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ABSTRACT
We propose two schemes for interpolation of the one-particle Green’s function (GF) calculated within a coupled-cluster singles and doubles
(CCSD) method for a periodic system. These schemes use Wannier orbitals for circumventing huge cost for a large number of sampled
k points. One of the schemes is the direct interpolation, which obtains the GF straightforwardly by using Fourier transformation. The
other is the self-energy-mediated interpolation, which obtains the GF via the Dyson equation. We apply the schemes to a LiH chain and
trans-polyacetylene and examine their validity in detail. It is demonstrated that the direct-interpolated GFs suffer from numerical artifacts
stemming from slow convergence of CCSD GFs in real space, while the self-energy-mediated interpolation provides more physically appro-
priate GFs due to the localized nature of CCSD self-energies. Our schemes are also applicable to other correlatedmethods capable of providing
GFs.
Published under license by AIP Publishing. https://doi.org/10.1063/1.5079474

I. INTRODUCTION

Although electronic-structure calculations based on the den-
sity functional theory (DFT)1,2 have been successful by and large
for quantitative explanations and predictions of the properties of
molecules and solids, they are known to have a tendency to fail in
describing thematerial properties even qualitatively for strongly cor-
related systems. To remedy such shortcomings of the DFT, various
approaches have been proposed. There exist such approaches based
on the Green’s function (GF) theory, including the GW method.3–5
They often use the non-interacting states obtained in DFT calcu-
lations as the reference states for the construction of interacting
GFs. On the other hand, many sophisticated approaches based on
the wave function theory have been developed for quantum chem-
istry calculations. The coupled-cluster singles and doubles (CCSD)
method6 is a widely accepted one since it achieves moderate bal-
ance between its high accuracy and high computational cost. Not
only is the relation between GW and CCSD methods theoretically

interesting but also their quantitative comparison is worth examin-
ing7 from a practical viewpoint.

Photoelectron spectroscopy is one of the most active fields
in experimental physics of today. Measurements of the photoelec-
tric effects in target materials make use of various kinds of tech-
niques such as angle-resolved photoemission spectroscopy (ARPES)
for clarifying the material properties. The measured spectra of an
interacting electronic system are often explained under a certain
assumption via the one-particle GF.8–10 The clear understanding
of the characteristics of GFs is thus important both for theoretical
and practical studies in material science. Mathematically speaking,
the quasiparticle and satellite peaks in photoelectron spectra rep-
resent nothing but the poles of one-particle GF of an interacting
system. Particularly, the distance between the peaks closest to zero
frequency is the fundamental gap. It has been demonstrated that
there exists an analytically solvable model11 which helps to obtain
transparent insights into interacting GFs. Meanwhile, the GFs in the
context of correlated electronic-structure calculations for uniform

J. Chem. Phys. 150, 114104 (2019); doi: 10.1063/1.5079474 150, 114104-1

Published under license by AIP Publishing

https://scitation.org/journal/jcp
https://doi.org/10.1063/1.5079474
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/1.5079474
https://crossmark.crossref.org/dialog/?doi=10.1063/1.5079474&domain=aip.scitation.org&date_stamp=2019-March-18
https://doi.org/10.1063/1.5079474
https://orcid.org/0000-0003-3379-3361
mailto:kosugi.taichi@gmail.com
https://doi.org/10.1063/1.5079474


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

electron gases12 and realistic systems have been drawing attention
recently,13–16 which we deal with in the present study.

CCSD17 and subsequent GF calculations18–22 are difficult
especially for a periodic system due to their large computational
cost since a sufficiently large number of sampled k points are
needed. This fact hinders one from performing a detailed compari-
son between the band structures obtained by a Hartree–Fock (HF)
or DFT calculation and the spectra obtained fromCCSDGF, and the
measured spectra. Development of physically appropriate interpola-
tion schemes for CCSD GFs is thus desirable for examining spectral
properties of correlated systems, which is nothing but what we do in
this study.

This paper is organized as follows. In Sec. II, we review CCSD
and GF calculations briefly and explain the interpolation schemes.
In Sec. III, we describe the details of our computation. In Sec. IV, we
show the results for the target systems. In Sec. V, our conclusions are
provided.

II. METHOD

A. CCSD and GF for a periodic system
The CC state for a reference state |Ψ0� is constructed by

performing an exponentially parameterized transform as �ΨCC�
= eT̂ �Ψ0�, where T̂ is a so-called cluster operator. The normaliza-
tion of our CCSD wave functions obeys the bi-variational formula-
tion,23–25 with which we calculate the CCSD one-particle GFs18–20
in the recently proposed procedure21,22 as well as in our previous
studies.13–15

Here, we review briefly the calculation of CCSD GF for a
periodic system. The GF in frequency domain is given by

G(k,ω) = G(h)(k,ω) +G(e)(k,ω), (1)

where

G(h)pp′ (k,ω) = �Ψ0�(1 + Λ̂)a†
kp

1
ω +H

akp′ �Ψ0� (2)

and

G(e)pp′ (k,ω) = �Ψ0�(1 + Λ̂)akp 1
ω −Ha†

kp′ �Ψ0� (3)

are the partial GFs from the hole and electron excitations, respec-
tively. k is a wave vector, and ω is a complex frequency. p is the com-
posite index of a spatial orbital and a spin direction for an occupied
or unoccupied single-electron state. For the original Hamiltonian Ĥ,
we defined the similarity transformed HamiltonianH ≡ e−T̂ ĤeT̂−E0
measured from the CCSD total energy E0. We also defined the trans-
formed creation and annihilation operators a†

kp = e−T̂ â†
kpe

T̂ and

ākp = e−T̂ âkpeT̂ , respectively. Λ̂ is the parameterized de-excitation
operator determined in the Λ-CCSD calculation,21,22 which has to
be introduced since the CCSD operator eT̂ is not unitary.

In order to avoid the computational difficulty in treating the
inverse matrix (ω ± H)−1 in Eqs. (2) and (3), the parameterized
operators X̂kp(ω) and Ŷkp(ω) are introduced so that21,22

(ω +H)X̂kp(ω)�Ψ0� = akp�Ψ0� (4)

and

(ω −H)Ŷkp(ω)�Ψ0� = a†
kp�Ψ0�. (5)

The linear equation for the non-Hermitian matrix in Eq. (4) is called
the ionization potential (IP) equation-of-motion (EOM) CCSD
equation, while that in Eq. (5) is called the electron affinity (EA)
EOM-CCSD equation. After obtaining the parameterized operators,
we use them in Eqs. (2) and (3) to get

G(h)pp′ (k,ω) = �Ψ0�(1 + Λ̂)a†
kpX̂kp′(ω)�Ψ0� (6)

and

G(e)pp′ (k,ω) = �Ψ0�(1 + Λ̂)akpŶkp′(ω)�Ψ0�. (7)

The k-resolved spectral function is defined via the GF as

A(k,ω) = − 1
π
Im TrG(k,ω + iδ) (8)

for a real ω with a small positive constant δ ensuring causality.
The spectral function calculated in this way reflects our correlated
approach, to be compared with the band structures obtained in
mean-field-like approaches such as HF and DFT.

Before moving on to the description of our interpolation
schemes, it is noted here that there exists an alternative to obtain
correlated spectra or band structure for arbitrary k points with-
out resorting to interpolation. Specifically, usage of a large series of
shifted regular kmeshes enables one to perform EOM-CCSD calcu-
lations to get the excitation energies for an arbitrarily fine kmesh, as
adopted by McClain et al.17 This approach requires large computa-
tional cost for the accuracy ensured by the EOM-CCSD framework
itself.

B. Wannier interpolation

1. Wannier orbitals
Wannier orbitals (WOs)26 and their variants in solids are ana-

logues of Foster–Boys orbitals27,28 in molecular systems. In particu-
lar, maximally localized WOs (MLWOs)29 are widely used not only
for analyses of chemical bonds but also for accurate calculations of
anomalous Hall conductivity and transport properties.

The generic expression of a WO is

wRn(r) = 1
Nk
�
k,p

e−ik⋅Rψkp(r)U(k)pn . (9)

R is the lattice point where the unit cell containing the nth WO is
located. U(k) is a unitary matrix at k for the construction of local-
ized orbitals from the extending Bloch orbitals ψkp(r). When the
transformation matrix U(k) is identity at each k, the normal WOs
(NWOs)26 are obtained. When the matrices are determined so that
the spread functional30,31 is minimized, on the other hand, the
MLWOs are obtained.

2. Direct interpolation
The Bloch sum of the localized orbital in Eq. (9) for a wave

vector k is defined as wkn(r) = ∑Reik ⋅RwRn(r), which extends over
the whole crystal. The Bloch sum of the target bands allows one to
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transform the CCSD GF in the band representation, which is also
said to be in the Bloch gauge, to the new one in the Wannier gauge
as

Gnn′(k,ω) =�
p,p′
(U(k)†)npGpp′(k,ω)U(k)p′n′ . (10)

For the calculated GF at Nk sampled k points in the Brillouin zone
(BZ), we perform Fourier transformation as

G̃nn′(R,ω) = 1
Nk

sampled�
k

e−ik⋅RGnn′(k,ω), (11)

which is ideally equal to the exact Fourier transformGnn′ (R,ω) in the
limit of an infinite number of sampled k points. The real-space repre-
sentation defined above enables us to obtain the GF for an arbitrary
wave vector via inverse Fourier transformation as

G̃d
nn′(k,ω) =�

R
eik⋅RG̃nn′(R,ω), (12)

which we call the direct interpolation hereafter.
It is clear from Eq. (8) that the spectral function Ãd(k,ω) calcu-

lated from direct interpolation does not depend on the matricesU(k)

since they are unitary. It is also clear from Eq. (12) that the interpo-
lated spectral function integrated over an arbitrarily fine k mesh is
identical to the original spectra integrated over the sampled k points:
Ãd(ω) = A(ω).
3. Self-energy-mediated interpolation

We cannot avoid being concerned about the reliability of
G̃nn′(R,ω) defined in Eq. (11) since the number of sampled k points
has to be small in general due to the large computational cost of
CCSD and subsequent GF calculations. To circumvent the difficulty
in increasing the number of sampled k points, we propose another
interpolation scheme for GFs here.

The self-energy Σ is obtained via the Dyson equation

G−1(k,ω) = G−10 (k,ω) − Σ(k,ω), (13)

where G0 is the HF GF. Substituting the CCSD GF in Eq. (1) into the
matrix equation above, we get the CCSD self-energy. It is noted here
that the CCSD self-energy does not contain the contributions from
the HF self-energy diagrams, which are already contained in G0.32
The HF GF in the Bloch gauge is diagonal in reciprocal space, whose
component is given by

(G−10 )pp′(k,ω) = (ω − εkp)δpp′ , (14)

where εkp is the HF orbital energy.
The interpolation procedure is as follows. We first calculate the

CCSD self-energy in the Bloch gauge via Eq. (13), which is then
transformed into the Wannier gauge as well as in Eq. (10). We
apply Fourier transformation to it using the sampled k points to get
Σ̃nn′(R,ω) similarly to Eq. (11). From this real-space representation,
we can interpolate the self-energy Σ̃nn′(k,ω) for an arbitrary wave
vector via inverse Fourier transformation, which we plug into the
Dyson equation to get the interpolated GF

G̃sem(k,ω) = [G̃−10 (k,ω) − Σ̃(k,ω)]−1. (15)

We call this scheme the self-energy-mediated interpolation here-
after. Since this scheme includes inversion of matrices, the resultant
spectral function depends on the construction of WOs since the
unitary matrices U(k) depend on k in general.

There exists an attempt for interpolating GW quasiparticle
band structure using MLWOs done by Hamann and Vanderbilt.33
Their scheme uses the GW quasiparticle wave functions and their
orbital energies to get the GW Hamiltonian in real space by adopt-
ing a manner computationally similar to our direct interpolation.
Their formalism for efficient interpolation of correlated band struc-
ture stems from the localized shapes of MLWOs. The self-energy-
mediated interpolation, on the other hand, relies on the localized
nature of self-energies, as will be demonstrated later. It will be inter-
esting to examine the interpolation using the GW self-energy in the
future.

III. COMPUTATIONAL DETAILS
We adopt STO-3G basis set for the Cartesian Gaussian-type

basis functions6 of all the elements in the present study. The
Coulomb integrals between AOs are calculated efficiently.34 By
transforming them using the results of the HF calculations for peri-
odic systems, we obtain the integrals between the Bloch orbitals,35
with which we perform the CCSD calculations by successive sub-
stitution. We solve the IP-EOM-CCSD and EA-EOM-CCSD equa-
tions in Eqs. (4) and (5), respectively, by using the shifted BiCG
method.36–38 We set δ = 0.02 Ht in Eq. (8) throughout this
study. For the construction of MLWOs, we calculate the overlaps
between the cell-periodic parts of the Bloch orbitals as input to
wannier90.39

IV. RESULTS AND DISCUSSION

A. LiH chain

1. Band structure and CCSD GF
For a LiH chain composed of equidistant atoms, we first opti-

mized the lattice constant via HF calculations using Nk = 12 × 1 × 1
sampled k points. We obtained the optimized lattice constant
a = 3.28 Å, which is in reasonable agreement with previous stud-
ies.40,41 We obtained a restricted HF (RHF) solution for this lat-
tice constant and adopted it as the reference state for the CCSD
calculation.

We constructed the MLWOs from all 6 bands. The MLWOs
can be used for interpolation of the original bands.30,31 The HF
bands and their Wannier interpolation are plotted in Fig. 1, where
the original bands are accurately reproduced. The flat valence band
at ω = −10 eV comes from the H 1s orbital, while the conduc-
tion bands are dispersive. The CCSD spectral function A(k, ω) is
also shown in the figure. We find clear correspondence between the
HF band energies and the quasiparticle peaks in the CCSD spec-
tra. In addition, low intensities exist in the CCSD spectra, known
as the satellite peaks.13 They are direct consequences of many-body
effects taken into account by the correlated approach. The locations
of quasiparticle peaks below (above) the Fermi level are closer to
ω = 0 than those of the valence (conduction) HF band energies are,
as generic characteristics of correlation effects. Since the system is
spin unpolarized, the spectral intensities are the same at an arbitrary
k and −k due to time reversal symmetry.
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FIG. 1. HF band structure of a LiH chain as circles and that obtained with the
MLWOs as curves. The spectral function A(k, ω) calculated from the CCSD GF at
12 sampled k points is also shown. The chain extends in the x direction.

2. Direct interpolation
The spectral function Ãd(k,ω) calculated from direct interpo-

lation is shown in Fig. 2(a). One finds soon that three obviously unfa-
vorable features exist in the interpolated spectra. First, the quasipar-
ticle peaks for the highest conduction band consist of spots separated
by the distance ∆kx between the neighboring sampled k points. Sec-
ond, there exist trains of specks at ω = 10 and 5 eV, where each
speck is separated by ∆kx again. The spectral intensities for some
of the specks are, even worse, unphysically negative. Third, the time
reversal symmetry is not preserved in the spectra, particularly for the
trains of specks.

For the sampled frequencies in a range −40 eV < ω < 40 eV,
the absolute values of diagonal components of G̃(R,ω) in the region
near the Fermi level (−12 eV < ω < 22 eV) and the outside region are
plotted in Fig. 2(b). Although the decreasing tendencies of those val-
ues for the frequencies near the Fermi level are seen for both kinds
of WOs, their convergence is slow for the increase in |R|. By con-
trast, the diagonal components for the other frequencies decrease
rapidly enough already at |R|/a = 2. These observations indicate
that the sampled k points are too few for the direct interpolation
near the Fermi level despite the fact that the HF bands are suffi-
ciently convergent with respect to the k points. The unfavorable
features of the direct-interpolated spectra enumerated above are
numerical artifacts due to the insufficient number of sampled k
points.

3. Self-energy-mediated interpolation
To circumvent the direct interpolation, let us next try the

self-energy-mediated interpolation. We impose the time reversal
symmetry condition on the spectral function from the self-energy-
mediated interpolation as

Ãsem
TR (k,ω) ≡ Ãsem(k,ω) + Ãsem(−k,ω)

2
. (16)

The spectral functions calculated in this way by using the NWOs
and MLWOs are shown in Fig. 3(a), where the unfavorable features

FIG. 2. (a) Spectral function Ãd(k,ω) calculated from the direct interpolation of
CCSD GF for a LiH chain. (b) The absolute values �G̃nn(R,ω)� of diagonal compo-
nents of the GFs as functions of |R|. Those obtained using the NWOs and MLWOs
for the energy region near the Fermi level (−12 eV < ω < 22 eV) and the outside
region are plotted.

for the direct interpolation do not appear. The spectra for the two
kinds of NWOs are almost indistinguishable from each other. The
absolute values of diagonal components of Σ̃(R,ω) in the same
regions as in Fig. 2(b) are plotted in Fig. 3(b). Those values decrease
rapidly enough already at |R|/a = 1 for all the frequencies. This
means that the number of sampled k points is sufficient for the
description of the variation in CCSD self-energy in reciprocal space,
and hence, the self-energy-mediated interpolation of GF is reliable
within the accuracy ensured by our preceding procedure of CCSD
GF calculations.

The spectral functions integrated over k points, or equivalently
the densities of states, for the original CCSDGF and the interpolated
GFs using the WOs are shown in Fig. 4(a). Those for the two kinds
of WOs look indistinguishable, in addition to which they almost
coincide with the original spectra.

To see whether the self-energy-mediated interpolation using a
smaller number of sampled k points reproduces the original spectra,
we calculated the interpolated spectra for Nk = 6 and plotted them
in Fig. 4(b). The interpolated spectra from Nk = 12 and those from
Nk = 6 look quite similar to each other, implying the usefulness of
our scheme for k-integrated spectra.
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FIG. 3. (a) Spectral functions Ãsem
TR (k,ω) calculated from the self-energy-

mediated interpolation for a LiH chain by using the NWOs and MLWOs are shown
in the upper and lower panels, respectively. (b) The absolute values �Σ̃nn(R,ω)�
of diagonal components of the self-energies as functions of |R|.

B. trans -polyacetylene

1. Band structure and CCSD GF
For trans-polyacetylene, we adopted the structural parame-

ters provided by Teramae42 to construct the unit cell consisting
of two C atoms and two H atoms, where the bond alternation has
occurred.43,44 We obtained an RHF solution for this geometry using
Nk = 8 × 1 × 1 sampled k points and adopted it as the reference state

FIG. 4. (a) k-integrated spectral functions of a LiH chain for the original CCSD GF
at 12 sampled k points and the interpolated GFs using the WOs. (b) The original
spectra and the self-energy-mediated interpolated ones using the NWOs for 12
sampled k points. The latter for 6 sampled k points are also shown.

for the CCSD calculations. Although it has been shown45 that the
band picture on this system is dubious by resorting to DFT calcu-
lations incorporating the zero-point vibrations of atoms, we keep
to the band picture since the main purpose of present study is to
propose the interpolation schemes.

We constructed the MLWOs from the 10 bands near the Fermi
level. The HF bands and their Wannier interpolation are plotted
in Fig. 5, where the original bands are accurately reproduced. The
calculated band gap of 8.9 eV at X (kx = ±π/a) is in reasonable
agreement obtained by Teramae46 using the same basis set. These
calculated gaps are much larger than the experimental ones44,47 of
1–2 eV, as is often the case with HF calculations. The CCSD spec-
tral function is also shown in the figure, where the satellite peaks for
Γ (kx = 0) have stronger intensities than for kx ≠ 0.
2. Direct interpolation

The spectral function Ãd(k,ω) calculated from direct inter-
polation is shown in Fig. 6(a), where one finds unfavorable fea-
tures similarly to the case of a LiH chain. For the sampled fre-
quencies in a range −60 eV < ω < 50 eV, the absolute values
of diagonal components of G̃(R,ω) in the region near the Fermi
level (−33 eV < ω < 33 eV) and the outside region are plotted
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FIG. 5. HF band structure of trans-polyacetylene as circles and that obtained with
the MLWOs as curves. The spectral function A(k, ω) calculated from the CCSD
GF at 8 sampled k points is also shown. The polymer extends in the x direction. a
is the lattice constant.

in Fig. 6(b). No clear tendency of decrease in those values is seen
for the two kinds of WOs. The numerical artifacts in the direct-
interpolated spectra thus look more prominent than for a LiH chain.
In particular, the interpolated satellite peaks for ω < −25 eV can be
unphysically negative, as seen in Fig. 6(a).

FIG. 6. (a) Spectral function Ãd(k,ω) calculated from the direct interpolation of
CCSD GF for trans-polyacetylene. (b) The absolute values �G̃nn(R,ω)� of diago-
nal components of the GFs as functions of |R|. Those obtained using the NWOs
and MLWOs for the energy region near the Fermi level (−33 eV < ω < 33 eV) and
the outside region are plotted.

3. Self-energy-mediated interpolation
The spectral functions Ãsem

TR (k,ω) calculated via self-energy-
mediated interpolation by using the NWOs and MLWOs are shown
in Fig. 7(a). Unphysical intensity does not appear in the interpo-
lated spectra near the Fermi level. The absolute values of diagonal

FIG. 7. (a) Spectral functions Ãsem
TR (k,ω) calculated from the self-energy-

mediated interpolation for trans-polyacetylene by using the NWOs and MLWOs
are shown in the upper and lower panels, respectively. (b) The absolute val-
ues �Σ̃nn(R,ω)� of diagonal components of the self-energies as functions
of |R|.
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components of Σ̃(R,ω) in the same frequency regions as in Fig. 6(b)
are plotted in Fig. 7(b). The diagonal components near the Fermi
level for the NWOs are large for |R| = 0 compared to |R| ≠ 0. This
is also the case for the MLWOs. On the other hand, there exist sig-
nificant contributions from |R| ≠ 0 for the frequencies far from the
Fermi level in contrast to the case of a LiH chain. The unphysical
intensities are thus seen for −25 eV < ω < 60 eV at Γ, where the two
kinds of WOs give slightly different spectra [see Fig. 7(a)].

The spectral functions integrated over k points for the origi-
nal CCSD GF and the interpolated GFs using the WOs are shown
in Fig. 8(a). Those for the two kinds of WOs look indistinguish-
able even for ω < −25 eV in contrast to the k-resolved spectra
[see Fig. 7(a)]. Furthermore, negative intensities do not appear for
those frequencies in the k-integrated spectra. These observations
imply that accurate interpolation of k-resolved spectra requiresmore
sampled k points than k-integrated spectra do.

To see whether the self-energy-mediated interpolation using
a small number of sampled k points allows one to access the

FIG. 8. (a) k-integrated spectral functions of trans-polyacetylene for the original
CCSD GF at 8 sampled k points and the interpolated GFs using the WOs. (b) The
original spectra and the self-energy-mediated interpolated ones using the NWOs
for 8 sampled k points. The latter for 6 sampled k points are also shown.

k-integrated spectra which would be obtained for a larger number
of k points, we calculated the interpolated spectra for Nk = 6 and
plotted them in Fig. 8(b). The interpolated spectra from Nk = 8 and
those from Nk = 6 look quite similar to each other, indicative of well
converged self-energy with respect to Nk. On the other hand, the
peak locations of the original spectra for −10 eV < ω < 15 eV differ
slightly from those of the interpolated spectra, implying slow con-
vergence of the original GF. These results corroborate the usefulness
of the self-energy-mediated interpolation scheme as well as in the
LiH chain case.

It has been demonstrated that the self-energy-mediated inter-
polation is successful for our two systems at least near the Fermi
level. Our results are consistent with the often adopted assumption
that the self-energy of an electronic system is more localized than the
GF. The dynamical mean-field theory (DMFT)48 and its application
in electronic-structure calculations49 are based on this assumption
and have been used successfully.

V. CONCLUSIONS
We proposed two schemes for interpolation of the one-particle

GF calculated within CCSD method for a periodic system. These
schemes employ transformation of representation from reciprocal
to real spaces by using WOs for circumventing huge cost for a large
number of sampled k points. One of the schemes is the direct inter-
polation, which obtains the GF straightforwardly by using Fourier
transformation. The other is the self-energy-mediated interpola-
tion, which obtains the GF via the Dyson equation. We applied
the schemes to two insulating systems, a LiH chain and trans-
polyacetylene, and examined their validity in detail. We found that
the direct-interpolated GFs suffered from numerical artifacts stem-
ming from slow convergence of CCSD GFs in real space. The self-
energy-mediated interpolation, on the other hand, was found to pro-
vide more physically appropriate GFs due to the localized nature of
CCSD self-energies. We should keep in mind that in a metallic sys-
tem, whose density matrix50,51 and GF52 decay only algebraically
at a zero temperature, a large number of sampled k points would be
required for sufficiently convergent results. Remembering the widely
accepted assumption that the self-energy of an interacting system is
more localized than the GF, the self-energy-mediated interpolation
is expected to be more suitable for generic systems than the direct
interpolation.

Since our interpolation schemes are not restricted to the CCSD
method, they are applicable to any correlated methods in quan-
tum chemistry as long as they provide a way to obtain one-particle
GFs. Development of various correlated methods with GFs in solids
is thus important for reliable explanations and predictions of their
spectral shapes and excitation energies.
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