing for image retrieval, we proposed a camera
pose estimation technique for image-based methods purely based on image correspondences.
For a image set consisted of a query and set of retrieved database images, we build a small 3D
model via SfM pipeline that serves a camera pose estimation using local feature matching and
3D points triangulation. By registering the local 3D model to real-scale map coordinate system
using geotags of database images, we got a query location in the 6DoF camera pose format.
We can further reduce the additional computational cost for 3D reconstruction and make the
3D model stable assuming the camera pose of the database images are also available.

Several validations in Sec. 3.5 (Fig. 3.3, Fig. 3.4, Fig. 3.5, Tab. 3.2, Tab. 3.3, and Tab. 3.5)
demonstrate that our proposed pipeline (SR-SfM) achieves the state-of-the-art localization
performance in middle- to large-scale urban environments, at the price of longer run-times
during the localization process. Furthermore, an alternative of our pipeline that initializes

local 3D model via known camera poses of database images (SR-SfM init.) gives the best
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performance in total, while preserving the additional computational timings in marginal ranges
(c.f Tab. 3.2, Tab. 3.4, and Tab. 3.5).

Altogether, we conclude this chapter by answering the question in Sec. 3.1; A large 3D
model depicting the whole scene is actually not necessarily needed to estimate an accurate
6DoF pose of a query. Our pipeline exploiting image retrieval and 3D reconstruction for local
areas around the query can achieve comparable (or higher) performance compared to existing
methods assuming the large 3D database, while preserving low-cost 2D image database. Still,
there is room for improvement in terms of pose accuracy (c.f. Fig. 3.8 and Fig. 3.10). This
can potentially be addressed by applying robust camera pose estimation using reliable image
information, e.g., point-line correspondences [143], or employing recent deep learning-based

pose estimation techniques [61, 64, 144] for our local 3D reconstruction stage.



Chapter 4

Visual localization in a large-scale

indoor environment

4.1 Indoor visual localization scenarios with dense 3D

database

Autonomous navigation inside buildings is a key ability of intelligent robotic systems [1, 145].
Successful navigation requires both to localize a robot and to determine a path to its goal. One
approach for solving the localization problem is to build a 3D map of the building and then
use a camera! to estimate the current position and orientation of the robot (Fig. 4.1). Imagine
also the benefit of an intelligent indoor navigation system that helps you find your way, for
example, at Chicago airport, Tokyo Metropolitan station, or a convention center. Besides
intelligent systems, the visual localization problem is also highly relevant for any type of Mixed
Reality applications, including Augmented Reality [2,146,147].

Due to the availability of datasets, e.g., obtained from Flickr [50] or captured from au-
tonomous vehicles [17,148], large-scale localization in urban environments has been an active
field of research [2,17,27,37-40,46,48-53, 55,65, 88,90, 126, 133,136, 139]. In contrast, indoor
localization [1,56,57,59,70, 71,106, 149] has received less attention in the last years. At the

same time, indoor localization is, in many ways, a harder problem than urban localization:

1. Due to the short distance to the scene, even small changes in viewpoint lead to large
changes in image appearance. For the same reason, occluders, such as movable furniture,
people, and pillars, often have a stronger impact compared to urban scenes. Thus, indoor

localization approaches have to handle significantly larger changes in appearance between

'While RGBD sensors could also be used indoors, they are often too energy-consuming for mobile scenarios
or have only a short-range to scan close-by objects (faces). Thus, purely RGB-based localization approaches

are also relevant in indoor scenes. Obviously, indoor scenes are GPS-denied environments.

75
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Query image 6DoF camera pose

Large-scale
indoor 3D maps__, .

B ol
Database of RGBD images

Figure 4.1: Large-scale indoor visual localization. Given a database of geometrically-
registered RGBD images, we predict the 6DoF camera pose of a query RGB image by retrieving
candidate database images, estimating candidate camera poses, and selecting the best matching
camera pose. To address inherent difficulties in indoor visual localization, we introduce the

“InLoc” approach that performs a sequence of progressively stricter verification steps based
on dense information.
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a query and reference images.

2. Large parts of indoor scenes are textureless, e.g., walls, ceilings, floors, and windows,
where sparse local features hardly exist. As a result, local feature-based localization
methods often do not provide sufficient information for camera pose estimation [52] in

indoor scenes.

3. To make matters worse, buildings are often highly symmetric with many repeti-
tive elements, both on large (similar corridors, rooms, etc.) and small (similar chairs,
tables, doors, etc.) scale. While structural ambiguities also cause problems in urban

environments, they often only occur in larger scenes [27,37,39].

4. The appearance of indoor scenes changes considerably over the course of a day due to
the complex illumination conditions (indirect light through windows and active

illumination from lamps).

5. Indoor scene structure is often highly dynamic over time as furniture and personal
effects are moved through the environment. In contrast, the overall appearance of building

facades does not change too much over time.

On the other hand, indoor environments often be represented by rich 3D point clouds com-
posed of a set of RGBD images [19, 56, 57,67, 68,105, 150]. Obtained 3D database provides
further more accurate and dense 3D structures of the scene, i.e., pixel-wise depth values with
centimeters-level accuracy, compared to the 3D database obtained via SfM [14-16, 18,50], thus
can potentially lead more accurate camera pose estimates for visual localization problem. Fur-
thermore, the 3D database also includes additional properties in other modalities such as surface
normal [68,69] and semantic segmentation [68,69,105] for each 3D point, while predicting those
modalities from a given image is a growing research area related to recent deep learning tech-
niques [151-154]. Such additional information can also contribute to each component in visual
localization, such as feature detection and description [41,97], feature association [12,155-160],
image retrieval [41,97,161-164], and pose estimation [156,160,162,165]. The benefits of using
different modalities for visual localization in indoor environments are also illustrated in Fig. 4.2.
However, exploiting dense 3D structures (and additional information in other modalities) to
visual localization is still a non-trivial task, since existing methods relying on the 3D model
mostly assume a rather sparse 3D point clouds obtained via SfM and often use local features

extracted from images again sparsely.

Scenario. In this chapter, we propose a novel visual localization pipeline designed for a single
image input captured in large-scale indoor environments. Fig. 4.1 illustrates our scenario of
visual localization in an indoor environment. In contrast to the previous chapter that assumes

image database in outdoor environments, we here assume the target scene is pre-captured as the
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) (k) ()

Figure 4.2: Using further modalities for indoor visual localization. Given a set of

camera pose estimates for a query image (a, g), we seek to identify the most accurate estimate.
(b, h) Due to severe occlusion and weak textures, a state-of-the-art method [22] fails to identify
the correct camera pose. To overcome those difficulties, we use several modalities along with
visual appearance: (top) surface normals and (bottom) semantics. (¢, i) Our approach verifies

the estimated pose by comparing the semantics and surface normals extracted from the query
(d, j) and database (f, 1).
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3D database composed of a set of RGBD images registered to a known floor map?. While large-
scale indoor scenes contain diverse circumstances with several inherent difficulties, applications
for indoor situations such as AR and robot navigation often require much more accurate pose
information than outdoor situations, i.e., within few centimeters and few degrees. Therefore,
we firstly aim to construct a general localization pipeline that provides accurate camera pose
exploiting the rich database properties. Secondly, we investigate how the pipeline can be
extended to address several severe conditions.

Motivated by the successes in large-scale outdoor environments (Chap. 3), we again employ
progressive localization steps that first recognizes the rough location of the query and then
estimates fine camera pose. In addition, we take advantages of “dense” properties of the
database by using densely extracted features in each step of our localization pipeline.
Proposed pipeline named InLoc starts with an image retrieval step, using a compact image
representation [40] that scales to large scenes. Given a shortlist of potentially relevant database
images, we apply two progressively more discriminative geometric verification steps: (i) We
use dense matching of CNN descriptors that capture spatial configurations of higher-level
structures (rather than individual sparse local features) to obtain the correspondences required
for camera pose estimation. (ii) We then apply a novel pose verification step based on
virtual view synthesis [106] that can accurately verify whether the view from estimated

pose is consistent with the query image by dense pixel-level matching.

Contributions. The key novelty of our approach lies in carefully introducing dense feature
extraction and matching in a sequence of progressively stricter verification steps. The proposed
method significantly outperforms previous state-of-the-art methods in a large-scale indoor envi-
ronment, showing an absolute improvement of 17-20% in the percent of correctly localized
queries within a 0.25-0.5m error. The most effective part in InLoc pipeline is the novel pose
verification stage. Based on virtual view synthesis using a highly accurate and dense 3D point
cloud around the relevant location of a query (local 3D point cloud), the scheme achieves ab-
solute 21% performance gains compared to previous stage. We also investigate the impact of
other modalities employed in the pose verification step, which give several new insights of visual
localization for indoor scenarios, and point potential future works.

Another contribution in this chapter is constructing a dataset for visual localization in
a large-scale indoor environment. Historically, the datasets used to evaluate indoor visual
localization were restricted to small, often room-scale, scenes [56,57,106]. Driven by the in-
terest in semantic scene understanding [67, 68, 105] and enabled by scalable reconstruction

techniques [166-168], large-scale indoor datasets covering multiple rooms or even whole build-

2Please note that 3D map for indoor environments are relatively easy to capture and update compared to
that of outdoor scenes, thanks to the recent availability of new sensor devices such as ToF sensors and laser

range scanners.
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Figure 4.3: Example images from our InLoc dataset. (Top) Database images. (Bottom)
Query images. The selected images show the challenges encountered in indoor environments:
even small changes in viewpoint lead to large differences in appearance; large textureless surfaces
(e.g.walls); self-repetitive structures (e.g.corridors); significant variation throughout the day due

to different illumination sources (e.g., active vs. indirect illumination).

ings are becoming available [19,57,67-70, 105, 150]. However, most of these datasets focus on
reconstruction [19,150] and semantic scene understanding [67-69,105], and are not suitable for
localization. In contrast to those existing indoor datasets, our new dataset (named as InLoc
dataset) has two important properties. First, the dataset is large-scale, capturing two univer-
sity buildings which consist of multiple rooms and floors. Second, the query images are acquired
using a smartphone several months after the date of capture of the reference 3D model, and
at a different time of the day. As a result, the query images and the reference 3D model often
contain large changes in scene appearance due to the different layout of furniture, people, and
different illumination, representing a realistic and challenging indoor localization scenario. We
manually annotate 6DoF reference pose for each of queries as in Sec. 3.2, which enables us to
validate the performance of localization in terms of camera pose accuracy.

This chapter is organized as follows; In Sec. 4.2, we provide details of our novel indoor dataset
for visual localization; Sec. 4.3 describes each step of our novel InLoc localization pipeline that
is designed for large-scale indoor environments; In addition, we try several modifications for
our pose verification step exploiting additional information, geometric properties and semantics,
namely (Sec. 4.4). Sec. 4.5 demonstrates the performance of proposed pipeline in our dataset.
Each step of our pipeline designed by “dense” spirits gives progressive performance gains and
outperforms existing methods at the end. We also tested variants of our pose verification step
using other modalities, which gives new insights; We add summaries and conclude this chapter
in Sec. 4.6.
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Table 4.1: Statistics of the InLoc dataset.
‘ Number Image size [pixel] FoV [degree]

Query 356 4,032x 3,024 65.57
Database | 9,972 1,600% 1,200 60

4.2 The InLoc dataset for indoor visual localization

This section provides details of our InLoc dataset for evaluating visual localization performance.
Sec. 4.2.1 summarizes statistics and typical features of the images in InLoc dataset. We then

introduce a detailed procedure of generating reference poses for query images in Sec. 4.2.2.

4.2.1 Overview

Our dataset is composed of a database of RGBD images [19] geometrically registered to floor
maps, augmented with a separate set of RGB query images taken by hand-held devices to
make it suitable for the task of indoor localization (Fig. 4.3). The provided query images
are annotated with manually verified groundtruth 6DoF camera poses (reference poses) in the
global coordinate system of the 3D map.

Database. The base indoor RGBD dataset [19] consists of 277 RGBD panoramic images
obtained from scanning two buildings at the Washington University in St. Louis with a Faro
3D scanner. Each RGBD panorama has about 40M 3D points in color. The base images
are divided into five scenes: DUC1, DUC2, CSE3, CSE4, and CSE5, representing five floors
of the mentioned buildings, and are geometrically registered to a known floor plan [19]. The
scenes are scanned sparsely on purpose, to cover a larger area with a small number of scans to
reduce the required manual work, as well as due to the long operating times of the high-end
scanner used. The area per scan varies between 23.5 and 185.8 m?2. This inherently leads to
significant view changes between query and database images when compared with other existing
datasets [57,70,106]°.

For creating an image database suitable for indoor visual localization evaluation, a set of
perspective images is generated by following the best practices from outdoor visual localiza-
tion [17,20,133]. We obtain 36 perspective RGBD images from each panorama by extracting
standard perspective views (60° FoV) with a sampling stride of 30° in yaw and 4+30° in pitch

directions, resulting in about 10K perspective images in total (Tab. 4.1).

Query images. We captured 356 photos using a smart-phone camera (iPhone 7), distributed
only across two floors, DUC1 and DUC2. The other three floors in the database are not

3For example, the dataset from [57] covers only a single floor, and the area covered per database image is

less than 45 m?2.
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represented in the query images, and play the role of confusers at search time, contributing
to the building-scale localization scenario. Note that these query photos are taken at different
times of the day, to capture the variety of occluders and layouts (e.g., people, furniture) as well
as illumination changes. Our dataset contains significant challenges, such as repetitive patterns
(stairs, pillars), frequently appearing building structures (doors, windows), furniture changing
position, people moving across the scene, and less textured and highly symmetric areas (walls,

floors, corridors, classrooms, open spaces).

4.2.2 Reference pose generation

For all query photos, we estimate 6DoF reference camera poses with respect to the 3D map.
Inspired by reference pose creation in an outdoor scene (discussed in Sec. 3.2), we manually
select relevant 3D scan for each query at first. Since accurate 3D point cloud (comes from
RGBD panoramic scan) is available, we compute 6DoF camera pose by obtaining 2D-3D cor-
respondences (by feature matching and manual annotations) and solving PnP problem.

Each query camera reference pose is computed as follows:

1. Selection of the visually most similar database images. For each query, we manually
select one panorama location which is visually most similar to the query image using the

perspective images generated from the panorama.

2. Automatic matching of query images to selected database images. We match the query
and perspective images by using affine covariant features [33] and nearest-neighbor search
followed by Lowe’s ratio test [32].

3. Computing the query camera pose and visually verifying the reprojection. All the panora-
mas (and perspective images) are already registered to the floor plan and have pixel-
wise depth information. Therefore, we compute the query pose via Perspective-3-Points
(P3P)-RANSAC [28], followed by nonlinear least-square optimization minimizing the re-
projection error [138], using correspondences between query image points and scene 3D
points obtained by feature matching. We evaluate the obtained poses visually by inspect-
ing the reprojection of edges detected in the corresponding RGB panorama into the query

image (see examples in Fig. 4.4).

4. Manual matching of difficult queries to selected database images. Pose estimation from
automatic matches often gives inaccurate poses for difficult queries which are, e.g., far
from any database image. Hence, for queries with significant misalignment in reprojected
edges, we manually annotate 5 to 20 correspondences between image pixels and 3D points

and apply step (iii) on the manual matches.
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Figure 4.4: Examples of query images and verified reference poses. FEach column
show a query image on top and the same image with database edges projected onto it in the

bottom.

5. Quantitative and visual inspection. For all estimated poses, we measure the median
reprojection error at the Sobel edges detected on both query and database images. For
each 3D point on an edge pixel in a database image, we measure the error by projecting
edges into the query image. The reprojection error is defined as the distance between the
database edges and the nearest edge pixel detected in the query image. After removing
correspondences with gross errors (with distance over 20 pixels) due to, e.g., occlusions,
we manually inspect the reprojected edges in the query image that has under 5 pixels
median reprojection error. Then we finally accept 329 reference poses out of the 356

query images.

Fig. 4.5 shows the accepted queries and database images in our InLoc dataset. The query
images are distributed across two floors (DUC1 and DUC2) that cover an area of & 100,000 f#*

(9,290 m?) each [19], and are taken from significantly different poses than the database scans.

Merging the two floors. The two floors in the InLoc dataset, namely DUC1 and DUC2,
share a common space in the form of a large room spanning two floors (cf. Fig. 4.5). Thus,
a localization method that estimates the 6DoF pose of a query in this area can theoretically
obtain an accurate query pose via a database image from either floor. However, the original
dataset [19] provides each floor in a separate 3D model. We thus compute the alignment
between DUC1 and DUC2 to obtain a single consistent 3D model for both floors, using the
scanned 3D points.

For the 45 query images taken in the shared space, we first compute two reference poses

registered in each of the two floors, DUC1 and DUC2. In other words, we get scanned 3D points
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(b) DUC2 (second floor)

Figure 4.5: Query reference positions in the InLoc dataset. The 329 reference poses
of query images (blue dots) are plotted on the 3D maps (grey dots) that are generated by

panoramic 3D scans at 277 distinct positions (red circles).

with respect to the query camera coordinate system from both models. By projecting 3D points
into the query image, we obtain 3D-3D correspondences between the DUC1 and DUC2 models.
Using these correspondences, we compute the 7DoF similarity transform between DUC1 and
DUC2 via LO-RANSAC [30,169]. Registration errors of the merged 3D points are comparably
small (4.8 cm on average), while the average error for scans on the same floor are 4.0 cm on
average. Finally, we re-compute the reference poses of the queries in the common space using
all the merged 3D points.
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4.3 InLoc: indoor visual localization with dense match-

ing and view synthesis

4.3.1 Concept

We propose a new method for large-scale indoor visual localization. We address the three main

challenges of indoor environments:

(1) Lack of sparse local features. Indoor environments are full of large textureless areas,
where sparse feature extraction methods detect very few features. As a result, local features
are clustered in small, well-textured parts in the image, leading to potentially unstable configu-
rations for pose estimation. To overcome this problem, we use multi-scale dense CNN features
for both image description and feature matching. Our features are generic enough to be pre-
trained beforehand on (outdoor) scenes, avoiding costly re-training, e.g., as in [55,59,93], of

the localization pipeline for each particular environment.

(2) Large image content changes. Indoor environments are cluttered with movable objects
and contain complex 3D structures, which cause severe occlusions when viewed from a close
distance. The most similar images obtained by retrieval may therefore be visually very different
from a query image. We handle this problem by exploiting dense feature matching to collect
as much positive evidence as possible. We employ image descriptors extracted from a CNN
architecture that can match higher-level structures of the scene rather than relying on matching
individual local features. In detail, our pose estimation step performs coarse-to-fine dense

feature matching, followed by geometric verification and estimation of the camera pose using

P3P-RANSAC.

(3) Self-similarity. Indoor environments are often very self-similar, due to highly symmetric
building natures and standardized objects. Existing matching strategies count the positive
evidence, i.e., how much of the image (or how many inliers) have been matched, to decide
whether two images match. This is, however, problematic as large textureless areas can be
matched well, hence providing strong (incorrect) positive evidence. Instead, we propose to count
also the negative evidence, i.e., what portion of the image does not match, to decide whether
two views are taken from the same location. We perform explicit pose estimate verification
based on view synthesis, which compares the query image with a virtual view of the 3D model
rendered from the estimated camera pose, thus taking both matching and non-matching pixels
across the entire query image into account. As shown by our experiments, this approach is
orthogonal to the choice of local descriptors: The proposed verification by view synthesis is
consistently showing a significant improvement regardless of the choice of features used for
estimating the pose.

The pipeline of InLoc has the following three steps. Given a query image, (1) we obtain a set
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of candidate images by finding the N best matching images from the reference image database
registered to the map. (2) For these N retrieved candidate images, we compute the query poses
using the associated 3D information that is stored together with the database images. (3)
Finally, we re-rank the computed camera poses based on verification by view synthesis. The

three steps are detailed next.

4.3.2 Candidate pose retrieval

As demonstrated by existing work [20, 40,41, 136], aggregating feature descriptors computed
densely on a regular grid mitigates issues such as a lack of repeatability of local features de-
tected on textureless scenes, large-illumination changes, and a lack of discriminability of image
description, dominated by features from repetitive structures (burstiness). As already men-
tioned in Sec. 4.1, these problems are also occurring in large-scale indoor localization, which
motivates our choice of using an image descriptor based on dense feature aggregation. Both
query and database images are described by NetVLAD [40] (but other variants could also be
used), normalized 1.2 distances of the descriptors are computed, and the poses of the N best
matching images from the database are chosen as candidate poses. In Sec. 4.5, we compare our
approach with the state-of-the-art image representation using sparse feature and show benefits

of our approach for indoor localization.

4.3.3 Pose estimation using dense matching

A severe problem in indoor localization is that standard geometric verification based on local
feature detection [39,42] does not work on textureless or self-repetitive scenes. A possible ap-
proach to lessen this problem is to perform dense matching, e.g., matching densely extracted
features [170,171] or computing optical flow [172,173], followed by RANSAC-based verifica-
tion. Motivated by the improvements in candidate pose retrieval with dense feature aggregation
(Sec. 4.3.2), we use features densely extracted on a regular grid for verifying and re-ranking the
candidate images, as well as pose estimation (DensePE). Instead of adjusting the parameters
of hand-crafted features [170,172] (patch sizes, strides, scales) to match across images with
significant viewpoint changes, we use an image representation extracted by a CNN architecture
as densely extracted features. Compared to low-level hand-crafted features, CNN features ex-
tracted from deeper layers have a larger receptive field and cover higher-level information [174].
Using this type of information should have the benefit of being able to better handle large tex-
tureless image parts. However, the resulting features are also less well-localized in the image,
due to the use of max-pooling layers in the CNN, which limits the camera pose accuracy that
can be achieved.

To obtain spatially well-localized matches between images at a reasonable computational
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Figure 4.6: Dense CNN matching. (a) In our coarse-to-fine (c2f) dense matching strategy
we first perform exhaustive matching on a coarser layer (conv4), then search for correspondences
in a lower layer (conv3), restricting the search area only to a local region around the coarse
match. (b) Next, we use the keypoint relocalization scheme from [176] to refine the location of
the matched features (shown by green squares) by relocalizing them in the earlier layers using

the highest activation in their corresponding receptive fields (orange squares).

complexity, we use a hierarchical approach based on features extracted from multiple layers of a
VGG-16 [175] network. Fig. 4.6 illustrates our coarse-to-fine (c2f) dense matching strategy. We
first find initial correspondences using features from the conv4 layer by searching for mutual
nearest neighbors between the images. Then we refine the correspondences using the conv3
layer, which has a higher spatial resolution compared to the conv4 layer. In particular, given
a match between two conv4 features, we again perform mutual nearest neighbor matching for
conv3 features. However, we restrict the search to the receptive fields of the matching conv4
features.

To further increase the positional accuracy of the features, we use a keypoint relocalization
scheme [176] that hierarchically traces the feature receptive fields for each correspondence. It
transfers a keypoint position from the current layer (e.g., conv3 layer) to the lower layers (e.g.,
conv2 layer) by taking the position with the highest activation in the receptive field, i.e., the

feature that has the largest L2-norm, as the new position. This continues up to convl_2 layer,
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which has the same resolution as the input image. Finally, we obtain a set of geometrically
consistent correspondences by fitting homographies via RANSAC [28].

As images in the database have depth values, and hence associated 3D points, the query
camera pose can be estimated by finding pixel-to-pixel correspondences between the query and
the matching database image followed by P3P-RANSAC [28], assuming a known focal length.

A detailed experimental evaluation (Sec. 4.5.2) and several qualitative examples in Sec. 4.5.7
demonstrate that our dense CNN matching obtains better matches and achieves better pose
estimation in indoor environments when compared to matching standard local features, even
for weakly textured areas. Notice that dense feature extraction and description requires no
additional computation at query time as the intermediate convolutional layers are already
computed when extracting the NetVLAD descriptor. As will also be demonstrated in Sec. 4.5.6,
memory requirements of feature matching can be addressed by binarizing the convolutional

features without loss in matching performance.

4.3.4 Pose verification with view synthesis

Retrieval via NetVLAD and subsequent pose estimation leads a set of candidate poses for the
query image. Next, we need to select one of the estimated poses as the pose of the query image.
In order to do so, we propose to collect both positive and negative evidence* to determine what
in the observation (input image) is and is not matched to a known scene structure. This is
achieved by harnessing the power of the high-resolution RGBD scans database that provides a
dense and accurate observation of the 3D structure around the candidate pose. We use those
structures to explicitly render a virtual view that shows how the scene looks like from the
estimated query pose. It enables us to count which regions are and are not consistent between
the query image and the underlying 3D structure, in a pixel-wise manner. Then we aggregate
the similarities from the entire image that provides the certainty of the estimated camera pose,
considering both positive and negative evidence.

Using colored 3D points associated with each retrieved candidate pose, i.e., 3D points
captured by an RGBD panoramic scan from which candidate database image originated, we
generate the synthesized view by rendering 3D points with respect to the 6DoF query pose
while taking care of self-occlusions. To compute the similarity of each region in the query to
the 3D structure, we again use densely extracted features from the original and the synthesized
query image. More precisely, we consider two approaches: The first one (DensePV) uses
hand-crafted patch descriptors [32,170] as the similarity metric. Given an original query image
Q and synthetic one Qp associating the candidate D, we compute patch descriptors d(z,y)
for each bin (z,y) defined by a regular grid. To extract the features from synthesized view, we

filled the blank pixels induced by missing 3D points by linear inter(/extra)-polation. Note that

4The impact of negative evidence in feature aggregation is demonstrated in [177].
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this inpainting is done only for avoiding missing descriptors and we only evaluate the features
on none-blank pixels. The consistency of each region is measured as the descriptor distance

between descriptors extracted from the same region in both Q and Op.

Sp(z,y,D) = ||d(z,y|Q) — d(z,y|Qp)[ (4.1)

We then compute the final score of pose candidate DensePV(Q, Qp) as the median of the

region similarities and choose the candidate D with the highest score as the query pose.
Dpensepv = argmax(DensePV(Q, Qp)) = argmax(median(Sp(z,y, D))) (4.2)

D D €,y

The second approach (DenseCNINPV) selects the candidate in the same manner as in
Eq. (4.2) but re-uses the dense CNN features deny from the image retrieval and the matching
stages for pose estimation. We use the conv3 layer of VGG-16, which is also used in the pose
estimation step. To compute a pixel-wise consistency map, we additionally extract CNN fea-
tures from the synthesized image. The similarity Spc is then computed as the cosine similarity

of each corresponding feature.

SDC(xay7D) - dCNN(xvy|Q)TdCNN<x7y|Q'D)7 (43)
f)DenseCNNpV = argmax(DenseCNNPV(Q, Qp)) = argmax(median(Spc(z,y,D))) (4.4)
D D z,y

An ablation study in Sec. 4.5.2 shows that this newly proposed setting outperforms using
hand-crafted features (DensePV).

4.4 Similarity metrics for pose verification using multi-

ple modalities

Whereas DensePV and DenseCNNPV in Sec. 4.3.4 mainly rely on pure appearances of images,
we are also interested in analyzing the benefits of using more information for our camera
pose verification step. Such information extracted from input image can potentially maintain
invariance to some changes in the images, e.g., illumination and texture changes, and provide
more guides to determine if the candidate is correct or not even in some severe conditions in
indoor environments, e.g., weakly textured scenes, occlusions caused by movable objects and
people.

In this section, we propose multiple approaches for pose verification, i.e., replacing DensePV
in Eq. (4.2) by other metrics, based on the combination of appearance, scene geometry, and se-
mantic information. Sec. 4.4.1 discusses how additional geometric information can be integrated
into InLoc’s pose verification stage. Similarly, Sec. 4.4.2 discusses how semantic information
can be used for pose verification. Sec. 4.4.3 introduces an alternative way to integrate high-level

scenes structures using a trainable CNN architecture.
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4.4.1 Integrating scene structures

Eq. (4.2) measures the similarity in appearance between the original query image and its syn-
thesized version. The original formulation in the InLoc pipeline has two drawbacks: 1) It
only considers the 3D geometry seen from a single scan location corresponding to the retrieved
database image D. As the pose of the query image can substantially differ from the pose of
the database image, this can lead to large regions in the synthesized image into which no 3D
points are projected (c.f. Fig. 4.2 (i)). 2) Indoor scenes are often dominated by large untextured
parts such as white walls. The image appearance of these regions remains constant even under
strong viewpoint changes. As such, considering only image appearance in these regions does
not provide sufficient information for pose selection. In the following, we propose strategies to

address these problems.

Merging geometry through scan-graphs. To avoid large regions of missing pixels in the
synthesized images, we use 3D data from multiple database RGB-D scans when re-rendering
the query. We construct an image-scan-graph (c.f. Fig. 4.7) that describes which parts of the
scene are related to each database image and are thus used for generating the synthetic query
image. Given a retrieved database image D, the graph enables us to re-render the query view
using more 3D points than those visible in the panoramic RGB-D scan associated with D°. To
construct the graph, we first select the ten spatially closest RGB-D panoramic scans for each
database image. We estimate the visibility of each 3D scan in the database image by projecting
the 3D points into it while handling occlusions via depth and normal information. We establish
a graph edge between the database image and a scan if more than 10% of the database image
pixels share the 3D points originating from the scan.

Given a query image Q, the retrieved database image D, and the estimated camera pose
obtained using DensePE, we can leverage the constructed scan-graph to render multiple syn-
thetic query images, one for each scan connected to D in the graph. These views are then
combined by taking depth and normal directions into account to handle occlusions.

Our approach assumes that the scans are dense and rather complete, and that different scans
are registered accurately w.r.t. each other. These assumptions do not always hold in practice.
Yet, our experiments show that using the scan-graph improves localization performance by
reducing the number of invalid pixels in synthesized views compared to using individual scans
(c.f. Sec. 4.5.8).

Measuring surface normal consistency. The problem of a lack of information in weakly
textured regions can also be addressed by considering other complementary image modalities,
such as surface normals (c.f. Fig. 4.2 (a-f)). When rendering the synthetic view, we can make

use of the depth information in the RGB-D images to create a normal map with respect to a

5The InLoc dataset used in our experiments consists of multiple panoramic RGB-D scans, subdivided into

multiple database images each.
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Figure 4.7: Image-scan graph for the InLoc dataset. For each perspective database
image (e) which is cut out from the RGB-D panoramic scan (b), we compute the overlap with
each adjacent scan (a, ¢) by projecting their 3D points into the perspective view (d, f). Red
dots show where RGB-D panoramic scans (and corresponding perspective database images) are

located. Blue lines indicate edges between panoramic scans and perspective database images,

established based on visual overlap.

given pose. For each 3D point P that projects into a 2D point p in image space, the normal
vector is computed by fitting a plane in a local 3D neighbourhood. This 3D neighborhood is
defined as the set of 3D points that project within a 5 x 5 pixel patch around p. This results in
a normal map Np as seen from the pose candidate D, where each entry Np(z,y) corresponds to
a unit-length surface normal direction. On the query image side, we use a neural network [151]
to predict a surface normal map No.

We define two verification approaches using surface normal consistency. Both are based on

the cosine similarity Sy between normals estimated at pixel position (z,y):
Sn(z,y, D) = No(a,y) No(z,y). (4.5)

The first strategy, termed dense normal verification (DenseNV), mirrors DensePV but con-
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siders the normal similarities Sy instead of the descriptor similarities Sp.

Dpensenv = argmax(DenseNV (Q, Qp)) = argmax(median(Sy(z, y, D))). (4.6)
D D

x’y

The surface normal similarity maps Sy can contain richer information than the descriptor
similarity maps Sp in the case of untextured regions. Yet, the contrary will be the case for
highly textured regions. Therefore, we propose a second strategy (DensePNV'), which employs

surface normal consistency as a weighting term for the descriptor similarity.

ﬁDensepNV = argmax(DensePNV(Q, Qp)) = argmax(median(w(z,y, D) - Sp(x,y,D))),
D D

x?y
(4.7)
where the weighting term w shifts and normalizes the normal similarities as
1 0,5 D
w(z,y, D) = 1120 5n(z,4, D)) (48)

2

Through w, the normal similarities act as an attention mechanism on the descriptor similarities,

focusing the attention on image regions where normals are consistent.

Implementation details. For the query images, for which no depth information is avail-
able, surface normals are estimated using [151]. The original implementation from [151] first
crops the input image into a square shape and rescales it to 256 x 256 pixels. However, the
cropping operation can decrease the field of view and thus remove potentially important infor-
mation [178]. To preserve the field of view, we modified the network configuration to predict
surface normals for rectangular images and scale each image such that its longer side is 256

pixels.

4.4.2 Integrating scene semantics

DensePV, DenseNV, and DensePNV implicitly assume that the scene is static, i.e., that the
synthesized query image should look identical to the real query photo. In practice, this as-
sumption is often violated as scenes change over time. For example, posters on walls or bulletin
boards might be changed or furniture might be moved around. Handling such changes requires

a higher-level understanding of the scene, which we model via semantic scene understanding.

Projective Semantic Consistency (PSC).A standard approach to using scene understand-
ing for pose verification is to measure semantic consistency [160,162,179]: These methods use
a semantically labeled 3D point cloud, e.g., obtained by projecting semantic labels extracted
from RGB images onto a point cloud, and a semantic segmentation of the query image. The
labeled 3D point cloud is projected into the query image via an estimated pose. Semantic
consistency is then computed by counting the number of matching labels between the query
and the synthetic image.
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Ignoring transient objects. PSC works well in outdoor scenes, where there are relatively
many classes and where points projecting into “empty” regions such as sky clearly indicate
incorrect / inaccurate pose estimates. Yet, we will show in Sec. 4.5.8 that it does not work well
in indoor scenes. This is due to the fact that there are no “empty” regions and that most pixels
belong to walls, floors, or ceilings. Instead of enforcing semantic consistency everywhere, we
use semantic information to determine where we expect geometric and appearance information
to be unreliable.

We group the semantic classes into five “superclasses”: people, transient, stable, fized, and
outdoor. The transient superclass includes easily-movable objects, e.g., chairs, books, or trash
cans. The stable superclass contains objects that are moved infrequently, e.g., tables, couches,
or wardrobes. The fized superclass contains objects that are unlikely to move, e.g., walls,
floors, and ceilings. When computing DensePV, DenseNV, or DensePNV scores, we ignore
pixels in the query image belonging to the people and transient superclasses. We refer to these
approaches as DensePV+S, DenseNV+S, and DensePNV+S.

Implementation details. Semantics are extracted using the CSAIL Semantic Segmenta-
tion/Scene Parsing approach [154] based on a Pyramid Scene Parsing Network [152], trained
on the ADE20K dataset [154] containing 150 classes. Details on the mapping of classes to

superclasses are provided in [178].

4.4.3 Trainable pose verification

Motivated by the recent success of trainable methods for several computer vision tasks, we
also present a trainable approach for pose verification (TrainPV), where we will train a pose
verification scoring function from examples of correct and incorrect poses. We first describe
the proposed CNN model, then how we obtained training data, and finally the loss used for
training.

Network architecture for pose verification. Our network design follows an approach simi-
lar to that of DenseCNNPV, where given the original Q and a synthetic query image Op we first
extract dense feature descriptors denn(z, y|Q) and d(z, y|Qp) using a pre-trained fully convo-
lutional network®. Then, a descriptor similarity score map is computed by the cosine similarity
as in Eq. (4.3). Instead taking a median as DenseCNNPV (Eq. (4.4)), we feed the similarity
score-map Spc(z,y, D) to a score regression CNN that estimates the agreement between Q and
Op, resulting in a scalar score. This score regression CNN is composed of several convolution
layers followed by ReLLU non-linearities and a final average pooling layer. The intuition is that

the successive convolution layers can identify coherent similarity (and dissimilarity) patterns

Whereas DenseCNNPV aim to re-use CNN features computed during image retrieval for efficiency, here we

use more recent ResNet-18 architecture [180] pre-trained on ImageNet [181].
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in the descriptor similarity score-map Sp. A final average pooling then aggregates the positive
and negative evidence over the score map to accept or reject the candidate pose. Note that our
architecture bears a resemblance to recent methods for image matching [182] and optical flow
estimation [183]. Contrary to these methods, which estimate global geometric transformations
or local displacement fields, our input images (Q, Qp) are already spatially aligned and we

seek to measure their agreement.

Training data. In order to train the proposed network, we need appropriate annotated train-
ing data. For this, we use additional video sequences (3,442 frames) recorded for the InLoc
benchmark (Sec. 4.2), which are separate from the actual test images. We created 6DoF camera
poses for the new images via manual annotation and Structure-from-Motion (SfM) [178]. For
each image, we generated pose candidates for training in two different ways.

The first approach randomly perturbs the ground-truth pose with 3D translations and
rotations up to £1m and +20deg. We use the perturbed random poses to generate synthetic
images by projecting the 3D point cloud from the InLoc database scan associated to that image.

The second approach uses the DensePE pipeline (Sec. 4.3.3) as a way of generating realistic
estimated poses for the additional images. For this, we run the images through the localization
pipeline, obtaining pose estimates and the corresponding database images. Then we run syn-
thetic image rendering on these poses and use these images for training. Note that, contrary to
the randomized approach where images are generated from the correct query-database image
pair, here the synthetic images might be generated from unrelated pairs. This is because the
localization pipeline might fail to generate “hard-negatives”, i.e., examples corresponding to
other similar-looking but different locations.

In both cases, for each real and synthetic image pair, both the ground-truth (Pgr) and
the estimated (P) poses are known. In order to generate a scalar score that can be used as
a training signal, we compute the mean 2D reprojection error r(Qp) of the 3D point cloud

N o .
{X;}.L, in image space:

r(Qp) = 5 " IP(X,, Por) — P(X,, )| (19)

where P is the 3D-2D projection function.

Training loss. A suitable loss is needed in order to train the above network for pose veri-
fication. Given a query image Q and a set of candidate synthesized query images {Qp, }Y |,
we would like to re-rank the candidates in the order given by the average reprojection errors
(c.f. Eq. (4.9)).

In order to do this, we assume that each synthetic image Op, has an associated discrete
probability p(Qp,) of corresponding to the best matching pose for the query image Q among

the N candidates. This probability should be inversely related to the reprojection error from
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Eq. (4.9), i.e., a pose with a high reprojection error has little probability of being the best
match. Then, the scores s; = s(Q, Qp,) produced by our trained pose verification CNN can be

used to model an estimate of this probability p(Qp,) as

exp(s;) '
iy exp(sy)

To define the ground-truth probability distribution p, we make use of the reprojection error
r; = r(Qp,) from Eq. (4.9):

p(Qp,) = (4.10)

p(9Qp,) = Zﬁxi;?zm) | (4.11)

where 7; = r;/ ming 7, is the relative reprojection error with respect to the minimum value
within the considered candidates. The soft-max function is used to obtain a normalized prob-
ability distribution’.

The training loss £ is defined as the cross-entropy between the ground-truth and estimated

distributions p and p:
N

L=-3 p(Qn)logh(Qp,) , (4.12)

i=1
where the sum is over the N candidate poses.

Note that because the ground-truth score distribution p is fixed, minimizing the cross-
entropy between p and p is equivalent to minimizing the Kullback-Leibler divergence between
these two distributions. Thus, the minimum is achieved when p matches p exactly. Also note
that, at the optimum, the ground-truth ranking between the candidate poses is respected, as
desired.

Implementation details. The feature extraction network is composed of a fully convolu-
tional ResNet-18 architecture (up to the conv4-2 layer) [180], pretrained on ImageNet [181].
Its weights are kept fixed during training as the large number of parameters would lead to
overfitting in our small-sized training sets. The score regression CNN is composed of four con-
volutional layers with 5 x 5 filters and a padding of 2, each followed by ReLLU non-linearities.
Each convolutional layer operates on 32 channels as input and output, except the first one,
which takes the single channel descriptor similarity map Spc as input, and the last one, which
also outputs a single channel tensor. Finally, an average pooling layer is used to obtain the final
score estimate s(Q, OQp). The score regression CNN is trained for 10 epochs using the PyTorch

framework [184], with the Adam optimizer and a learning rate of 107°.

"Relative reprojection errors are used to prevent saturation of the soft-max function.
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4.5 Experiments

In this section, we first provide several experimental results to demonstrate the performance of
the whole InLoc pipeline (described in Sec. 4.3). Sec. 4.5.1 describes implementation details of
our method and evaluation procotol for evaluation. Sec. 4.5.2 validates some design choices of
each step in InLoc pipeline. Sec. 4.5.3 compares InLoc pipeline with state-of-the-art methods
for indoor visual localization, using our InLoc dataset which presents a considerably large-scale
environment compared to previous datasets. To confirm the relevance of the results, we also
show the comparison using other datasets in Sec. 4.5.4. To discuss about the scalability of
the proposed pipeline, we evaluate it on a expanded version of InLoc dataset (Sec. 4.5.5), and
provide discussions about its computational cost (Sec. 4.5.6). We finally add some qualitative
results in Sec. 4.5.7.

We next focus on our novel pose verification step and evaluate several modifications for it

(discussed in Sec. 4.4) again using InLoc dataset.

4.5.1 Implementation details

We use the Net VLAD implementation provided by the authors and the pre-trained Pitts30K [40]
VGG-16 [175] model. We also use this model to extract CNN features for pose estimation,
by keeping the max-pooling outputs at the conv4 and conv3 layers and localizing keypoints
via [176].

Using the pre-trained model, we compute 4, 096-dimensional NetVLAD descriptor vectors
for both the query and the database images and pick the top-100 database images as the pose
candidates. We then re-rank the candidates by dense CNN matching and estimate the 6DoF
pose for each of the resulting top-10 images, as described in Sec. 4.3.3. Finally, we use the
pose selected by the pose verification step using virtual view and dense features described in
Sec. 4.3.4 as the pose of the query. We evaluate both of our two approaches, the one using
hand-crafted descriptors (DensePV) and its variant using CNN features (DenseCNNPV). As
the hand-crafted descriptor, we use the DenseSIFT [170] implementation in VLFeat [110]. For
DenseCNNPV, we again use the conv3 features of the VGG-16 model trained for NetVLAD.

Evaluation metrics. We evaluate the localization accuracy as the consistency of the esti-
mated poses with our reference poses. We measure positional and angular differences [141] in

meters and degrees between the estimated poses and the manually verified reference poses.

4.5.2 Ablation study

In the first set of experiments, we evaluate our design choices: we first demonstrate the benefits

of densely extracted features over sparsely extracted features. Next, we show how dense pose
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groundtruth.

verification improves localization performance over inlier counting. Third, we validate the
components newly proposed in our journal [58] compared to the conference version [22]. Finally,
we show that binarizing the CNN features significantly reduces the memory footprint without

significantly impacting localization performance.

Benefits of dense matching. As discussed in Sec. 4.3.3, we use densely extracted CNN
features to robustly estimate camera poses even in weakly textured indoor environments, where
sparse local features often do not yield sufficient matches. To show the benefits of using dense
features, we perform two experiments.

In the first experiment, we compare dense CNN and sparse hand-crafted features [26, 33]
(SparsePE), in terms of the number of correct matches generated, in indoor scenes. We create
image pairs for feature matching by selecting the RGBD database image that has the largest
overlap with a given query from the InLoc dataset. Feature matching is then performed between
the two images. Fig. 4.8 shows the cumulative distributions over the reprojection errors of the
feature matches, obtained by projection via the depth maps and known reference poses. The
proposed DensePE approach, which consists of matching features first in the conv4 layer
and then in the conv3 layer, results in a significant improvement compared to sparse feature
matching (SparsePE). We also evaluate different variations of dense coarse-to-fine matching

using the convb and conv3 layers (c2f (convh-conv3)), as well as single-scale feature matching



CHAPTER 4. VISUAL LOCALIZATION IN A LARGE-SCALE INDOOR ENVIRONMENT 98

== Direct2D-3D
e DisLOC 80 80
- @ = DisLoc + DensePV 'O\? 'D\?
—@— DisLoc + DenseCNNPV | T o
DisLoc + SparsePE 260 e 260
DisLoc + SparsePE + DensePV “g’_ [ - %
DisLoc + SparsePE + DenseCNNPV z - 3
e N X W =X P S i
= NetVLAD =40 g e i = 40 /,» - e e K
~ ® - NetVLAD + DensePV < xx %S IS ”»m«—r“’
—®— NetVLAD + DenseCNNPV i 2 i ok
— — »
——— NetVLAD  + SparsePE =00l IF 2 00l 1H7
= @ = NetVLAD + SparsePE + DensePV 0:) g %
i@ NetVLAD + SparsePE + DenseCNNPV 8 8
e NetVLAD + DensePE 0 0
-0 - melf\olc'-_gg (Our;')De”sePE + DensePV 0 02505075 1 12515 1.75 2 0 02505075 1 12515 1.75 2
—— Distance threshold [meters] Distance threshold meters]
(a) NetVLAD baselines (b) Other baselines

Figure 4.9: Impact of different components. The graphs show the impact of dense matching
(DensePE) and dense pose verification (DensePV and DenseCNNPV) on pose estimation
quality for (a) the pose candidates retrieved by NetVLAD and (b) state-of-the-art baselines.
Plots show the fraction of correctly localized queries (y-axis) within a certain distance (x-axis)

whose rotation error is at most 10°.

using the conv3, conv4, and conv) layers, respectively. All features used are after max-pooling,
and all keypoints are relocalized using the scheme of Widya et. al [176]. The single-scale dense
features already result in more correspondences than SparsePE, but coarse-to-fine matching
significantly increases the performance, with DensePE yielding the most correct matches.

The second experiment shows that the larger number of matches found by our DensePE
approach translates to a better localization performance: Fig. 4.9(a) shows that our pose es-
timation with coarse-to-fine dense matching (NetVLAD [40]+DensePE “-”) constantly im-
proves the localization rate by about 15% when compared to the sparse local feature matching
(NetVLAD [40]4SparsePE “~"). This supports our conjecture that dense feature matching is
superior to sparse feature matching for often weakly textured indoor scenes. This effect is also

clearly demonstrated in the qualitative results in Sec. 4.5.7 (cf. Fig. 4.11).

Benefits of pose verification with view synthesis. We apply our pose verification step
using regular-gridded hand-crafted features (DensePV) and CNN features (DenseCNNPV)
on query and rendered view to the top-10 pose estimates obtained by different baselines. Results
are shown in Fig. 4.9 and demonstrate significant and consistent improvements obtained by our
pose verification approach (compare “ x -7 (DensePV) and “—e—" (DenseCNNPYV) to “—’
in Fig. 4.9). Improvements are most pronounced for the position accuracy within 1.0 meters
(16% or more).

Validating design choices. Compared to the conference version [22], we changed some
components of the InLoc pipeline: (i) coarse-to-fine matching from the conv4 layer to the

conv3 layer instead of coarse-to-fine matching from the convb to conv3 layer, (ii) the use of
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Table 4.3: Comparison with state-of-the-art localization methods on the InLoc
dataset. The first three rows show the rate (%) of correctly localized queries within a given
distance (m) and a 10° orientation error. The bottom two rows report the median position and

orientation errors.
Direct MapNet DisLoc NetVLAD NetVLAD  InLoc InLoc InLoc-

2D-3D [61] [27] [185] [185] [22] + [99] DC

[46] +SpsPE +SpsPE +DnsPE  (Ours) (Ours)
0.25m 10.9 0.0 20.4 20.7 36.8 38.0 42.2 44.4
0.50m 15.5 0.0 31.0 31.3 49.2 57.8 65.3 63.8
1.00m 22.5 0.0 42.2 41.6 60.8 72.0 77.8 78.1

Med. | 4.99m, 11.24m, 1.04m,  1.08m, 0.5lm,  0.38m, 0.3lm, 0.30m,
error | 33.95° 85.28°  3.93° 4.05° 2.29° 2.10° 1.74°  1.73°

the keypoint relocalization scheme of [176], and (iii) dense pose verification with CNN features
(DenseCNNPV) instead of SIFT features (DensePV).

Tab. 4.2 compares the performance of our InLoc pipeline with the original and the newly
proposed components. As it can be seen, conv4-to-conv3 instead of convb-to-conv3 matching
typically improves the percentage of query images that can be localized within the chosen
error bounds. We further observe a significant boost in performance when using the keypoint
relocalization scheme. This is due to the fact that more accurately localized keypoints result
in increased accuracy of the estimated camera poses.

Compared to DensePV, DenseCNNPV has the advantage that it reuses the features
extracted during the computation of the NetVLAD descriptor instead of requiring to extract
additional SIFT features. As shown in Tab. 4.2, this approach performs similar to DensePV.
This implies that the reduction in computational overhead does not come at the price of reduced
performance. Both DensePV and DenseCNNPYV outperform classical inlier counting by a
large margin.

From Tab. 4.2, we can see that including all newly proposed modifications (row marked
as (b)) leads to a gain of ~ 6.0% compared to the original InLoc version [22] (row marked
as (a)). In the following, we will refer to these two versions as InLoc-DC (new) and InLoc

(conference version).

4.5.3 Comparison with the state-of-the-art methods

Secondly we compare the proposed InLoc approach with several state-of-the-art localization
methods in Tab. 4.3.



CHAPTER 4. VISUAL LOCALIZATION IN A LARGE-SCALE INDOOR ENVIRONMENT 100

Direct 2D-3D matching [46,49]. We first compare with a variation® of a state-of-the-art
3D structure-based image localization approach [46]. We compute affine covariant RootSIFT
features for all the database images and associate them with 3D coordinates via the known
scene geometry. Features extracted from a query image are then matched to the database
3D descriptors [118]. We select at most five database images receiving the largest numbers of
matches and use all these matches together for pose estimation. Similar to [46], we did not apply
Lowe’s ratio test [32] as it lowered the performance. The 6DoF query pose is finally computed
by P3P-LO-RANSAC [30]. As shown in Tab. 4.3 and Fig. 4.9 (b), our proposed approach
(InLoc and InLoc-DC) outperforms Direct 2D-3D matching by a large margin (48.3% at the
localization accuracy of 0.5m). We believe that this is because our large-scale indoor dataset
involves many distractors and large viewpoint changes that present a major challenge for direct

correspondences searching.

Disloc [27] + sparse pose estimation (SparsePE). We next evaluate a state-of-the-art
image retrieval-based localization method. Disloc represents images using bag-of-visual-words
with Hamming Embedding [82] while also taking local descriptor space density into account.
We use a publicly available implementation [39] of Disloc with a 200K vocabulary trained
on the database images of our InLoc dataset. The top-100 candidate images shortlisted by
Disloc are re-ranked by spatial verification [42] using (sparse) affine covariant features [33].
The ratio test [32] was not applied here as it was removing too many features that needed
to be retained in the indoor scenario. Using the inliers, the 6DoF query pose is computed
with P3P-LO-RANSAC [30]. To allow a fair comparison, we use exactly the same features and
P3P-LO-RANSAC for pose estimation as the Direct 2D-3D matching method described above.
As shown in Tab. 4.3, Disloc [27]4+SparsePE results in a 19.7% performance gain compared to
Direct 2D-3D matching. This can be attributed to the image retrieval step that discounts the
burst of repetitive features. We also evaluate localization using the original top-retrieved image
(without re-ranking [42]) to compute the query pose (“—" in Fig. 4.9). This shows similar
results to Direct 2D-3D matching, indicating that re-ranking based on the number of inlier
matches largely improves localization if the shortlisting is reasonable. However, the results are

still significantly worse compared to InLoc, and InLoc-DC.

NetVLAD [40] + SparsePE. We also evaluate a variation of the above image retrieval-based
localization method. Here, the candidate shortlist is obtained by NetVLAD [40], which is then
re-ranked using sparse features [42], followed by pose estimation using P3P-LO-RANSAC [30].
This is a strong baseline building on the state-of-the-art place recognition results from [40]. In-
terestingly, as shown in Tab. 4.3, there is no significant difference between NetVLAD+SparsePE
and DisLoc+SparsePE, which is in line with results reported in outdoor settings [65]. Yet,

8Due to the sparse sampling of viewpoints in our indoor dataset, we cannot establish feature tracks between

database images, preventing us from applying algorithms relying on co-visibility [46,49-51].
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Table 4.4: Comparison on Matterport3D [69]. Numbers show the median positional (m)
and angular (degrees) errors.

Disloc [27]  NetVLAD [185] NetVLAD [185] InLoc-DC
+SparsePE +SparsePE +DensePE (Ours)

90 bldgs. | 0.42, 4.58° 0.44, 4.70° 0.14,1.81°  0.13, 1.66°

NetVLAD (“ ) outperforms DisLoc (5.8% at the localization accuracy of 0.5m) before re-
ranking via SparsePE (cf. Fig. 4.9) in our indoor setting (see also qualitative results in
Sec. 4.5.7). Both methods, even though they are state-of-the-art in outdoor localization, still
perform significantly worse than our proposed approach based on dense feature matching and

view synthesis.

Learning based visual localization methods. We also compare on our dataset to the
state-of-the-art learning based pose estimators, DSAC [59] (and its improved version [60]
(DSAC++)), PoseNet [55], and MapNet [61]. These methods directly regress camera poses
from images while learning a mapping from an image (patch) to a unique scene coordinate or
camera pose. Despite our best efforts, none of them work well on our indoor dataset. Tab. 4.3
shows results of the best performing learning based method on our data — MapNet [61]. We
have observed that learning based visual localization methods work well in scenes with unique
appearance, but are not able to handle well ambiguities arising from repetitive (similar) struc-
tures in the same scene. Yet, such structures are very common in the indoor scenes in our
dataset. In addition, sparsely distributed RGBD scans that are used to construct our database
make the training difficult because the trained model has to generalize across large changes in
viewpoint in order to estimate the query pose. We provide comparison with DSAC [59] and

PoseNet [55] on much smaller datasets in Sec. 4.5.4.

Learning-based matching. The recent work of Rocco et al. [99] builds an end-to-end train-
able network for generating reliable keypoint matches, based on local neighborhoods. These

matches can be used as a part of our localization pipeline, resulting in comparable results
(InLoc+ [99] in Tab. 4.3).

4.5.4 Evaluation on other datasets

We also evaluate InLoc on two existing indoor datasets [56,69] to confirm the relevance of our
results. The Matterport3D [69] dataset consists of RGBD scans of 90 buildings. Each RGBD
scan contains 18 images that capture the scene around the scan position with known camera
poses. We created a test set by randomly choosing 10% of the scan positions and selected
their horizontal views. This resulted in 58,074 database images and a query set of 6,726

images. Results are shown in Tab. 4.4. Our approach (InLoc-DC) outperforms the baselines,
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Table 4.5: Evaluation on the 7 Scenes dataset [56,104]. We report the median position

and orientation errors, as well as the percentage of queries localized within 5cm and 5° of

. »

the ground truth pose. indicates that the corresponding number is not reported in the

literature.
PoseNet RelocNet ActiveSearch DSAC DSACH+ NetVLAD ([185] NetVLAD [185]

Scene [55] [62] [49] [59] [60] +SparsePE [42] +DensePE
Chess 13cm, 4.48°, — 12cm, 4.14°, — 4cm, 1.96°, —  2cm, 1.2°, 94.6% 2cm, 0.5°, 97.1% 4cm, 1.83°, 66.6%  3cm, 1.04°, 84.0%
Fire 27cm, 11.3°, — 26cm, 10.4°, — 3cm, 1.53°, —  4cm, 1.5°, 74.3%  2cm, 0.9°, 89.6% 4cm, 1.55°, 70.4%  3cm, 1.07°, 88.5%
Heads 17cm, 13.0°, — 14cm, 10.5°, — 2cm, 1.45°, —  3cm, 2.7°, 71.7%  1lcm, 0.8°, 92.4% 2cm, 1.65°, 83.0% 2cm, 1.06°, 96.8%
Office 19c¢m, 5.55°, — 18cm, 5.32°, — 9cm, 3.61°, —  4cm, 1.6°, 71.2%  3cm, 0.7°, 86.6% 5cm, 1.49°, 53.5% 8cm, 1.01°, 77.4%
Pumpkin | 26cm, 4.75°, — 26cm, 4.17°, —  8cm, 3.10°, — 5cm, 2.0°, 53.6% 4cm, 1.1°, 59.0% 7cm, 1.87°, 31.2%  6cm, 1.53°, 44.1%
Red kitchen | 23cm, 5.35°, — 23cm, 5.08°, — 7cm, 3.37°, —  5cm, 2.0°, 51.2%  4cm, 1.1°, 66.6% 5cm, 1.61°, 54.8% 4cm, 1.25°, 68.0%
Stairs 35cm, 12.4°, — 28cm, 7.53°, — 8cm, 2.22° — 117cm, 33.1°, 4.5% 9cm, 2.6°, 29.3% 12cm, 3.41°, 13.8% 9cm, 2.25°, 24.5%

which is in line with results on the InLoc dataset. Interestingly, dense pose verification yields
little improvement on this dataset. We attribute this to the Matterport3D dataset in general
containing significantly more well-textured scenes. We also tested PoseNet [55] and DSAC [59]
on a single (the largest) building. The test set is created in the same manner as above and
contains 1,884 database images and 210 query images. Even in this much easier case, DSAC
fails to converge. PoseNet produces large localization errors (24.8 meters and 80.0 degrees) in
comparison with InLoc (0.26 meters and 2.78 degrees).

We also report results on the 7 Scenes dataset [56,104] which is, while relatively small, a stan-
dard benchmark for indoor localization. The dataset consists of geometrically-registered video
frames representing seven scenes, together with associated depth images and camera poses. In
this situation, each scene is much more textured than our InLoc dataset. Furthermore, the
dataset captures the scenes much more densely, since it has the several sequential video frames
distributed in rather smaller scenes than ours. Therefore, we observed that raw inlier counting
after image retrieval (NetVLAD+DensePE) without a final dense pose verification step already
provides a good ranking. Thus, we only compare NetVLAD+DensePE with the state-of-the-
art methods. Tab. 4.5 shows localization performance for each method. CNN-based methods
that directly obtain a 6DoF pose for an RGB image input [55,62] show rather large positional
errors. In contrast, Active-search [49], a state-of-the-art method using hand-crafted sparse
features to obtain 2D-3D correspondences, provides more accurate localization, in line with
our sparse feature baseline (NetVLAD+SparsePE). DSAC [59] obtains 2D-3D correspondences
using a CNN architecture specifically trained on this dataset and its latest variant [60] gives
the best results for five out of the seven scenes. Our method (NetVLAD+DensePE) also uses
CNN features to obtain 2D-3D correspondences. In contrast to other methods [55,59,60,62],
our approach does not need any scene-specific training. We use an off-the-shelf NetVLAD CNN,

trained on an outdoor dataset. Still, our approach performs comparably to [60].

Fine-tuning on indoor scenes. For image retrieval and matching we used NetVLAD trained

on the Pittsburgh30k dataset, which only consists of outdoor images. Preliminary experiments
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Table 4.6: Results on the extended dataset, as the percentage (%) of correctly localized

queries within given distance (m) and 10° angular errors.

NetVLAD [185] NetVLAD [185] NetVLAD [185] InLoc-DC
+SparsePE +DensePE (Ours)
0.25m 16.1 19.8 35.9 42.6
0.50m 25.8 31.0 47.4 58.7
1.00m 31.9 41.6 58.7 75.1

Table 4.7: Computational time for each component of the proposed approach. Av-
erage elapsed time for localizing one query in the InLoc dataset.

Image Feature Pose Pose

Process | retrieval extraction estimation verification

Time [sec] | ~0.07 ~1 136.3 6.08

to fine-tune NetVLAD on Matterport3D (indoor images) were not successful. We used only ~
60K images, selecting horizontal views, and excluding the ones in which camera was oriented
towards the floor or the ceiling. Evaluating the models we trained using the NetVLAD pipeline
[40] on the InLoc data, we observed a drop in performance, even for pure retrieval. This is very
likely caused by lack of variability in the Matterport images, more precisely lack of occluders

and no variation in illumination.

4.5.5 Measuring scalability

Our InLoc dataset covers multiple floors and multiple buildings. Yet, some applications might
need to operate at an even larger scale, e.g., at an international airport or a complete university
campus. To measure the scalability of our approach to larger scenes, we create a larger version
of our InLoc dataset by adding database images from the Matterport3D dataset [69], which
also contains depth maps and camera poses. The resulting extended dataset has about 110K
database images, covering 92 buildings with multiple rooms per building.

Tab. 4.6 shows localization results for NetVLAD [40]-based methods including our two pro-
posed approaches (DensePE and InLoc-DC (DensePE+DenseCNNPV)) on the enlarged
dataset. Compared to the results obtained on the smaller original InLoc dataset (Tab. 4.3), the
loss in performance is rather small for all retrieval-based methods, even though the extended
dataset contains 11 times more images. InLoc’s performance drops by 5.1% at 0.5 meters,
while the sparse feature baseline (NetVLAD+SparsePE) exhibits a rather smaller drop. This
is because our dense CNN features capture higher-level structural information, whereas hand-

crafted sparse features capture lower-level information, ¢.e., edges, corners. This causes more
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false matches for geometrically inconsistent image pairs, resulting in inaccurately estimated
poses among the top-10 candidates selected via DensePE. InLoc-DC still shows the best per-
formance, with a gain in pose accuracy of over 15% compared to NetVLAD+DensePE.

Also, the run time computational cost does not grow significantly when increasing the
database size. This is because the initial step of obtaining the top 100 pose candidates is
implemented using efficient retrieval. The follow-up stages are more expensive but are only ap-
plied to the shortlist of the top 100 (and later top 10) retrieved candidates. Detailed evaluation

and discussion of the computational cost is given next.

4.5.6 Computational cost

Tab. 4.7 shows the average computational time for each step of our method (InLoc-DC). Please
note that the the timing of the pose estimation and pose verification stages includes processing
of the top retrieved 100 and 10 images. All numbers were obtained on an Intel Core i7-5930K
CPU and GTX TITAN X GPU (used only for the dense feature extraction). We accelerate
the pose estimation and pose verification steps by using 6 threads; further multi-threading can
lead to further (linear) improvements. Reducing the computational time for large-scale visual
localization is still an open problem. Recent CNN-based methods achieve precise localization
in few milliseconds but only for smaller-scale environments®. A non-negligible bottleneck in
our method is the dense CNN matching for pose estimation that requires over two minutes
per input query (for processing the top 100 candidates), but it gives a large performance gain
compared to sparse matching (c.f. section 4.5.2). This can be only partially mitigated by
learned matchers [99,144]. Another fairly expensive process is pose verification, which includes
rendering virtual views from a high-quality RGBD scan. We observed most of the time is spent
in the visibility check for each 3D point, which is currently implemented on CPU using an
un-optimized Matlab script. Further significant speed-ups can be achieved by replacing this
part of the pipeline using optimized GPU rendering.

Memory requirements are dominated by the size of the database to be stored. Storing
4096-dimensional NetVLAD descriptors for all InLoc database images requires only 163MB.
However, storing also the intermediate features for the dense CNN matching requires addi-
tional 428GB. A binary representation of features (instead of floats) in the intermediate CNN
layers can significantly reduce the needed space. We found that a simple binarization via the
standard Hamming embedding approach [82] without dimensionality reduction can compresses
the descriptors to 13.4GB with only a negligible performance loss (less than 1% at 0.5 meters)
compared to the original descriptors (in line with results reported for object recognition [186]).

The memory requirements of the approach can be further reduced by extracting the coarse to

9For example, [60] reported 200ms for a total processing time per image, on a Tesla K80 GPU and an Intel
Xeon E5-2680 v3 CPU (6 cores).
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5.99m, 54.75° 0.34m, 2.40° 8.62m, 1.13° 0.33m, 0.86°

9.92m, 114.03
DisLoc NetVLAD NetVLAD NetVLAD NetVLAD InLoc-DC: NetVLAD
+SparsePE +DensePE +DensePE +DensePE
+DenseCNNPV
(a) (b) () (d) (e) ()

Figure 4.10: Qualitative comparison of different localization methods (columns).
From top to bottom: query image, the best matching database image, synthesized view at
the estimated pose (without inter/extra-polation), error map between the query image and the
synthesized view, localization error (meters, degrees). Warm colors on the error map correspond
to large errors. Green dots are the inlier matches obtained by P3P-LO-RANSAC.

fine CNN features of the database images on-line, at the expense of additional computing time

(~1 second per image, see Tab. 4.7.)

4.5.7 Qualitative results

We show qualitative localization results of the proposed InLoc approach and other baselines.
In the following, we consider a query image as correctly localized if the error for the estimated
pose is within 1 meter and 5° with respect to the reference pose.

Fig. 4.10 shows a component-wise comparison of our proposed approach with the baselines.
We pick typical examples for each step of the proposed method (b,d,f) which uses dense CNN
features for image retrieval, pose estimation, and pose verification. Our approaches adopting
dense information successfully localize the queries, whereas the baselines (a,c,e) using sparse
local features fail.

Next, we show several situations in which InLoc successfully localizes the query images
while the baseline methods fail. Fig. 4.11 shows qualitative examples of the results obtained by
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0.13m, 1.73° N 0.16m, 1.59°

, 2.93°

NetVLAD InLoc-DC: NetVLAD NetVLAD InLoc-DC: NetVLAD NetVLAD InLoc-DC: NetVLAD
+SparsePE +DensePE +SparsePE +DensePE +SparsePE +DensePE
+DenseCNNPV +DenseCNNPV +DenseCNNPV
(a) (b) () (d) (e) ()

Figure 4.11: Qualitative comparison between InLoc and NetVLAD+SparsePE. See
the caption of Fig. 4.10 for details.

NetVLAD+ SparsePE (a,c,e) versus our InLoc-DC (b,d,f). As shown in (a) and (c), sparse
features are often detected on highly repetitive structures e.g., textured surfaces (fabric pattern
on the carpet and sofa). As shown in (a) for the baseline, matching features found on such
objects can result in matches with unrelated parts of the scene, leading to incorrect camera
pose estimates. The fact that sparse features are predominantly found in a few textured regions
leads to problems in the largely untextured indoor scenes. This is shown in (e), where matches
are found only in a small part of the query image, which leads to an unstable configuration for
camera pose estimation. In contrast, dense matching leads well-distributed correspondences
and thus more stable pose estimates, as can be seen in (b), (d), and (f). Our pose verification,
DenseCNNPYV (Sec. 4.3.4), allows us to identify incorrect poses, resulting from features found
on repetitive structures, since most parts of the image rendered from a false pose are not
consistent with the query image. Thus, InLoc approach is better suited to handle highly
repetitive indoor scenes with rich feature correspondences.

The next set of qualitative results demonstrates the benefits of dense pose verification.
Fig. 4.12 compares results obtained by InLoc-DC (b,d,f) with results obtained by the baseline
NetVLAD+ DensePE (a,c.e). In this case, the baseline NetVLAD+DensePE uses our dense
matching but selects the best pose based only on the number of inlier matches. For scenes

dominated by symmetries and repetitive structures (a,c) or objects that frequently appear



CHAPTER 4. VISUAL LOCALIZATION IN A LARGE-SCALE INDOOR ENVIRONMENT 107

0.41m, 2.12° 3m, 179.58° 0.21m, 0.51° R 0.52m, 3.04°
NetVLAD InLoc-DC: NetVLAD NetVLAD InLoc-DC: NetVLAD NetVLAD InLoc-DC: NetVLAD
+DensePE +DensePE +DensePE +DensePE +DensePE +DensePE
+DenseCNNPV +DenseCNNPV +DenseCNNPV
(a) (b) () (d) (e) ()

Figure 4.12: Qualitative comparison between InLoc and NetVLAD-+DensePE. See
the caption of Fig. 4.10 for details.

in the scene (a,e), there can be a large amount of geometrically consistent matches even for
unrelated database images. This still holds true even if matches are obtained by dense features
and are geometrically verified. Our dense pose verification strategy using synthesized images
(b,d,f) effectively provides “negative” evidence in such situations. The error maps (bottom)

clearly show that it detects (in)consistent areas between the query and its synthesized image.

4.5.8 Pose verification using geometric semantic information

Next we evaluate our several modifications of pose verification step exploiting additional geo-

metric and semantic modalities (discussed in Sec. 4.4).

Baselines. To demonstrate the impact of each modality clearly, we test our pose verification
for the candidate poses obtained by the most primitive version of DensePE [22] which estimates
camera poses using convb and conv4 layer in the pre-trained VGG-16 [175] model (See details
in Sec. 4.5.2). After re-ranking the image list according to the number of homography-inliers,
we estimate pose candidates for the top 10 best matched images using a set of dense inlier
matches and database depth information. The baseline localization performances when ranked
by the number of inlier matches (DensePE) or by DensePV [22] (Sec. 4.3.4) are shown in the

top or second row in Tab. 4.2.
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Table 4.8: The impact of using the scan-
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o

graph for pose verification evaluated on
the InLoc dataset [22].  We report the

(o2}
o

percentage of queries localized within given

positional and rotational error bounds.
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o
Error [meter, degree] 8
Method [0.25, 5] [0.50, 5] [1.00, 10] [2.00,10] . g0
w/o scan-graph 8
DensePE [22] 35.0  46.2 57.1 61.1 ° = = = DensePE
DensePV [22] 389 556  69.9 74.2 > ! '_:_' Bﬁﬂiiﬁxwim ccan graph
)
Psc 30.4 44.4 959 584 8 20 —@— DensePV+S with scan graph
DensePV+S 39.8 57.8 7.1 75.1 = —o— DensePNV with scan graph
DenseNV 32.2 45.6 58.1 62.9 8 —@— DensePNV+S with scan graph
DenseNV+S 31.6 46.5 60.5 64.4 [Oracle (Upper-bound)]
DensePNV 401 58.1 72.3 76.6 0 : : ‘ ‘ ‘ ‘ ‘ ‘
DenscPNV+S 401 59.0 72.6 76.3 0 02505075 1 1251517 2
w/ scan-graph Distance threshold [meters]
DenscPV 39.8  59.0 69.0 71.4
PSC 28.3 432 55.0 58.4 ) . .
DensePV LS 41.3 617  Ti4 70  Figure 4.13: The impact of geometric and
DenseNV 343505 629 666  semantic information on the pose veri-
DenseNV+S 359 514 64.4 68.4 .
DensePNV 104 605  72.9 754  fication stage. FEach curve shows the per-
DensePNV+S 4.0 605 723 71 centage of the queries localized within varying
TrainPV (random) 39.5 56.5 72.3 76.3 . .
TrainPV (DPE) 395 568 723 76.3  distance thresholds (x—axis) and a fixed rota-
Oracle (Upper-bound)| 43.5 63.8 77.5 80.5 tional error of at most 10 degrees_

As a semantic baseline, we project the database 3D points, labeled via semantics [154]

extracted on the database image, into the query and count the number of points with consistent

labels (PSC).
The impact of using additional modalities. Tab. 4.8 and Fig. 4.13 compare the localiza-

tion performance of the baseline pose verification methods against our novel variants proposed
in Sec. 4.4. DenseNV and PSC perform worst, even compared to the baseline DensePE. This is
not surprising as both completely ignore the visual appearance and instead focus on information
that by itself is less discriminative (surface normals and semantic segmentation, respectively).
On the other hand, combining geometric and / or semantic information with appearance in-
formation improves the localization performance compared to DensePV. This clearly validates
our idea of using multiple modalities.

We observe the biggest improvement by using our scan-graph, which is not surprising as
it reduces the number of invalid pixels and thus adds more information to the rendered im-
ages. DensePV+S using a scan-graph shows the best performance at higher accuracy levels.
DensePNV using the scan-graph combines appearance and normal information and constantly

shows more than a 5% performance gain compared to DensePV. Yet, DensePNV+S with the
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Figure 4.14: Typical failure cases of view synthesis using the scan-graph. Top: Syn-
thetic images obtained during DensePV with the scan-graph, affected by (a) misalignment of
the 3D scans to the floor plan, (b) sparsity of the 3D scans, and (c) intensity changes. Bottom:
A typical failure case of DensePV with the scan-graph: (d) query image, (e) re-rendered query,
(f) error map computed with RootSIFT.

scan-graph shows less improvement compared to its single scan variant and even performs worse
for larger error thresholds. This is partially due to inaccurate depths and camera poses of the
database images (c.f. Fig. 4.14 (a—c)). There are also failures where a single scan already pro-
vides a rather complete view. Fig. 4.14 (d-f) shows such an example: due to weak textures,
the rendering appears similar to the query image. Such failures cannot be resolved using the
scan-graph.

Interestingly, simply combining all modalities does not necessarily lead to the best perfor-
mance. To determine whether the modalities are simply not complementary or whether this
is due to the way they are combined, we create an oracle. The oracle is computed from four
of our proposed variants (DensePV [22], DensePV w/ scan-graph, DensePV+S w/ scan graph,
and DensePNV w/ scan-graph): Each variant provides a top-ranked pose and the oracle, hav-
ing access to the ground truth, simply selects the pose with the smallest error. As can be
seen from Tab. 4.8 and Fig. 4.13, the oracle performs clearly better than any of our proposed
variants. We also observed DenseNV+S provides better poses than the oracle (which does not
use DenseNV+S) for about 9% the queries, which could lead to further improvements. This
shows that the different modalities are indeed complementary. Therefore, we attribute the
diminishing returns observed for DensePNV+S to the way we combine semantic and normal
information. We assume that better results could be obtained with normals and semantics if

one reasons about the consistency of image regions rather than on a pixel level (as is done by
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using the median).

Trainable pose verification. We next evaluate two trainable approaches (TrainPV), which
are trained by randomly perturbed views (random) or by selecting views based on DensePE
estimation (DPE) (c.f. Sec. 4.4.3). Even though both are trained using only appearance infor-
mation, they still are able to use higher-level scene context as they use dense features extracted
from a pre-trained fully convolutional network. Tab. 4.8 compares both TrainPV variants with
the baselines and our hand-crafted approaches. Even though both variants use different training
sets, they achieve nearly the same performance!?. This indicates that the choice of training set
is not critical in our setting. The results show that TrainPV outperforms the DensePV base-
line, but not necessarily our hand-crafted variants based on multiple modalities. This result
validates our idea of pose verification based on different sources of information. We also tried

variants of TrainPV that use multiple modalities, but did not observe further improvements.

4.6 Summary

In this chapter, we firstly constructed a new indoor dataset for visual localization. Compared
to existing datasets, our InLoc dataset (Sec. 4.2) is considerably large, composed of multiple
buildings consisting of highly symmetric and repetitive rooms, weakly textured corridors, and
movable objects. We also prepared a set of realistic and challenging query images captured
by mobile phones. As a result, our dataset presents many challenging situations for indoor
visual localization (c.f. Fig. 4.3). For further future works, we make our dataset and code to
be publicly available!!.

We next presented a visual localization pipeline named InLoc (Sec. 4.3), which aims to
estimate the 6DoF camera pose of a query image with respect to a large-scale indoor 3D
map. To overcome the difficulties of indoor camera pose estimation, InLoc stores multiple pose
candidates for the query and re-rank them through the progressively stricter verification steps,
inspired by our outdoor visual localization pipeline described in Chap. 3. At the same time,
assuming a high-quality 3D database (composed of database images and associating pixel-wise
depth information), we employed densely extracted features for pose estimation and ranking
processes, to adopt those accurate and dense 3D structural information into localization as
much as possible. This concept is particularly reflected in our novel pose verification scheme
that select the best matched camera pose from candidates based on pixel-wise image similarity
measurement. For each of pose candidates, we synthesized a query view using database 3D

point clouds around the estimated pose (relying on the density of the 3D points), and compare

10We are considering a discrete re-ranking problem on a few candidate poses per query. As such, it is not

surprising to have very similar results.
Uhttp://www.ok.sc.e.titech.ac.jp/INLOC
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it with the original image. This process serves a pixel-wise consistency check between 2D query
image and 3D structures, resulting in a considerable performance gain compared to existing
scoring schemes based on rather sparse observations, e.g., counting inlier matches. This fact
is clearly demonstrated through experiments in Sec. 4.5 (c.f. Fig. 4.9, Tab. 4.3, Tab. 4.4, and
Fig. 4.11). Also, as discussed in Sec. 4.5.5 and Sec. 4.5.6, InLoc pipeline naturally scales to
larger-scale scenarios since it is based on an efficient image retrieval.

We next focused on improving performance of Inl.oc by using better metric to score the
pose candidates (Sec. 4.4). Besides visible (color) information used in original InLoc (DensePV
formulated by Eq. (4.2)), we also motivated to use geometric and semantic information, which
are commonly used to understand the scene. Integrated to our pose verfication process, these
additional information give improvements with nice margin (shown in Tab. 4.8 and Fig. 4.13).
The experimental results also suggest that multiple modalities provide better metrics comple-
mentary to each, thus can potentially achieve the best performance when be combined properly
(c.f. “Oracle” performances in Tab. 4.8). Yet, a simple combination of all modalities does not
achieve this. These observations highlight potential future works for this area.

Another room for improvement is the computational timing, which will be a crucial issue
for practical applications. InLoc requires additional computational time for processing dense
features together with an enormous amount of 3D points (Tab. 4.7). This can potentially be
addressed by integrating recent CNN-based methods for matching [99, 144] and pose estima-

tion [59,64] to large-scale environments, while optimizing implementations.



Chapter 5
Conclusion

In this thesis, we investigated visual localization (and its key technologies) for large-scale envi-
ronments.

In Chap. 2, we first discussed about robust feature matching between images, which is an
essential technology for each step of visual localization, including image ranking, camera pose
estimation, and database construction (SfM). We mainly focused on feature deformations in
the image induced by: (a) distorted projection model (Sec. 2.2) and (b) large viewpoint changes
(Sec. 2.3). While such deformations actually are inevitable for efficient database construction
and camera pose estimation, they can be a critical sources of miss matches. We addressed both
issues by simulating all possible deformations on the image, as the pre-processing for standard
feature matching algorithms. We generate a set of synthetic images approximating the possible
deformations from the original image and extracts local features from them. In Sec. 2.3, we
additionally provide simple metric learning scheme that achieves more robust and efficient
feature matching. We confirmed the performances of our feature matching algorithms using
both synthetic and real images datasets. We also demonstrated our feature matching approach
combined with SfM pipeline can provide rich 3D models robustly, which can potentially be used
as the 3D database for visual localization.

In Chap. 3, we proposed a general localization pipeline that ensures both scalability to larger
database and accuracy of the estimated pose. The key feature of our pipeline is to integrate both
2D image-based approaches and 3D structure-based approaches into the progressive location
(pose) determination scheme (Sec. 3.4). As illustrated in Fig. 1.7, We firstly perform image
retrieval to find coarse location candidates of the query and estimates 6DoF camera pose using
relevant database images. Our pose estimation based on SfM pipeline can provide an accurate
6DoF camera pose, while only requires 2D image database. Furthermore, this scheme can be
adapted to any kind of image retrieval-based methods. To compare our pipeline with both
2D-based and 3D-based methods, we prepared a novel dataset for a large-scale urban scenario

(Sec. 3.2). For each input image originally provided by [17], we newly provided the reference
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pose that has been manually annotated to represent 6DoF camera pose of the query and can be
used for computing errors of the estimated pose. Using several evaluation metrics (Sec. 3.5), we
confirmed our localization pipeline can provide accurate camera pose of the query using only
2D images, and shows a comparable computational time with state-of-the-art method.

In Chap. 4, we generalized our pipeline to indoor scenarios, which additionally assume a
high-quality 3D scan for each local area. In Sec. 4.3.3, we adapted these accurate and dense 3D
information to camera pose estimation step by exploiting feature matching for densely extracted
features. In addition, we proposed novel pose verification process (Sec. 4.3.4) that effectively
use dense 3D point cloud to validate (score) the estimated poses and select the best matching
pose from candidates. Assuming a set of 6DoF pose candidates for a query, it renders each local
3D model around the candidate with respect to the camera pose and evaluate the similarity
of the synthetic image to original one. Using rather dense information than standard inlier
counting for sparse matches, our pose verification can achieve more robust pose estimation in
some challenging scenes in indoor environments, e.g., weakly textured and repetititve scenes. To
address the lack of dataset for indoor visual localization, we again created a dataset (Sec. 4.2),
consists of RGBD database images and query images taken in far different conditions from
database images, in terms of viewpoints, capturing devices, and seasons. We also provided
6DoF reference poses for queries that are manually annotated and verified. Using this dataset,
we showed that our visual localization pipeline again achieves state-of-the-art performance in
indoor large-scale environments.

Altogether, we investigated each key component of visual localization pipeline including
robust feature matching, and proposed a general pipeline that provides an accurate camera
pose estimates even using only 2D image database. Since our pipeline is based on efficient
location recognition via image retrieval followed by 3D reconstruction for local area around
the query, it ensures computational efficiency and scalability to much larger scenes. Also,
the proposed pipeline can be generalized to both outdoor and indoor scenarios, which assume
2D image database and additional rich 3D information for each local region. In addition, we
provided two new datasets depicting large-scale visual localization scenarios in outdoor and
indoor environments. Since these datasets contain reliable camera poses for queries that are
essential for fairly evaluating both 2D- and 3D-based methods. We believe our datasets will be

beneficial for future researches in this area.
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