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Preface

Queueing theory is a mathematical approach to analyses of congestion in waiting lines.
Queueing models are used to imitate waiting lines in queueing theory. In general, queueing
theory is considered to be a division of operations research, because analysis results of
queueing models are often used to make decisions about resources providing service.

This thesis studies batch arrival infinite-server queues and related models. Infinite-
server queues have infinitely many servers, and thus all arriving customers can begin to
receive service immediately upon arrivals without waiting. Infinite-server queues have
many applications in various areas, such as inventory systems, road traffic systems, and
telecommunication systems. In addition, infinite-server queues help us to understand the
dynamics of customers in large-scale service systems (facilities), such as theme parks,
large commercial complexes, and large parking lots.

Stability conditions for batch arrival infinite-server queues are paid little attention in
previous studies. This thesis presents stability conditions for general infinite-server queues
with batch arrivals. We first consider the stability for BMAP/M/∞ queues, which are
infinite-server queues with a batch Markovian arrival process and an exponential service
time distribution. We show that the stability condition for BMAP/M/∞ queues is that
the logarithmic moment of batch sizes is finite. Furthermore, we extend this result to the
multiclass case.

Next, we investigate the stability for GIX /GI/∞ queues, which are batch arrival infinite-
server queues such that batches arrive according to a renewal process and service times are
independent and identically distributed with a general distribution. We show the stability
condition for GIX /GI/∞ queues. We also present a tractable sufficient condition for the
stability under a moderate condition on the tail of the service time distribution. Further-
more, in the case that the service time distribution has an exponential tail, we show that
the stability condition for the GIX /GI/∞ queue is that the logarithmic moment of the batch
size distribution is finite.

Markov-modulated queues change their parameters depending on a Markov chain.
This thesis analyzes a Markov-modulated batch arrival infinite-server queue with catas-
trophe mechanism. Catastrophes can imitate situations such that customers may or may
not leave the system without completing their service due to accidents.

iii



In general, it is very difficult to exactly analyze Markov-modulated queues, except
for some simple models. Thus, we consider the scaling model in a heavy traffic regime.
We then establish a central limit theorem for the stationary queue length of our queueing
model; that is, the centered and normalized stationary queue length distribution converges
in distribution to a normal distribution. Furthermore, we derive an approximation of the
stationary queue length distribution using the central limit theorem, and then confirm the
accuracy of this approximation through numerical experiments.

In today’s information society, it is a serious issue that energy consumption and trans-
mission delay in data centers increase. In recent year, variable-speed CPUs have become
popular because they can reduce energy consumption while maintaining acceptable trans-
mission delay for jobs. Furthermore, a simple idea for saving energy is to keep servers
powered off while the system is empty because idle CPUs still consume approximately
60% of their peak consumption while processing a job. We refer to such an idea for saving
energy as the on-off policy.

In order to grasp the dynamics of data centers with a variable-speed CPU and the on-
off policy, we study batch arrival single-server queues with variable service speed and the
on-off policy. In this thesis, the service speed is assumed to change in proportion to the
queue length. The queue length process of this single-server queue is identical to that of
an infinite-server queue. We derive the probability generating function of the stationary
queue length and the Laplace-Stieltjes transform of the stationary sojourn time distribu-
tion. In addition, we present some numerical results to show the energy-performance of
the queueing model analyzed herein.

Moeko Yajima
February 2020
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Abbreviations
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Chapter 1

Introduction

Infinite-server queues help us to understand the dynamics of customers in large-scale ser-
vice systems (facilities), such as theme parks, large commercial complexes, and large
parking lots. In this thesis, we investigate batch arrival infinite-server queues and related
models. In this chapter, Section 1.1 introduces the basics of queueing theory. Sections 1.2–
1.6 present the preliminary knowledge of our work. Finally, Section 1.7 shows the organi-
zation of this thesis.

1.1 Basics of queueing theory

Queueing theory is a mathematical approach to analyses of congestion in waiting lines
such as supermarkets, hospitals, road traffic systems, and computer systems. Queueing
models are used to imitate waiting lines in queueing theory. In general, queueing theory
is considered to be a division of operations research, because analysis results of queueing
models are often used to make decisions about resources to provide service.

Queueing theory originated from Erlang’s research at the beginning of the 20th cen-
tury, which treated a telephone traffic [24, 25]. Beside the telephone exchange, queueing
theory can deal waiting lines at various situation, e.g., a bank ATM, a supermarket cash
register, an airport, a hospital, a road traffic system, an information network system, and
a production system. Queueing theory is used to design and evaluate real-world systems
which can be imitated by a queueing model. Thus, analysis results of queueing models
can provide optimal design parameters for real-world systems.

The key elements of queueing models are customers, servers, and a waiting room
(see Figure 1.1). Customers arrive at the system and request service. If there are available
servers in the system, then an arriving customer occupies one of them and begins receiving
service, otherwise the customer waits for service at the waiting room. Customers leave the
system after service completion.

Kendall’s notation is the standard way to describe a queueing model by using the four
factors: A/B/n/m, where A refers to the arrival process, B refers to the service time distri-
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server

server

server

waiting roomarrival customer

arrival customer

customers in service

Figure 1.1: Standard queueing model

bution, n is the number of servers, and m is the capacity of the waiting room. If there is no
limit for the capacity of the waiting room, i.e., m = ∞, then Kendall’s notation A/B/n/∞
is usually shortened to A/B/n. Tables 1.1 and 1.2 show the symbols to describe the arrival
processes and the service time distributions, respectively, in Kendall’s notation. For exam-
ple, an M/GI/1 queue refers to a single-server queue such that customers arrive according
to a homogeneous Poisson process and service times of customers are independent and
identically distributed (i.i.d.) with a general distribution.

1.2 Infinite-server queues

Infinite-server queues have infinitely many servers. All customers who arrives at infinite-
server queues can begin to receive service immediately upon arrival without waiting. Many
researchers have studied stationary and/or time-dependent infinite-server queues (see, e.g.,
[14, 29, 34, 58, 60, 63], and the references therein).

Applications of infinite-server queues are difficult to be imagined because it is impos-
sible to prepare infinitely many servers in the real world. However, infinite-server queues

symbol description

M Poisson arrival process

MX batch Poisson arrival process

MAP Markovian arrival process

BMAP batch Markovian arrival process

GI renewal process

Table 1.1: Symbols to describe arrival pro-
cesses in Kendall’s notation

symbol description

M exponential distribution

D deterministic distribution

GI general distribution

PH phase-type distribution

Table 1.2: Symbols to describe service time
distributions in Kendall’s notation

2
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Figure 1.2: Application of an infinite-server queue to a large facility
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©ª

The entire item owned by customers
(returned in the future)

Reuse

Return

Purchase
(by a customer who returns it in the future)

Figure 1.3: Application of an infinite-server queue to a production system

help us to understand the dynamics of customers in large-scale service systems (facilities),
such as theme parks, large commercial complexes, and large parking lots. Furthermore,
infinite-server queues have many applications in various areas, such as inventory systems
[7], road traffic systems [68], and telecommunication systems [50]. We now present two
application examples of infinite-server queues.

We first show the application example to a large facility, e.g., an amusement park or
a shopping mall. Figure 1.2 illustrates that a customer arrives the large facility and then
stays there until its request are satisfied. Customers of the large facility as illustrated in
Figure 1.2 can be considered to customers of an infinite-server queue. The sojourn times
of customers in the large facility are equivalent to the service times of customers in the
infinite-server queue. Infinite-server queues help to understand the dynamics of customers
in large facilities.

Next, we show the application example to a production system [65]. Figure 1.3 illus-
trates a product system of items ©ª such that purchased items will be returned in the
future and parts ª included returned items can be reused. In such a situation, items ©ª

3
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Figure 1.4: Batch arrival queue

which are purchased but not yet returned can be considered to customers of an infinite-
server queue. The purchase of items in the production system is considered to the arrivals
of customers in the infinite-server queue. The return of items in the production system
are interpreted as the departures of customers in the infinite-server queue. Through the
infinite-server queue, we can grasp the dynamics of the production system as illustrated in
Figure 1.3. Furthermore, analyses of infinite-server queues help us to make the production
plan parts © and ª.

1.3 Batch arrival queues

In batch arrival queues, multiple customers arrive the system in groups (i.e., batches). The
number of customers belonging to a batch is referred to as the batch size. Batch sizes are
generally assumed to have randomness. In queueing theory, the term bulk is sometimes
used interchangeably with the term batch [20]. Bulk is often used in the application of
transportation systems, whereas batch is often used in communication applications. This
thesis uses the term batch.

Batch arrival processes are stochastic processes to imitate arrival times of batches and
their sizes. Batch Poisson arrival processes are often seen in queueing theory. In the batch
Poisson arrival process, batches arrive according to a Poisson process and batch sizes i.i.d.
with a general distribution on N. Batch Markovian arrival processes (BMAPs) [47] are
also widely used ,where we introduce BMAPs in Section 2.2.1. BMAPs include various
arrival processes as special cases, e.g., a batch Poisson arrival process, a phase-type (PH)
renewal process [41], and a Markovian arrival process (MAP) [48]. Note that the MAP is
a special case of BMAPs such that customers arrive one by one. Any simple point process
is the weak limit of a sequence of MAPs [3].
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1.4 Stability of queues

The stability of queues is defined as follows.

Definition 1.1 A queueing model is stable if its queue length process has a proper and
non-degenerate limiting distribution.

In addition, the stability condition is defined as follows.

Definition 1.2 The stability condition is the necessary and sufficient condition that a queue-
ing model is stable.

For simplicity, proper and non-degenerate limiting distributions are referred to as limiting
distributions in this thesis. If the queueing model is stable, the queue length (i.e., the
number of customers in the system) does not diverge infinitely under a long-time operation.
On the other hand, if the queueing model is not stable, customers cannot finish receiving
service in a finite time with a positive probability. Thus, the stability is an important
property not only in theory but also in applications. We introduce the background of the
study of the stability conditions in Sections 1.4.1 and 1.4.2.

1.4.1 Stability condition for finite multi-server queues

In this subsection, we introduce the background of the study of the stability condition for
finite multi-server queues. Loynes [45] derived the stability condition for finite multi-
server queues including batch arrival models. Loynes’ stability criteria is the well known
criteria in queueing theory.

We now consider a queueing model with c ∈ N servers and an infinite buffer space,
where its queue length process is denoted by {L(t); t ∈ R+}. Let denote τn as the inter-
arrival time between the nth and (n − 1)st batches for n ∈ Z. We define Xn as the size
of the nth arriving batch for n ∈ Z. We also define {Sn,m; 1 ≤ m ≤ Xn} as the service
times of customers belonging in the nth arriving batch for n ∈ Z. Loynes [45] presented
the stability condition for this finite multi-server queue as follows.

Theorem 1.1 (Stability condition for finite multi-server queues [45]) Let assume that
{τn;n ∈ Z} , {Xn;n ∈ Z}, and {Sn;n ∈ Z} are independent of each other and stationary.
Then, the queue length process {L(t)} has a limiting distribution if and only if

E[X1]

E[τ1]
· E[S1] < c. (1.1)

Theorem 1.1 gives a meaningful interpretation as follows. Finite multi-server queues are
stable if and only if the average number of customers arriving per unit time is smaller than
the average number of customers that the system can process per unit time.
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1.4.2 Stability condition for infinite-server queues

In this subsection, we consider the stability condition for infinite-server queues. The sta-
bility of infinite-server queues means that the number of servers used simultaneously is
finite with probability one. Assuming that multiple customers do not arrive at the same
time, infinite-server queues are stable if and only if the mean inter-arrival time and the
mean service time are finite [32]. On the other hand, in the case that multiple customers
are allowed to arrive at the same time (i.e., batch arrival case), a batch-size distribution has
significant effects on the stability condition.

Batch arrival infinite-server queues are not always stable even if the mean inter-arrival
time and the mean service time are finite. However, few previous studies paid little at-
tention to the stability condition for their models. Many researchers have studied batch
arrival infinite-server queues at the steady state, assuming sufficient conditions for the sta-
bility (e.g., the first two moments of the batch-size distribution are finite) or the existence
of a stationary queue length distribution. Some examples of such previous studies are
presented in Section 2.1.

There slightly exist previous studies which derived the stability condition for batch
arrival infinite-server queues. Actually, Pakes and Kaplan [56] obtained the stability con-
dition of GIX /GI/∞ queues, which are infinite-server queues such that batches arrive ac-
cording to a renewal process, batch sizes are i.i.d. with a general distribution on N, and
service times are i.i.d. with a general distribution on R+. In [56], the stability condition of
GIX /GI/∞ queues can be obtained as a special case of a necessary and sufficient condition
for the existence of a limiting distribution of the Bellman-Harris process. However, the
stability condition derived in [56] does not appear to be well known, because most of the
previous studies [10, 15, 28, 29, 35, 42, 44, 43, 51] do not cite the results in [56] and also
do not mention the stability conditions for their own queueing models. Note that the gen-
eral stability condition of GIX /GI/∞ queues is not explicitly presented in [56]. However,
therein, the specific stability conditions of GI/GI/∞ queues are explicitly presented for
two cases: (i) the case in which the tail of the service time distribution is bounded (from
above and below) by two Weibull-like tails and (ii) the case in which the tail of the service
time distribution is regularly varying.

Cong [17] derived the stability condition for multiclass infinite-server queues with
batch Poisson arrivals and class-dependent exponential service times, which is referred to
as the MX

K /MK /∞ queue. He showed that an MX
K /MK /∞ queue is stable if and only if the

logarithmic moment of the batch-size distribution is finite.

Remark 1.1 For the case in which the tail of the service time distribution is bounded (from
above and below) by two Weibull-like tails, Pakes and Kaplan [56] presented an incorrect
stability condition of GIX /GI/∞ queues. Theorem 3 of [56] states that a GIX /GI/∞ queue
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is stable if and only if

E[(logX)σ] <∞, for some σ > 0, (1.2)

provided that there exist some x0 > 0 and 0 < b < a <∞ such that

e−axσ

< 1−H(x) < e−bxσ

, for all x > x0.

However, (1.2) would not be correct and should be replaced by the following:

E[(logX)1/σ] <∞, for some σ > 0,

which can be easily proved using Lemma 1 of [56].

1.5 Markov-modulated queues

Markov-modulated queues change their parameters (e.g., arrival rates and service rates)
depending on a Markov chain. Such a Markov chain is referred to as a background pro-
cess. Markov-modulated queues have attracted a great deal of attention, in addition to
the special cases of queueing models with constant parameters. Owing to dependence of
the parameters on the background process, Markov-modulated queues can imitate more
complex situation than queueing models with constant parameters. For example, in a
transportation system, the background process may alternate between the accident state
and the normal state. Under the accident state, the speed of cars is slower than that in
the normal state [23]. In wireless communication, the transmission speed of a wireless
channel may change between good and bad conditions [2].

In general, it is very difficult to exactly analyze Markov-modulated queues, except for
some very simple models. Thus, some researchers have focused on their asymptotic model
in some specific regimes.

1.6 Energy problem in data centers and queueing theory

In today’s information society, it is a serious issue that energy consumption and transmis-
sion delay in data centers increase. In queueing theory, there exist many previous studies
inspired by these problems. Analysis of queueing models can give today’s data centers
system parameters such as decreasing energy consumption and transmission delay. The
important feature of today’s data centers is that they are designed by a huge number of
servers, which has become remarkable in recent years with the spread of cloud comput-
ing. It is also important that the arrivals of jobs are busty (see, e.g., [70]). Furthermore,
the behavior of data centers tends to depend on the external environment.

It is desirable that data centers operate under high energy efficiency; that is, lower
energy consumption and shorter transmission delay are realized simultaneously. However,
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the higher the processing speed is, the higher the energy consumption per unit time is.
Thus, it is difficult to achieve high energy efficiency.

1.6.1 Variable service speed

In recent years, variable-speed CPUs have become popular in order to reduce energy con-
sumption while maintaining an acceptable transmission delay for jobs. Variable-speed
CPUs can be automatically adjusted in terms of speed according to the workload or the
number of jobs in the system by frequency scaling [59], dynamic voltage and frequency
scaling techniques [52, 62], or other techniques. Working at high speed, the CPU reduces
the transmission delay, but consumes more energy.

Motivated by the above, in queueing theory, many researchers have studied queueing
models with variable service speed [4, 40, 54, 64]. For example, Lu et al. [46] considered
a single-server queue such that customers arrive according to a Poisson process, service
requirements of customers are i.i.d. with an exponential distribution, and the service speed
changes in proportion to the queue length. They derived the stationary queue length dis-
tribution in the form of an infinite series. Adan and D’Auria [1] considered a single-server
queue such that customers arrive according to a Poisson process, service requirements of
customers are i.i.d. with an exponential distribution, and the service speed is controlled by
thresholds. They derived the stationary queue length distribution and the Laplace–Stieltjes
transform (LST) of the sojourn time distribution in an explicit form. Takine [64] studied
a multiclass single-server queue in a Markovian random environment which govern the
arrivals of customers and the service speed. He constructed a new queueing model with a
constant service rate by means of time scale and then derived some quantities of the origi-
nal model (variable service speed) using that of the new model (constant service speed).

1.6.2 On-off policy

CPUs still consume approximately 60% of their peak consumption during processing a
job even while not processing jobs [5]. Thus, a simple idea for saving energy is to keep
servers powered off while the system is empty. The server is turned off immediately after
the system becomes empty, and the OFF server is reactivated immediately after a new
customer arrives at the empty system. We refer to such an idea for saving energy as the
on-off policy. However, a setup time is needed to reactivate the OFF server. Servers cannot
process jobs during setup, but consume energy. The on-off policy is not always effective
in decreasing energy consumption and transmission delay.

Some researchers have studied queueing models with the on-off policy (also referred
to as queueing models with the setup time). For example, Baba [4] considered an MX /M/1
queue with the exponential setup time. He derived the probability generating function
(PGF) of the stationary queue length and the LST of the stationary sojourn time distribu-
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Figure 1.5: Queueing model with the on-off policy

tion. Phung-Duc [57] considered an M/M/c queue with the exponential setup time. He
derived the closed form expression for the stationary queue length distribution by a gener-
ating function approach. Choudhury [16] studied an MX /G/1 queue with the on-off policy
in which the setup times follow a general distribution. He derived the PGF of the stationary
queue length by using that of an ordinary MX /G/1 queue.

Some researchers have also studied queueing models with the N policy, which is de-
fined as follows. The server is turned off immediately after the system becomes empty.
The OFF server is not turned on until N jobs are accumulated in the system even if a
new customer arrives. The OFF server is turned on immediately after N customers are
accumulated, but the setup time is needed to start providing service. The N policy can
avoid frequent setups compared to the on-off policy. Hur and Paik [30] considered an
M/G/1 queue with the N policy. They derived the stationary queue length distribution and
the LST of the stationary waiting time. They investigated the optimal N reducing a cost
function.

1.7 Organization of this thesis

This thesis studies infinite-server queues and related models. Chapter 2 investigates the
stability for batch arrival infinite-server queues. Next, Chapter 3 considers a Markov-
modulated batch arrival infinite-server queue such that customers may or may not leave
the system without completing service due to accidents. Chapter 4 analyzes a batch arrival
single-server queue such that the service speed changes in proportion to the queue length.
Finally, Chapter 5 concludes this thesis and presents directions for future research. The
contents of this thesis have been published as follows. Chapter 2 is based primarily on
[71, 74], Chapter 3 is based primarily on [73], and Chapter 4 is based primarily on [72].
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1.7.1 Chapter 2: Stability Condition for Batch Arrival Infinite-Server
Queues

Chapter 2 studies the stability for batch arrival infinite-server queues. Our purpose is
to obtain tractable stability conditions for batch arrival infinite-server queues. We first
consider the stability for a BMAP/M/∞ queue, which is an infinite-server queue with a
batch Markovian arrival process (BMAP) and an exponential service time distribution. We
show that the stability condition of BMAP/M/∞ queues is that the logarithmic moment
of the batch-size distribution is finite. In addition, using the stochastic ordering technique,
we extend this result to the multiclass case.

Next, we study the stability for a GIX /GI/∞ queue, which is an infinite-server queue
such that batches arrive according to a renewal process and service times are i.i.d. with a
general distribution. We show the stability condition of GIX /GI/∞ queues using a different
approach from [56]. Furthermore, in the case that the service time distribution has an
exponential tail, we show that the GIX /GI/∞ queue is stable if and only if the logarithmic
moment of the batch-size distribution is finite.

1.7.2 Chapter 3: Central Limit Theorem for a Markov-Modulated
Infinite-Server Queue with Binomial Catastrophes

Chapter 3 analyzes a Markov-modulated batch arrival infinite-server queue with catastro-
phe mechanism. Catastrophes can imitate situations such that customers may or may not
leave the system without completing service due to accidents.

We establish a central limit theorem for the stationary queue length under a heavy
traffic regime. Furthermore, we derive an approximation for the stationary queue length
distribution using the central limit theorem, and then confirm the accuracy of this approx-
imation through numerical experiments. In addition, we present the stability condition for
this queueing model.

1.7.3 Chapter 4: Batch Arrival Single-Server Queue with Variable
Service Speed

Chapter 4 studies a batch arrival single-server queue such that the service speed changes
in proportion to the queue length. Note that the queue length process of this single-server
queue is identical to that of an infinite-server queue because the service speed changes in
proportion to the queue length.

We first present the stability condition of our queueing model. Next, we derive the
probability generating function of the stationary queue length of our queueing model. We
obtain the Laplace-Stieltjes transform of the stationary sojourn time distribution. Finally,
we present numerical results to show the energy performance of our queueing model.
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Chapter 2

Stability Condition for Batch Arrival
Infinite-Server Queues

2.1 Introduction

Infinite-server queues have many applications in various areas, such as inventory sys-
tems [7], road traffic systems [68], and telecommunication systems [50]. Thus, many
researchers have studied stationary and/or time-dependent infinite-server queues [14, 29,
34, 58, 60, 63]. However, almost all the previous works paid little attention to the stability
condition for infinite-server queues. The stability condition is the necessary and sufficient
condition that the queue length process has a proper and non-degenerate (i.e., the total
probability on finite positive values is equal to one) limiting distribution. For simplicity,
proper and non-degenerate limiting distributions are just called limiting distributions in
this thesis.

Almost all the previous works have studied stationary infinite-server queues with batch
arrivals, assuming sufficient conditions for stability (e.g., the first two moments of the
batch-size distribution are finite) or the existence of the stationary queue length distribu-
tion. Holman et al. [29] derived some formulas for the mean and variance of the stationary
queue length distribution in the MX /G/∞ queue, under the assumption that the first two
moments of the batch-size distribution are finite. Keilson and Seidmann [34] assumed
that the MX /G/∞ queue is stable and then proved that the stationary queue length dis-
tribution is a compound Poisson distribution under an additional condition. Breuer [12]
derived the necessary and sufficient condition that the mean stationary queue length in the
BMAP/G/∞ queue is finite.

As for the multiclass case, Liu and Templeton [44] considered an infinite-server queue
(referred to as the GRXn/Gn/∞ queue therein), where arrival times and types of customers
are governed by a Markov renewal process and the batch sizes of customers depend on
their types. For the GRXn/Gn/∞ queue, they derived the probability generating function
of the stationary queue length distribution under the assumption that all the moments of the
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batch-size distribution are finite. Masuyama and Takine [51] derived explicit and numeri-
cally feasible formulas for the stationary joint queue length moments in an infinite-server
queue with a multiclass batch Markovian arrival process and class-dependent phase-type
service times, assuming that the stationary joint queue length distribution exists.

Actually, Pakes and Kaplan [56] obtained the stability condition of GIX /GI/∞ queues
as a special case of a necessary and sufficient condition for the existence of a limiting
distribution of the Bellman-Harris process. As far as we know, this fact does not seem
well known because most of the previous studies [10, 15, 28, 29, 35, 42, 43, 44, 51] do
not cite the results in [56] and, in the first place, they do not also mention the stability
conditions of their own queueing models. We now note that the general stability condition
of GIX /GI/∞ queues is not explicitly presented in [56] (see to Remark 1.1). However,
therein, the specific stability conditions of GIX /GI/∞ queues are explicitly presented in
the two cases: (i) the tail of the service time distribution is bounded (from above and
below) by two Weibull-like tails; and (ii) is regularly varying.

Furthermore, Cong [17] derived the stability condition for multiclass infinite-server
queues with batch Poisson arrivals and class-dependent exponential service times, which
is referred to as the MX

K /MK /∞ queue therein. He showed that an MX
K /MK /∞ queues is

stable if and only if the logarithmic moment of the batch-size distribution is finite. For
convenience, we refer to this specific stability condition as the the logarithmic batch size
moment (LBSM) condition in this chapter.

The main purpose of this chapter is to present a stability condition for general infinite-
server queue with batch arrivals. We first consider the stability for BMAP/M/∞ queues,
which is infinite-server queues with a batch Markovian arrival process (BMAP) and an
exponential service time distribution. We show that the LBSM condition is the stabil-
ity condition of BMAP/M/∞ queues. Using Foster’s theorem (see, e.g., [11, Chapter 5,
Theorem 1.1]), we prove that the LBSM condition is sufficient for the stability of the
BMAP/M/∞ queue. We also show the necessity of the LBSM condition for stability in a
similar way to Cong [17]. In addition, combining these results with the stochastic order-
ing technique, we prove that the LBSM condition is the stability condition of a multiclass
BMAP/M/∞ queue, where customers arrive according to a multiclass batch Markovian
arrival process (MBMAP) and service times of customers are independently distributed
with class-dependent exponential distributions.

Next, we consider the stability for GIX /GI/∞ queues, which is infinite-server queues
such that batches arrive according to a renewal process and service times of customers are
independent and identically distributed (i.i.d.) with a general distribution. We present a
stability condition of GIX /GI/∞ queues in the different way than [56]. We also show a
tractable sufficient condition for the stability of GIX /GI/∞ queues under a moderate con-
dition on the tail of the service time distribution. Furthermore, we prove that the LBSM
condition is the stability condition of the GIX /GI/∞ queues whose service time distribu-
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tions have exponential tails.

The reminder of this chapter is organized as follows. Section 2.2 derives the stabil-
ity condition for the (single-class) BMAP/M/∞ queue. In addition, Section 2.3 extends
the result in Section 2.2 to the multiclass case. Next, Section 2.4 studies the stability of
GIX /GI/∞ queues. Finally, Section 2.5 is devoted to concluding remarks and future work.

2.2 Stability condition for BMAP/M/∞ queues

This section considers a BMAP/M/∞ queue with a batch Markovian arrival process and an
exponential service time distribution. We prove that the stability condition of BMAP/M/∞
queues are the LBSM condition; that is, the expectation of the logarithm of the batch-size
distribution is finite.

2.2.1 Model description

We describe the BMAP/M/∞ queue. This queueing model has infinitely many servers.
Customers arrive according to a batch Markovian arrival process (BMAP) [47]. The
BMAP includes various arrival processes as special cases, e.g., a batch Poisson arrival
process, a Phase-type (PH) renewal process [41], a Markovian arrival process (MAP) [48].
Note here that the MAP is a special case of BMAPs such that arrivals occur one by one. It
is known [3] that any simple point process is the weak limit of a sequence of MAPs.

The BMAP is defined as follows. The BMAP is controlled by an irreducible time-
homogeneous Markov chain {J(t); t ∈ R+} in continuous time with finite state space
D := {1, 2, . . . , d}, which is called the background Markov chain. Let N(t), t ∈ R+,
denote the total number of customers arriving from the BMAP during the time interval
(0, t], where N(0) = 0. We assume that, for k ∈ Z+ and i, j ∈ D,

P(N(t+∆t)−N(t) = k, J(t+∆t) = j | J(t) = i)

=

 1 +Di,i(0)∆t+ o(∆t), k = 0, i = j ∈ D,

Di,j(k)∆t+ o(∆t), otherwise.

Note here that D(k) := (Di,j(k))i,j∈D, k ∈ N, is a nonnegative matrix and that D(0) :=

(Di,j(0))i,j∈D is a diagonally dominant matrix with negative diagonal elements and non-
negative off-diagonal elements because of the irreducibility of the background Markov
chain J(t). Note also that D :=

∑∞
k=0D(k) is the infinitesimal generator of the back-

ground Markov chain {J(t)}; that is,

De =
∞∑
k=0

D(k)e = 0. (2.1)
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To avoid triviality, we assume that
∞∑
k=1

D(k)e ̸= 0. (2.2)

It is obvious that the joint stochastic process {(N(t), J(t)); t ∈ R+} is a continuous-
time Markov chain with state space Z+ × D, whose infinitesimal generator is given by



L(0) L(1) L(2) L(3) · · ·
L(0) D(0) D(1) D(2) D(3) · · ·
L(1) O D(0) D(1) D(2) · · ·
L(2) O O D(0) D(1) · · ·
L(3) O O O D(0) · · ·

...
...

...
...

... . . .

,

where L(k) = {k}×D for k ∈ Z+. As a result, the BMAP is characterized by {D(k); k ∈
Z+} and thus is referred to as BMAP {D(k); k ∈ Z+}.

Each arriving customer occupies one of the servers immediately after its arrival, and
leaves the system immediately after its service completion. The service times of cus-
tomers are i.i.d. with the exponential distribution having mean 1/µ ∈ (0,∞). Therefore,
customers behave independently of each other once they enter the system.

Let L(t), t ∈ R+, denote the number of customers in the system at time t. It then fol-
lows from the Markov property of the BMAP and exponential service times that the joint
stochastic process {(L(t), J(t)); t ∈ R+} is a continuous-time Markov chain with state
space F := Z+ × D. Let Q := (q(k, i; ℓ, j))(k,i),(ℓ,j)∈F denote the infinitesimal generator
of the Markov chain {(L(t), J(t))}. We then have

Q =



D(0) D(1) D(2) D(3) · · ·

µI Λ1(0) D(1) D(2) · · ·

O 2µI Λ2(0) D(1) · · ·

O O 3µI Λ3(0) · · ·

O O O 4µI . . .
...

...
... . . . . . .


, (2.3)

where Λk(0) := −kµI +D(0) for k ∈ N.

Remark 2.1 From (2.2), (2.3) and the irreducibility of the background Markov chain
{J(t)}, the Markov chain {(L(t), J(t))} is irreducible. Therefore, {(L(t), J(t))} has a
limiting distribution (i.e., has a stationary distribution) if and only if it is positive recurrent
(i.e., ergodic) [11, Chapter 8]. Furthermore, if there exists a stationary distribution of a n
irreducible Markov chain, then it is unique and positive.
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2.2.2 Stability condition

The following theorem shows the stability condition of BMAP/M/∞ queues.

Theorem 2.1 (Stability condition of BMAP/M/∞ queues) {(L(t), J(t)); t ∈ R+} is
ergodic if and only if there exists some finite constant C > 0 such that

∞∑
k=1

log(k + e)D(k)e ≤ Ce. (2.4)

The inequality (2.4) implies that the time average of the logarithm of the number of
customers arriving in a batch is finite; that is, Theorem 2.1 shows that the LBSM condition
(2.4) is the stability condition of the BMAP/M/∞ queue. In Sections 2.2.3 and 2.2.4, we
separately prove the sufficiency and necessity of the LBSM condition (2.4) for the stability
of the BMAP/M/∞ queue.

2.2.3 Proof for the sufficiency

For the proof for the sufficiency of Theorem 2.1, we use the following Lemma 2.1, which
is Foster’s theorem for continuous-time Markov chains.

Lemma 2.1 [26, Chapter 2, Statement 8] Let consider a time-homogeneous Markov
chain {X(t)} with countable state space S and infinitesimal generator Q := (qs,p)s,p∈S
such that Qe = 0. If there exists some function φ : S → R+ such that:

1. ψ(s) :=
∑

p∈S qs,pφ(p) <∞ for all s ∈ S;

2. for some ε > 0, ψ(s) ≤ −ε for all s ∈ S except perhaps a finite number of states;

then the Markov chain {X(t)} is regular and ergodic.

In order to apply Lemma 2.1 to the Markov chain {(L(t), J(t))}, we present the fol-
lowing Lemma 2.2. It is immediate from Lemmas 2.1 and 2.2 that the LBSM condition
(2.4) is a sufficient condition for the ergodicity of the irreducible generator Q.

Lemma 2.2 For (k, i), (ℓ, j) ∈ F, let υ(k, i) and 1K(ℓ, j) denote

υ(k, i) = log(k + e), k ∈ Z+, i ∈ D,

1K(ℓ, j) =

 1, ℓ = 0, 1, . . . , K, j ∈ D,

0, ℓ = K + 1, K + 2, . . . , j ∈ D,

respectively. If (2.4) holds, then there exist some δ ∈ (0,∞) and K ∈ Z+ such that

Qv ≤ −δe+ (δ + C)1K , (2.5)

where v = (υ(k, i))(k,i)∈F and 1K = (1K(ℓ, j))(ℓ,i)∈F.
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Proof. We define y(k), k ∈ Z+, as

y(k) =
∞∑
ℓ=0

Q(k; ℓ)v(ℓ), k ∈ Z+,

where Q(k; ℓ) = (q(k, i; ℓ, j))i,j∈D for k, ℓ ∈ Z+ and

v(k) = (υ(k, i))i∈D = log(k + e)e, k ∈ Z+.

We then have

y(0) =
∞∑
ℓ=0

log(ℓ+ e)D(ℓ)e

= D(0)e+
∞∑
ℓ=1

log(ℓ+ e)D(ℓ)e ≤ Ce, (2.6)

where the last inequality follows from (2.4) and D(0)e ≤ 0. We also have, for k ∈ N,

y(k) = kµ[v(k − 1)− v(k)] +
∞∑
ℓ=0

D(ℓ)v(ℓ+ k)

= kµ log
(
1− 1

k + e

)
e+

∞∑
ℓ=0

D(ℓ) log(ℓ+ k + e)e, k ∈ N. (2.7)

Note here that

log(ℓ+ k + e) = log(k + e) + log
(
1 +

ℓ

k + e

)
, k, ℓ ∈ Z+.

Using this equation and (2.1), we obtain

∞∑
ℓ=0

log(ℓ+ k + e)D(ℓ)e = log(k + e)
∞∑
ℓ=0

D(ℓ)e+
∞∑
ℓ=0

log
(
1 +

ℓ

k + e

)
D(ℓ)e

=
∞∑
ℓ=1

log
(
1 +

ℓ

k + e

)
D(ℓ)e, k ∈ N.

It follows from this equation and (2.7) that

y(k) = kµ log
(
1− 1

k + e

)
e+

∞∑
ℓ=1

log
(
1 +

ℓ

k + e

)
D(ℓ)e, k ∈ N. (2.8)

We estimate the two terms in the right hand side of (2.8). It is easy to see that

lim
k→∞

k log
(
1− 1

k + e

)
= −1,

which shows that there exists some δ > 0 such that

kµ log
(
1− 1

k + e

)
≤ −2δ, k ∈ N. (2.9)
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It also follows from (2.4) that, for all k ∈ N,

∞∑
ℓ=1

log
(
1 +

ℓ

k + e

)
D(ℓ)e ≤

∞∑
ℓ=1

log(ℓ+ e)D(ℓ)e ≤ Ce. (2.10)

Applying (2.9) and (2.10) to (2.8), we obtain

y(k) ≤ −2δe+ Ce, k ∈ N. (2.11)

In addition, by dominated convergence theorem, we have

lim
k→∞

∞∑
ℓ=1

log
(
1 +

ℓ

k + e

)
D(ℓ)e = 0,

and thus there exists some K := Kδ ∈ Z+ such that, for all k = K + 1, K + 2, . . . ,

∞∑
ℓ=1

log
(
1 +

ℓ

k + e

)
D(ℓ)e ≤ δe.

Combining this inequality, (2.8) and (2.9), we obtain

y(k) ≤ −δe, k = K + 1, K + 2, . . . . (2.12)

Consequently, (2.5) follows from (2.6), (2.11) and (2.12). 2

2.2.4 Proof for the necessity

The following lemma shows that the LBSM condition (2.4) holds if Q is ergodic; that is,
Q has the unique stationary probability vector.

Lemma 2.3 If Q has the unique stationary probability vector π = (π(k, i))(k,i)∈F, then
(2.4) holds for some finite constant C > 0.

Proof. Let π(k) = (π(k, i))i∈D for k ∈ Z+, which is positive (see to Remark 2.1). It
follows from the global balance equation πQ = 0 that

kµπ(k) = (k + 1)µπ(k + 1) +
k∑

ℓ=0

π(k − ℓ)D(ℓ), k ∈ Z+.

Multiplying the above equation by zk and taking the sum over k ∈ Z+, we obtain, for
|z| ≤ 1,

µ
∞∑
k=1

kzkπ(k) = µ
∞∑
k=0

(k + 1)zkπ(k + 1) +
∞∑
k=0

k∑
ℓ=0

zkπ(k − ℓ)D(ℓ),
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which leads to

µz
d

dz
π̂(z) = µ

d

dz
π̂(z) + π̂(z)

∞∑
k=0

zkD(k), (2.13)

where π̂(z) =
∑∞

k=0 z
kπ(k). Postmultiplying both sides of (2.13) by e and rearranging

the terms of the resulting equation, we have, for |z| ≤ 1,

µ(1− z)
d

dz
π̂(z)e = −π̂(z)

∞∑
k=0

zkD(k)e

= −π̂(z)
∞∑
k=0

D(k)e+ π̂(z)
∞∑
k=1

(1− zk)D(k)e

= π̂(z)
∞∑
k=1

(1− zk)D(k)e, (2.14)

where we use (2.1) in the third equality. Furthermore, it follows from (2.14) that

µ
d

dz
π̂(z)e = π̂(z)

∞∑
k=1

1− zk

1− z
D(k)e.

Integrating both sides of this equation over z ∈ (0, 1) and using π̂(z) ≥ π̂(0) = π(0), we
have

µ{π̂(1)− π(0)}e =
∞∑
k=1

∫ 1

0

1− zk

1− z
π̂(z)dz ·D(k)e

≥ π(0)
∞∑
k=1

D(k)e

∫ 1

0

1− zk

1− z
dz. (2.15)

Note here that

π̂(1)e = 1,∫ 1

0

1− zk

1− z
dz =

k∑
ℓ=1

1

ℓ
≥ log(k + 1) ≥ log(k + e)

log 2

log(1 + e)
, k ∈ N.

Substituting these into (2.15), we obtain

π(0)
∞∑
k=1

log(k + e)D(k)e ≤ µ log(1 + e)

log 2
{1− π(0)e}. (2.16)

Since π(0) > 0 and 0 < π(0)e < 1, the inequality (2.16) completes the proof. 2

2.3 Extension to the multiclass case of BMAP/M/∞ queues

In this section, we extend the result in Section 2.2 to the multiclass case; that is, we present
the stability condition of an infinite-server queue with a multiclass batch Markovian arrival
process and class-dependent exponential service times.
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2.3.1 Model description

In this subsection, we describe the multiclass model of BMAP/M/∞ queues. This queue-
ing model has infinitely many servers where customers arrive according to a multiclass
batch Markovian arrival process (MBMAP). We assume that arriving customers are clas-
sified into K classes and the set of class indices is denoted by K := {1, 2, . . . , K}. For
each ν ∈ K, the service times of class ν customers are i.i.d. with the exponential distribu-
tion having mean 1/µν ∈ (0,∞). We denote the multiclass infinite-server queue described
above by MBMAPK /MK /∞, where the subscript “K” represents the number of classes.

The MBMAP is an extension of the BMAP described in Section 2.2.1. As in Sec-
tion 2.2.1, the MBMAP has the background Markov chain {J(t); t ∈ R+} with state
space D and irreducible infinitesimal generator D. For ν ∈ K, let Nν(t), t ∈ R+, denote
the total number of class ν customers who arrive from the MBMAP during the time inter-
val (0, t], where Nν(0) = 0. Let N(t) :=

∑
ν∈KNν(t) for t ∈ R+. We then assume that,

for i, j ∈ D,

P(N(t+∆t)−N(t) = 0, J(t+∆t) = j | J(t) = i)

=

 1 +Di,i(0)∆t+ o(∆t), i = j ∈ D,

Di,j(0)∆t+ o(∆t), otherwise,

where D(0) := (Di,j(0))i,j∈D is a diagonally dominant matrix with negative diagonal and
nonnegative off-diagonal elements. We also assume that, for ν ∈ K, k ∈ N, and i, j ∈ D,

P(Nν(t+∆t)−Nν(t) = k, J(t+∆t) = j | J(t) = i)

= Dν,i,j(k)∆t+ o(∆t), (2.17)

where Dν(k) := (Dν,i,j(k))i,j∈D, ν ∈ K, k ∈ N, is a nonnegative matrix such that D(0)+∑
ν∈K

∑∞
k=1 Dν(k) is equal to the infinitesimal generator of the background Markov chain

{J(t)}; that is,

D(0) +
∑
ν∈K

∞∑
k=1

Dν(k) = D. (2.18)

It follows from (2.17) and (2.18) that the classes of the customers in a batch are same and
thus their service times are independently distributed with the same exponential distribu-
tion.

To avoid triviality, we assume that

∞∑
k=1

Dν(k)e ̸= 0, for all ν ∈ K.

As a result, the MBMAP is characterized by {D(0),Dν(k); ν ∈ K, k ∈ N}. We denote
the MBMAP described above by MBMAP {D(0),Dν(k); ν ∈ K, k ∈ N}.
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2.3.2 Stability condition

Let L(t) = (L1(t), L2(t), . . . , LK(t)) for t ∈ R+, where Lν(t) denotes the number of
class ν customers in the system at time t. It then follows that the joint stochastic process
{(L(t), J(t)); t ∈ R+} is an irreducible Markov chain with state space ZK

+ × D. Thus,
the following theorem means that the stability condition of MBMAPK /MK /∞ queues is
the LBSM condition, which is the same as the single-class model; that is, BMAP/M/∞
queues.

Theorem 2.2 (Stability condition of MBMAPK /MK /∞ queues) The Markov chain
{(L(t), J(t))} is ergodic if and only if there exists some finite constant C > 0 such that

∞∑
k=1

log(k + e)D∗(k)e ≤ Ce, (2.19)

where D∗(k) =
∑

ν∈K Dν(k) for k ∈ N.

Remark 2.2 Theorem 2.2 is a generalization of [17, Lemma 2], which presents a nec-
essary and sufficient condition for the stability of a multiclass infinite-server queue with
batch Poisson arrivals and class-dependent exponential service times.

Proof of Theorem 2.2. Besides the original MBMAPK /MK /∞ queue, we consider two
MBMAPK /MK /∞ queues, denoted by Queues 1 and 2, which are fed by the same arrival
process as that of the original queue; that is, fed by MBMAP {D(0),Dν(k); ν ∈ K, k ∈
N}. In Queue 1 (resp. 2), all the service times are i.i.d. with the exponential distribution
having mean 1/µmin (resp. 1/µmax), where

µmin = min
ν∈K

µν , µmax = max
ν∈K

µν .

Clearly, Queues 1 and 2 can be considered single-class BMAP/M/∞ queues when the class
of customers are ignored, where the arrival process is reduced to BMAP {D(0),D∗(k); k ∈
N}.

Let |L(t)| =
∑

ν∈K Lν(t) for t ∈ R+, which denotes the total number of customers in
the system of the original MBMAPK /MK /∞ queue at time t. Let L(1)(t) (resp. L(2)(t)),
t ∈ R+, denote the total number of customers in the system of Queue 1 (resp. 2) at time
t. From the assumption of Queues 1 and 2, we can construct the three joint processes
{(L(t), J(t)); t ∈ R+}, {(L(1)(t), J(t)); t ∈ R+}, {(L(2)(t), J(t)); t ∈ R+} in a common
probability space such that the following pathwise ordered relation holds:

L(2)(t) ≤ |L(t)| ≤ L(1)(t), for all t ∈ R+, (2.20)

which is proved in Appendix A.
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It should be noted that {(L(1)(t), J(t))} and {(L(2)(t), J(t))} are the Markov chains
of the same type as {(L(t), J(t))} discussed in the previous section. Thus, it follows from
Theorem 2.1 that (2.19) holds if and only if {(L(1)(t), J(t))} and {(L(2)(t), J(t))} are
ergodic.

We now suppose that {(L(1)(t), J(t))} is ergodic. It then follows from (2.20) that
{L(1)(t)} and thus {|L(t)|} take the value of zero infinitely many times with probability
one and the mean recurrence time to state 0 is finite (see, e.g., [11, Chapter 8, Defini-
tions 5.1, 5.2 and 5.4]). Therefore, {(L(t), J(t))} is ergodic.

On the other hand, we suppose that {(L(2)(t), J(t))} is not ergodic, i.e., is transient or
null-recurrent. Note that if {(L(2)(t), J(t))} is transient then {L(2)(t)} and thus {|L(t)|}
take the value of zero, at most, finitely many times with some positive probability. Note
also that if {(L(2)(t), J(t))} is null-recurrent then the mean recurrence times to state 0 of
{L(2)(t)} and thus {|L(t)|} are infinite. Therefore, in both cases, {(L(t), J(t))} is not er-
godic. As a result, the above argument shows that (2.19) holds if and only if {(L(t), J(t))}
is ergodic. 2

2.4 Stability analysis for GIX /GI/∞ queues

This section studies the stability of GIX /GI/∞ queue. As mention in Section 2.1, Pakes
and Kaplan [56] derived the stability condition of GIX /GI/∞ queues. However, the sta-
bility condition presented in [56] is not explicitly and not physically interpretable, and
then do not be cited by most of previous studies. In this section, we present the stability
condition of GIX /GI/∞ queues in the different way than [56]. We also show a tractable
sufficient condition for the stability under a moderate condition on the tail of the service
time distribution. Furthermore, supposing that the service time distribution has an expo-
nential tail, we prove that the LBSM condition is the stability condition of the GIX /GI/∞
queues.

2.4.1 Model description

In this subsection, we describe the GIX /GI/∞ queue and define some notations. Let Tn,
n ∈ N, denote the nth arrival time, where

T0 := 0 < T1 < T2 < · · · .

Let τn := Tn−Tn−1 for n ∈ N, which is the inter-arrival time between the nth and (n−1)st
arrivals. We then assume that {τn;n ∈ N} is i.i.d. random variables with distribution
function G on R+; that is,

P(τn ≤ x) = G(x), x ∈ R+.
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Moreover, let Xn, n ∈ N, denote the number of customers arriving in a batch at time Tn,
where the Xn are referred to as batch sizes. We assume that {Xn;n ∈ N} is independent
of {τn;n ∈ N} and i.i.d. with distribution (bk; k ∈ N); that is,

P(Xn = k) = bk, k ∈ N.

We also assume that each arriving customer immediately occupies one server and its ser-
vice starts, and that the service times of customers are i.i.d. with distribution function H
on R+ independently of {τn} and {Xn}. For later convenience, let Sn,1, Sn,2, . . . , Sn,Xn ,
n ∈ N, denote the service times of the customers arriving in a batch at time Tn. By
definition, for k ∈ {1, 2, . . . , Xn},

P(Sn,k ≤ x) = H(x), x ∈ R+.

We define {L(t); t ∈ R+} as the queue length process of the GIX /GI/∞ queue de-
scribed above. We then have

L(t) =
∞∑
n=1

Xn∑
m=1

I (0 ≤ t− Tn < Sn,m) , t ∈ R+. (2.21)

Let τ and X denote generic random variables for {τn} and {Xn}, respectively. Let
{S, S1, S2, S3, . . . } denote a sequence of i.i.d. random variables with distribution H . In
Section 2.4, we assume the following.

Condition 1 The inter-arrival time distribution G is non-lattice and has the finite mean;
that is, E[τ ] <∞.

2.4.2 Stability condition

We derive the stability condition of GIX /GI/∞ queues as follows.

Theorem 2.3 (Stability condition of GIX /GI/∞ queues) Under Condition 1, the queue
length process {L(t)} has a limiting distribution if and only if

E

[
max

m=1,2,...,X
Sm

]
<∞. (2.22)

Remark 2.3 Toyoizumi [66] showed that the stability condition of MX /GI/∞ queues is
(2.22).

Remark 2.4 Theorem 1 of [56] presented a necessary and sufficient condition for the
existence of the limiting distribution of the Bellman-Harris process. By setting p0 = 1
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(which implies that each object produces no progeny), we can show (see the paragraph
between Theorems 2 and 3 of [56]) that a GIX /GI/∞ queue is stable if and only if the
following inequality holds.

∫ ∞

0

{
1−

∞∑
k=1

P(X = k) ·H(x)k

}
dx <∞. (2.23)

By Fubini’s theorem, we can also show that (2.23) is equivalent to (2.22). In the proof of
Theorem 2.3, we use the different way than [56].

Proof of Theorem 2.3. We provide a simple and intuitive proof of this theorem, indepen-
dently of Theorem 1 of [56]. Let

L1(t) =
∞∑
n=1

I

(
0 ≤ t− Tn < max

m=1,2,...,Xn

Sn,m

)
, t ∈ R+, (2.24)

L2(t) =
∞∑
n=1

Xn · I
(
0 ≤ t− Tn < max

m=1,2,...,Xn

Sn,m

)
, t ∈ R+. (2.25)

It then follows from (2.21), (2.24) and (2.25) that

L1(t) ≤ L(t) ≤ L2(t), t ∈ R+.

By definition, {L1(t); t ∈ R+} is equivalent to the queue length process of a GI/GI/∞
queue obtained by treating customers arriving in each batch of the original GIX /GI/∞
queue as a single super customer whose service time is equal to the maximum service
time in the batch. On the other hand, {L2(t); t ∈ R+} is equivalent to the queue length
process of a GIX /GI/∞ queue obtained by assuming that customers in each batch leave
the system simultaneously when the longest service in the batch is completed.

We note that {L1(t)} and {L2(t)} visit state 0 simultaneously and leave there simul-
taneously. Thus, these two processes visit state 0 simultaneously and leave there simul-
taneously. In addition, if the two processes visit state 0 infinitely many times, then they
are regenerative processes with common regeneration times at which they leave state 0.
Therefore, (3) implies that the stability conditions of {L(t)}, {L1(t)}, and {L2(t)} are
equivalent.

We now recall that {L1(t)} is the queue length process of the GI/GI/∞ queue where
inter-arrival times follow non-lattice distribution G with finite mean, and where service
times follow the distribution of maxm=1,2,...,X Sm. Thus, (2.22) holds if and only if {L1(t)}
is stable (see [32, Theorem 0]). As a result, (2.22) is the stability condition of the queue
length process {L(t)} of the original GIX /GI/∞ queue. 2
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2.4.3 Tractable sufficient conditions for the stability

We show a tractable sufficient condition for the stability under a moderate condition on
the tail of the service time distribution.

Corollary 2.1 Suppose that Condition 1 holds, and that there exists some increasing and
convex function f : R+ → R+ such that it follows that, for any c > 0 and some Kc > 0,

f−1(cx)

f−1(x)
< Kc, for any x ≥ 0. (2.26)

Under these conditions, if the following inequalities hold

E[f(S)] <∞, (2.27)

E[f−1(X)] <∞, (2.28)

then the queue length process {L(t)} has a limiting distribution .

Remark 2.5 Condition (2.26) means that the inverse function of f is dominated varia-
tion [21]. Typical examples of function f satisfying (2.26) are as follows: (i) f(x) =

exp{xα} with α > 0 and (ii) f(x) = xβ with β > 0. For the second example of f , Toy-
oizumi [66] presented a result similar to Corollary 2.1, though his queueing model is an
MX /GI/∞ queue.

Proof of Corollary 2.1. It suffices to show that (2.22) holds. Noting f is convex, and
using Jensen’s inequality [31], we have

E

[
max

k=1,2,...,X
Sk

]
= E

[
E

[
max

k=1,2,...,X
Sk

∣∣∣X]]
= E

[
f−1 ◦ f

(
E

[
max

k=1,2,...,X
Sk

∣∣∣X])]
≤ E

[
f−1

(
E

[
f

(
max

k=1,2,...,X
Sk

) ∣∣∣X])]
= E

[
f−1

(
E

[
max

k=1,2,...,X
f(Sk)

∣∣∣X])]
. (2.29)

Since {Sk} is i.i.d. random variables and independent of X , we obtain

E

[
max

k=1,2,...,X
f(Sk)

∣∣∣X]
≤ E

[
X∑
k=1

f(Sk)
∣∣∣X]

=
X∑
k=1

E[f(Sk)] = XE[f(S)]. (2.30)

Substituting (2.30) into (2.29) yields

E

[
max

k=1,2,...,X
Sk

]
≤ E

[
f−1(XE[f(S)])

]
.
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Applying (2.26)– (2.28) to the above inequality, we obtain

E

[
max

k=1,2,...,X
Sk

]
≤ E

[
f−1(XE[f(S)])

]
≤ KE[f(S)] · E

[
f−1(X)

]
<∞.

Consequently, we complete the proof of Corollary 2.1. 2

2.4.4 Stability condition for the special case

We also prove that the LBSM condition is the stability condition of the GIX /GI/∞ queues
whose service time distributions have exponential tails.

Corollary 2.2 Suppose that Condition 1 holds and that there exist some α, β > 0 such
that

0 < lim inf
x→∞

1−H(x)

e−αx
≤ lim sup

x→∞

1−H(x)

e−βx
<∞. (2.31)

Then, the queue length process {L(t)} has a limiting distribution if and only if

E[logX] <∞. (2.32)

Proof. Let f(x) = eθx for all x ∈ R+, where 0 < θ < β. It then follows from (2.31)
that E[f(S)] = E[eθS] <∞. Furthermore, f−1(x) = θ−1 log x for x ∈ R+ and thus (2.32)
yields E[f−1(X)] = θ−1E[logX] < ∞. Therefore, from Corollary 2.1, if (2.32) holds
then {L(t)} has a limiting distribution.

In what follows, we prove the “only if” part of the statement that (2.22) implies (2.32).
According to (2.31), there exist some θ∗ ≥ α and x∗ > 0 such that

P(S > x) = 1−H(x) ≥ e−θ∗x, for all x ≥ x∗. (2.33)

Using (2.33), we have

E

[
max

k=1,2,...,X
Sk

]
= E

[∫ ∞

0

{
1− (H(t))X

}
dt

]
≥ E

[∫ ∞

x∗

{
1− (H(t))X

}
dt

]
≥ E

[∫ ∞

x∗

{
1− (1− e−θ∗x)X

}
dt

]
. (2.34)

Furthermore, let M∗ = 1− e−θ∗x∗ ∈ (0, 1). We then have, for all k ∈ N,∫ ∞

x∗

{
1− (1− e−θ∗x)k

}
dt =

1

θ∗

∫ 1

M∗

1− zk

1− z
dz =

1

θ∗

k−1∑
ℓ=0

∫ 1

M∗

zℓdz

=
1

θ∗

k∑
ℓ=1

1

ℓ
(1−M ℓ

∗) ≥
1

θ∗

k∑
ℓ=1

1

ℓ
(1−M∗)

≥ 1−M∗

θ∗
log k.
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Applying this inequality to (2.34) yields

E

[
max

k=1,2,...,X
Sk

]
≥ 1−M∗

θ∗
E[logX].

Therefore, (2.22) implies (2.32). 2

2.5 Conclusion

In this chapter, we discussed the stability condition for batch arrival infinite-server queues.
Section 2.2 showed that the LBSM condition is the stability condition of BMAP/M/∞
queues. Section 2.3 extended the result in Section 2.2 to the multiclass case; that is,
we showed that the LBSM condition is also the stability condition of MBMAPK /MK /∞
queues. Section 2.4 considered the stability of GIX /GI/∞ queues. We derived the stability
condition of GIX /GI/∞ queues in the different way than [56]. In addition, we presented a
tractable sufficient condition for the stability for GIX /GI/∞ queues under a modulate con-
dition on the tail of the service time distribution. Furthermore, we proved that a GIX /GI/∞
queue is stable if and only if the LBSM condition holds, provided that the service time dis-
tribution has an exponential tail.

In future work, we would like to derive a physically and interpretable stability condi-
tion of GIX /GI/∞ queues without additional conditions. We predict that the condition of
Corollary 2.1 is not only the sufficient condition but also the necessary condition. Further-
more, we would like to derive the stability condition for batch arrival infinite-server queues
such that there exist correlations between inter-arrival times, batch sizes and service times.
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Chapter 3

Central Limit Theorem for a
Markov-Modulated Infinite-Server
Queue with Binomial Catastrophes

3.1 Introduction

This chapter studies a Markov-modulated batch arrival infinite-server queue such that cus-
tomers may or may not leave the system without completing service due to accidents.
Markov-modulated queues are governed by a continuous-time Markov chain being inde-
pendent the system, which is called the background process. In recent years, Markov-
modulated queues have attracted much attention in addition to their special cases; that
is, models with constant parameters [6, 8, 55]. Due to the dependence of parameters on
the background process, Markov-modulated queues imitate more complex dynamics than
queuing models with constant parameters. For example, in a transportation system, the
background process may alternate between the accident state and the normal state. Under
the accident state, the speed of cars is slower than that in the normal state [23].

In general, it is very difficult to exactly analyze Markov-modulated queues, except
for some very simple models. Thus, researchers have usually considered their asymptotic
model in some specific regimes. For example, Nazarov and Baymeeva [53] studied the
Markov-modulated M/G/∞ queue and showed the asymptotic behavior of the character-
istic function of the stationary queue length in a heavy traffic regime. Blom et al. [9]
studied the Markov-modulated M/M/∞ queue and established a central limit theorem for
the stationary and transient queue length in a heavy traffic regime.

Catastrophe mechanism can imitate accidents inducing departure of customers. Queue-
ing models with catastrophe mechanism are suitable for modeling computer systems sub-
ject to technical obstacles. For example, upon the occurrence of a virus, a job may or may
not be affected. An affected job is removed, while the non-affected one is retained in the
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system. Motivated by such applications, many researchers have studied queueing mod-
els with catastrophe mechanisms in recent years [19, 38, 39]. In particular, this chapter
considers the binomial catastrophe mechanism [13, 33]. When a binomial catastrophe oc-
curs, each customer is either retained with probability p or removed with probability 1− p

without completing its service, independently of other customers. Thus, if a binomial
catastrophe occurs when n customers are in the system, the number of retained customers
follows the binomial distribution with parameters n and p.

In this chapter, we consider the Markov-modulated MX/M/∞ queue with binomial
catastrophes. Note here that an MX/M/∞ queue is a batch arrival infinite-server queues
with a batch Poisson arrival process and an exponential service time distribution. Bino-
mial catastrophes are assumed to occur according to a homogeneous Poisson process. We
assume that the arrival rate, the batch-size distribution, the service speed, and the occur-
rence rate and the retained probability of binomial catastrophes depend on the background
process. When the batch sizes are one and the occurrence rates of binomial catastrophes
are zero, our model coincides with the one in [9].

Our model may be used to estimate the distribution of the number of users in a service
company. Let’s consider a marketing situation, for example, in a mobile phone company.
The company occasionally do some campaigns to increase its number of users. Thus, users
join the company in batch upon such a campaign. The duration that the user stays with the
company corresponds to the service time in our model. On the other hand, rival companies
also do campaigns to increase their number of users. As a result, upon a campaign of a
rival company, the user of the original company either opts for the rival with a probability
or continues to stay with the original company with the commentary probability. The
campaign of rival company can be interpreted as the catastrophe mechanism in our model.
The random environment may reflect the satisfaction of users. In case users satisfy with
the company, they will use the service for a longer time and more users will join. In case
of dissatisfaction, users stay with the company for a shorter time and less users join the
company. From these points of view, the environment corresponds to the satisfaction of
the users with the company.

In this chapter, we establish a central limit theorem (CLT) for the stationary queue
length of our model in a heavy traffic regime; that is, the centered and normalized station-
ary queue length distribution of the scaling model converges in distribution to a normal
distribution. In our scaling regime, for scaling factor N and scaling coefficient α, the
arrival rates are scaled by N , the transition rates of the background process are scaled
by Nα, the occurrence rates of binomial catastrophes are scaled by N , and the removal
probabilities are scaled by N−1. In addition, we can easily obtain the approximation of
the stationary queue length distribution by using the CLT, which is especially effective in
heavy traffic situations. Furthermore, we show that the stability condition for our model is
that the logarithmic moment of batch-size distribution is finite.
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The reminder of this chapter is organized as follows. Section 3.2 describes the Markov-
modulated MX/M/∞ queue with binomial catastrophes and our scaling model. In Section
3.3, we establish the CLT for the stationary queue length, and derive an approximation of
the stationary queue length distribution. In Section 3.4, we present the stability condition
of our model. In Section 3.5, we show some numerical results to confirm the accuracy
of the approximation of the stationary queue length distribution led by the CLT. Finally,
Section 3.6 is devoted to concluding remarks and future work.

3.2 Model description

In this section, we describe our queueing models, i.e., the Markov-modulated MX/M/∞
queue with binomial catastrophes. Section 3.2.1 presents the original model and, Section
3.2.2 presents the scaling model.

3.2.1 Original model

We consider a batch arrival infinite-server queue governed by the background process
{J(t); t ∈ R+}. We assume that {J(t)} is an irreducible continuous-time Markov chain
with finite state space D = {1, 2, . . . , d}. Let Q = (qi,j)i,j∈D denote the infinitesimal
generator of {J(t)}, and let τ = (τi)i∈D denote the stationary distribution of {J(t)}; that
is, it follows that τQ = 0.

For each i ∈ D, when the background process is in state i, batches arrive according to
the Poisson process with rate λi ∈ (0,∞) and batch sizes (i.e., the number of customers
belonging to respective batches) are distributed with random variable Xi on N. For i ∈ D,
we define xi,k = P(Xi = k), k ∈ N, and X̂i(z) =

∑∞
k=1 xi,kz

k, |z| ≤ 1. In order to show
the CLT, we assume that the second moment of Xi is finite for any i ∈ D.

Each arriving customer occupies one empty server, and leaves the system immediately
after its service completion. Service requirements of customers are independently and
identically distributed with the exponential distribution having mean 1. For each i ∈ D,
when the background process is in state i, the service rate is µi ∈ (0,∞). For each i ∈ D,
when the background process is in state i, binomial catastrophes occur according to the
Poisson process with rate γi ∈ (0,∞). Upon an occurrence of the binomial catastrophe,
each customer in the system is either retained with probability pi ∈ (0, 1) or removed with
probability pi := 1− pi, independently of other customers.

3.2.2 Scaling model

We consider the Markov-modulated MX/M/∞ queue with binomial catastrophes under
the heavy traffic regime. For the definition of the scaling model, we use the scaling factor
N and scaling coefficient the α > 0. We consider that N approaches to infinitely and α is
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fixed. We define the scaling model as follows: for each i ∈ D, the arrival rates are scaled
as λi 7→ Nλi, the transition rates of the background process are scaled as qi,j 7→ Nαqi,j ,
the occurrence rates of the binomial catastrophes are scaled as γi 7→ Nγi, and the removal
probabilities are scaled as pi 7→ N−1pi.

There are two points to notice in our scaling model. First, using the scaling coefficient
α, we can express the relative relations between speed of arrivals and that of changing the
background state. In particular, if α is strictly larger than one, the background process
changes relatively faster than the arrival process. While, if α is strictly smaller than one,
the speed of arrivals is relatively faster than that of changes of the background process.
Second, the product of the occurrence rate of binomial catastrophes and the removal prob-
ability,

∑
i∈D τi(γipi + µi), are always constant in the scaling model for any i ∈ D. In

addition, the rate that a customer in the system is removed,
∑

i∈D τi(γipi + µi), does not
depend on the scaling parameters N and α.

Let L(N)(t) and J (N)(t) denote the queue length in the scaled system and the state
of the scaled background process, respectively, at time t ∈ R+. It is obvious that the
joint stochastic process {(J (N)(t), L(N)(t)); t ∈ R} is an irreducible Markov chain in
continuous time with state space D × Z+. We define U := (u(i, k; j, ℓ))(i,k),(j,ℓ)∈D×Z+ as
the infinitesimal generator of {(J (N)(t), L(N)(t))}, which is given by

u(i, k; j, ℓ) =



−λi − kµi − γi(1− pki ) + qi,i, i = j, k = ℓ,

λixi,ℓ−k, i = j, ℓ > k,

qi,j, i ̸= j, k = ℓ,

kµi + kγip
k−1
i (1− pi), i = j, ℓ = k − 1,(

k
ℓ

)
γip

ℓ
i(1− pi)

k−ℓ, i = j, ℓ < k − 1,

0, otherwise.

(3.1)

Note that the Markov chain {(J (N)(t), N (N)(t))} has a unique stationary distribution under
the assumption that the second moment of Xi is finite for any i ∈ D, which is proved in
Theorem 3.2. We then define L(N) and J (N) as the queue length of the scaled system and
the state of the scaled background process, respectively, at steady state. We also define
π
(N)
i,n = P(J (N) = i, L(N) = n) for (i, n) ∈ D× Z+.

Remark 3.1 Figures 3.1 and 3.2 show the sample paths of our scaling model with N =

1000. Figure 3.1 presents the case with α = 2 (> 1), and Figure 3.2 with α = 0.5 (< 1).
In all cases, the other parameters except α are the same as follows.

d = 2, Q =

−0.05, 0.05

0.02, −0.02

 , (λ1, λ2) = (0.1, 1), X1, X2 ∼ U{1, 10},

(µ1, µ2) = (1, 1), (γ1, γ2) = (0.0001, 0.0002), (p1, p2) = (0.2, 0.1).
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Figure 3.1: Sample path of the scaling
model: α = 2

Figure 3.2: Sample path of the scaling
model: α = 0.5

Figure 3.1 looks like the sample path of a queue length process of an infinite-server
queue with constant parameters. The reasons can be considered as follows. When α is
strictly larger than one, the transition rates of background process are extremely larger
than the arrival rates in the scaling model. It means that the inter-transition time of the
background process is much shorter than the inter-arrival time of customers.

On the other hand, Figure 3.2 looks like that sample paths of queue length processes
of infinite-server queues with two different parameters appear alternatively. The reasons
cam be considered as follows. The queue length converges to a local equilibrium during
each transition time because α is strictly smaller than one. In this case, the transition rates
of the background process become extremely smaller than the arrival rate of the scaling
model. Thus, there may be a large enough number of arrivals and departures before the
state of the background process changes.

Note that Blom et al. gave a similar consideration for their model with Remark 3.1 in
[9].

3.3 Central limit theorem

To avoid complicated expressions, we use the following diagonal matrices:

Λ = diag(λ1, λ2, . . . , λd),

X̂(z) = diag(X̂1(z), X̂2(z), . . . , X̂d(z)),

X = diag(E[X1],E[X2], . . . ,E[Xd]),

X = diag(E[X2
1 ],E[X

2
2 ], . . . ,E[X

2
d ]),

M = diag(µ1, µ2, . . . , µd),

Γ = diag(γ1, γ2, . . . , γd),

P = diag(p1, p2, . . . , pd).
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In addition, we use the ergodic matrix T := e·τ , the fundamental matrix F := (T−Q)−1,
and the deviation matrix D := F − T (see e.g. [18]). Note that it follows that

QF = −I + T . (3.2)

Using these notations, we present the CLT for the stationary queue length of the
Markov-modulated MX/M/∞ queue with binomial catastrophes. We show the proof of
Theorem 3.1 in Sections 3.3.1–3.3.3.

Theorem 3.1 Central limit theorem (CLT) Let β = min(α, 1). The random variable

Nβ/2

(
L(N)

N
− ρ

)
(3.3)

converges in distribution to the normal distribution with mean zero and variance σ2, where
ρ and σ2 are given by

ρ =
τΛXe

τ
[
M + Γ(I − P )

]
e
, (3.4)

σ2 = σ2
1I(α ≤ 1) + σ2

2I(α ≥ 1),

σ2
1 =

τ
[
ΛX − ρ(M + Γ(I − P ))

]
D
[
ΛX − ρ(M + Γ(I − P ))

]
e

τ
[
M + Γ(I − P )

]
e

,

σ2
2 =

τ
[
ΛX + ρ(M + Γ(I − P )) + ρ2Γ(I − P )2

]
e

2τ
[
M + Γ(I − P )

]
e

.

It should be noted that L(N)N−1 converges in probability to ρ, which is proven in
Section 3.3.2. The constant ρ has a very simple form. The numerator of ρ is equal to
the mean number of customers who arrive at the unscaled system per a unit time, and
the denominator of ρ is equal to the mean departure (due to either service completion or
binomial catastrophe) rate.

Furthermore, we can observe from Theorem 3.1 that the variance σ2 strongly depends
on scaling coefficient α. If α is strictly smaller than one, the variance is σ2

1 , which is
characterized by the deviation matrix D. If α is strictly larger than one, the variance is σ2

2 .
If α is equal to one, the variance is the sum of σ2

1 and σ2
2 .

Remark 3.2 Theorem 3.1 provides an approximation for the queue length distribution of
our model with large arrival rates. Indeed, we have

P(L(N) ≤ x) = P

(
Nβ/2

(
L(N)

N
− ρ

)
≤ Nβ/2

( x
N

− ρ
))

≃ Φ(0,σ2)

(
Nβ/2

( x
N

− ρ
))

, for x ∈ R+, (3.5)

where Φ(0,σ2)(·) denotes the cumulative distribution function of the normal distribution
with mean zero and variance σ2.
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3.3.1 Queue length distribution of the scaling model

We define the row vectors π̂(N)(z) = (π̂
(N)
i (z))i∈D and π̂

(N)
p (z) = (π̂

(N)
p,i (z))i∈D as follows,

respectively, for |z| ≤ 1 and i ∈ D.

π̂
(N)
i (z) = E[zL

(N)

I(J (N) = i)], (3.6)

π̂
(N)
p,i (z) = π̂

(N)
i (z + (1− z)N−1pi). (3.7)

For the proof of the CLT, we first derive the differential equations for the probability gen-
erating function (PGF) of the stationary queue length distribution.

Lemma 3.1 The following differential equations hold for any |z| ≤ 1.

(1− z)
d

dz
π̂(N)(z)M = N π̂(N)(z)Λ

[
I − X̂(z)

]
−Nαπ̂(N)(z)Q

−N{π̂(N)
p (z)− π̂(N)(z)}Γ. (3.8)

Proof. We first show (3.8) with N = 1. It follows from (3.1) that, for i ∈ D and n ∈ Z+,

(λi + γi + nµi)π
(1)
i,n = λi

n∑
k=1

xi,kπ
(1)
i,n−k + (n+ 1)µiπ

(1)
i,n+1

+ γi

∞∑
k=0

(
n+ k

k

)
pni p

k
i π

(1)
i,n+k +

∑
j∈D

qj,iπ
(1)
j,n, (3.9)

where the empty sum (i.e., summation from 1 to 0) is defined as 0. Multiplying (3.9) by
zn and taking the sum over n ∈ Z+, we obtain, for i ∈ D,

(λi + γi)π̂
(1)
i (z) + zµi

d

dz
π̂
(1)
i (z) = λi

∞∑
n=1

n∑
k=1

xi,kπ
(1)
i,n−kz

n + µi
d

dz
π̂
(1)
i (z)

+ γi

∞∑
n=0

∞∑
k=0

(
n+ k

k

)
pni p

k
i π

(1)
i,n+kz

n +
∑
j∈D

qj,iπ̂
(1)
j (z).

(3.10)

It is easy to see that
∞∑
n=1

n∑
k=1

xi,kπ
(1)
i,n−kz

n = X̂i(z)π̂
(1)
i (z),

and
∞∑
n=0

∞∑
k=0

(
n+ k

k

)
pni p

k
i π

(1)
i,n+kz

n = π̂
(1)
p,i (z).

Substituting these equations into (3.10) yields

(λi + γi)π̂
(1)
i (z) + zµi

d

dz
π̂
(1)
i (z) = λiX̂i(z)π̂

(1)
i (z) + µi

d

dz
π̂
(1)
i (z)

+ γiπ̂
(1)
p,i (z) +

∑
j∈D

qj,iπ̂
(1)
j (z).

33



Rearranging the above, we obtain

(1− z)
d

dz
π̂(1)(z)M = π̂(1)(z)Λ(I − X̂(z))

− (π̂(1)
p (z)− π̂(1)(z))Γ− π̂(1)(z)Q.

In the above differential equation, Replacing Λ with NΛ, Q with NαQ, Γ with NΓ, and
(I − P ) with N−1(I − P ), we obtain (3.8) for any |z| ≤ 1. 2

Using Lemma 3.1 and E[X2
i ] <∞, we obtain Lemma 3.2.

Lemma 3.2 For any i ∈ D, there exists some C > 0 such that

E[(L(N)N−1)2I(J (N) = i)] ≤ C, for all N ≥ 1.

The proof of Lemma 3.2 is given in Appendix B.

3.3.2 Law of large numbers

Next, we show the law of large numbers.

Lemma 3.3 L(N)N−1 converges in probability to ρ as N → ∞, where ρ is given by (3.4).

Proof. Using Lemma 3.1, we first construct the differential equation for the moment
generating function (MGF) of L(N)N−1. We define, for θ ∈ (−∞, 0],

z(θ) := eθN
−1

.

It should be noted that z(θ) implicitly depends on N . We also define

π̃(N)(θ) := π̂(N)(z(θ)),

π̃(N)
p (θ) := π̂(N)

p (z(θ)).

Note that the sum of all elements of π̃(N)(θ) is equivalent to the MGF of L(N)N−1. Sub-
stituting z = z(θ) into (3.8), we have

π̃(N)(θ)Q = N−α(z(θ)− 1)
d

dz
π̃(N)(θ)M

−N1−απ̃(N)(θ)Λ
[
X̂(z(θ))− I

]
−N1−α{π̃(N)

p (θ)− π̃(N)(θ)}Γ. (3.11)

Note that
d

dθ
π̃(N)(θ) =

d

dθ
z(θ)

d

dz
π̃(N)(θ) = N−1z(θ)

d

dz
π̃(N)(θ).
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Applying this equation to (3.11), we obtain the following differential equation.

π̃(N)(θ)Q = N1−α(1− z(θ)−1)
d

dθ
π̃(N)(θ)M

−N1−απ̃(N)(θ)Λ
[
X̂(z(θ))− I

]
−N1−α{π̃(N)

p (θ)− π̃(N)(θ)}Γ. (3.12)

To prove the convergence in probability, we show that the MGF of L(N)N−1 converges
pointwise to that of ρ for any θ ∈ (−∞, 0]. To this end, we evaluate each term in the right
hand side of (3.12). Using the first order Maclaurin expansion of z(θ)−1, we have

1− z(θ)−1 = N−1θ +O(N−2). (3.13)

By the dominated convergence theorem, it follows from E[Xi] <∞ and (3.13) that

X̂(z(θ))− I = N−1θX + o(N−1). (3.14)

In addition, the third term in the right hand side of (3.12) can be expressed as follows.

{π̃(N)
p (θ)− π̃(N)(θ)}Γ = −N−1θ

d

dθ
π̃(N)(θ)B + o(N−1), (3.15)

where B := Γ(I − P ). The derivation of (3.15) is presented in Appendix C. Applying
(3.13)–(3.15) to the right hand side of (3.12), we obtain

π̃(N)(θ)Q = N−αθ
d

dθ
π̃(N)(θ)(M +B)−N−αθπ̃(N)(θ)ΛX + o(N−α). (3.16)

Right-multiplying (3.16) by θ−1Nαe yields

0 =

[
d

dθ
π̃(N)(θ)(M +B)− π̃(N)(θ)ΛX

]
e+ o(1). (3.17)

Furthermore, right-multiplying (3.16) by F and using (3.2) yields

π̃(N)(θ)(T − I) = N−αθ

[
d

dθ
π̃(N)(θ)(M +B)− π̃(N)(θ)ΛX

]
F + o(N−α). (3.18)

Taking the limits as N → ∞ in (3.18) and the derivative of (3.18) yields

π̃(N)(θ)T − π̃(N)(θ) = o(1),

d

dθ
π̃(N)(θ)T − d

dθ
π̃(N)(θ) = o(1).

Applying these results to (3.17), we obtain

0 =
d

dθ
π̃(N)(θ)T (M +B)e− π̃(N)(θ)TΛXe+ o(1),
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that is,

0 =
d

dθ
E
[
eL

(N)N−1θ
]
· τ (M +B)e− E

[
eL

(N)N−1θ
]
· τΛXe+ o(1), (3.19)

By definition of ρ, (3.19) is rewritten as follows.

0 =
d

dθ
E
[
eL

(N)N−1θ
]
− ρ · E

[
eL

(N)N−1θ
]
+ o(1).

From the above equation, the MGF of L(N)N−1 converges pointwise to exp(ρθ) for any
θ ∈ (−∞, 0]. Note that exp(ρθ) is the MGF of ρ. Therefore, it follows from Lévy’s
continuity theorem (see e.g. [67, Chapter 18.1]) that L(N)N−1 converges in distribution to
ρ as N → ∞, and thus in probability. 2

Using Lemmas 3.2 and 3.3, we obtain Lemma 3.4.

Lemma 3.4 For any i ∈ D and θ ∈ (−∞,∞), it follows that

0 = lim
N→∞

E
[(
L(N)N−1 − ρ

)
· eiL(N)N−1θI(J (N) = i)

]
,

0 = lim
N→∞

E
[(
(L(N)N−1)2 − ρ2

)
· eiL(N)N−1θI(J (N) = i)

]
.

The proof for Lemma 3.4 is given in Appendix D. We use Lemma 3.4 to show Theo-
rem 3.1.

3.3.3 Proof for the central limit theorem

Finally, we show the CLT for the stationary queue length (i.e.,Theorem 3.1) using Lem-
mas 3.1–3.4.

Proof of Theorem 3.1. Using Lemma 3.1, we first construct the differential equation for
the characteristic function (CF) of (3.3). We define

z(θ) := exp(iN−1+β/2θ), θ ∈ R.

It should be noted that z(θ) implicitly depends on N . We also define

π(N)
∗ (θ) := exp(−iNβ/2ρθ) · π̂(N)(z(θ)),

π(N)
p,∗ (θ) := exp(−iNβ/2ρθ) · π̂(N)

p (z(θ)).

Note that the sum of all elements of π(N)
∗ (θ) coincides with the CF of (3.3). Substituting

z = z(θ) into (3.8) and multiplying the result by exp(−iNβ/2ρθ) yields

Nαπ(N)
∗ (θ)Q = e−iNβ/2ρθ(z(θ)− 1)

d

dz
π̂(N)(z(θ))M

−Nπ(N)
∗ (θ)Λ

[
X̂(z(θ))− I

]
−N{π(N)

p,∗ (θ)− π(N)
∗ (θ)}Γ. (3.20)
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Note here that
d

dθ
π(N)

∗ (θ) = −iNβ/2ρπ(N)
∗ (θ) + iN−1+β/2e−iρNβ/2θz(θ)

d

dz
π̂(N)(z(θ)).

Applying this equation to (3.20), we obtain the following differential equation.

Nαπ(N)
∗ (θ)Q = −iN1−β/2(1− z(θ)−1)

d

dθ
π(N)

∗ (θ)M +Nρ(1− z(θ)−1)π(N)
∗ (θ)M

−Nπ(N)
∗ (θ)Λ

[
X̂(z(θ))− I

]
−N{π(N)

p,∗ (θ)− π(N)
∗ (θ)}Γ. (3.21)

To show the convergence in distribution, we evaluate each term in the right hand side
of (3.21). Using the second order Maclaurin expansion of z(θ)−1 yields

1− z(θ)−1 = iN−1+β/2θ +N−2+β 1

2
θ2 +O(N−3+3β/2).

which leads to

−iN1−β/2(1− z(θ)−1) = θ + o(1), (3.22)

N(1− z(θ)−1) = iNβ/2θ +N−1+β 1

2
θ2 + o(1). (3.23)

By the dominated convergence theorem, it follows from E[X2
i ] <∞ and (3.23) that

N
[
X̂(z(θ))− I

]
= iNβ/2θX −N−1+β 1

2
θ2X + o(1). (3.24)

The forth term in the right hand side of (3.21) can be expressed as follows.

N{π(N)
∗ (θ)− π(N)

p,∗ (θ)}Γ = θ
d

dθ
π(N)

∗ (θ)B + iNβ/2ρθπ(N)
∗ (θ)B

+N−1+β 1

2
θ2π(N)

∗ (θ)
[
ρB + ρ2

[
I − P

]
B
]
+ o(1), (3.25)

where B := Γ(I − P ). The derivation of (3.25) is shown in Appendix E. Substituting
(3.22)– (3.25) into the right hand side of (3.21), we obtain

Nαπ(N)
∗ (θ)Q = θ

d

dθ
π(N)

∗ (θ)
[
M +B

]
− iNβ/2θπ(N)

∗ (θ)Y1

+N−1+β 1

2
θ2π(N)

∗ (θ)Y2 + o(1), (3.26)

where Y1 and Y2 are given by

Y1 = ΛX − ρM − ρB,

Y2 = ΛX + ρM + ρB + ρ2
[
I − P

]
B.

Right-multiplying (3.26) by e yields

0 =
d

dθ
π(N)

∗ (θ)
[
M +B

]
e− iNβ/2π(N)

∗ (θ)Y1e

+N−1+β 1

2
θπ(N)

∗ (θ)Y2e+ o(1). (3.27)
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In addition, right-multiplying (3.26) by N−αF and using (3.2) yields

π(N)
∗ (θ)(T − I) = N−αθ

d

dθ
π(N)

∗ (θ)
[
M +B

]
F

− iN−α+β/2θπ(N)
∗ (θ)Y1F

+N−1−α+β 1

2
θ2π(N)

∗ (θ)Y2F + o(1). (3.28)

Note that F = D + T . Taking the limits as N → ∞ in (3.28) and the derivative of (3.28)
yields

π(N)
∗ (θ) = π(N)

∗ (θ)T + o(1),

Nβ/2π(N)
∗ (θ) = Nβ/2π(N)

∗ (θ)T + iN−α+βθπ(N)
∗ (θ)Y1

[
D + T

]
+ o(1),

d

dθ
π(N)

∗ (θ) =
d

dθ
π(N)

∗ (θ)T + o(1).

Substituting these equations into (3.27), we obtain

0 =
d

dθ
π(N)
∗ (θ)τ

[
M +B

]
e− iNβ/2π(N)

∗ (θ)τY1e

+N−α+βθπ(N)
∗ (θ)τY1DY1e

+N−α+βθπ(N)
∗ (θ)τY1e · τY1e+N−1+β 1

2
θπ(N)

∗ (θ)τY2e+ o(1), (3.29)

where π(N)
∗ (θ) denotes the CF of (3.3); that is, π(N)

∗ (θ) = π
(N)
∗ (θ)e. It is easy to see that

τY1e = τΛXe− ρ · τ (M + Γ(i− P ))e

= τΛXe− τΛXe

τ (M + Γ(i− P ))e
· τ (M + Γ(I − P ))e

= 0.

Applying this equation to (3.29), we obtain

0 =
d

dθ
π(N)
∗ (θ)τ

[
M +B

]
e+N−α+βθπ(N)

∗ (θ)τY1DY1e

+N−1+β 1

2
θπ(N)

∗ (θ)τY2e+ o(1). (3.30)

By definition of Y1 and Y2, (3.30) can be rewritten as follows.

0 =
d

dθ
π(N)
∗ (θ) +N−α+βσ2

1θπ
(N)
∗ (θ) +N−1+βσ2

2θπ
(N)
∗ (θ) + o(1),

which leads to
d

dθ
π(N)
∗ (θ) = −σ2θπ(N)

∗ (θ) + o(1).

From the above equation, the CF of (3.3) converges pointwise to exp(−σ2θ2/2) for any
θ ∈ R. Note that exp(−σ2θ2/2) is the CF of the normal distribution with mean zero and
variance σ2. Therefore, it follows from Lévy’s continuity theorem (see e.g. [67, Chapter
18.1]) that (3.3) converges in distribution to the normal distribution with mean zero and
variance σ2 as N → ∞. 2
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3.4 Stability condition

In this section, we present the stability condition of the queueing model described in Sec-
tion 3.2. In Theorem 3.1, we established the CLT under the assumption that the second
moment of the batch-size distribution is finite. The following theorem implies that the
Markov chain {(J (N)(t), L(N)(t))} has a unique stationary distribution even if the first
moment of the batch-size distribution is not finite.

Theorem 3.2 (Stability condition) The irreducible Markov chain {(J (N)(t), L(N)(t))}
has a unique stationary distribution if and only if

E[logXi] <∞, for any i ∈ D. (3.31)

Proof. Supposing that (3.31) holds. We show the sufficiency of Theorem 3.2. In order to
use Lemma 2.1, we define φ(i, k) and ψ(i, k) as follows.

φ(i, k) = log(k + 1), (i, k) ∈ D× Z+,

ψ(i, k) =
∑

(j,ℓ)∈D×Z+

φ(i, k) · u(i, k; j, ℓ), (i, k) ∈ D× Z+.

From (3.1), we then have, for i ∈ D and k = 0,

ψ(i, 0) =
∞∑
ℓ=1

λixℓ log (ℓ+ 1) <∞, (3.32)

where the inequality holds due to (3.31). We also have, for i ∈ D and k ≥ 1,

ψ(i, k) =
∞∑
ℓ=1

λixℓ log

(
k + ℓ+ 1

k + 1

)
+ kµi log

(
k

k + 1

)

+
k∑

ℓ=0

γi

(
k

ℓ

)
(1− pi)

ℓpk−ℓ
i log

(
ℓ+ 1

k + 1

)
≤

∞∑
ℓ=1

λixi,ℓ log

(
1 +

ℓ

k + 1

)
+ kµi log

(
1− 1

k + 1

)
. (3.33)

Note here that, for k, ℓ ∈ N,

log

(
1 +

ℓ

k + 1

)
= log ℓ+ log

(
1

ℓ
+

1

k + 1

)
≤ log ℓ+ log 2. (3.34)

In addition, it follows from (2.9) that there exists some δ > 0 such that

kµ log
(
1− 1

k + 1

)
≤ −2δ, for all k ≥ 1. (3.35)
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Applying (3.34) and (3.35) to (3.33), we obtain

ψ(i, k) ≤ λiE[logXi] + λi log 2− 2δ <∞. (3.36)

In addition, by dominated convergence theorem, we have

lim
k→∞

∞∑
ℓ=1

log
(
1 +

ℓ

k + 1

)
xi,ℓ = 0,

and thus there exists some K := Kδ ∈ N such that, for all k = K + 1, K + 2, . . . ,

λi

∞∑
ℓ=1

log
(
1 +

ℓ

k + 1

)
xi,ℓ ≤ δ.

Applying (3.35) and the above inequality to (3.33), we obtain

ψ(i, k) ≤ −δ, k = K + 1, K + 2, . . . . (3.37)

Using Lemma 2.1, it follows from (3.32), (3.36) and (3.37) that the irreducible Markov
chain {(J (N)(t), L(N)(t))} has a unique stationary distribution.

On the other hand, supposing that {(J (N)(t), L(N)(t))} has a unique stationary distri-
bution π = (π

(N)
i,n )i∈D,n∈Z+ . Let π̂(N)(z) and π̂

(N)
p (z) denote the row vectors defined by

(3.6) and (3.7). From Lemma 3.1, π̂(N)(z) and π̂
(N)
p (z) satisfy (3.8). Right-multiplying

(3.8) by (1− z)−1e yields

N
∑
i∈D

λi
1− X̂i(z)

1− z
π̂
(N)
i (z) =

∑
i∈D

µi
d

dz
π̂
(N)
i (z) +N

∑
i∈D

γi
π̂
(N)
p,i (z)− π̂

(N)
i (z)

1− z
.

Applying π̂(N)
i (1) ≥ π̂

(N)
p,i (z), 0 ≤ z ≤ 1, into the above equation, we have

N
∑
i∈D

λi
1− X̂i(z)

1− z
π̂
(N)
i (z) ≤

∑
i∈D

µi
d

dz
π̂
(N)
i (z) +N

∑
i∈D

γi
π̂
(N)
i (1)− π̂

(N)
i (z)

1− z
. (3.38)

Using Lagrange’s mean value theorem, there exist θ ∈ (0, 1) such that

π̂
(N)
i (1) = π̂(N)(z) + (1− z)

d

dz
π̂(N)(z + θ(1− z)), for any z ∈ [0, 1].

Substituting this equation into (3.38) yields

N
∑
i∈D

λi
1− X̂i(z)

1− z
π̂
(N)
i (z) ≤

∑
i∈D

µi
d

dz
π̂
(N)
i (z)N

∑
i∈D

γi
d

dz
π̂(N)(z + θ(1− z)).

Integrating this inequality over z ∈ [0, 1], we have

N
∑
i∈D

λi

∫ 1

0

1− X̂i(z)

1− z
π̂
(N)
i (z)dz ≤

∑
i∈D

µi

{
π̂
(N)
i (1)− π̂

(N)
i (0)

}
+N

∑
i∈D

γi

{
π̂
(N)
i (1)− π̂

(N)
i (θ)

}
. (3.39)
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Note here that∫ 1

0

1− X̂i(z)

1− z
π̂
(N)
i (z)dz ≥ π̂

(N)
i (0) ·

∫ 1

0

1− X̂i(z)

1− z
dz = π̂

(N)
i (0) · E

[∫ 1

0

Xi∑
k=1

zk+1dz

]

= π̂
(N)
i (0) · E

[
Xi∑
k=1

1

k

]
≥ π̂

(N)
i (0) · E [logXi] .

Combining (3.39) and the above inequality, we obtain

N
∑
i∈D

λiE [logXi] π̂
(N)
i (0) ≤

∑
i∈D

µi

{
π̂
(N)
i (1)− π̂

(N)
i (0)

}
+N

∑
i∈D

γi

{
π̂
(N)
i (1)− π̂

(N)
i (θ)

}
. (3.40)

Because of the irreducibility of {(J (N)(t), L(N)(t))}, π is strictly positive, and thus it
follows that 0 < π(0) < π̂(z) for z ∈ (0, 1]. Therefore, (3.40) implies that (3.31) holds.

2

3.5 Numerical results

As mentioned in Remark 3.2, using the CLT, we obtained the approximation for the sta-
tionary queue length distribution of our model with large arrival rates as follows.

P(L(N) ≤ x) ≃ Φ(0,σ2)

(
Nβ/2

( x
N

− ρ
))

, x ∈ R. (3.41)

In this section, we compare the approximated and simulated queue length distributions so
as to confirm the accuracy of (3.41). Figures 3.3 and 3.4 show the comparison of these
distributions, where the parameters except N and α are fixed as follows.

d = 2, Q =

−0.2, 0.2

0.1, 0.1

 , (λ1, λ2) = (1, 2), X1, X2 ∼ U{1, 10},

(µ1, µ2) = (2, 2), (γ1, γ2) = (0.0001, 0.0002), (p1, p2) = (0.2, 0.1).

Figures 3.3 demonstrates the comparison with α = 2 (> 1) and N = 2, 5, 50. We
observe that the distribution by simulation is very close to that presented in (3.41) even for
a relatively small N . This suggests that the weak convergence shown in Theorem 3.1 is
very fast when α is strictly larger than one.

Figures 3.4 shows the comparison with α = 0.5 (< 1) andN = 2, 50, 104. We observe
that the simulated distribution and the normal distribution presented by (3.41) are not close
even whenN is large. This implies that the weak convergence in Theorem 3.1 is very slow
when α is strictly smaller than one.
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Figure 3.3: Simulated and approximated queue length distributions: α = 2
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Figure 3.4: Simulated and approximated queue length distributions: α = 0.5
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3.6 Conclusion

In this chapter, we studied the Markov-modulated MX /M/∞ queue with binomial catas-
trophes. We focused on the scaling model such that the arrival rates are scaled by a factor
N , the transition rates of the background process being scaled by Nα for a scaling coeffi-
cient α, the occurrence rates of binomial catastrophes being scaled by N and the removal
probabilities being scaled by N−1. Under this scaling regime, we established the central
limit theorem for the stationary queue length distribution. Using the derived central limit
theorem, we obtained the approximation of the stationary queue length distribution with
large arrival rates.

In future work, we would like to show the central limit theorem under other heavy
traffic regimes. In particular, we are interested in a regime such that the transition rate of
the background process is scaled by Nα′ , where α′ is introduced anew in addition to α.
Furthermore, we would like to study the behavior of the our model without the assumption
that the second moment of the batch size is finite. We also are interested in properties of
the queue length process of our model at the transient state. We predict that the CLT of
the queue length process holds; that is, the centered and normalized queue length process
with some transformation converges to an Ornstein-Uhlenbeck process.
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Chapter 4

Batch Arrival Single-erver Queue with
Variable Service Speed

4.1 Introduction

In recent years, variable-speed CPUs have become popular because they can reduce energy
consumption while maintaining on acceptable transmission delay (response time) for jobs.
Thus, many researchers have studied queueing models with variable service speed [4,
40, 54, 64]. Variable-speed CPUs can be automatically adjusted in terms of its speed
according to the workload or the number of jobs in the system. Working at high speed
reduces transmission delay, but increase energy consumption. Thus, in general, a variable-
speed CPU processes at high speed when the workload is large and reduces its speed
accordingly when the workload is low. By such a way, a variable-speed CPU balance
energy consumption and transmission delay.

CPUs still consume approximately 60% of their peak consumption processing a job
even while not processing jobs [5]. Thus, a simple idea for reducing energy is to adopt
on-off policy: that is, the server is turned off immediately after the system becomes empty,
and the OFF server is reactivated immediately after a new job arrives at the empty system.
However, a setup time is needed in order to reactivate the OFF server. Servers cannot
process jobs during the setup, but consume energy. Thus, turning off the server does not
always reduce energy consumption though increases the transmission delay.

We now consider a batch arrival single-server queue with variable service speed and the
on-off policy, which is motivated by data centers with a variable-speed and power-aware
CPU. We assume that customers arrive at the system in batches according to a Poisson
process. Service requirements of customers in a batch is assumed to be independent and
identically distributed (i.i.d.) with an exponential distribution. The service speed of the
server is instantaneously adapted according to the queue length. In particular, we consider
that the service speed changes in proportion to the queue length. Furthermore, setup times
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are assumed to be i.i.d. with an exponential distribution. In this thesis, the above queueing
model is referred to as the MX /M/1/SET-VARI queue, where SET and VARI stand for
setup (on-off policy) and variable service speed, respectively. It should be noted that the
queue length of the MX /M/1/SET-VARI queue is identical to that of the MX /M/∞ queue
with the on-off policy.

In this chapter, we first obtain the stability condition of the MX /M/1/SET-VARI queue.
We show that the stability condition of our model is that the logarithmic moment of the
batch size is finite. Interestingly, the system can be stable even if the mean batch size is in-
finite. Second, we derive the probability generating function (PGF) of the stationary queue
length of our queueing model. Third, we derive the Laplace-Stieltjes transform (LST) of
the stationary sojourn time distribution in term of infinite series form involving infinite
dimensional matrices. The derivation of the sojourn time distribution is challenging be-
cause the sojourn time of a tagged customer depends on not only the state of the system
upon arrival but also on the batches arriving after it. Therefore, the sojourn time distribu-
tion cannot be obtained directly from the queue length distribution via the distributional
Little’s law [36].

Our model extends the one proposed by Lu et al. [46]. They considered an M/M/1/SET-
VARI queue. In [46], the stationary queue length distribution was derived in terms of in-
finite series. From the queue length distribution, the mean response time is obtained via
Little’s law and the mean power consumption is obtained. These metrics are used in [46] to
find the energy-response trade-off. However, the sojourn time distribution was not consid-
ered in [46]. Adan and D’Auria [1] considered a single-server queue in which customers
arrive according to a Poisson process, the service requirements of customers follow the ex-
ponential distribution and the service rate of the server is controlled by a threshold. They
derived the stationary queue length distribution and the LST of the sojourn time distribu-
tion in explicit form. The sojourn time distribution of our model is derived using the first
step analysis which is also adopted by Adan and D’Auria [1]. The difference is that the
underlying Markov chain in Adan and D’Auria [1] is homogeneous after a threshold while
our underlying Markov chain is spatially nonhomogeneous. As a result, the former allows
explicit expression while our formulae involve inverse mappings of infinite matrices.

The remainder of this chapter is organized as follows. In Section 4.2, we describe the
MX /M/1/SET-VARI queue in detail. In Section 4.3, we present the stability condition. In
Section 4.4, we derive the PGF of the queue length. In Section 4.5, we obtain the LST of
the sojourn time distribution. In Section 4.6, we show numerical experiments showing the
energy-performance trade-off. Finally, Section 4.7 is devoted to concluding remarks and
future work.
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4.2 Model description

In this section, we describe our queueing model; that is, the MX /M/1/SET-VARI queue.
We consider the single-server queue operating under the first come first served (FCFS)
service discipline and an infinite buffer space. Batches of customers arrive at the system
according to the Poisson process with rate λ ∈ (0,∞). Batch sizes (i.e., the numbers of
customers in batches) are i.i.d. with random variable X on N. We define xk = P(X = k),
k ∈ N, and X̂(z) :=

∑∞
k=1 xkz

k, |z| ≤ 1.
The special feature of our model is that the service speed of the server changes in

proportion to the queue length. Service requirements of customers are i.i.d. with the expo-
nential distribution having mean 1. When there is one customer in the system, the amount
of service provided by the server per unit time is µ ∈ (0,∞) When there are n customers
in the system, the speed of the server is scaled up to nµ. Thus, when there are n customers
in the system, the residual sojourn time of the ongoing customer follows the exponential
distribution having mean 1/(nµ).

Moreover, our model adopts the on-off policy. The server is turned off immediately
after the system becomes empty, and the OFF server is reactivated immediately after a
new batch arrives at the empty system. However, the setup time is needed to reactivate the
OFF server, which implies that a batch arriving at the empty system has to wait until the
setup time finishes. Setup times are i.i.d. with the exponential distribution having mean
1/α ∈ (0,∞). The server cannot process customers during the setup time, but consumes
energy.

Let L(t) denote the queue length (the number of server in the system) at time t. Let
also J(t) denote the state of server at time t: J(t) = 0 when the server is off or in the
setup, and J(t) = 1 when the server is processing a customer. Under the current setting,
the joint stochastic process {Z(t) := (J(t), L(t)); t ∈ R+} is a continuous-time Markov
chain with state space S = {(0, k); k ∈ Z+} ∪ {(1, k); k ∈ N}. We assume that x1 is
strictly positive. It then follows that the Markov chain {Z(t)} is irreducible. Let denote
Q := (q(i, k; j, ℓ))(i,k;j,ℓ)∈S×S as the infinitesimal generator of {Z(t)}, which is given by

q(i, k; j, ℓ) =



−λ, i = j = 0, k = ℓ = 0,

−λ− α, i = j = 0, k = ℓ ≥ 1,

−λ− kµ, i = j = 1, k = ℓ,

λxℓ−k, i = j, k < ℓ,

kµ, i = j = 1, k = ℓ+ 1 ≥ 2,

kµ, i = 1, j = 0 , k = 1, ℓ = 0,

α, i = 0, j = 1, k = ℓ,

0, otherwise.
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0, 0
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1, 1 1, 2 1, 3 1, 4

· · ·

· · ·

α α α α

λx1
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λx2
λx2 λx2 λx2 λx2

λx1 λx1 λx1 λx1

λx2 λx2 λx2 λx2

µ 2µ 3µ 4µ 5µ

Figure 4.1: Transition diagram of the MX /M/1/SET-VARI queue: x1 + x2 = 1

Figure 4.1 shows the transition diagram of the Markov chain {Z(t)} for a special case
in which the maximum batch size is two.

Remark 4.1 As mentioned in Section 4.1, the queue length of the MX /M/1/SET-VARI
queue is identical to that of the MX /M/∞ queue with the on-off policy. However, the
sojourn time distributions of these two models may be different because the sojourn time
distribution of a tagged customer of the latter is determined upon its arrival while that
of the former is affected by future arrivals. Some researchers have studied the MX /M/∞
queue without the on-off policy. For example, Shanbhag [61] derived moment generating
functions of some performance measures, e.g., the queue length and the sojourn time.

4.3 Stability condition

In this section, we derive the stability condition of the MX /M/1/SET-VARI queue. Note
that an irreducible and regular continuous-time Markov chain is positive recurrent if and
only if it has a stationary distribution (i.e., the limiting distribution) [11]. In addition, if
an irreducible and regular Markov chain is positive recurrent, its stationary distribution is
unique and positive. Theorem 4.1 shows the stability condition of our model because the
Markov chain {Z(t)} is irreducible and regular.

Theorem 4.1 (Stability condition) The Markov chain {Z(t); t ∈ R+} has a unique
stationary distribution if and only if the following inequality holds.

E[logX] <∞. (4.1)

We emphasize that the addition of the on/off policy does not change the stability of
the system because Cong [17] showed that the stability condition of the MX /M/∞ queue
(without the on-off policy), which is a special case of our model, is also that the logarithmic
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moment of the batch-size distribution is finite. This is intuitively clear because the effect
of setup times is likely to disappear when there exist many customers in the system.

Proof of Theorem 4.1. Supposing that (4.1) holds. Using Lemma 2.1, we show that
{Z(t)} is ergodic. To this end, we define φ(i, k) and ψ(i, k) as

φ(i, k) = log(k + 1), (i, k) ∈ S,

ψ(i, k) =
∑

(j,ℓ)∈S

φ(j, ℓ) · q(i, k; j, ℓ), (i, k) ∈ S.

We then have

ψ(0, 0) =
∞∑
ℓ=1

log(ℓ+ 1) · λxℓ = λE[log(X + 1)] <∞, (4.2)

where the inequality follows from (4.1). For k ∈ N, we also have

ψ(0, k) = − log(k + 1) · (λ+ α) +
∞∑
ℓ=1

log(k + ℓ+ 1) · λxℓ + log(k + 1) · α

= λ
∞∑
ℓ=1

log

(
1 +

ℓ

k + 1

)
· xℓ. (4.3)

Note here that, for k, ℓ ∈ N,

log

(
1 +

ℓ

k + 1

)
= log ℓ+ log

(
1

ℓ
+

1

k + 1

)
≤ log ℓ+ log 2. (4.4)

Applying (4.4) to (4.3) and using (4.1), we obtain

ψ(0, k) ≤ λE[logX] + λ log 2 <∞, k ∈ N. (4.5)

Furthermore, we have, for k ∈ N,

ψ(1, k) = − log(k + 1) · (λ+ kµ) +
∞∑
ℓ=1

log(k + ℓ+ 1) · λxℓ + log k · kµ

= λ
∞∑
ℓ=1

log

(
1 +

ℓ

k + 1

)
· xℓ + kµ · log

(
1− 1

k + 1

)
. (4.6)

Note that, from (2.9), there exists some δ > 0 such that

kµ log
(
1− 1

k + 1

)
≤ −2δ, for all k ∈ N.

Applying the above inequality and (4.4) into (4.6) yields

ψ(1, k) ≤ λE[logX] + λ log 2− 2δ <∞, k ∈ N, (4.7)
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where the last inequality follows from (4.1). In addition, by dominated convergence theo-
rem, we have

lim
k→∞

∞∑
ℓ=1

log
(
1 +

ℓ

k + 1

)
xℓ = 0,

and thus there exists some K := Kδ ∈ N such that, for all k = K + 1, K + 2, . . . ,

λ
∞∑
ℓ=1

log
(
1 +

ℓ

k + 1

)
xℓ ≤ δ.

Applying this inequality and (4.4) into (4.6), we obtain

ψ(1, k) ≤ −δ, k = K + 1, K + 2, . . . . (4.8)

Using Lemma 2.1, it follows from (4.2), (4.5),(4.7) and (4.8) that {Z(t)} is ergodic.

On the other hand, supposing that {Z(t)} is ergodic. We define π = (πi,k)(i,k)∈S as
the stationary distribution of Q. We define the generating functions π̂0(z) and π̂1(z) as
follows, respectively.

π̂0(z) =
∞∑
k=0

π0,kz
k, π̂1(z) =

∞∑
k=1

π1,kz
k, |z| ≤ 1.

We then have the following balance equations.

λπ0,0 = µπ1,1, (4.9)

(λ+ α)π0,k = λ
k∑

ℓ=1

xℓπ0,k−ℓ, k ∈ N, (4.10)

(λ+ kµ)π1,k = απ0,k + (1 + k)µπ1,k+1 + λ

k−1∑
ℓ=1

xℓπ1,k−ℓ, k ∈ N, (4.11)

where the empty sum (i.e., summation from 1 to0) is defined as 0. Multiplying (4.11) by
z and (4.11) by zk and taking the sum over k ∈ N yields

λ
∞∑
k=1

π1,kz
k + µz

∞∑
k=1

π1,k
(
zk
)′

= α
∞∑
k=0

π0,kz
k − απ0,0 + µ

∞∑
k=1

π1,k
(
zk
)′ − µπ1,1 + λ

∞∑
ℓ=1

xℓz
ℓ

∞∑
k=1

π1,kz
k.

Rearranging the above equation, we find that

d

dz
π̂1(z) =

λ

µ
q(z)π̂1(z) +

λ

µ
q(z)π̂0(z), (4.12)
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where q(z) is defined by

q(z) =
1− X̂(z)

1− z
= E

[
X−1∑
ℓ=0

zℓ

]
=

∞∑
ℓ=0

P(X > ℓ)zℓ. (4.13)

Let Q(z) denote the primitive function satisfying that Q(0) = 0; that is,

Q(z) =

∫ z

0

q(u)du = E

[
X∑
ℓ=1

zℓ

ℓ

]
=

∞∑
ℓ=1

P(X ≥ ℓ)
zℓ

ℓ
. (4.14)

Using Q(z), the solution of (4.12) is given by

π̂1(z) = H(z)e
λ
µ
Q(z), (4.15)

where H(z) is some function which will be determined later. Differentiating (4.15) and
substituting the result into (4.12), we obtain

d

dz
H(z) = e−

λ
µ
Q(z)λ

µ
q(z)π̂0(z).

It follows from π̂1(0) = 0 and Q(0) = 0 that H(0) = 0. Therefore, we have

H(z) =

∫ z

0

e−
λ
µ
Q(u)λ

µ
q(u)π̂0(u)du.

Substituting this equation into (4.15), we obtain

π̂1(z) = e
λ
µ
Q(z)

{∫ z

0

e−
λ
µ
Q(u)λ

µ
q(u)π̂0(u)du

}
. (4.16)

It follows from (4.16) that

1 = π̂0(1) + π̂1(1)

= π̂0(1) + e
λ
µ
Q(1)

{∫ 1

0

e−
λ
µ
Q(u)λ

µ
q(u)π̂0(u)du

}
≥ π0,0 + e

λ
µ
Q(1)

{∫ 1

0

e−
λ
µ
Q(u)λ

µ
q(u)π0,0du

}
= π0,0 + π0,0 · e

λ
µ
Q(1) ·

{
1− e−

λ
µ
Q(1)

}
≥ π0,0 ·

λ

µ
Q(1), (4.17)

where the first inequality follows from π̂0(z) ≥ π0,0, 0 ≤ z ≤ 1, and the second inequality
follows from ex ≤ x+ 1, x ∈ R. Note here that, for ℓ ∈ N,

ℓ∑
k=1

1

k
≥ log ℓ.

Combining (4.14) and the above inequality yields

Q(1) = E

[
X∑
k=1

1

k

]
≥ E[logX]. (4.18)

Consequently, (4.17) and (4.18) implies that (4.1) holds. 2
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4.4 Queue length distribution

In this section, we consider the stationary queue length distribution, assuming the stability
condition E[logX] < ∞. Let π = (πi,k)i,k∈S denote the stationary distribution of Q. We
define L as the random variable following the stationary queue length distribution. We
also define π̂(z) as the PGF of L; that is,

π̂(z) := E[zL] =
∞∑
k=0

π0,kz
k +

∞∑
k=1

π1,kz
k, |z| ≤ 1.

We derive the PGF π̂(z) as Theorem 4.2.

Theorem 4.2 (PGF of the stationary queue length) The probability generating function
of the stationary queue length of the MX /M/1/SET-VARI queue, denoted by π̂(z), is given
by, for |z| ≤ 1,

π̂(z) =

1

λ+ α− λX̂(z)
+

∫ z

0

e
λ
µ
{Q(z)−Q(u)}λ

µ
q(u)

1

λ+ α− λX̂(u)
du

1

α
+

∫ 1

0

e
λ
µ
{Q(1)−Q(u)}λ

µ
q(u)

1

λ+ α− λX̂(u)
du

, (4.19)

where q(z) and Q(z) are given by (4.13) and (4.14), respectively.

Proof. Multiplying (4.10) by zk taking the sum over k ∈ N, and rearranging the result, we
obtain

π̂0(z) =
λ+ α

λ+ α− λX̂(z)
π0,0. (4.20)

On the other hand, π̂1(z) is given by (4.16). Thus, from (4.20) and (4.16), we have

π̂(z) =
λ+ α

λ+ α− λX̂(z)
π0,0 +

∫ z

0

e
λ
µ
{Q(z)−Q(u)}λ

µ
q(u)

λ+ α

λ+ α− λX̂(u)
π0,0du. (4.21)

Applying the normalizing condition (i.e., π̂(1) = 1) to (4.21) yields

π0,0 =

{
λ+ α

α
+

∫ 1

0

e
λ
µ
{Q(1)−Q(u)}λ

µ
q(u)

λ+ α

λ+ α− λX̂(u)
du

}−1

. (4.22)

Substituting this equation into (4.21), we consequently obtain π̂(z). 2

Remark 4.2 As mentioned in Section 4.1, the queue length of our model is identical to
that of the MX /M/∞ queue with the on-off policy. In [61], the PGF of the stationary queue
length distribution for the MX /M/∞ queue (without the on-off policy), denoted by π̂∗(z),
was derived as

π̂∗(z) = e
λ
µ
{Q(z)−Q(1)}, |z| ≤ 1. (4.23)

It is easy to see that (4.19) tends to (4.23) as α → ∞.
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Moreover, we can easily derive the average of the stationary queue length.

Corollary 4.1 (Average of the stationary queue length) Assuming that E[X] < ∞,
E[L] is given as follows.

E[L] =
λE[X]

µ

{
λ+ α

α

µ

α
π0,0 + 1

}
,

where π0,0 is given by (4.22).

Proof. Differentiating (4.21), we have

d

dz
π̂(z) =

λ(λ+ α)X̂ ′(z)

(λ+ α− λX̂(z))2
π0,0 +

λ

µ
q(z)π̂(z).

Taking the limit as z ↑ 1 in the above equation yields

d

dz
π̂(1) =

λ(λ+ α)E[X]

α2
π0,0 +

λ

µ

{
lim
z↑1

1− X̂(z)

1− z

}

=
λ(λ+ α)E[X]

α2
π0,0 +

λ

µ
E[X],

where the second equality holds because of L’Hospital’s rule. From the relation E[L] =

π̂′(1), we complete to show Corollary 4.1. 2

4.5 Sojourn time distribution

In the MX /M/1/SET-VARI queue, the sojourn time of a tagged customer is affected by
the batches arriving after it, because the server changes its service speed upon arrivals and
departures of customers. This makes the analysis of the sojourn time distribution complex
and challenging. In this chapter, we derive the LST for the sojourn time distribution. Note
that the LST of a distribution function F on R+ is defined as F ∗(s) :=

∫∞
0

e−stF (dt). We
assume that E[X] <∞ for the existence of the equilibrium batch-size distribution.

Theorem 4.3 (LST of the stationary sojourn time distribution) The Laplace-Stieltjes
transform of the sojourn time distribution, denoted by W ∗(s), is given as follow:

W ∗(s) =
∞∑

m=1

1

E[X]

[
π0ImB(I − Im)(I −Λ(0))−1A

][
(I −Λ(1))−1M

]m
e

+
∞∑

m=1

1

E[X]

[
π1ImB(I − Im)

][
(I −Λ(1))−1M

]m
e,

where Λ(1), M , Λ(0), A, B and Im are given by (4.26), (4.27), (4.33), (4.34), (4.36) and
(4.37), respectively.
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Proof. First, we consider the residual sojourn times of customers in the system when
the server is processing a customer. Let W1(n,m) denote the residual sojourn time of the
tagged customer given that the server is processing a customer, that there exist n customers
in the system and that the tagged customer is in the mth position of the waiting line.
Conditioning on the first step transitions, we have, for n ≥ m,

W1(n,m) =
Y

λ+ nµ
+


W1(n− 1,m− 1), w.p.

nµ

λ+ nµ
,

W1(n+ k,m), w.p.
λxk

λ+ nµ
, k ∈ N,

(4.24)

where Y denotes the random variable following the exponential distribution with mean 1,
and W1(n, 0) = 0 for n ∈ N. Furthermore, let W ∗

1 (n,m, s) denote the LST of W1(n,m);
that is, W ∗

1 (n,m, s) = E[exp(−sW1(n,m))]. Using (4.24), we obtain the following recur-
sive formula of W ∗

1 (n,m, s), for n ≥ m.

W ∗
1 (n,m, s) =

nµ

s+ λ+ nµ
W ∗

1 (n− 1,m− 1, s) +
λ

s+ λ+ nµ

∞∑
k=1

xkW
∗
1 (n+ k,m, s),

(4.25)

where W ∗
1 (n, 0, s) = 1. We use the convention that W ∗

1 (n,m, s) = 0 for n < m.
To simplify the recursive formula (4.25) with two variables, n and m, we define the

infinite matrices Λ(1) := (Λ
(1)
k,ℓ)k,ℓ∈N and M := (Mk,ℓ)k,ℓ∈N as

Λ
(1)
k,ℓ =


λxℓ−k

s+ λ+ (k − 1)µ
, 1 < k < ℓ,

0, otherwise,

(4.26)

Mk,ℓ =


(k − 1)µ

s+ λ+ (k − 1)µ
, 1 < k = ℓ+ 1,

0, otherwise.

(4.27)

We also define the infinite column vector W ∗
1 (m, s) as

W ∗
1 (m, s) = (W ∗

1 (0,m, s),W
∗
1 (1,m, s),W

∗
1 (2,m, s), . . . )

⊤. (4.28)

Rearranging (4.25) by using (4.26)–(4.28), we obtain the following recursive formula with
only one variable.

W ∗
1 (m, s) = MW ∗

1 (m− 1, s) +Λ(1)W ∗
1 (m, s), m ∈ N. (4.29)

We prove that the operator norm of infinite matrix Λ(1), ∥ Λ(1) ∥= sup∥z∥2=1 ∥ Λ(1)z ∥2,
is strictly smaller than one. Indeed, we have, for all z = (z1, z2, . . . )

⊤ such that ∥ z ∥2= 1,

∥ Λ(1)z ∥2 <
λ

λ+ s

(∑
i>1

(∑
j>i

xj−izj

)2)1/2

=
λ

λ+ s

(∑
i>1

(∑
j≥1

xjzj+i

)2)1/2

≤ λ

λ+ s

(∑
i>1

∑
j≥1

xj

(
zj+i

)2)1/2

≤ λ

λ+ s

(∑
j≥1

xj||z||22
)1/2

=
λ

λ+ s
,
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where the second inequality holds because of Jensen’s inequality. It then follows that

∥ Λ(1) ∥≤ λ

λ+ s
< 1.

Because ∥ Λ(1) ∥ is strictly smaller than one, (I −Λ(1)) has inverse mapping [37, Section
29, Theorem 8]. Thus, from (4.29), we have the following recurrence formula, for m ∈ N.

W ∗
1 (m, s) = (I −Λ(1))−1MW ∗

1 (m− 1, s), (4.30)

Note that it follows from W ∗
1 (n, 0, s) = 1 that W ∗

1 (0, s) = e. Thus, solving the recursive
formula (4.30), we obtain

W ∗
1 (m, s) = {(I −Λ(1))−1M}me. (4.31)

Next, we consider the residual sojourn times of customers in the system when the
server is not processing a customer. We define W0(n,m) as the residual sojourn time of
the tagged customer given that the server is not processing a customer, that there exist n
customers in the system, and that the tagged customer is in the mth position of the waiting
line. Conditioning on the first step transitions, we have, for n ≥ m,

W0(n,m) =
Y

λ+ α
+


W1(n,m), w.p.

α

λ+ α
,

W0(n+ k,m), w.p.
λxk
λ+ α

, k ∈ N,

Furthermore, let W ∗
0 (n,m, s) denote the LST of W0(n,m) for n ∈ N and m ≤ n. In

addition, we define the infinite column vector W ∗
0 (m, s) as

W ∗
0 (m, s) = (W ∗

0 (0,m, s),W
∗
0 (1,m, s),W

∗
0 (2,m, s), . . . )

⊤,

where W ∗
0 (n, 0, s) = 1, n ∈ Z+, and W ∗

0 (n,m, s) = 0, n ∈ Z+ and m > n. We use
the convention that W ∗

0 (n,m, s) = 0 for n < m. As with the analysis for W ∗
1 (m, s), i.e.,

(4.24)–(4.31), we obtain

W ∗
0 (m, s) = (I −Λ(0))−1AW ∗

1 (m, s), (4.32)

where the infinite matrices Λ(0) := (Λ
(0)
k,ℓ)k,ℓ∈N and A := (Ak,ℓ)k,ℓ∈N are given by

Λ
(0)
k,ℓ =


λxℓ−k

s+ λ+ α
, 1 < k < ℓ,

0, otherwise,
(4.33)

Ak,ℓ =


α

s+ λ+ α
, 1 < k = ℓ,

0, otherwise.
(4.34)
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Note that (I−Λ(0)) has the inverse mapping, which can be proved as similar to the analysis
for (I −Λ(1)).

Finally, we derive the (unconditional) LST of the stationary sojourn time distribution.
To this end, we express W ∗(s) using W ∗

1 (n,m, s) and W ∗
0 (n,m, s). We define τ(i, n,m)

as the probability that the tagged customer is located in the mth position and the state of
the system becomes (i, n) immediately after its arrival. Let I ∈ {0, 1} denote the state
of the system immediately before the tagged customer arrives at the system and let Lp

denote the number of customers in the system just before the tagged customer arrives at
the system. From PASTA [69], we have

P(I = i, Lp = n) = πi,n, (i, n) ∈ S.

We define P as the position at which the tagged customer is located immediately after
it enters the system. We also define X̃ as the batch size in which the tagged customer
belongs. Note that X̃ follows the equilibrium distribution of X; that is,

P(X̃ = k) =
kxk
E[X]

, k ∈ N.

Using there random variables, τ(1, n,m) can be written as, for n ≥ m,

τ(1, n,m) =
n−1∑

k=n−m+1

P(I = 1, Lp = n− k, X̃ = k, P = m).

Thus, we obtain, for n ≥ m,

τ(1, n,m) =
n−1∑

k=n−m+1

P(I = i,Lp = n− k) · P(X̃ = k)P(P = m|Lp = n− k, X̃ = k)

=
n−1∑

k=n−m+1

π1,n−k
xk

E[X]
,

where the empty sum (i.e., summation from one to zero) is defined as zero. Similar to the
above, we obtain, for n ∈ Z+ and n ≥ m,

τ(0, n,m) =
n∑

k=n−m+1

π0,n−k
xk

E[X]
.

Note here that W ∗
i (n,m, s) = 0 for n < m. Thus, using W ∗

1 (n,m, s) and W ∗
0 (n,m, s),

the LST of the sojourn time distribution can be expressed as follows.

W ∗(s) =
∞∑
n=1

n∑
m=1

τ(0, n,m)W ∗
0 (n,m, s) +

∞∑
n=2

n∑
m=2

τ(1, n,m)W ∗
1 (n,m, s)

=
∞∑

m=1

∞∑
n=m

n∑
k=n−m+1

π0,n−k
xk

E[X]
W ∗

0 (n,m, s)

+
∞∑

m=2

∞∑
n=m

n−1∑
k=n−m+1

π1,n−k
xk

E[X]
W ∗

1 (n,m, s). (4.35)
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state energy consumption

service (1, k) k ≥ 1 Kservice × (kµ)2

setup (0, k) k ≥ 1 Kset × µ2

idle (0, 0) 0

Table 4.1: Energy consumption per unit time of the MX /M/1/SET-VARI queue

It is obvious that the infinite series included in W ∗(s) converges. The reason is that∑∞
n=1

∑n
m=1 τ(0, n,m) +

∑∞
n=2

∑n
m=2 τ(1, n,m) = 1 and 0 ≤ W ∗

i (n,m, s) ≤ 1 for
i = 1, 2, n ∈ N and 1 ≤ m ≤ n.

For a compact expression of (4.35), we define the infinite matrices B := (Bk,ℓ)k,ℓ∈N
and Im := (Im,k,ℓ)k,ℓ∈N, for m ∈ N, as

Bk,ℓ =

 xℓ−k, 1 ≤ k < ℓ,

0, otherwise.
(4.36)

Im,k,ℓ =

 1, 1 ≤ k = ℓ ≤ m,

0, otherwise.
(4.37)

In addition, we define the infinite row vectors π0 and π1 as

π0 = (π0,0, π0,1, π1,2, . . . ), π1 = (0, π1,1, π1,2, . . . ).

Rearranging (4.35) by using these matrices and vectors, we obtain

W ∗(s) =
∞∑

m=1

π0

E[X]
ImB(I − Im)W

∗
0 (m, s) +

∞∑
m=1

π1

E[X]
ImB(I − Im)W

∗
1 (m, s).(4.38)

From (4.31), (4.32) and (4.38), we complete the proof of Theorem 4.3. 2

Remark 4.3 The LST of the sojourn time distribution given in Theorem 4.3 is in series
form involving infinite dimensional matrices. Therefore, an approximation is necessary for
numerical calculation. In Section 4.6.4, for numerical experiments, we present a method
to approximate W ∗(s). However, we have not yet been able to find a bound for the error.
It is important future work to find an approximation method with guaranteed accuracy.

4.6 Numerical experiments

In this section, we present some numerical experiments for showing the transmission delay
and the energy consumption of the MX /M/1/SET-VARI queue. The energy consumption

57



Figure 4.2: Energy performance of the MX /M/1/SET-VARI queue

per unit time for each state of MX /M/1/SET-VARI queue is assumed to be in Tables 4.1
[27, 46]. Note that the constants Kservice, Kset and Kidle from Table 4.1 depend on the
particular system. In this section, we assume that Kservice = Kset = 1.

4.6.1 Energy performance of the MX /M/1/SET-VARI queue

In this section, we observe the trade-off between the transmission delay (sojourn time)
and the energy consumption in the MX /M/1/SET-VARI queue. Using Theorem 4.2, the
average sojourn time, denoted by E[Wv], and the average energy consumption, denoted by
E[Pv], can be expressed as follows.

E[Wv] =
λ+ α

α2
π0,0 +

1

µ
,

E[Pv] = Ksetµ
2 · λ
α
π0,0 +Kserviceµ

2 ·
{
1

2

λ

µ
E[X(X + 1)] +

λ2

µ
E[X]2E[Wv]

}
,

where π0,0 is given by (4.22).
We assume that α = 1, µ ∈ (0, 3] and that λ and X change while keeping that the

mean arrival rate of customers λE[X] is equal to one. Figure 4.2 shows the relation be-
tween the average energy consumption (x-axis) and the average sojourn time (y-axis) of
the MX /M/1/SET-VARI queue. Figure 4.2 presents the results whose batch-size distribu-
tions are CONST(1) and CONST(20). Note that the case with CONST(1) implies cus-
tomers arrive one by one. In the case with CONST(1), it can be seen that the average
sojourn time can be reduced as the energy consumption increases. However, in the case
with CONST(20), the average sojourn time is not necessarily reduced as the energy con-
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state energy consumption

service (1, k) k ≥ 1 Kservice × µ2

setup (0, k) k ≥ 1 Kset × µ2

idle (0, 0) 0

Table 4.2: Energy consumption per unit time of the MX /M/1/SET-FIX queue

sumption increases. From these observation, the trade-off between the sojourn time and
the energy consumption is not necessarily established.

4.6.2 Efficiency of the variable service speed

To observe the efficiency of the variable service speed of the MX /M/1/SET-VARI queue,
we compare with a queueing model such that the service speed is fixed. For the com-
parison, we consider the MX/M/1/SET-FIX queue, which is the single-server queue
such that the service speed is fixed and that the other settings are kept the same as the
MX /M/1/SET-VARI queue. In this subsection, the MX /M/1/SET-VARI queue is referred
to as the variable speed queue, and the MX/M/1/SET-FIX queue is referred to as the
fixed speed queue. The energy consumption for each state of the fixed speed queue is as-
sumed to be in Table 4.2. Note that the constants Kservice and Kset from Table 4.2 depend
on the particular system. In this subsection, we assume that Kservice = Kset = 1. Thus,
the mean sojourn time of the fixed speed queue, denoted by E[Wf], and the mean energy
consumption of the fixed speed queue, denoted by E[Pf], can be expressed as follows [4].

E[Wf] =
1

α
+

1 + E[X2]/E[X]

2(µ− λE[X])

E[Pf] = Ksetµ
2 · λ

λ+ α

(
1− λE[X]

µ

)
+Kserviceµ

2 · λE[X]

µ
.

Under the same energy consumption, we compare the average sojourn times of the
variable and fixed speed queues; that is, we compare E[Wv] with E[Wf] under the condition
that E[Pv] = E[Pf]. The procedure of numerical experiments is as follows. First, fixing
the value of µ ∈ (0, 3], we compute the average energy consumption per unit time of the
variable speed queue, denoted by E[Pv], and the average sojourn time of the variable speed
queue E[Wv]. Let µf(A) denote the unique service rate which realizes the average energy
consumption A in the fixed queue. Next, we compute µf(E[Pv]) by

µf(E[Pv]) =
1

λE[X]

{
λ+ α

α
E[Pv]−

λ

α

}
.

As a result, the energy consumption for both models is kept the same. Finally, we compute
the average sojourn time of the fixed speed queue under the assumption that µ = µf(E[Pv]).
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Figure 4.3: Efficiency of the variable service speed

state energy consumption

service (1, k) k ≥ 1 Kservice × µ2

idle (0, 0) Kidle × µ2

Table 4.3: Energy consumption per unit time of the MX /M/1-VARI queue

In this numerical experiment, we compute the average sojourn time from the average num-
ber of customers in the system using Little’s formula [36].

We assume that X following Binom(9, 1/6) and α = 1. The left-hand side of Fig-
ures 4.3 presents the comparison with λ = 0.2. We can observe that the variable speed
queue can realize a shorter average sojourn time than the fixed speed queue when they
consume the same energy. The right-hand side of Figures 4.3 presents the comparison
with λ = 1, which is the situation that a relatively many batches arrive in comparison
with the case of the left-hand side. We can observe that the variable speed queue does not
necessary have better performance than the fixed speed queue. When energy consumption
can be large to some extent, the variable speed queue can reduce the average sojourn time
rather than the fixed speed queue. On the other hand, when we want to reduce energy
consumption as much as possible, the fixed speed queue can reduce the average sojourn
time rather than the variable speed queue.

4.6.3 Efficiency of the on-off policy

To observe the efficiency of the on-off policy of the MX /M/1/SET-VARI queue, we com-
pare with a queueing model without the on-off policy. For the comparison, we consider
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Figure 4.4: Efficiency of the on-off policy

the MX /M/1-VARI queue, which is the single-server queue such that the server is not
turned off when the system become empty and that the other settings are kept the same
as the MX /M/1/SET-VARI queue. In this subsection, the MX /M/1/SET-VARI queue is
referred to as the on-off queue, and the MX/M/1-VARI queue is referred to as the always
ON queue. The queue length process of the always ON queue is equivalent to that of the
MX /M/∞ queue. The energy consumption for each state of the always on queue is as-
sumed to be in Table 4.3. Note that the constants Kservice and Kset from Table 4.3 depend
on the particular system. In this section, we assume that Kservice = Kset = 1. Thus,
the mean sojourn time of the always ON queue, denoted by E[Won], and the mean energy
consumption of the always ON queue, denoted by E[Pon], can be expressed as follows.

E[Won] =
1

µ
,

E[Pon] = Kidleµ
2 · e−

λ
µ
E[X] +Kserviceµ

2 ·

{
1

2

λ

µ
E[X(X + 1)] +

(
λ

µ
E[X]

)2
}
.

We now consider the performance metric z:

z = (average sojourn time) + β · (average energy consumption), (4.39)

where β > 0 is the constant which controls the ratio between the sojourn time and the
energy consumption. We call the performance metric defined by (4.39) the cost function.

In Figures 4.4, assuming that X following Binom(9, 1/6) and µ ∈ (0, 3], we show the
values of the cost function (4.39) of the on-off queue with α = 10 (shorter setup time), the
on-off queue with α = 0.1 (longer setup time) and the always ON queue. The left-hand
side of Figures 4.4 presents the comparison with λ = 0.1 and β = 2. We can observe
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Figure 4.5: Probability density function of the stationary sojourn time

that the on-off queue with α = 10 is better performance than the always ON queue. On
the other hand, the on-off queue with α = 0.1 does not have better performance than the
always ON queue. This observation can be explained as follows. In the case of the shorter
setup time (α = 10), the on-off queue saves the energy due to the on-off policy when
the system is empty and the average sojourn time is not affected much by the setup time.
But, in the case of the longer setup time (α = 0.1), the average sojourn time is heavily
influenced by the setup time. The increase in the average sojourn time has bigger impact
than the decrease in the energy consumption.

The right-hand side of Figures 4.4 presents the comparison with λ = 5 and β = 0.1,
which is the situation that a relatively many batches arrive in comparison with the case
of the left-hand side. We can observe that the always ON queue has better performance
than the on-off queue in both cases: the short setup time (α = 10) and the long setup time
(α = 0.1). This observation means that even if the setup times are short, the server should
not be turned off under a heavy traffic situation. However, the minimum values of the cost
functions of three queues are almost the same, which implies that the performance of the
three queues are almost the same when running the system with the optimal µ.

4.6.4 Sojourn time distribution

In this section, we show the probability density function of the stationary sojourn time dis-
tribution of the MX /M/1/SET-VARI queue by numerically inverting the Laplace-Stieltjes
transform. In what follows, we assume that α = 0.1, µ = 0.1 and λE[X] = 1. The LST
of the sojourn time distribution is given in Theorem 4.3 but it is in series form involving
infinite dimensional matrices. Therefore, its approximation is necessary for numerical cal-
culation. We present the procedure to compute the LST of the sojourn time distribution,
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W ∗(s). First, we truncate the infinite vectors.
We present the procedure to compute the LST of the sojourn time distribution, W ∗(s).

First, we truncate the infinite vectors π0 and π1 to the vectors of their first (N∗ + 1)

elements where the constant N∗ is determined by

N∗ = inf
{
n ∈ N; 1−

∑n
j=0π0,j −

∑n
j=1π1,j < 10−4

}
.

This is equivalent to disregarding the states with more than N∗ customers in the system
whose probability is 10−4. We compute π0,0 by (4.22) and πi,j , i = 0, 1, j = 1, . . . , N∗ by
(4.10) and (4.11). In addition, we truncate the infinite matrices appearing inW ∗(s) to their
N∗ × N∗ north-west corner matrices. We compute each element of the infinite matrices
by (4.26), (4.27), (4.33), (4.34), (4.36) and (4.37).

Next, we present the procedure to compute the value of the sojourn time distribution
for t ∈ (0, T/2] by numerically inverting the Laplace-Stieltjes transform [22] for fixed
T > 0. The function w(t) are defined as follows.

w(t) =
e

6
T
t

T
Re

{
W ∗

(
6

T

)}
+

2e
6
T
t

T

K∑
k=1

Re

{
W ∗

(
6

T
+ ik

2π

T

)}
cos

(
k
2π

T
t

)

− 2e
6
T
t

T

K∑
k=1

Im

{
W ∗

(
6

T
+ ik

2π

T

)}
sin

(
k
2π

T
t

)
.

In our numerical experiments, we use the value of w(t) as the sojourn time distribution. In
this section, we set K = 500 and T = 500.

In Figures 4.5, we investigate the impact of the batch size distribution on the sojourn
time distribution. The left-hand side of Figures 4.5 presents the sojourn time distribution
for λ = 0.4 and E[X] = 2.5, while the right-hand side of Figures 4.5 shows that for
λ = 0.25 and E[X] = 4 and µ = 0.1. Note that in both figures λE[X] = 1. We observe
that the curves of Binom(9, 1/6) and Uni{1, 4} almost coincide. The values of second,
third and fourth moments are 7.5, 25.8 and 99.2 in Binom(9, 1/6), and 7.5, 25.0 and 113.5

in Uni{1, 4}. On the other hand, the values of second, third and fourth moments are 10.0,
58.8 and 480.0 in Geo(1/2.5). This suggests that high order moments (roughly fourth or
higher) have less influence in the sojourn time distribution. Compared with the left-hand
side of Figures 4.5, the curves of binomial distribution, uniform distribution and geometric
distribution are different in the right -hand side of Figures 4.5. The second moments are
18.0 in Binom(9, 1/3), 20.0 in Uni{1, 4} and 38.0 in Geo(1/2.5). This suggests that the
second moment of the batch size has a significant impact on the sojourn time distribution.

4.6.5 Variance of the sojourn time

In this section, using Theorem 4.3, we calculate the variance of the stationary sojourn time
distribution of the MX /M/1/SET-VARI queue. We assume that α = 0.1, µ ∈ (0, 0.5] and
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Figure 4.6: Variance of the sojourn time

that λ and X change while keeping that the mean arrival rate of customers λE[X] is equal
to one. Figure 4.6 presents the results whose batch-size distributions are CONST(10) and
CONST(1). Note that the case with CONST(1) implies customers arrive one by one.

We can observe that the case with CONST(10) is larger than that with CONST(1).
This observation can be explained as follows. In the case with CONST(10), the variance
increases due to the fact that customers in a batch at the same time but receive service
at different times. We can also observe that when µ is large, the variance increases as µ
increases. This observation can be explained as follows. The difference in service speed
due to the difference in the number of customers in the system increases as µ increases.

4.7 Conclusion

In this chapter, we studied the MX /M/1/SET-VARI queue. We derived the PGF of the
stationary queue length distribution in an integral form. Furthermore, we derived the LST
of the stationary sojourn time distribution, which was obtained in series form involving
infinite-dimensional matrices. Through numerical experiments, we observed some in-
sights into the energy performance of the MX /M/1/SET-VARI queue.

In future works, we would like to consider the queueing models such that the service
speed changes according to various rules not only the case that in proportion to the queue
length. As a more realistic model, we would like to consider the case that there is an upper
limit on the change in the service speed. We are interested in the case that the service speed
changes by thresholds and the case that the service speed is controlled by the workload in
the system. We would like to know the stochastic properties and propose a better control
strategy of service speeds by using analytically and numerically results.
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Chapter 5

Conclusion

5.1 Summary

This thesis studied infinite-server queues and related models. In Chapter 2, we analyzed
the stability for batch arrival infinite-server queues. First, we showed that the stability con-
dition of BMAP/M/∞ queues is that the logarithmic moment of batch-size distribution is
finite. We extended this result to the multiclass BMAP/M/∞ queues. Next, we showed the
stability condition of GIX /GI/∞ queues is that the maximum service time in the batch has
a finite mean. Furthermore, we presented a tractable sufficient condition for the stability of
GIX /GI/∞ queues. We also proved that the stability condition of GIX /GI/∞ queues is that
the logarithmic moment of the batch-size distribution is finite, provided that the service
time distribution has an exponential tail.

Chapter 3 considered the Markov-modulated MX /M/∞ queue with binomial catastro-
phes, which is a batch arrival infinite-server queue such that customers may or may not
leave the system without completing service due to accidents. We analyzed the scaling
model of this model under a heavy traffic regime because it is difficult to exactly analyze
Markov-modulated queues. We then established the central limit theorem (CLT) for the
stationary queue length distribution; that is, the centered and normalized stationary queue
length distribution converges in distribution to a normal distribution. Using the CLT, we
obtained the approximation of the stationary queue length distribution with large arrival
rates. We presented some numerical results to confirm the accuracy of this approximation.

Chapter 4 studied a batch arrival single-server queues with variable service speed and
the on-off policy. In particular, we assumed that the service speed changes in proportion
to the queue length. It should be noted that the queue length process of this single-server
queue is identical to that of an infinite-server queue. We first presented the stability con-
dition for this queueing model. We derived the probability generating function of the
stationary queue length in an integral form. Furthermore, we derived the Laplace-Stieltjes
transform of the stationary sojourn time distribution. Through numerical experiments, we
observed some insights into the sojourn time and the energy performance.
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5.2 Directions of future works

In Chapter 2, we considered the stability condition for batch arrival infinite-server queues.
It is very important to derive the stability condition in a form that makes it easy to check
whether the condition is satisfied. Thus, we purpose to derive physically and interpretable
stability conditions for more general batch arrival infinite-server queues. We derived the
stability condition of GIX /GI/∞ queues, but derived by the physically and interpretable
form only when the service time distributions have exponential tails. We then would like to
derive a physically and interpretable stability condition of GIX /GI/∞ queues without ad-
ditional conditions. We predict that the condition of Corollary 4.1 is not only the sufficient
condition but also the necessary condition.

GIX /GI/∞ queues are very general batch arrival infinite-server queues and used in
many researches. However, there are restrictions that independence of inter-arrival times,
batch sizes, and service times. Thus, we would like to derive the stability condition for
batch arrival infinite-server queues such that there exist correlations between inter-arrival
times, batch sizes, and service times.

In Chapter 3, we studied an Markov-modulated infinite-server queues with batch ar-
rivals and binomial catastrophe, and shown the central limit theorem for the stationary
queue length. We would like to consider the behavior of our model without the assump-
tion that the second moment of the batch size is finite. We also would like to show the
central limit theorem under other heavy traffic regime because the heavy traffic regime
considered in this thesis is quite restrictive. Especially, we are interested in the regime
such that the transition rate of the background process is scaled by Nα′ , where α′ is a
newly introduced coefficient in addition to α. Knowing the behavior of a scaling model
under various regimes will lead to understanding the stochastic properties of the original
(non-scaling) model. Furthermore, we are interested in properties of the queue length pro-
cess of this model in the transient state. We predict that the central limit theorem of the
stochastic process version for the queue length process hold; that is, a scaled queue length
process with some transformation converges to an Ornstein-Uhlenbeck process.

In Chapter 4, we studied a batch arrival single server queues whose service speed
of the server changes in proportional to the queue length. In future works, we want to
consider the effect of each parameter on the energy performance either analytically or
numerically. We would like to consider the queueing models such that the service speed
changes according to various rules not only the case that in proportion to the queue length.
As a more realistic model, we would like to consider the case that there is an upper limit
on the change in the service speed. We are interested in the case that the service speed
changes by thresholds. We would also like to consider the case that the service speed is
controlled by the workload in the system. Furthermore, we would like to propose a better
control strategy of service speeds by using analytically and numerically results.
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Appendix

A Supplement proof for Theorem 2.2

This appendix devotes to show the pathwise ordered relation (2.20). Let Tn, n ∈ N, denote
the nth arrival time of batches from MBMAP {D(0),Dν(k); ν ∈ K, k ∈ N}, where

0 < T1 < T2 < · · · .

Let cn and Bn, n ∈ N, denote the class and batch size,respectively, of the batch arriving at
time Tn. Furthermore, let {Um;m ∈ N} denote a sequence of i.i.d. random variables with
a uniform distribution on the interval (0, 1). We then define Sm, Sm and Sm, m ∈ N, as
random variables such that, for An−1 + 1 ≤ m ≤ An and n ∈ N,

Sm = − 1

µcn

logUm, (A.1)

Sm = − 1

µmin

logUm, (A.2)

Sm = − 1

µmax

logUm, (A.3)

where A0 = 0 and An =
∑n

k=1Bk for n ∈ N. It follows from (A.1)–(A.3) that

P(Sm ≤ x) = 1− exp{−µcnx}, x ∈ R+, (A.4)

P(Sm ≤ x) = 1− exp{−µminx}, x ∈ R+, (A.5)

P(Sm ≤ x) = 1− exp{−µmaxx}, x ∈ R+. (A.6)

In addition, since µmin ≤ µcn ≤ µmax, we have

Sm ≤ Sm ≤ Sm, m ∈ N. (A.7)

Based on (A.4)–(A.6), we assume that {Sm;An−1 + 1 ≤ m ≤ An}, {Sm;An−1

+1 ≤ m ≤ An} and {Sm;An−1 + 1 ≤ m ≤ An} are the service times of the cus-
tomers in the nth batch arriving at the original MBMAPK /MK /∞ queue, Queues 1 and 2,
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respectively. We then fix |L(t)|, L(1)(t) and L(2)(t), t ≥ 0 such that

|L(t)| =
∞∑
n=1

An∑
m=An−1+1

I(Tn ≤ t < Tn + Sm), (A.8)

L(1)(t) =
∞∑
n=1

An∑
m=An−1+1

I(Tn ≤ t < Tn + Sm), (A.9)

L(2)(t) =
∞∑
n=1

An∑
m=An−1+1

I(Tn ≤ t < Tn + Sm). (A.10)

It is easy to see that {|L(t)|}, {L(1)(t)} and {L(2)(t)} can be considered the total queue
length processes of the original MBMAPK /MK /∞ queue, Queues 1 and 2, respectively,
which are fed by the common MBMAP. Furthermore, combining (A.7) with (A.8)–(A.10),
we obtain the pathwise ordered relation (2.20) between {|L(t)|}, {L(1)(t)} and {L(2)(t)}.

B Proof for Lemma 3.2

For the simplicity of expressions, we define, for i ∈ D, k ∈ Z+, and z ∈ [0, 1],

π̂
(k,N)
i (z) :=

dk

dzk
π̂
(N)
i (z), π̂

(k,N)
p,i (z) :=

dk

dzk

{
π̂
(N)
p,i (z)− π̂

(N)
i (z)

}
,

and

qi(z) :=
1− X̂i(z)

1− z
, q

(k)
i (z) :=

dk

dzk
qi(z).

To complete the proof of Lemma 3.2, we show that

N−kπ̂
(k,N)
i (1) = o(N), for any i ∈ D and k = 1, 2. (B.11)

Right-multiplying (3.8) by (1− z)−1N−1e, we have

N−1
∑
i∈D

π̂
(1,N)
i (z)µi =

∑
i∈D

π̂
(N)
i (z)λiq

(0)
i (z)−

∑
i∈D

π̂
(0,N)
p,i (z)

1− z
γi. (B.12)

Differentiating both sides of (B.12) yields

N−1
∑
i∈D

π̂
(2,N)
i (z)µi =

∑
i∈D

λi

{
π̂
(1,N)
i (z)q

(0)
i (z) + π̂

(N)
i (z)q

(1)
i (z)

}
−

∑
i∈D

{ π̂(1,N)
p,i (z)

1− z
+
π̂
(0,N)
p,i (z)

(1− z)2

}
γi. (B.13)

Note here that, for any i ∈ D, k = 0, 1, and z ∈ [0, 1],

π̂
(k,N)
p,i (z) ≥ 0,
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and

q
(0)
i (z) = E

[
Xi−1∑
ℓ=0

zℓ

]
≤ E

[
Xi−1∑
ℓ=0

1

]
= E[Xi],

q(1)(z) = E

[
Xi−1∑
ℓ=1

ℓzℓ−1

]
≤ E

[
Xi−1∑
ℓ=1

Xi

]
≤ E[X2

i ].

Applying these inequalities to (B.12) and (B.13), respectively, we have

N−1
∑
i∈D

π̂
(1,N)
i (z)µi ≤

∑
i∈D

λiπ̂
(N)
i (z)E[Xi], (B.14)

N−1
∑
i∈D

π̂
(2,N)
i (z)µi ≤

∑
i∈D

λi

{
π̂
(1,N)
i (z)E[Xi] + π̂

(N)
i (z)E[X2

i ]
}
. (B.15)

Taking the limit as z ↑ 1 in (B.14) and (B.15) and using E[X2
i ] <∞, we obtain (B.11).

C Supplement proof for Lemma 3.3

This appendix devotes to show (3.15). In this appendix, we note z as abbreviation for z(θ).
Let fi(N), i ∈ D, denote the i-th element of the left hand side of (3.15); that is,

fi(N) = NE[{N−1pi + z(θ)(1−N−1pi)}L
(N)

δi]−NE[z(θ)L
(N)

δi],

where δi = I(J (N) = i). Rearranging the above, we obtain, for any i ∈ D,

fi(N) = NpiE

[
L(N)N−1

L(N)∑
k=1

Ak−1

k

{
z(θ)L

(N)−k − z(θ)L
(N)}

δi

]
, (C.16)

where the random variable Ak is given by

Ak =

(
L(N) − 1

k

)
{N−1pi}k{1−N−1pi}L

(N)−1−k.

We estimate fi(N). We have, for 1 ≤ k ≤ n and x ∈ [0, 1],

xn−k − xn = (x−1 − 1)xnk
k−1∑
ℓ=1

1 + (x−1 − 1)xn
k−1∑
ℓ=1

(x−ℓ − 1)

= (x−1 − 1)xL
(N)

k + (x−1 − 1)2
k−1∑
ℓ=1

ℓ−1∑
h=0

xn−h

≤ (x−1 − 1)xnk + (x−1 − 1)2k(k − 1).

Applying this inequality to (C.16), we have

fi(N) ≤ N(z(θ)−1 − 1)pi · E

[
L(N)N−1z(θ)L

(N)
L(N)∑
k=1

Ak−1δi

]

+N(z(θ)−1 − 1)2pi · E

[
L(N)N−1

L(N)∑
k=1

(k − 1)Ak−1δi

]
, (C.17)
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Note here that
L(N)∑
k=1

Ak−1 = 1,

L(N)∑
k=1

kAk−1 = N−1pi · (L(N) − 1) ≤ N−1pi · L(N).

Combining these relations and (C.17) yields

fi(N) ≤ Npi(z(θ)
−1 − 1)E[L(N)N−1z(θ)L

(N)

δi] +Np2i (z(θ)
−1 − 1)2E[(L(N)N−1)2δi]

= Npi(z(θ)
−1 − 1)

d

dθ
E[z(θ)L

(N)

δi] +Np2i (z(θ)
−1 − 1)2E[(L(N)N−1)2δi].

Therefore, from Lemma 3.2 and (3.13), we obtain, for any i ∈ D,

fi(N) ≤ −piθ
d

dθ
E[z(θ)L

(N)

I(J (N) = i)] + o(N). (C.18)

On the other hand, applying z−k − 1 ≥ kθN−1 to (C.16), we obtain

fi(N) ≥ NpiE

[
L(N)N−1

L(N)∑
k=1

Ak−1
1

k
· z(θ)L(N) · kθN−1

]
= NpiE[L

(N)N−1z(θ)L
(N)

]

= −piθ
d

dθ
E[z(θ)L

(N)

δi]. (C.19)

Consequently, (3.15) follows from (C.18) and (C.19).

D Proof for Lemma 3.4

For k = 1, 2 and i ∈ D, we define Bk(i) as

Bk(i) = E[(L(N)N−1)keiL
(N)N−1θI(J (N) = i)]− ρkE[eiL

(N)N−1θI(J (N) = i)].

We then have, for k = 1, 2 and i ∈ D,∣∣Bk(i)
∣∣ ≤ E[|(L(N)N−1)k − ρk||eiL(N)N−1θ|I(J (N) = i)]

≤ E[|(L(N)N−1)kI(J (N) = i)− ρkI(J (N) = i)|]
≤ E[|(L(N)N−1)k − ρk|]. (D.20)

From Lemma 3.3 and [49, Corollary 2], (L(N)N−1)k converges in probability to ρk for
k = 1, 2. In addition, it follows from Lemma 3.2 that {E[(L(N)N−1)k]}N≥1 is uniformly
integrable for k = 1, 2. Thus, for k = 1, 2, (L(N)N−1)k converges in mean to ρk; that is,

lim
N→∞

E[|(L(N)N−1)kI(J (N) = i)− ρk|] = 0. (D.21)

Combining (D.20) and (D.21) yields

lim
N→∞

∣∣Bk(i)
∣∣ = 0, for k = 1, 2 and i ∈ D.
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E Supplement proof for Theorem 3.1

This appendix devotes to show (3.25). We define gi(N) and hi(N), i ∈ D, as follows.

gi(N) = γi

{
π̂
(N)
i (z(θ))− π̂

(N)
p,i (z(θ))

}
,

hi(N) = iNβ/2γipiθ
d

dz
π̂
(N)
i (z(θ)) +N−1+β 1

2

{
ργipi + ρ2γip

2
i

}
θ2π̂

(N)
i (z(θ)).

To complete the proof of (3.25), we show the following relation.∣∣∣e−iNβ/2ρθgi(N)− e−iNβ/2ρθhi(N)
∣∣∣ = o(1), (E.22)

We define δi = I(J (N) = i). We have

hi(N) = iNβ/2γipiθE
[
L(N)N−1z(θ)L

(N)

δi

]
+N−1+β 1

2

{
ργipi + ρ2γip

2
i

}
θ2E

[
z(θ)L

(N)

δi

]
= iNβ/2γiθE

[
piL

(N)N−1 · z(θ)L(N)

δi

]
+N−1+β 1

2
γiθ

2E
[{
piL

(N)N−1 +
(
piL

(N)N−1
)2} · z(θ)L(N)

δi

]
+ o(1),(E.23)

where the last equation follows from Lemma 3.4. In addition, we also have

gi(N) = NγiE
[
z(θ)L

(N)
L(N)∑
k=1

(1− z(θ)−k)Ckδi

]
, (E.24)

where δi := 1{J(N)=i} and Ck is given by

Ck =

(
L(N)

k

)
{N−1pi}k{1−N−1pi}L

(N)−k.

We define Dk(θ) as

Dk(θ) = 1− z(θ)−k − iN−1+β/2kθ −N−2+β k
2

2
θ2.

Using Dk(θ), (E.24) can be rewritten as follows.

gi(N) = NγiE

[
z(θ)L

(N)
L(N)∑
k=1

Dk(θ)Ckδi

]
+NγiE

[
z(θ)L

(N)
L(N)∑
k=1

kCkδi

]

+NγiE

[
z(θ)L

(N)
L(N)∑
k=1

k2Ckδi

]
, (E.25)

Note here that
L(N)∑
k=1

kCk = piL
(N)N−1,

L(N)∑
k=1

k2Ck = piL
(N)N−1 + (piL

(N)N−1)2 + o(1).
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Applying these relations to (E.25) yields

gi(N) = NγiE

[
z(θ)L

(N)
L(N)∑
k=1

Dk(θ)Ckδi

]
+NγiE

[
piL

(N)N−1 · z(θ)L(N)

δi

]
+NγiE

[{
piL

(N)N−1 +
(
piL

(N)N−1
)2} · z(θ)L(N)

δi

]
+ o(1), (E.26)

Combining (E.23) and (E.26), we obtain

gi(N)− hi(N) = E

[
z(θ)L

(N)
L(N)∑
k=1

Dk(θ)Ckδi

]
+ o(1). (E.27)

Using the triangle inequality and |z(θ)| = |eiNβ/2ρθ| = 1, it follows from (E.27) that

|gi(N)− hi(N)| ≤ NγiE

[ ∣∣∣z(θ)L(N)
∣∣∣ · L(N)∑

k=1

|Dk(θ)|Ckδi

]
+ o(1)

= NγiE

[
L(N)∑
k=1

|Dk(θ)|Ckδi

]
+ o(1). (E.28)

Applying Lemma 3.2 and |eiNβ/2ρθ| = 1 to the above inequality yields

|gi(N)− hi(N)| ≤ NγiE

[
L(N)∑
k=1

|Dk(θ)|Ckδi

]
+ o(1). (E.29)

Note here that, using the second order Maclaurin expansion of z−k(θ), we have

z−k(θ) = 1− iN−1+β/2kθ −N−2+β k
2

2
θ2 + o(N−1),

which leads to

Dk(θ) = o(N−1). (E.30)

Note also that

L(N)∑
k=1

Ck ≤
L(N)∑
k=0

Ck = 1. (E.31)

Applying (E.30) and (E.31) to (E.29), we complete the proof of (E.22).

72



Bibliography

[1] I. Adan and B. D’Auria. Sojourn time in a single-server queue with threshold service
rate control. SIAM Journal on Applied Mathematics, 76(1):197–216, 2016.

[2] I. F. Akyildiz and X. Wang. A survey on wireless mesh networks. IEEE Communi-
cations magazine, 43(9):23–30, 2005.

[3] S. Asmussen and G. Koole. Marked point processes as limits of Markovian arrival
streams. Journal of Applied Probability, 30(2):365–372, 1993.

[4] Y. Baba. The MX /M/1 queue with multiple working vacation. American Journal of
Operations Research, 2(2):217–224, 2012.

[5] L. A. Barroso and U. Hölzle. The case for energy-proportional computing. Com-
puter, 40(12):33–37, 2007.

[6] M. Baykal-Gursoy and W. Xiao. Stochastic decomposition in M/M/∞ queues with
Markov modulated service rates. Queueing Systems, 48(1–2):75–88, 2004.

[7] O. Berman and E. Kim. Stochastic models for inventory management at service
facilities. Stochastic Models, 15(4):695–718, 1999.

[8] J. Blom and M. Mandjes. A large-deviations analysis of Markov-modulated infinite-
server queues. Operations Research Letters, 41(3):220–225, 2013.

[9] J. Blom, K. De Turck, and M. Mandjes. Analysis of Markov-modulated infinite-
server queues in the central-limit regime. Probability in the Engineering and Infor-
mational Sciences, 29(3):433–459, 2015.

[10] A. Brandt and H. Sulanke. On the GI/M/∞ queue with batch arrivals of constant
size. Queueing Systems, 2(2):187–200, 1987.
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[63] L. Takács. Queues with infinitely many servers. RAIRO-Operations Research-
Recherche Opérationnelle, 14(2):109–113, 1980.

[64] T. Takine. Single-server queues with Markov-modulated arrivals and service speed.
Queueing Systems, 49(1):7–22, 2005.

[65] L. B. Toktay, L. M. Wein, and S. A. Zenios. Inventory management of remanufac-
turable products. Management science, 46(11):1412–1426, 2000.

[66] H. Toyoizumi. Infinite-server queues with large fluctuation in arrival processes. In
Proceedings of the 2018 Fall National Conference of the Operations Research Soci-
ety of Japan, 68–69, 2018.

[67] D. Williams. Probability with Martingales. Cambridge University Press, 1991.

77



[68] T. Van Woensel and N. Vandaele. Modeling traffic flows with queueing models: a
review. Asia-Pacific Journal of Operational Research, 24(4):435–461, 2007.

[69] R. W. Wolff. Poisson arrivals see time averages. Operations Research, 30(2):223–
231, 1982.

[70] D. Xu, X. Liu, and A. V. Vasilakos. Traffic-aware resource provisioning for dis-
tributed clouds. IEEE Cloud Computing, 2(1):30–39, 2015.

[71] M. Yajima and H. Masuyama. Stability analysis of GIX /GI/∞ queues. In Proceed-
ings of Proceedings of the 14th International Conference on Queueing Theory and
Network Applications, 2019.

[72] M. Yajima and T. Phung-Duc. Batch arrival single-server queue with variable service
speed and setup time. Queueing Systems, 86(3-4):241–260, 2017.

[73] M. Yajima and T. Phung-Duc. A central limit theorem for a markov-modulated
infinite-server queue with batch poisson arrivals and binomial catastrophes. Per-
formance Evaluation, 129:2–14, 2019.

[74] M. Yajima, T. Phung-Duc, and H. Masuyama. The stability condition of
BMAP/M/∞ queues. In Proceedings of Proceedings of the 11th International Con-
ference on Queueing Theory and Network Applications, page 5. ACM, 2016.

78


