
論文 / 著書情報
Article / Book Information

題目(和文)

Title(English) Algorithms and Graph-Theoretic Characterizations of Problems in
Matching Under Preferences

著者(和文) Ruangwises Suthee

Author(English) Suthee RUANGWISES

出典(和文) 学位:博士(理学),
 学位授与機関:東京工業大学,
 報告番号:甲第11573号,
 授与年月日:2020年9月25日,
 学位の種別:課程博士,
 審査員:伊東 利哉,渡辺 治,田中 圭介,鹿島 亮,森 立平

Citation(English) Degree:Doctor (Science),
 Conferring organization: Tokyo Institute of Technology,
 Report number:甲第11573号,
 Conferred date:2020/9/25,
 Degree Type:Course doctor,
 Examiner:,,,,

学位種別(和文) 博士論文

Type(English) Doctoral Thesis

Powered by T2R2 (Tokyo Institute Research Repository)

http://t2r2.star.titech.ac.jp/

Tokyo Institute of Technology

Ph.D. Thesis

Algorithms and Graph-Theoretic
Characterizations of Problems in Matching

Under Preferences

Author:
Suthee Ruangwises

Advisor:
Prof. Toshiya Itoh
Secondary Advisor:

Prof. Osamu Watanabe

A thesis submitted in fulfillment of the requirements
for the degree of Ph.D. in Mathematical and Computing Science

in the

Department of Mathematical and Computing Science
School of Computing

August 2020

Abstract

Matching under preferences is one of the most actively studied problems in theoretical com-
puter science. The general objective of this problem is to match people with other people or
with items, while each person has a list that ranks other people or items in order of preference.
Two measures of optimality have been widely studied: popularity and stability. A matching is
popular if it does not lose in a head-to-head election against any other matching. A matching
is stable if there is no pair of people that are not matched to each other but prefer each other to
their own partners.

In this thesis, we investigate three open problems related to popular and stable match-
ings using graph-theoretic characterizations. In the first problem, we study a probability that
a popular matching exists in a random instance. In the second problem, we present an algo-
rithm to measure badness of a matching that is not popular. In the third problem, we develop
an algorithm to find a matching that has a property close to that of a stable matching and does
not cross itself geometrically.

i

Acknowledgements

I would like to express my gratitude to all the people who contributed in some way to the work
presented in this thesis. First, I am deeply grateful to my academic advisor, Prof. Toshiya Itoh,
for accepting me into his lab and continuously providing me his excellent guidance, patience,
and motivation for doing research throughout my Master’s and Ph.D. studies during the past
five years. I would also like to thank my secondary advisor, Prof. Osamu Watanabe, for his
initial support since 2014 when I visited Tokyo Institute of Technology as a research intern
while I was a third-year undergraduate student. He warmly welcomed to his lab and engaged
me in novel ideas which brought me into this area of study. Besides Prof. Itoh and Prof.
Watanabe, I would like to thank the other members of my thesis committee: Prof. Keisuke
Tanaka, Assoc. Prof. Ryo Kashima, and Asst. Prof. Ryuhei Mori, for their interest in my work.

I would like to acknowledge the Department of Mathematical and Computing Science
and the former Department of Information Processing at Tokyo Institute of Technology. My
experience benefited greatly from the high-quality courses I took and the seminars I partici-
pated. I would also like to thank the current and past members of Itoh Lab and Watanabe Lab
for the fruitful discussions about my research.

I am grateful to the funding sources that allow me to pursue my Master’s and Ph.D.
studies: the Development and Promotion of Science and Technology Talents Project Scholar-
ship from the Royal Thai Government and the Monbukagakusho Honors Scholarship from the
Japan Student Services Organization. I also received financial support from Tokyo Institute of
Technology for my attendance at various conferences, from which I gained new experience and
ideas in many aspects.

Finally, I must express my profound gratitude to my family: my parents and my late
grandmother, for providing me continuous support and encouragement with their best wishes
throughout the years of my studies and research. This accomplishment would not have been
possible without them.

Copyright Declaration: This thesis includes content from [47, 48, 49] with copyright
permission.

ii

Contents

1 Introduction 1
1.1 Background . 1
1.2 Known Results . 4
1.3 Motivation and Goals . 9
1.4 Methodology . 10
1.5 Contribution . 11

2 Preliminaries 12
2.1 Basic Graph Terminologies . 12
2.2 Popular Matchings and Unpopularity Factor . 13
2.3 Noncrossing Matching Problem . 15
2.4 Miscellaneous . 16

3 Random Popular Matching Problem in hap 17
3.1 A-Perfect Matchings . 18
3.2 Complete Preference Lists Setting . 19
3.3 Incomplete Preference Lists Setting . 20
3.4 Phase Transition . 27
3.5 Results from Simulation . 33

4 Computing Unpopularity Factor in mp and rp 46
4.1 Unweighted Setting . 47
4.2 Weighted Setting . 52

5 Finding a Weakly Stable Noncrossing Matching 54
5.1 Outline of Algorithm . 55
5.2 Proof of Correctness . 56
5.3 Implementation . 57
5.4 Proof of Finiteness . 60
5.5 Running Time Analysis . 63
5.6 Generalization and Follow-Up Problems . 64

6 Conclusion 65

Bibliography 68

iii

1Introduction

1.1 Background

Matching under preferences is a problem involving matching people with items or with other
people while each person has a list that ranks items or other people in his/her order of pref-
erence. This problem models many important real-world situations such as assignment of
medical residents to hospitals [44], graduates to training positions [26], students to schools
[1, 2], and families to government-subsidized housing [53].

The main objective of this problem is to find an optimal matching in each situation. Var-
ious definitions of optimality have been proposed. The least restrictive one is Pareto optimality
[3, 4, 45]. A matching M is Pareto optimal if there is no other matching M ′ such that at least
one person prefers M ′ to M but no one prefers M to M ′. Other stronger definitions include
rank-maximality [29] (allocating maximum number of people to their first choices, then maxi-
mum number to their second choices, and so on). However, two most well-studied properties
of matchings are stability [16] and popularity [5, 18].

The Stable Marriage Problem is one of the most actively studied problems in computer
science, mathematics, and economics [21, 46]. In the original bipartite setting called Marriage
Problem (mp), a set of n/2 men and a set of n/2 women are given. Each person has a preference
list that ranks all people of the opposite gender in strict order of preference. A man and a
woman are called a blocking pair w.r.t. a matching M if they are not matched with each other
in M but prefer each other to their own partners in M. A matching is called stable if it does not
admit any blocking pair. Gale and Shapley [16] proved that a stable matching always exists
in any instance and developed an O(n2) time algorithm to find one. The Stable Roommates
Problem is a generalization of the original Stable Marriage Problem to a non-bipartite setting
called Roommates Problem (rp), where each person can be matched with anyone regardless of
gender. Unlike in mp, a stable matching in rp does not always exist [27].

Apart from stability, another less restrictive property of a preferable matching is popu-
larity. For a pair of matchings X and Y , let φ(X,Y) denote the number of people who prefer a
person they get matched by X to a person they get matched by Y . A matchingM is called popu-
lar if φ(M,M ′) ≥ φ(M ′ ,M) for any other matchingM ′. The concept of popularity of a matching
was first introduced by Gärdenfors [18] in the context of a cognitive science problem. Besides
mp and rp settings, popular matchings were also studied in a setting of one-sided preference
lists (matching people with items, where each person has a list that ranks items but each item
does not have a list that ranks people) called House Allocation Problem (hap). Note that the rela-

1

tion φ(X,Y) ≥ φ(Y ,X) is not transitive, so a popular matching may or may not exist depending
on the preference lists of people. See Example 1.

Example 1. Consider the following hap instance with three people a1, a2, a3 and three items
b1,b2,b3, with everyone having the same preferences.

Preference Lists
a1 : b1,b2,b3

a2 : b1,b2,b3

a3 : b1,b2,b3

M1 = {{a1,b1}, {a2,b2}, {a3,b3}}
M2 = {{a1,b2}, {a2,b3}, {a3,b1}}
M3 = {{a1,b3}, {a2,b1}, {a3,b2}}

For the three above matchings, we have φ(M1,M2) = 2 > 1 = φ(M2,M1). Similarly, we
also have φ(M2,M3) = 2 > 1 = φ(M3,M2) and φ(M3,M1) = 2 > 1 = φ(M1,M3). In fact, a popular
matching does not exist in this instance.

While a popular matching may not exist in some instances, several measures of badness
of a matching that is not popular have been introduced. McCutchen [40] introduced two such
measures: unpopularity factor and unpopularity margin. The unpopularity factor u(M) of a
matching M is the maximum ratio φ(M ′ ,M)/φ(M,M ′) among all other possible matchings M ′,
while the unpopularity margin g(M) is the maximum difference φ(M ′ ,M) −φ(M,M ′) among
all other possible matchings M ′. These two measures apply to all of mp, rp, and hap settings.
Note that the two measures are not equivalent as φ(M ′ ,M) and φ(M,M ′) may not add up to
the total number of people since some people may likeM andM ′ equally, thus it is possible for
a matching to have higher unpopularity factor but lower unpopularity margin than another
matching. See Example 2.

Example 2. Consider the following rp instance. A set in a preference list means all people in
that set are ranked equally, e.g. a2 prefers a1 and a4 equally as his first choices over a3.

Preference Lists
a1 : a4, a2, a3

a2 : {a1, a4}, a3

a3 : {a1, a4}, a2

a4 : {a2, a3}, a1

M0 = {{a1, a2}, {a3, a4}}
M1 = {{a1, a3}, {a2, a4}}
M2 = {{a1, a4}, {a2, a3}}

In this example,φ(M0,M1) = 1,φ(M1,M0) = 0,φ(M0,M2) = 3,φ(M2,M0) = 1,φ(M1,M2) =
3, and φ(M2,M1) = 1. Therefore, M0 is popular, while u(M1) =∞, g(M1) = 1 − 0 = 1, u(M2) =
3/1 = 3, and g(M2) = 3 − 1 = 2. Observe that M1 has higher unpopularity factor but lower
unpopularity margin than M2.

Finally, besides constraints on the preferences, geometric constraints are also important
factors to consider in many real-world situations involving matchings, such as in the VLSI
layout design [31]. In general, the Noncrossing Matching Problem (nmp) deals with a set of

2

vertices lying on two parallel lines, with some edges joining vertices on the opposite lines. The
goal of nmp is to find a noncrossing matching, a matching whose edges do not cross one another,
subject to different objectives such as maximum size, maximum weight, etc.

3

1.2 Known Results

1.2.1 Stable Matchings

In an mp instance with n/2 men and n/2 women, Gusfield and Irving [21] showed that the
Gale–Shapley algorithm [16] can be adapted to the setting where each person’s preference list
may not contain all people of the opposite gender. The algorithm runs in O(m) time in this
setting, where m is the total length of people’s preference lists (i.e. the number of edges). Gale
and Sotomayor [17] proved that in this modified setting, a stable matching may have size less
than n/2, but every stable matching must have equal size and match the same set of people.

Irving [28] later generalized the notion of a stable matching to a setting where ties are
allowed in people’s preference lists and presented three possible interpretations of stability.

• A matching is weakly stable if there is no pair that strictly prefer each other to their own
partners.

• A matching is strongly stable if there is no pair (a,b) such that a strictly prefers b to a’s
partner and b likes a not less than b’s partner.

• A matching is super-stable if there is no pair that like each other not less than their own
partners.

He also proposed an O(n2) time algorithm to find a weakly stable matching (which always
exists), and an O(n4) time (resp. O(n2) time) algorithm to find a strongly stable (resp. super-
stable) matching or report that none exists. The running time of the algorithm for a strongly
stable matching was later improved to O(mn) by Kavitha et al. [34].

In an rp instance with n people, Irving [27] developed an O(n2) time algorithm to find a
stable matching or report that none exists. Tan [51] studied the exact condition for the existence
of a stable matching and discovered that a stable matching exists if and only if a structure called
odd party does not exist.

1.2.2 Popular Matchings

Gärdenfors [18] proved that in an mp instance where each person’s preference list is strict (con-
taining no tie), every stable matching must be popular (but not vice-versa), hence a popular
matching always exists. In fact, every stable matching is also a minimum size popular match-
ing, as proved by Huang and Kavitha [24]. They also developed an algorithm to compute a
maximum size popular matching in this exact setting in O(mmin(nM ,nW)) time, where nM
and nW are the number of men and the number of women, respectively. The running time of
this algorithm was later improved to O(m) by Kavitha [32]. Also, Kavitha [33] showed that
the problem of determining whether there is a popular matching of a given size s in a given
instance is NP-hard.

While a popular matching always exists in an mp instance with strict preference lists,
the problem of determining whether a popular matching exists in a given instance, however,
becomes more computationally challenged in other settings. Biró et al. [8] proved that when

4

Strict Preference Lists Ties Allowed
Unweighted Setting O(m+n) [37] O(m

√
n) [37]

Weighted Setting O(m+n) [42] O(mmin(t
√
n,n)) [42]

chap setting O(m+
√
Cn1) [39] O(m(

√
C +n1)) [39]

Table 1.1: Best known deterministic algorithms to find a popular matching or report that none
exists in hap

ties in the preference lists are allowed, determining whether a popular matching exists in a
given mp or rp instance is NP-hard. Cseh et al. [10] showed that this problem is NP-hard in
mp even when ties are allowed on only one side. Very recently, Faenza et al. [13] and Gupta
et al. [20] independently proved that this problem is still NP-hard in rp even when people’s
preference lists are strict. Cseh and Kavitha [11] showed that in a complete graph rp instance
with n people where each person’s preference list is strict and contains all other people, the
problem of determining whether a popular matching exists is solvable in polynomial time for
an odd n but is NP-hard for an even n.

Popular matchings were also extensively studied in hap setting, where a set A of n1 peo-
ple and a set B of n2 items are given. Abraham et al. [5] developed an algorithm to find a
popular matching in a given hap instance, or report that none exists. The algorithm runs in
O(m + n) time when people’s preference lists are strict and in O(m

√
n) time when ties are al-

lowed, where m is the total length of people’s preference lists (i.e. the number of edges) and
n = n1 + n2 is the total number of people and items (i.e. the number of vertices). Kavitha and
Shah [36] proposed a randomized algorithm to solve the same problem when ties are allowed in
O(nω) time, whereω < 2.376 is the exponent of matrix multiplication. This algorithm performs
slightly better than that of Abraham et al. in dense graphs where m = Θ(n2).

Mestre [42] generalized the algorithm of Abraham et al. to a weighted setting where
people are given different voting weights. The algorithm runs in O(m + n) time when ties
are not allowed and in O(mmin(t

√
n,n)) time when ties are allowed, where t is the number of

distinct weights. Manlove and Sng [39] also generalized their algorithm to a setting where each
item is allowed to be matched with more than one person called Capacitated House Allocation
Problem (chap). The algorithm runs in O(m +

√
Cn1) time when ties are not allowed and in

O(m(
√
C + n1)) time when ties are allowed, where C is the total capacity of all items. Table 1.1

shows the running time of the best known deterministic algorithms to find a popular matching
or report that none exists in different settings of hap.

McDermid and Irving [41] constructed a structure called switching graph that can be
used to solve several problems in hap such as counting the number of popular matchings and
enumerating all popular matchings. Abraham and Kavitha [6] proved that in any hap instance
with at least one popular matching, one can achieve a popular matching by conducting at most
two majority votes to force a change in assignments, starting at any matching. Kavitha et al.
[35] introduced the concept of a mixed matching, which is a probability distribution over a set
of matchings, and proved that a mixed matching that is “popular” always exists.

5

The Random Popular Matching Problem (rpmp) is a probabilistic problem involving the
probability of existence of a popular matching in a random instance. For rpmp in hap, each
person’s preference list is defined independently by selecting the first item b1 ∈ B uniformly
at random, the second item b2 ∈ B \ {b1} uniformly at random, the third item b3 ∈ B \ {b1,b2}
uniformly at random, and so on. Mahdian [37] proved that in a random hap instance with
strict and complete preference lists, if α = n2/n1 > α∗, where α∗ ≈ 1.42 is the root of equation
x2 = e1/x, then a popular matching exists with high probability (1 − o(1) probability). On the
other hand, if α < α∗, then a popular matching exists with low probability (o(1) probability).
The point α = α∗ can be regarded as a phase transition point, at which the probability rises from
asymptotically zero to asymptotically one. Itoh and Watanabe [30] later studied the weighted
setting where each person has weight either w1 or w2, with w1 ≥ 2w2, and found a phase
transition at α = Θ(3

√
n1).

1.2.3 Unpopularity Measures

McCutchen [40] developed an algorithm to compute u(M) and g(M) of a given matching M of
an hap instance inO(m

√
n2) andO((g+1)m

√
n) time, respectively, where g = g(M) is the unpop-

ularity margin of M. He also proved that the problem of finding a matching that minimizes
either measure is NP-hard. Huang et al. [25] later developed an algorithm to find a matching
with bounded values of these measures in hap instances with certain properties.

The notions of unpopularity factor and unpopularity margin also apply to mp and rp

settings. Biró et al. [8] developed an algorithm to determine whether a given matching M is
popular in O(m

√
n) time for mp and in O(m

√
n logn) time for rp (when running with the recent

fastest algorithm to find a maximum weight perfect matching [12]). Their algorithm also si-
multaneously computes the unpopularity margin ofM during the run. Huang and Kavitha [23]
showed that an rp instance with strict preference lists always admits a matching with unpopu-
larity factorO(logn), and proved that it is NP-hard to find a matching with the lowest unpopu-
larity factor, or even the one with less than 4/3 times of the optimum. Kavitha [32] showed that
in an mp instance with strict preference lists, for any positive integer u < min(nM ,nW), there
is a matching of size at least u+1

u+2 |Mmax| with unpopularity factor at most u, where Mmax is a
maximum size matching. Tables 1.2 and 1.3 show the running time of the best known algo-
rithms related to popularity in each setting with strict preference lists, and with ties allowed,
respectively.

1.2.4 Noncrossing Matchings

There have been several results on nmp in a bipartite graph where 2n vertices lie on two par-
allel lines, each containing n vertices. In a special setting where each vertex is adjacent to
exactly one vertex on the opposite line, Fredman [15] presented an O(n logn) time algorithm
to find a maximum size noncrossing matching by computing the length of the longest increas-
ing subsequence (LIS). Widmayer and Wong [52] developed another algorithm that runs in
O(s + (n − s) log(s + 1)) time, where s is the size of the solution. This algorithm has the same
worst-case running time as the algorithm of Fredman, but runs faster in average case.

In a general setting where each vertex can be adjacent to any number of vertices on the

6

Two-sided Lists One-sided Lists
Marriage

Problem (mp)
Roommates

Problem (rp)
House Allocation

Problem (hap)

Determine if a popular
matching exists

O(m) [18]
NP-hard [13, 20]

O(m+n) [5]

Find a matching M
that minimizes g(M) NP-hard [40]

Find a matching M
that minimizes u(M)

NP-hard [23]

Test popularity
of a given matching M O(m

√
n) [8] O(m

√
n logn) [8, 12]

O(m+n) [5]

Compute g(M)
of a given matching M

O((g + 1)m
√
n) [40]

Compute u(M)
of a given matching M

O(m
√
n2) [40]

Table 1.2: Best known algorithms for an unweighted instance with strict preference lists

Two-sided Lists One-sided Lists
Marriage

Problem (mp)
Roommates

Problem (rp)
House Allocation

Problem (hap)

Determine if a popular
matching exists

NP-hard [8]
O(m
√
n) [5]

Find a matching M
that minimizes g(M) NP-hard [40]

Find a matching M
that minimizes u(M)

Test popularity
of a given matching M O(m

√
n) [8] O(m

√
n logn) [8, 12]

O(m
√
n2) [40]

Compute g(M)
of a given matching M

O((g + 1)m
√
n) [40]

Compute u(M)
of a given matching M

O(m
√
n2) [40]

Table 1.3: Best known algorithms for an unweighted instance with ties allowed in the prefer-
ence lists

7

opposite line, Malucelli et al. [38] developed an algorithm to find a maximum size noncrossing
matching. The algorithm runs in eitherO(m loglogn) orO(m+min(ns,m logs)) time depending
on implementation, wherem is the number of edges. In a setting where each edge has a weight,
they also showed that the algorithm can be adapted to find a maximum weight noncrossing
matching with O(m logn) running time.

8

1.3 Motivation and Goals

rpmp in hap has a practical importance as it helps us predict whether a popular matching exists
in a situation where we know only the number of people and items, but not the preferences
of people. For example, a DVD rental shop owners can predict how many DVDs they have to
prepare in order to satisfy customers, given only the number of customers. The previous result
of Mahdian [37] solved this problem in the case where people’s preference lists are both strict
and complete. However, in many real-world situations, people’s preference lists may not be
complete since people may regard some items as undesired at all. For an instance where the
preference lists are strict but not complete, with every person’s preference list having the same
length of a constant k, this problem was simulated by Abraham et al. [5], and was conjectured
by Mahdian [37] that the phase transition point would shift by an amount exponentially small
in k. However, the exact phase transition point, or whether it exists at all, had not been found
yet. This leads to the first open problem we aim to solve.

It is known that the problem of finding a matching with minimum unpopularity factor
or unpopularity margin in a given instance is NP-hard in most settings. However, the problem
of computing an unpopularity factor or unpopularity margin of a given matching is deemed to
be computationally easier. This problem also has importance as the algorithm works in a sense
that it measures how bad a given solution is. In hap, there are polynomial-time algorithms to
compute both measures [40]. However, in mp or rp, there is only such algorithm to compute
the unpopularity margin [8] but not the unpopularity factor, as shown in Tables 1.2 and 1.3.
This leads to the second open problem we aim to solve.

Finally, we aim to study matching problems with both preferential constraints and geo-
metric constraints. In real-world situations, the geometric constraints may represent physical
locations, e.g. in the construction of bridges between cities on the two sides of a river, or may
represent non-physical concepts such as rank of people or time. Consider an nmp instance
where each vertex has a preference list containing vertices on the opposite line. We are in-
terested in whether there exists a noncrossing matching that is also stable, or at least has a
property close to that of a stable matching. This leads to the third open problem we aim to
solve.

9

1.4 Methodology

In this thesis, we analyze three open problems in matching under preferences using graph-
theoretic characterizations.

In the first problem, for each hap instance, we construct an auxiliary graph called top-
choice graph with a property that a popular matching exists if and only if the top-choice graph
contains a complex component (a component with more than one cycle). The top-choice graph
is in turn approximated by another auxiliary random graph. To find a phase transition point of
probability of existence of a popular matching, we prove the upper bound and the lower bound
separately. For the upper bound, we bound the number of subgraphs with specific properties
in order to bound the probability of existence of a complex component in a random graph. For
the lower bound, we use the Galton-Watson branching process (shown in Section 2.4) to bound
the probability of existence of a complex component in a random graph.

In the second problem, for each mp or rp instance and each macthing, we construct an
auxiliary graph that has close relation to the unpopularity factor of that matching. Then, we
reduce the problem of computing the unpopularity factor into the problem of detecting a pos-
itive weight directed cycle for mp, and detecting a positive weight perfect matching for rp.

In the third problem, each nmp instance is represented by points on a plane. We de-
velop a computational geometric algorithm that will always find a noncrossing matching has a
property close to that of a stable matching, which implicitly proves that such matching always
exists.

10

1.5 Contribution

In Chapter 3, we study rpmp in an hap instance where the preference lists are strict but not
complete, with every person’s preference list having the same length of a constant k, and dis-
cover a phase transition at α = αk , where αk ≥ 1 is the root of equation xe−1/2x = 1−(1−e−1/x)k−1.
In particular, we prove that for k ≥ 4, if α > αk , then a popular matching exists with high prob-
ability; and if α < αk , then a popular matching exists with low probability. For k ≤ 3, where
the equation does not have a solution in [1,∞), a popular matching always exists with high
probability for any value of α ≥ 1 without a phase transition. We also perform a simulation to
help illustrate and verify the discovered phase transition.

In Chapter 4, we develop the first polynomial-time algorithm to compute the unpopular-
ity factor of a given matching in an mp or rp instance by employing an auxiliary graph similar
to the one in [8]. The algorithm runs in O(m

√
n logn) time for mp and in O(m

√
n log2n) time for

rp. We also generalize the notion of unpopularity factor to the weighted setting where people
are given different voting weights, and show that our algorithm can be slightly modified to
support that setting with the same running time.

In Chapter 5, we investigate an nmp instance with n men and n women represented by
points lying on two parallel lines, each line containing n people of one gender. Each person
has a strict preference list that ranks a subset of people of the opposite gender. A noncrossing
blocking pair w.r.t. a matching M is a blocking pair w.r.t. M that does not cross any edge in M.
Our goal is to find a noncrossing matching that does not admit any noncrossing blocking pair,
called a weakly stable noncrossing matching (WSNM). We constructively prove that a WSNM
always exists in any instance by developing an O(n2) time algorithm to find one in a given
instance.

11

2Preliminaries

2.1 Basic Graph Terminologies

• directed graph: a graph with each edge having a direction, from one endpoint to another
endpoint, assigned to it

• weighted graph: a graph with each edge having a real number called weight assigned to
it

• bipartite graph: a graph whose vertices can be partitioned into two disjoint sets such
that there is no edge connecting two vertices in the same set

• matching: a set of edges such that any two of them do not share any vertex

• perfect matching: a set of edges such that every vertex in the graph belongs to exactly
one of them

• cycle: a sequence (v0, e1,v1, e2,v2, . . . , ek ,vk) of vertices and edges such that an edge ei
has endpoints vi−1 and vi for each i = 1,2, . . . , k, with the condition that v0 = vk and
v0,v1, . . . , vk−1 are all different

• alternating cycle w.r.t. a matching M : a cycle whose edges alternate between the edges
in M and not in M

12

2.2 Popular Matchings and Unpopularity Factor

In mp and rp, we consider an instance I consisting of a set A of n people, where each person has
a preference list that ranks a subset of A as his/her acceptable partners in order of preference.
In rp there is no further restriction, while in mp people are classified into two genders, and each
person’s preference list can contain only people of the opposite gender. In hap, we consider an
instance I consisting of a set A of n1 people and a set B of n2 items, with n = n1 + n2, where
each person has a preference list that ranks a subset of B as his/her acceptable items in order
of preference.

Let m be the total length of people’s preference lists. A preference list is called strict if it
does not contain tie. In hap, a preference list is called complete if it contains all items in B.

For a matching M and a person a ∈ A, let M(a) denote the person/item matched with a
in M (for convenience, let M(a) = null if a is unmatched in M). Analogously, in hap, let M(b)
denote the person matched with an item b ∈ B inM. Also, for a person b ∈ A in mp and rp, or an
item b ∈ B in hap, let ra(b) be the rank of b in a’s preference list, with the most preferred one(s)
having rank 1, the second most preferred one(s) having rank 2, and so on (for convenience, let
ra(null) =∞).

Let M be the set of all matchings of a given instance I . For any pair of matchings X and
Y in M, define φ(X,Y) to be the number of people who strictly prefer the person/item they get
matched by X to the person/item they get matched by Y , i.e.

φ(X,Y) = |{a ∈ A|ra(X(a)) < ra(Y (a))}|.

Definition 1. [5, 18] A matching M ∈M is popular if φ(M,M ′) ≥ φ(M ′ ,M) for every matching
M ′ ∈M− {M}.

Also, let

∆(X,Y) =

φ(Y ,X)/φ(X,Y), if φ(X,Y) > 0;

1, if φ(X,Y) = φ(Y ,X) = 0;

∞, otherwise.

Definition 2. [40] For a matching M ∈M, an unpopularity factor u(M) is defined by

u(M) = max
M ′∈M−{M}

∆(M,M ′).

Definition 3. [40] For a matching M ∈M, an unpopularity margin g(M) is defined by

u(M) = max
M ′∈M−{M}

(φ(M ′ ,M)−φ(M,M ′)) .

From Definitions 1, 2, and 3, it follows that a matching M is popular if and only if
u(M) ≤ 1, and M is popular if and only if g(M) ≤ 0.

13

2.2.1 Random Instances

Consider an hap instance where every person’s preference list has equal length of a constant
k ≤ n2. Such instance is called an instance with k-incomplete preference lists.

Definition 4. For a positive integer k ≤ n2, a random instance with strict and k-incomplete prefer-
ence lists is an instance with each person’s preference list chosen independently and uniformly
from the set of all n2!

(n2−k)! possible k-permutations of the n2 items in B at random.

14

2.3 Noncrossing Matching Problem

In nmp, we consider a set of n men m1,m2, . . . ,mn represented by points lying on a vertical line
in this order from top to bottom, and a set of nwomenw1,w2, . . . ,wn represented by points lying
on another parallel line in this order from top to bottom. Each person a has a strict preference
list denoted by a sequence La of people of the opposite gender, with the i-th entry being the
i-th most preferred person by a.

A pair of edges cross each other if they intersect in the interior of both segments. For-
mally, an edge (mi ,wj) crosses an edge (mx,wy) if and only if (i − x)(j − y) < 0. A matching is
called noncrossing if it does not contain any pair of edges that cross each other.

Definition 5. A blocking pair w.r.t. a matching M is a pair (mi ,wj) of a man and a woman that
are not matched with each other, but mi prefers wj to M(mi) and wj prefers mi to M(wj).

Definition 6. A noncrossing blocking pair w.r.t. a matching M is a blocking pair w.r.t. M that
does not cross any edge in M.

Definition 7. A matching M is called a weakly stable noncrossing matching (WSNM) if M is
noncrossing and does not admit any noncrossing blocking pair.

Definition 8. A matching M is called a strongly stable noncrossing matching (SSNM) if M is
noncrossing and does not admit any blocking pair.

Remark 1. Although the real-world applications of this geometric problem are likely to involve
immovable objects, we keep the terminologies of men and women used in the original Stable
Marriage Problem in order to understand and relate to the original problem more easily.

15

2.4 Miscellaneous

We first introduce Chebyshev’s inequality, which states that for a random variable X with ex-
pected value µ and variance σ2, and for any real number k > 0, we have

Pr(|X −µ| ≥ kσ) ≤ 1
k2 .

It is worth noting the following lemma proved by Mahdian [37] about independent and
uniform selection of items at random, which will be used in this thesis.

Lemma 1. [37] Suppose that we pick y elements from the set {1,2, . . . , z} independently and
uniformly at random (with replacement). Let a random variable X be the number of elements
in the set that are not picked. Then, E[X] = e−y/zz −Θ(1) and Var[X] < E[X].

Finally, we introduce the Galton-Watson branching process [7, pp.182–184], which is a
process that generates a random graph in a breadth-first search tree manner when given a
starting vertex and a distribution of the degree of each vertex. The process begins when the
starting vertex spawns a number of children which are put in the queue in some order. Then,
the first vertex in the queue also spawns children which are put at the end of the queue by the
same manner, and so on. The process may stop at some point when the queue becomes empty,
or otherwise continues indefinitely.

16

3Random Popular Matching Problem in hap

Consider an hap instance consisting of a set A of n1 people and a set B of n2 ≥ n1 items, with
α = n2/n1 ≥ 1. Throughout this chapter, we consider a setting where every person’s preference
list is strict.

In this chapter, we will investigate the phase transition in a random instance with strict
and k-incomplete preference lists. In particular, we will prove the following statements.

• For k ≥ 4, if α > αk , then a popular matching exists with high probability; and if α < αk ,
then a popular matching exists with low probability, where αk ≥ 1 is the root of equation
xe−1/2x = 1− (1− e−1/x)k−1.

• For k ≤ 3, a popular matching always exists with high probability for any α ≥ 1.

We will also perform a simulation to help illustrate and verify the discovered phase transition.

17

3.1 A-Perfect Matchings

For convenience, for each person a ∈ A we append a unique auxiliary last resort item `a to the
end of a’s preference list (`a has lower preference than all other items in the list). By introducing
the last resort items, we can assume that every person is matched because we can simply match
any unmatched person a with `a. Note that these last resort items are not in B and thus do not
count toward n2. Also, let L = {`a|a ∈ A} be the set of all last resort items.

For each person a ∈ A, let f (a) denote the item at the top of a’s preference list. Let
F = {f (a)|a ∈ A} be the set of all first-choice items, and let S = B−F. Then, for each person a ∈ A,
let s(a) denote the highest ranked item in a’s preference list that is not in F. Note that s(a) is
well-defined for every a ∈ A because of the existence of last resort items.

We say that a matching M is A-perfect if every person a ∈ A is matched with either f (a) or
s(a). Abraham et al. [5] proved the following lemma, which holds for any instance with strict
(not necessarily complete) preference lists.

Lemma 2. [5] In any instance with strict preference lists, a popular matching exists if and only
if an A-perfect matching exists.

The proof of Lemma 2 first shows that a matching M is popular if and only if M is an
A-perfect matching such that every item in F is matched in M. This equivalence implies the
forward direction of the lemma. On the other hand, the proof also shows that for any A-perfect
matchingM, we can modifyM to make every item in F matched, hence implying the backward
direction of the lemma.

18

3.2 Complete Preference Lists Setting

First, consider a setting where every person’s preference list is strict and complete. Note that
when n2 > n1, the last resort items are not necessary.

From a given instance, we construct a top-choice graph, a bipartite graph with parts B′ = B
and S ′ = S such that each person a ∈ A corresponds to an edge connecting f (a) ∈ B′ and s(a) ∈
S ′. Note that multiple edges are allowed in this graph. Previously, Mahdian [37] proved the
following lemma.

Lemma 3. [37] In any instance with strict and complete preference lists, an A-perfect matching
exists if and only if its top-choice graph does not contain a complex component, i.e. a connected
component with more than one cycle.

By Lemmas 2 and 3, the problem of determining whether a popular matching exists
is equivalent to determining whether the top-choice graph contains a complex component.
However, the difficulty is that the number of vertices in the randomly generated top-choice
graph is not fixed. Therefore, a random bipartite graph G(x,y,z) with fixed number of vertices
is defined as follows to approximate the top-choice graph.

Definition 9. [37] For integers x,y,z,G(x,y,z) is a bipartite graph with V ∪U as a set of vertices,
where V = {v1,v2, . . . , vx} and U = {u1,u2, . . . ,uy}. Each of the z edges of G(x,y,z) is selected
independently and uniformly at random (with replacement) from the set of all possible edges
between a vertex in V and a vertex in U .

This auxiliary graph has properties closely related to the top-choice graph. Mahdian
[37] then proved that if α > α∗ ≈ 1.42, then G(n2,h,n1) contains a complex component with
low probability for any integer h ∈ [e−1/αn2 − n2/3

2 , e−1/αn2 + n2/3
2], and used those properties to

conclude that the top-choice graph also contains a complex component with low probability,
hence a popular matching exists with high probability.

Theorem 1. [37] In a random instance with strict and complete preference lists, if α > α∗,
where α∗ ≈ 1.42 is the solution of the equation x2e−1/x = 1, then a popular matching exists with
probability 1− o(1).

Theorem 1 serves as an upper bound of the phase transition point in the case of strict and
complete preference lists. On the other hand, the following lower bound was also proposed by
Mahdian [37] along with a sketch of the proof, although the fully detailed proof was not given.

Theorem 2. [37] In a random instance with strict and complete preference lists, if α < α∗, then
a popular matching exists with probability o(1).

19

3.3 Incomplete Preference Lists Setting

The previous section shows known results in the setting where every person’s preference list is
strict and complete. In this section, we consider a setting where every person’s preference list
is strict and has the same length of a constant k.

Recall that F = {f (a)|a ∈ A}, S = B − F, and for each person a ∈ A, s(a) is the highest
ranked item in a’s preference list not in F. The main difference from the complete preference
lists setting is that in the incomplete preference lists setting, s(a) can be either a real item or
a last resort item even when n2 > n1. For each person a ∈ A, let Pa be the set of items in a’s
preference list (not including the last resort item `a). We then define A1 = {a ∈ A|Pa ⊆ F} and
A2 = {a ∈ A|Pa * F}. Note that s(a) = `a if and only if a ∈ A1.

3.3.1 Top-Choice Graph

Analogously to the complete preference lists setting, we define the top-choice graph of an
instance with strict and k-incomplete preference lists to be a bipartite graph with parts B′ = B
and S ′ ∪ L′, where S ′ = S and L′ = L. Each person a ∈ A2 corresponds to an edge connecting
f (a) ∈ B′ and s(a) ∈ S ′. We call these edges normal edges. Each person a ∈ A1 corresponds to an
edge connecting f (a) ∈ B′ and s(a) = `a ∈ L′. We call these edges last resort edges.

Although the statement of Lemma 3 proved by Mahdian [37] is for the complete prefer-
ence lists setting, exactly the same proof applies to the incomplete preference lists setting as
well. The proof first shows that an A-perfect matching exists if and only if each edge in the
top-choice graph can be oriented such that each vertex has at most one incoming edge (because
if an A-perfect matching M exists, we can orient each edge corresponding to a ∈ A toward the
endpoint corresponding toM(a), and vice versa). Then, the proof shows that for any undirected
graph H , each edge of H can be oriented in such manner if and only if H does not contain a
complex component. Thus we can conclude the following lemma.

Lemma 4. In any instance with strict and k-incomplete preference lists, an A-perfect matching
exists if and only if its top-choice graph does not contain a complex component.

In contrast to the complete preference lists setting, the top-choice graph in the incom-
plete preference lists setting has two types of edges (normal edges and last resort edges) with
different distributions, and thus cannot be approximated by G(x,y,z) defined in the previous
section. Therefore, we have to construct another auxiliary graph G′(x,y,z1, z2) as follows.

Definition 10. For integers x,y,z1, z2, G′(x,y,z1, z2) is a bipartite graph with V ∪U ∪U ′ as a set
of vertices, where V = {v1,v2, . . . , vx}, U = {u1,u2, . . . ,uy}, and U ′ = {u′1,u

′
2, . . . ,u

′
z1+z2
}. This graph

has z1 + z2 edges. Each of the first z1 edges is selected independently and uniformly at random
(with replacement) from the set of all possible edges between a vertex in V and a vertex in U .
Then, each of the next z2 edges is constructed by the following procedures: Uniformly select a
vertex vi from V at random (with replacement); then, uniformly select a vertex u′j that has not
been selected before from U ′ at random (without replacement) and construct an edge (vi ,u′j).

20

The intuition behind the construction of G′(x,y,z1, z2) is that we imitate the distribution
of the top-choice graph in the incomplete preference lists setting, with V ,U , andU ′ correspond
to B′, S ′, and L′, respectively, and the first z1 edges and the next z2 edges correspond to normal
edges and last resort edges, respectively.

Similarly to the complete preference lists setting, this auxiliary graph has properties
closely related to the top-choice graph in the incomplete preference lists setting, as shown
in the following lemma.

Lemma 5. Suppose that the top-choice graph H has t normal edges and n1 − t last resort edges
for a fixed integer t ≤ n1, and E is an arbitrary event defined on graphs. If the probability of E
on the random graph G′(n2,h, t,n1 − t) is at most O(1/n1) for every fixed integer h ∈ [e−1/αn2 −
n2/3

2 , e−1/αn2 +n2/3
2], then the probability of E on the top-choice graph H is at most O(n−1/3

1).

Proof. Using the same technique as in Mahdian’s proof of [37, Lemma 3], let a random variable
X be the number of isolated vertices (zero-degree vertices) in part V (the part that has n2

vertices) of G′(n2,h, t,n1 − t). By the definition of G′(n2,h, t,n1 − t), for each fixed value of h,
the distribution of H conditioned on |S ′ | = h is the same as the distribution of G′(n2,h, t,n1 − t)
conditioned on X = h (because |S | = |S ′ | = h means that part B′ of H has exactly h isolated
vertices which correspond to the vertices in S). Also, from Lemma 1 with y = n1 and z = n2, we
have E[X] = e−1/αn2−Θ(1) and Var[X] < E[X]. Let δ = 1

2n
2/3
2 , and let I = [E[X]−δ,E[X] +δ]. We

have I ⊆ [e−1/αn2 −n2/3
2 , e−1/αn2 +n2/3

2] for sufficiently large n2. Therefore,

Pr
H

[E] =
∑
h

Pr
H

[
E
∣∣∣|S | = h] ·Pr

H
[|S | = h]

=
∑
h

Pr
G′(n2,h,t,n1−t)

[E|X = h] · Pr
G′(n2,h,t,n1−t)

[X = h]

=
∑
h

Pr
G′(n2,h,t,n1−t)

[X = h|E] · Pr
G′(n2,h,t,n1−t)

[E]

≤ Pr[|X −E[X]| > δ] +
∑
h∈I

Pr
G′(n2,h,t,n1−t)

[X = h|E] · Pr
G′(n2,h,t,n1−t)

[E]

≤ Pr[|X −E[X]| > δ] +
∑
h∈I

Pr
G′(n2,h,t,n1−t)

[E].

From Chebyshev’s inequality, we have

Pr
H

[E] ≤ Var[X]
δ2 +

∑
h∈I

Pr
G′(n2,h,t,n1−t)

[E]

≤ E[X]
δ2 + 2δmax

h∈I
Pr

G′(n2,h,t,n1−t)
[E]

<
O(n2)

n4/3
2

+n2/3
2 O(1/n1)

=O(n−1/3
1)

as desired.

21

3.3.2 Size of A2

Since our top-choice graph has two types of edges with different distributions, we first want to
bound the number of each type of edges. Note that the top-choice graph has |A2| normal edges
and |A1| last resort edges, so the problem is equivalent to bounding the size of A2.

First, we will prove the next two lemmas, which will be used to bound the ratio |A2|
n1

.

Lemma 6. In a random instance with strict and k-incomplete preference lists,

1− e−1/α − c1 <
|F|
n2
< 1− e−1/α + c1

with probability 1− o(1) for any constant c1 > 0.

Proof. Let c1 > 0 be any constant. From Lemma 1 with y = n1 and z = n2, we have

E[|F|] = n2 −E[|S |] = (1− e−1/α)n2 +Θ(1); (3.1)

Var(|F|) = Var(|S |) < E[|S |] ≤ e−1/α

1− e−1/α
E[|F|].

From Chebyshev’s inequality, we have

Pr
[∣∣∣|F| −E[|F|]

∣∣∣ ≥ c1 ·E[|F|]
]
≤ Var[|F|]

(c1 ·E[|F|])2

<
e−1/α

c2
1(1− e−1/α)E[|F|]

=O(1/n1). (3.2)

Therefore, from (3.1) and (3.2) we can conclude that

1− e−1/α − c1 <
|F|
n2
< 1− e−1/α + c1

with probability 1− o(1) for sufficiently large n2.

Lemma 7. In a random instance with strict and k-incomplete preference lists,

1− (1− e−1/α)k−1 − c2 < Pr[a ∈ A2] < 1− (1− e−1/α)k−1 + c2

holds for any a ∈ A for sufficiently large n2, given any constant c2 > 0.

Proof. If k = 1, then we have Pa ⊆ F for every a ∈ A, which means Pr[a ∈ A2] = 0 and thus the
lemma holds. From now on, we will consider the case that k ≥ 2.

Let c2 > 0 be any constant. We can select a sufficiently small c1 (e.g. c1 = c2
(k−1)(c2+2) , where

the proof is given in Subsection 3.3.3) such that

(1− e−1/α − c1)k−1 > (1− e−1/α)k−1 − c2

2
; (3.3)

(1− e−1/α + c1)k−1 < (1− e−1/α)k−1 +
c2

2
, . (3.4)

22

Let I = [(1−e−1/α−c1)n2, (1−e−1/α+c1)n2]. From Lemma 6, |F| ∈ I with probability 1−o(1)
for sufficiently large n2.

Note that a ∈ A1 if and only if Pa − {f (a)} ⊆ F. Consider the process that we first indepen-
dently and uniformly select the first-choice item of every person in A from the set B at random,
creating the set F. Suppose that |F| = q for some fixed integer q ∈ I . Then, for each a ∈ A, we
uniformly select the remaining k −1 items in a’s preference list one by one from the remaining
n2 − 1 items in B − {f (a)} at random. Among the (k − 1)!

(n2−1
k−1

)
possible ways of selection, there

are (k − 1)!
(q−1
k−1

)
ways such that Pa − {f (a)} ⊆ F, so

Pr
[
a ∈ A1

∣∣∣|F| = q] = Pr
[
Pa − {f (a)} ⊆ F

∣∣∣|F| = q]
=

(k − 1)!
(q−1
k−1

)
(k − 1)!

(n2−1
k−1

)
=

(q−1
k−1

)(n2−1
k−1

) .
Since

(q−1
k−1

)
/
(n2−1
k−1

)
converges to

(
q
n2

)k−1
when n2 increases to infinity for every q ∈ I , it is

sufficient to assume Pr
[
a ∈ A1

∣∣∣|F| = q] =
(
q
n2

)k−1
for sufficiently large n2.

Now consider

Pr[a ∈ A1] =
∑
q

Pr[|F| = q] ·Pr
[
a ∈ A1

∣∣∣|F| = q]
=

∑
q∈I

Pr[|F| = q] ·Pr
[
a ∈ A1

∣∣∣|F| = q]
+
∑
q<I

Pr[|F| = q] ·Pr
[
a ∈ A1

∣∣∣|F| = q] .
For the lower bound of Pr[a ∈ A1], we have

Pr[a ∈ A1] ≥
∑
q∈I

Pr[|F| = q] ·Pr
[
a ∈ A1

∣∣∣|F| = q]
=

∑
q∈I

Pr[|F| = q] ·
(
q

n2

)k−1

≥
∑
q∈I

Pr[|F| = q] · (1− e−1/α − c1)k−1

= Pr[|F| ∈ I] · (1− e−1/α − c1)k−1

> (1− o(1))
(
(1− e−1/α)k−1 − c2

2

)
,

where the last inequality follows from (3.3). Thus, we can conclude that Pr[a ∈ A1] > (1 −
e−1/α)k−1− c2 for sufficiently large n2. On the other hand, for the upper bound of Pr[a ∈ A1], we

23

have

Pr[a ∈ A1] ≤
∑
q∈I

Pr[|F| = q] ·Pr
[
a ∈ A1

∣∣∣|F| = q]+
∑
q<I

Pr[|F| = q]

=
∑
q∈I

Pr[|F| = q] ·
(
q

n2

)k−1

+ o(1)

≤
∑
q∈I

Pr[|F| = q] · (1− e−1/α + c1)k−1 + o(1)

= Pr[|F| ∈ I] · (1− e−1/α + c1)k−1 + o(1)

< (1− o(1))
(
(1− e−1/α)k−1 +

c2

2

)
+ o(1),

where the last inequality follows from (3.4). Thus, we can conclude that Pr[a ∈ A1] < (1 −
e−1/α)k−1 + c2 for sufficiently large n2.

Therefore,
(1− e−1/α)k−1 − c2 < Pr[a ∈ A1] < (1− e−1/α)k−1 + c2,

which is equivalent to

1− (1− e−1/α)k−1 − c2 < Pr[a ∈ A2] < 1− (1− e−1/α)k−1 + c2.

Finally, the following lemma shows that the ratio |A2|
n1

lies around a constant 1 − (1 −
e−1/α)k−1 with high probability.

Lemma 8. In a random instance with strict and k-incomplete preference lists,

1− (1− e−1/α)k−1 − c3 <
|A2|
n1

< 1− (1− e−1/α)k−1 + c3

with probability 1− o(1) for any constant c3 > 0.

Proof. If k = 1, then we have Pa ⊆ F for every a ∈ A, which means |A2| = 0 and thus the lemma
holds. From now on, we will consider the case that k ≥ 2.

Let c3 > 0 be any constant. We can select a sufficiently small c2 such that c2(1 + (1 −
e−1/α)k−1 + c2) < c3 and thus

(1− c2)
(
(1− e−1/α)k−1 − c2

)
> (1− e−1/α)k−1 − c3; (3.5)

(1 + c2)
(
(1− e−1/α)k−1 + c2

)
< (1− e−1/α)k−1 + c3; (3.6)

From Lemma 7, we have

1− (1− e−1/α)k−1 − c2 < Pr[a ∈ A2] < 1− (1− e−1/α)k−1 + c2 (3.7)

for sufficiently large n2.

24

For each a ∈ A, define an indicator random variable Xa such that

Xa =

1, for a ∈ A2;

0, for a < A2.

Note that |A2| =
∑
a∈AXa. From (3.7), we have

1− (1− e−1/α)k−1 − c2 < E[Xa] < 1− (1− e−1/α)k−1 + c2

for each a ∈ A, and from the linearity of expectation we also have(
1− (1− e−1/α)k−1 − c2

)
n1 < E[|A2|] <

(
1− (1− e−1/α)k−1 + c2

)
n1. (3.8)

Since Xa and Xa′ are independent for any pair of distinct a,a′ ∈ A, we have

Var[|A2|] =
∑
a∈A

Var[Xa] =
∑
a∈A

(
E[X2

a]−E[Xa]
2
)
≤

∑
a∈A

E[X2
a] =

∑
a∈A

E[Xa] = E[A2].

Then, from Chebyshev’s inequality and (3.8) we have

Pr
[∣∣∣|A2| −E[|A2|]

∣∣∣ ≥ c2 ·E[|A2|]
]
≤ Var[|A2|]

(c2 ·E[|A2|])2 ≤
1

c2
2 ·E[|A2|]

=O(1/n1).

This implies (1−c2)E[|A2|] ≤ |A2| ≤ (1+c2)E[|A2|] with probability 1−O(1/n1) = 1−o(1). There-
fore, from (3.5), (3.6), and (3.8) we can conclude that

1− (1− e−1/α)k−1 − c3 <
|A2|
n1

< 1− (1− e−1/α)k−1 + c3

with probability 1− o(1).

3.3.3 Proof of Inequalities (3.3) and (3.4)

For k ≥ 2, we will prove that c1 = c2
(k−1)(c2+2) satisfies inequalities (3.3) and (3.4).

Let p = 1− e−1/α. We have 0 < p < 1 and 0 < c1 < 1. So,

(p − c1)k−1 = pk−1 −
(
k − 1

1

)
pk−2c1 +

(
k − 1

2

)
pk−3c2

1 − · · ·+ (−1)k−1
(
k − 1
k − 1

)
ck−1

1

≥ pk−1 −
[
(k − 1)c1 + (k − 1)2c2

1 + · · ·+ (k − 1)k−1ck−1
1

]
= pk−1 −

 c2

c2 + 2
+
(
c2

c2 + 2

)2

+ · · ·+
(
c2

c2 + 2

)k−1
> pk−1 −

 c2

c2 + 2
+
(
c2

c2 + 2

)2

+ · · ·

= pk−1 −
c2
c2+2

1− c2
c2+2

= pk−1 − c2

2
.

25

Therefore (1− e−1/α − c1)k−1 > (1− e−1/α)k−1 − c2
2 . Also, we have

(p+ c1)k−1 = pk−1 +
(
k − 1

1

)
pk−2c1 +

(
k − 1

2

)
pk−3c2

1 + · · ·+
(
k − 1
k − 1

)
ck−1

1

≤ pk−1 + (k − 1)c1 + (k − 1)2c2
1 + · · ·+ (k − 1)k−1ck−1

1

= pk−1 +
c2

c2 + 2
+
(
c2

c2 + 2

)2

+ · · ·+
(
c2

c2 + 2

)k−1

< pk−1 +
c2

c2 + 2
+
(
c2

c2 + 2

)2

+ · · ·

= pk−1 +
c2
c2+2

1− c2
c2+2

= pk−1 +
c2

2
.

Therefore (1− e−1/α + c1)k−1 > (1− e−1/α)k−1 + c2
2 .

26

3.4 Phase Transition

For each value of k ≥ 1, we want to find a phase transition point αk such that if α > αk , then a
popular matching exists with high probability; and if α < αk , then a popular matching exists
with low probability. We do so by proving the upper bound and lower bound separately.

3.4.1 Upper Bound

Lemma 9. Suppose that 0 ≤ β < αe−1/2α. Then, G′(n2,h,βn1, (1 − β)n1) contains a complex
component with probability O(1/n1) for every fixed integer h ∈ [e−1/αn2 −n2/3

2 , e−1/αn2 +n2/3
2].

Proof. By the definition of G′(n2,h,βn1, (1 − β)n1), each vertex in U ′ has degree at most one,
thus removing U ′ does not affect the existence of a complex component. Moreover, the graph
G′(n2,h,βn1, (1− β)n1) with part U ′ removed has exactly the same distribution as G(n2,h,βn1)
given in Definition 9. Therefore, it is sufficient to consider the graph G(n2,h,βn1) instead.

Using the same technique as in Mahdian’s proof of [37, Lemma 4], define a minimal bad
graph to be two vertices joined by three vertex-disjoint paths, or two vertex-disjoint cycles
joined by a path which is also vertex-disjoint from the two cycles except at both endpoints (the
path can be degenerate, which is the only exception that the two cycles share a vertex). Note
that any proper subgraph of a minimal bad graph does not contain a complex component,
and every graph that contains a complex component must contain a minimal bad graph as a
subgraph.

LetX and Y be subsets of vertices ofG(n2,h,βn1) in V andU , respectively. Define BADX,Y
to be an event that X ∪ Y contains a minimal bad graph as a spanning subgraph. Then, let
p1 = |X |, p2 = |Y |, and p = p1 + p2. Observe that BADX,Y can occur only when |p1 − p2| ≤ 1, so
p1,p2 ≥

p−1
2 . Also, there are at most 2p2 non-isomorphic minimal bad graphs with p1 vertices

in V and p2 vertices in U , with each of them having p1!p2! ways to arrange the vertices, and

there are at most (p+ 1)!
(βn1
p+1

)(1
n2h

)p+1
probability that all p+ 1 edges of each graph are selected

in our random procedure. By the union bound, the probability of BADX,Y is at most

2p2p1!p2!(p+ 1)!
(
βn1

p+ 1

)(
1
n2h

)p+1

≤ 2p2p1!p2!
(
βn1

n2h

)p+1

.

27

Again, by the union bound, the probability that at least one BADX,Y occurs is at most

Pr

∨
X,Y

BADX,Y

 ≤∑
p1,p2

(
n2

p1

)(
h
p2

)
2p2p1!p2!

(
βn1

n2h

)p+1

≤
∑
p1,p2

n
p1
2
p1!
· h

p2

p2!
· 2p2p1!p2!

(β
αh

)p+1

=
∑
p1,p2

2p2

h

(β
α

)p+1 (n2

h

)p1

≤
∞∑
p=1

O(p2)
n1

(β
α

)p (
e−1/α −n−1/3

2

)−p/2
=
O(1)
n1

∞∑
p=1

p2
(
α2

β2

(
e−1/α −n−1/3

2

))−p/2
.

By the assumption, we have α2e−1/α > β2, so α2

β2 (e−1/α −n−1/3
2) > 1 for sufficiently large n2,

hence the above sum converges. Therefore, the probability that at least one BADX,Y happens is
at most O(1/n1).

We can now prove the following theorem, which serves as an upper bound of αk .

Theorem 3. In a random instance with strict and k-incomplete preference lists, if αe−1/2α >

1− (1− e−1/α)k−1, then a popular matching exists with probability 1− o(1).

Proof. Since αe−1/2α > 1 − (1 − e−1/α)k−1, we can select a sufficiently small δ1 > 0 such that
αe−1/2α > 1− (1− e−1/α)k−1 + δ1. Let

J1 = [(1− (1− e−1/α)k−1 − δ1)n1, (1− (1− e−1/α)k−1 + δ1)n1].

From Lemma 8, |A2| ∈ J1 with probability 1− o(1). Moreover, we have β = t
n1
< αe−1/2α for any

integer t ∈ J1.

Define E1 to be an event that a popular matching exists in a random instance. First, con-
sider the probability of E1 conditioned on |A2| = t for each fixed integer t ∈ J1. By Lemmas 5 and
9, the top-choice graph contains a complex component with probabilityO(n−1/3

1) = o(1). There-
fore, from Lemmas 2 and 4 we can conclude that a popular matching exists with probability
1− o(1), i.e. Pr

[
E1

∣∣∣|A2| = t
]

= 1− o(1) for every fixed integer t ∈ J1. So

Pr[E1] =
∑
t

Pr[|A2| = t] ·Pr
[
E1

∣∣∣|A2| = t
]

≥
∑
t∈J1

Pr[|A2| = t] ·Pr
[
E1

∣∣∣|A2| = t
]

≥ Pr[|A2| ∈ J1] · (1− o(1))

= (1− o(1))(1− o(1))

= 1− o(1).

Hence, a popular matching exists with probability 1− o(1).

28

3.4.2 Lower Bound

Lemma 10. Suppose that αe−1/2α < β ≤ 1. Then, G′(n2,h,βn1, (1 − β)n1) does not contain a
complex component with probabilityO(1/n1) for every fixed integer h ∈ [e−1/αn2−n2/3

2 , e−1/αn2+
n2/3

2].

Proof. Again, by the same reasoning as in the proof of Lemma 9, we can consider the graph
G(n2,h,βn1) instead of G′(n2,h,βn1, (1 − β)n1), but now we are interested in an event that
G(n2,h,βn1) does not contain a complex component.

Since αe−1/2α < β, we have αe−1/2α < (1 − ε)3/2β for a sufficiently small ε > 0. Consider
the random bipartite graph G(n2,h, (1− ε)βn1) with parts V having n2 vertices and U having h
vertices. For each vertex v, let a random variable rv be the degree of v. Since there are (1−ε)βn1

edges in the graph, the expected value of rv for each v ∈ V is

c1 =
(1− ε)βn1

n2
=

(1− ε)β
α

.

Since e−1/αn2 +n2/3
2 < e−1/αn2

1−ε for sufficiently large n2, the expected value of rv for each v ∈U is

c2 =
(1− ε)βn1

h
>

(1− ε)βn1

e−1/αn2 +n2/3
2

>
(1− ε)βn1

e−1/αn2/(1− ε)
=

(1− ε)2β

αe−1/α

for sufficiently large n2. Furthermore, each rv has a binomial distribution, which converges to
Poisson distribution when n2 increases to infinity. The graph can be viewed as a special case
of an inhomogeneous random graph [9, 50], which is a generalization of an Erdős-Rényi graph,
where vertices of the graph are divided into several (finite or infinite) types. Each vertex of
type i has κij expected neighbors of type j.

The bipartite graph G(n2,h, (1−ε)βn1) can be considered as a special case of the inhomo-
geneous random graph where there are two types of vertices, with κ11 = 0, κ12 = c1, κ21 = c2,
and κ22 = 0. It has an offspring matrix

Tκ = {κij}2i,j=1 =
(

0 c1

c2 0

)
,

which has the largest eigenvalue ||Tκ|| =
√
c1c2 > 1. This is a necessary and sufficient condition to

conclude thatG(n2,h, (1−ε)βn1) contains a giant component (a component containing a constant
fraction of vertices of the entire graph) with 1 − o(1) probability [9, 50]. In fact, by giving a
precise bound in each step of [9], it is possible to show that the probability is greater than
1−O(1/n1) as desired.

Alternatively, we hereby show a direct proof of the bipartite case by approximating the
construction of the graph with the Galton-Watson branching process (shown in Section 2.4)
similar to that in the proof of existence of a giant component in the Erdős-Rényi graph in [7,
pp.182–192].

Consider the construction of G(n2,h, (1 − ε)βn1) with parts V and U starting at a vertex
and discovering new vertices in a breadth-first search tree manner. We approximate it with

29

the Galton-Watson branching process. Let T be the size of the process (T = ∞ if the process
continues forever). Let z1 and z2 be the probability that T < ∞ when starting the process at
a vertex in V and U , respectively. Also, let Z1 and Z2 be the number of children the root has
when starting the process at a vertex in V and U , respectively.

Given that the root has i children, in order for the branching process to be finite, all of
the i branches must be finite, so we get the equations.

z1 =
∞∑
i=0

Pr[Z1 = i]zi2;

z2 =
∞∑
i=0

Pr[Z2 = i]zi1.

Therefore,

z1 =
∞∑
i=0

ci1e
−c1

i!

 ∞∑
j=0

c
j
2e
−c2z

j
1

j!

i

=
∞∑
i=0

ci1e
−c1

i!
ec2(z1−1)i = ec1(ec2(z1−1)−1).

Setting y = 1− z1 yields the equation

1− y = ec1(e−c2y−1). (3.9)

Define
g(y) = 1− y − ec1(e−c2y−1).

We have g(0) = 1− 0− 1 = 0, g(1) < 0, and g ′(0) = c1c2 − 1. By the assumption that c1c2 > 1, we
have g ′(0) > 0, so there must be y ∈ (0,1) such that g(y) = 0, thus being a solution of (3.9). So,
Pr[T =∞] = y ∈ (0,1), when y is a solution of (3.9), meaning that there is a constant probability
that the process continues indefinitely. Moreover, from the property of Poisson distribution
we can show that Pr[x < T < ∞] is exponentially low in term of x. Therefore, we can select a
constant k1 such that Pr[k1 logn1 < T <∞] < O(1/n2

1).

Finally, when we perform the Galton-Watson branching process at a vertex in G(n2,h, (1−
ε)βn1), there is a constant probability that the process will continue indefinitely, thus creating a
giant component. Otherwise, with probability 1−O(1/n2

1) we will create a component with size
smaller than k1 logn1, so we can remove that component from the graph and then repeatedly
perform the process starting at a new vertex. After repeatedly performing this process for some
logarithmic number of times, we only remove O(log2n1) vertices from the graph, which does
not affect the constant y = Pr[T = ∞], so the probability that we never end up with a giant
component in every time is at most O(1/n1). Therefore, G(n2,h, (1 − ε)βn1) contains a giant
component with probability 1−O(1/n1).

Remark 2. In the complete preference lists setting with αe−1/2α < (1 − ε)3/2, we have c1 = 1−ε
α

and c2 >
(1−ε)2

αe−1/α , which we still get c1c2 = (1−ε)3

α2e−1/α > 1, which is a sufficient condition to reach the
same conclusion.

30

We can now prove the following theorem, which serves as a lower bound of αk .

Theorem 4. In a random instance with strict and k-incomplete preference lists, if αe−1/2α <

1− (1− e−1/α)k−1, then a popular matching exists with probability o(1).

Proof. Like in the proof of Theorem 3, we can select a sufficiently small δ2 > 0 such that
αe−1/2α < 1− (1− e−1/α)k−1 − δ2. Let

J2 = [(1− (1− e−1/α)k−1 − δ2)n1, (1− (1− e−1/α)k−1 + δ2)n1].

We have |A2| ∈ J2 with probability 1− o(1) and β = t
n1
> αe−1/2α for any integer t ∈ J2.

Now we define E2 to be an event that a popular matching does not exist in a random in-
stance. By the same reasoning as in the proof of Theorem 3, we can prove that Pr

[
E2

∣∣∣|A2| = t
]

=
1− o(1) for every fixed t ∈ J2 and reach an analogous conclusion that Pr[E2] = 1− o(1).

3.4.3 Phase Transition Point

Since f (x) = xe−1/2x − (1− (1− e−1/x)k−1) is a strictly increasing function in [1,∞) for every k ≥ 1,
f (x) = 0 can have at most one root in [1,∞). That root, if exists, will serve as a phase transition
point αk . In fact, for k ≥ 4, f (x) = 0 has a unique solution in [1,∞); for k ≤ 3, f (x) = 0 has no
solution in [1,∞) and αe−1/2α > 1− (1− e−1/α)k−1 for every α ≥ 1, so a popular matching always
exists with high probability without a phase transition regardless of value of α. Therefore,
from Theorems 3 and 4 we can conclude our main theorem below.

Theorem 5. In a random instance with strict and k-incomplete preference lists with k ≥ 4, if
α > αk , where αk ≥ 1 is the root of equation xe−1/2x = 1− (1− e−1/x)k−1, then a popular matching
exists with probability 1− o(1); and if α < αk , then a popular matching exists with probability
o(1). In such random instance with k ≤ 3, a popular matching exists with probability 1 − o(1)
for any value of α ≥ 1.

For each value of k ≥ 4, the phase transition occurs at the root αk ≥ 1 of equation xe−1/2x =
1− (1− e−1/x)k−1 as shown in Table 3.1 and Figure 3.1. Note that as k increases, the right-hand
side of the equation converges to 1, hence αk converges to Mahdian’s value of α∗ ≈ 1.42 in the
complete preference lists setting.

k 4 5 6 7 8 9 10 . . .
αk 1.2428 1.3411 1.3835 1.4031 1.4124 1.4170 1.4193 . . .

Table 3.1: Approximate value of αk for each integer k ≥ 4

31

Figure 3.1: Solution in [1,∞) of the equation xe−1/2x = 1− (1− e−1/x)k−1 for each k ≥ 4,
with the dashed line plotting x = α∗ ≈ 1.42

Remark 3. For each person a, as the size of Pa increases, the probability that Pa * F increases
and thus the probability that a ∈ A2 also increases, and so do the expected size of A2 and the
phase transition point. Therefore, in the setting where the lengths of people’s preference lists
are fixed but not equal (e.g. half of the people have preference lists with length k1, and another
half have those with length k2), the phase transition will occur between αkmin

and αkmax
, where

kmin and kmax are the shortest and longest lengths of people’s preference lists, respectively.

32

3.5 Results from Simulation

We perform a simulation in the following procedure. For each integer k in the range from 2 to
8, we set α to be a sequence of values ranging from 1.0 to 1.6, with n1 increasing exponentially
from 10 to 1,000,000. For each combination of parameters, we generate 100 random instances
and count the number of instances with a popular matching

Note that the case k = 1 is trivial as a popular matching always exists in every instance,
since for each item b ∈ F we can simply match b to any person a ∈ A such that f (a) = b; it can be
easily proved that this matching is popular. Hence, we start the simulation from the case k = 2.

To determine whether a popular matching exists in a given instance, we implement
the following DecideAPerfectMatching algorithm developed by Abraham et al. [5] to deter-
mine the existence of an A-perfect matching (which is equivalent to the existence of a popular
matching). This algorithm takes as input a graph G that has A∪ B∪ L as a set of vertices and
E = {(a,f (a))|a ∈ A} ∪ {(a,s(a))|a ∈ A} as a set of edges. It returns YES if an A-perfect matching
exists and NO if an A-perfect matching does not exist.

DecideAPerfectMatching(G = (A∪B∪L,E))
while some item b ∈ B∪L has degree 1

a := unique person matched to b
G := G − {a,b}

while some item b ∈ B∪L has degree 0
G := G − {b}

if |A| > |B∪L| then
return NO

else
return YES

33

3.5.1 Case k = 2

For k = 2, there is no phase transition point. Results from the simulation are shown in Table
3.2 and Figure 3.2. As n1 grows up, the number of instances with a popular matching stays at
or close to 100 for every value of α.

k = 2

α
n1

101 102 103 104 105 106

1.0 96 100 100 100 100 100
1.1 99 100 100 100 100 100
1.2 100 100 100 100 100 100
1.3 100 99 100 100 100 100
1.4 100 100 99 100 100 100
1.5 99 100 100 100 100 100
1.6 100 100 100 100 100 100

Table 3.2: Number of instances with a popular matching in the case k = 2

Figure 3.2: Number of instances with a popular matching in the case k = 2, with each line
plotting the results from each value of α

34

3.5.2 Case k = 3

For k = 3, there is no phase transition point. Results from the simulation are shown in Table
3.3 and Figure 3.3. As n1 grows up, the number of instances with a popular matching increases
to near 100 for every value of α.

k = 3

α
n1

101 102 103 104 105 106

1.0 90 86 84 87 90 95
1.1 94 89 95 98 100 100
1.2 99 96 100 99 100 100
1.3 100 98 100 100 100 100
1.4 98 100 100 100 100 100
1.5 100 100 100 100 100 100
1.6 98 100 100 100 100 100

Table 3.3: Number of instances with a popular matching in the case k = 3

Figure 3.3: Number of instances with a popular matching in the case k = 3, with each line
plotting the results from each value of α

35

3.5.3 Case k = 4

For k = 4, the phase transition point is α4 ≈ 1.2428. Results from the simulation are shown in
Table 3.4 and Figure 3.4. As n1 grows up, the number of instances with a popular matching
increases to 100 for α ≥ 1.3 and decreases to zero for α ≤ 1.2.

k = 4,αk ≈ 1.2428

α
n1

101 102 103 104 105 106

1.0 79 52 5 0 0 0
1.1 85 65 32 0 0 0
1.2 91 84 69 53 11 0
1.3 96 92 92 94 97 100
1.4 98 95 95 100 100 100
1.5 98 98 99 100 100 100
1.6 98 98 100 100 100 100

Table 3.4: Number of instances with a popular matching in the case k = 4

Figure 3.4: Number of instances with a popular matching in the case k = 4, with each line
plotting the results from each value of α

36

Figure 3.5 shows comparison of the results from different values of α when n1 = 106. The
number rises from zero to 100 when α passes the phase transition point α4 ≈ 1.2428.

Figure 3.5: Number of instances with a popular matching in the case k = 4 for n1 = 106, with
the dashed line plotting α = α4 ≈ 1.2428

37

3.5.4 Case k = 5

For k = 5, the phase transition point is α5 ≈ 1.3411. Results from the simulation are shown in
Table 3.5 and Figure 3.6. As n1 grows up, the number of instances with a popular matching
increases to 100 for α ≥ 1.4 and decreases to zero for α ≤ 1.3.

k = 5,αk ≈ 1.3411

α
n1

101 102 103 104 105 106

1.0 69 14 0 0 0 0
1.1 80 40 0 0 0 0
1.2 84 67 24 0 0 0
1.3 95 86 74 57 12 0
1.4 97 96 94 98 100 100
1.5 97 97 98 100 100 100
1.6 99 98 99 100 100 100

Table 3.5: Number of instances with a popular matching in the case k = 5

Figure 3.6: Number of instances with a popular matching in the case k = 5, with each line
plotting the results from each value of α

38

Figure 3.7 shows comparison of the results from different values of α when n1 = 106. The
number rises from zero to 100 when α passes the phase transition point α5 ≈ 1.3411.

Figure 3.7: Number of instances with a popular matching in the case k = 5 for n1 = 106, with
the dashed line plotting α = α5 ≈ 1.3411

39

3.5.5 Case k = 6

For k = 6, the phase transition point is α6 ≈ 1.3835. Results from the simulation are shown in
Table 3.6 and Figure 3.8. As n1 grows up, the number of instances with a popular matching
increases to near 100 for α ≥ 1.4 and decreases to zero for α ≤ 1.3.

k = 6,αk ≈ 1.3835

α
n1

101 102 103 104 105 106

1.0 57 6 0 0 0 0
1.1 75 29 0 0 0 0
1.2 84 55 12 0 0 0
1.3 95 76 52 8 0 0
1.4 97 95 92 90 91 99
1.5 98 96 98 100 100 100
1.6 98 99 100 100 100 100

Table 3.6: Number of instances with a popular matching in the case k = 6

Figure 3.8: Number of instances with a popular matching in the case k = 6, with each line
plotting the results from each value of α

40

Figure 3.9 shows comparison of the results from different values of α when n1 = 106. The
number rises from zero to 100 when α passes the phase transition point α6 ≈ 1.3835.

Figure 3.9: Number of instances with a popular matching in the case k = 6 for n1 = 106, with
the dashed line plotting α = α6 ≈ 1.3835

41

3.5.6 Case k = 7

For k = 7, the phase transition point is α7 ≈ 1.4031. Results from the simulation are shown in
Table 3.7 and Figure 3.10. As n1 grows up, the number of instances with a popular matching
increases to 100 for α ≥ 1.5 and decreases to zero for α ≤ 1.3. Note that α = 1.4 lies very close
to the phase transition point α7 ≈ 1.4031, hence the number decreases relatively slowly as n1

grows up.

k = 7,αk ≈ 1.4031

α
n1

101 102 103 104 105 106

1.0 62 3 0 0 0 0
1.1 74 18 0 0 0 0
1.2 82 52 2 0 0 0
1.3 95 73 36 1 0 0
1.4 98 96 91 85 81 72
1.5 98 95 94 99 100 100
1.6 98 98 99 100 100 100

Table 3.7: Number of instances with a popular matching in the case k = 7

Figure 3.10: Number of instances with a popular matching in the case k = 7, with each line
plotting the results from each value of α

42

Figure 3.11 shows comparison of the results from different values of α when n1 = 106.
The number rises from zero to 100 when α passes the phase transition point α7 ≈ 1.4031.

Figure 3.11: Number of instances with a popular matching in the case k = 7 for n1 = 106, with
the dashed line plotting α = α7 ≈ 1.4031

43

3.5.7 Case k = 8

For k = 8, the phase transition point is α8 ≈ 1.4124. Results from the simulation are shown in
Table 3.8 and Figure 3.12. As n1 grows up, the number of instances with a popular matching
increases to 100 for α ≥ 1.5 and decreases to near zero for α ≤ 1.4.

k = 8,αk ≈ 1.4124

α
n1

101 102 103 104 105 106

1.0 52 0 0 0 0 0
1.1 77 15 0 0 0 0
1.2 89 42 0 0 0 0
1.3 96 77 28 0 0 0
1.4 97 92 83 70 58 28
1.5 97 91 95 99 99 100
1.6 98 96 99 100 100 100

Table 3.8: Number of instances with a popular matching in the case k = 8

Figure 3.12: Number of instances with a popular matching in the case k = 8, with each line
plotting the results from each value of α

44

Figure 3.13 shows comparison of the results from different values of α when n1 = 106.
The number rises from zero to 100 when α passes the phase transition point α8 ≈ 1.4124.

Figure 3.13: Number of instances with a popular matching in the case k = 8 for n1 = 106, with
the dashed line plotting α = α8 ≈ 1.4124

45

4Computing Unpopularity Factor in mp and rp

Let I be an mp or rp instance consisting of a set A = {a1, a2, . . . , an} of n people. Throughout
this chapter, we consider a more general setting where ties among two or more people in the
preference lists are allowed.

In this chapter, we will develop an algorithm to compute the unpopularity factor of a
given matching in I , which runs in O(m

√
n logn) time for mp and in O(m

√
n log2n) time for rp.

We will also generalize the notion of unpopularity factor to the weighted setting where people
are given different voting weights, and show that our algorithm can be slightly modified to
support that setting with the same running time.

46

4.1 Unweighted Setting

We first consider an unweighted setting where every person has equal voting weight.

4.1.1 rp Instances

Let I be an rp instance, M be a matching of I , and k be an arbitrary nonnegative rational
number. Beginning with a similar approach to [8], we construct an undirected graph H(M,k)

with vertices A∪A′, where A′ = {a′1, a
′
2, . . . , a

′
n} is a set of “copies” of people in A. An edge {ai , aj}

exists if and only if ai is in aj ’s preference list and aj is in ai ’s preference list; an edge {a′i , a
′
j}

exists if and only if {ai , aj} exists; an edge {ai , a′j} exists if and only if i = j. See Example 3.

Example 3. Consider the following matching M in an rp instance.

Preference Lists
a1 : a2, a3, a4

a2 : a3, a1

a3 : a1, a2, a4

a4 : a1, a3

M = {(a1, a2), (a3, a4)}

a1

a2

a3

a4

a′1

a′2

a′3

a′4

The auxiliary graph H(M,k) is shown on the right.

The major distinction of our algorithm is that we assign weights to edges of H(M,k) differ-
ently from [8]. For each pair of i and j with an edge {ai , aj}, define δi,j as follows.

δi,j =

1, if ai is unmatched in M or ai prefers aj to M(ai);

−k, if ai prefers M(ai) to aj ;

0, if {ai , aj} ∈M or ai likes aj and M(ai) equally.

For each pair of i and j, we set the weights of both {ai , aj} and {a′i , a
′
j} to be δi,j + δj,i . Finally,

for each edge {ai , a′i}, we set its weight to be −2k if ai is matched in M, and 0 otherwise. See
Example 4.

Example 4. Consider the matching M in Example 3, with k = 2.

δi,j
j

1 2 3 4

i

1 0 -2 -2
2 0 1
3 1 1 0
4 1 0

a1

a2

a3

a4

a′1

a′2

a′3

a′4

0 2

0-1

-1

02

0 -1

-1

-4

-4

-4

-4

47

The values of all δi,j are shown in the left table, and the auxiliary graph H(M,2) is shown
on the right.

The intuition behind the construction of this auxiliary graph is that we want to check
whether u(M) > k, i.e. whether there exists another matchingM ′ that is more than k times more
popular thanM. Each matchingM ′ is represented by a perfect matching ofH(M,k) consisting of
the edges ofM ′ (joining vertices in A), the copies of these edges (joining vertices in A′), and the
edges joining each unmatched person ai with his own copy a′i . We do so by adding two points
for each person who prefers M ′ to M, subtracting 2k points for each one who prefers M to M ′,
and finally checking whether the total score is positive. This is the reason why we set δi,j to be
1 if ai prefers aj to M(ai) and to be −k if ai prefers M(ai) to aj . This is also the reason why we
set the weight of {ai , a′i} to be −2k if ai is matched in M.

The relation between u(M) and the graph H(M,k) is formally shown in the following
lemma.

Lemma 11. u(M) > k if and only if H(M,k) contains a positive weight perfect matching.

Proof. For any matching M ′, define A1(M ′) to be a set of people in A that are matched in M ′,
and A2(M ′) to be a set of people in A that are unmatched in M ′. Also, define

A+
1 (M ′) = {ai ∈ A1(M ′)|ai is unmatched in M or ai prefers M ′(ai) to M(ai)};

A−1(M ′) = {ai ∈ A1(M ′)|ai prefers M(ai) to M ′(ai)};
A−2(M ′) = {ai ∈ A2(M ′)|ai is matched in M}.

We have φ(M ′ ,M) = |A+
1 (M ′)| and φ(M,M ′) = |A−1(M ′)|+ |A−2(M ′)|.

Suppose that u(M) > k. From the definition of u(M), there must be a matching M0 such
that φ(M0,M) > kφ(M,M0). In the graph H(M,k), consider a perfect matching

S0 =M0 ∪ {{a′i , a
′
j}|{ai , aj} ∈M0} ∪ {{ai , a′i}|ai is unmatched in M0}

with weight W0. From the definition, we have

W0 = 2(|A+
1 (M0)| − k|A−1(M0)|)− 2k|A−2(M0)|

= 2(|A+
1 (M0)| − k (|A−1(M0)|+ |A−2(M0)|))

= 2(φ(M0,M)− kφ(M,M0))

> 0,

hence H(M,k) contains a positive weight perfect matching.

On the other hand, suppose there is a positive weight perfect matching S1 of H(M,k) with
weight W1. See Example 5. Let M1 = {{ai , aj} ∈ S1} and M2 = {{ai , aj}|{a′i , a

′
j} ∈ S1}. Since S1 is a

perfect matching of H(M,k), we have A2(M1) = A2(M2), and

0 <W1

= (|A+
1 (M1)| − k|A−1(M1)|) + (|A+

1 (M2)| − k|A−1(M2)|)− 2k|A−2(M1)|
= (|A+

1 (M1)| − k|A−1(M1)|) + (|A+
1 (M2)| − k|A−1(M2)|)− k|A−2(M1)| − k|A−2(M2)|

= (φ(M1,M)− kφ(M,M1)) + (φ(M2,M)− kφ(M,M2)).

48

Therefore, we have either φ(M1,M) > kφ(M,M1) or φ(M2,M) > kφ(M,M2), which implies
u(M) > k.

Example 5. Consider the auxiliary graphs H(M,2) and H(M,3) constructed from a matching M
in Example 3.

a1

a2

a3

a4

a′1

a′2

a′3

a′4

0 2

0-1

-1

02

0 -1

-1

-4

-4

-4

-4

a1

a2

a3

a4

a′1

a′2

a′3

a′4

0 2

0-2

-2

02

0 -2

-2

-6

-6

-6

-6

On the left, H(M,2) has a positive weight perfect matching consisting of the bold-faced
edges, but on the right, H(M,3) does not. This implies 2 < u(M) ≤ 3.

For a given value of k, the problem of determining whether u(M) > k is now transformed
to detecting a positive weight perfect matching of H(M,k), which can be done by finding the
maximum weight perfect matching of H(M,k).

Lemma 12. Given an rp instance I , a matching M of I , and a rational number k = x/y, where
x ∈ [0,n− 1] and y ∈ [1,n] are integers, there is an algorithm to determine whether u(M) > k in
O(m
√
n logn) time.

Proof. From Lemma 11, the problem of determining whether u(M) > k is equivalent to deter-
mining whether H(M,k) has a positive weight perfect matching. Observe that H(M,k) has O(n)
vertices and O(m) edges, and we can multiply the weights of all edges by y so that they are
all integers with magnitude O(n). Using the recent algorithm of Duan et al. [12], we can
find a maximum weight perfect matching in a graph with integer weight edges of magnitude
poly(n) in O(m

√
n logn) time, hence we can detect a positive weight perfect matching in H(M,k)

in O(m
√
n logn) time.

As the possible values of u(M) are limited, we can perform a binary search for its value.
This allows us to efficiently compute u(M). To the best of our knowledge, this is the first
approach on popular matchings that employs the binary search technique.

Theorem 6. Given an rp instance I and a matching M of I , there is an algorithm to compute
u(M) in O(m

√
n log2n) time.

Proof. Observe that if u(M) is not ∞, it must be in the form of x/y, where x ∈ [0,n − 1] and
y ∈ [1,n] are integers, meaning that there are at most n2 possible values of u(M). By performing
a binary search on the value of k = x/y (if u(M) > n− 1, then u(M) =∞), we run the algorithm
in Lemma 12 to determine whether u(M) > k for O(logn2) = O(logn) times to find the exact
value of u(M), hence the total running time is O(m

√
n log2n).

49

4.1.2 mp Instances

The running time of the algorithm in Theorem 6 is for a general rp instance. However, in an
mp instance we can improve it using the following approach. For any matching M in an mp

instance, we define a matching

S =M ∪ {{a′i , a
′
j}|{ai , aj} ∈M} ∪ {{ai , a

′
i}|ai is unmatched in M}

in the graph H(M,k). Since S is a perfect matching, for any perfect matching S ′ of H(M,k), every
edge of S ′ that is not in S must be a part of some cycle in which the edges alternate between
S and S ′. Moreover, from the definition of δi,j , every edge of S has zero weight. Therefore,
H(M,k) contains a positive weight perfect matching if and only if it contains a positive weight
alternating cycle w.r.t. S. Hence, the problem becomes equivalent to detecting a positive weight
alternating cycle (w.r.t. S) in H(M,k). Note that this property holds for every rp instance, not
limited to only mp.

However, the special property of mp is that A is bipartite. Let AM and AW be the two
parts of A with no edge between vertices in the same part (which correspond to the sets of men
and women, respectively). Also, let A′M = {a′i |ai ∈ AM} and A′W = {a′i |ai ∈ AW }. Observe that we
can divide the vertices of H(M,k) into two parts H1 = AM ∪A′W and H2 = AW ∪A′M with no edge
between vertices in the same part, so H(M,k) is also bipartite.

In H(M,k), we can orient the edges of S toward H2 and all other edges toward H1, hence
the problem of detecting a positive weight alternating cycle becomes equivalent to detecting a
positive weight directed cycle (see Example 6), which can be done in O(m

√
n) time using the

shortest path algorithm of Goldberg [19]. Therefore, by performing a binary search on the
value of u(M) similar to in rp, the total running time for mp is O(m

√
n logn).

Example 6. Consider the following matching M in an mp instance with men a1 and a3, along
with women a2 and a4.

AM = {a1, a3}, AW = {a2, a4}
Preference Lists
a1 : a2, a4

a2 : a3, a1

a3 : a2, a4

a4 : a1, a3

M = {{a1, a2}, {a3, a4}}

a1

a2

a3

a4

a′1

a′2

a′3

a′4

0 2

0-1

02

0 -1
-4

-4

-4

-4

the auxiliary graph H(M,2) is shown on the top right.

50

a1

a2

a3

a4

a′1

a′2

a′3

a′4

0 2

0-1

02

0 -1
-4

-4

-4

-4

a1

a2

a3

a4

a′1

a′2

a′3

a′4

0 2

0-1

02

0 -1
-4

-4

-4

-4

On the left, observe that H(M,2) is a bipartite graph with parts H1 = {a1, a3, a
′
2, a
′
4} (colored

in white) and H2 = {a2, a4, a
′
1, a
′
3} (colored in grey). Also, the edges of S are shown in dashed

lines.

On the right, we orient the edges of S (dashed arrows) towardH2, and the rest towardH1.
This directed graph has a positive weight directed cycle consisting of the bold-faced arrows,
which implies u(M) > 2.

In a way similar to rp, we have the following lemma and theorem for mp.

Lemma 13. Given an mp instance I , a matchingM of I , and a number k = x/y, where x ∈ [0,n−1]
and y ∈ [1,n] are integers, there is an algorithm to determine whether u(M) > k inO(m

√
n) time.

Theorem 7. Given an mp instance I and a matching M of I , there is an algorithm to compute
u(M) in O(m

√
n logn) time.

51

4.2 Weighted Setting

The previous section shows the algorithm to compute an unpopularity factor of a given match-
ing in an unweighted rp or mp instance where every person has equal voting weight. However,
in many real-world situations, people may have different voting weights based on position, se-
niority, etc. Our algorithm can also be slightly modified to support a weighted instance with
integer weights bounded by N = poly(n) with the same running time in both rp and mp.

In the weighted setting, each person ai ∈ A has a weight w(ai). We analogously define
φ(M,M ′) to be the sum of weights of people who strictly prefer a matching M to a matching
M ′, i.e.

φ(M,M ′) =
∑

a∈A(M,M′)

w(a),

where A(M,M ′) = {a ∈ A|ra(M(a)) < ra(M ′(a))}. We also define ∆(M,M ′) and u(M) the same way
as in the unweighted setting. For each ai ∈ A, we assume that w(ai) is a non-negative integer
not exceeding N = poly(n). Note that an unweighted instance can be viewed as a special case
of a weighted instance where w(ai) = 1 for all ai ∈ A.

To support the weighted setting, we construct an auxiliary graph H(M,k) with the same
set of vertices and edges as in the unweighted setting, but with slightly different weights of the
edges. For each pair of i and j with an edge {ai , aj}, define

δi,j =

w(ai), if ai is unmatched in M or ai prefers aj to M(ai);

−kw(ai), if ai prefers M(ai) to aj ;

0, if {ai , aj} ∈M or ai likes aj and M(ai) equally.

For each pair of i and j, the weights of {ai , aj} and {a′i , a
′
j} is δi,j + δj,i . Finally, for each edge

{ai , a′i}, we set its weight to be −2kw(ai) if ai is matched in M, and 0 otherwise.

The auxiliary graph H(M,k) still has the same relation with u(M), as shown in the follow-
ing lemma.

Lemma 14. In the weighted rp instance, u(M) > k if and only if H(M,k) contains a positive
weight perfect matching.

Proof. The proof of this lemma is very similar to that of Lemma 11. We define the sets A1(M ′),
A2(M ′), A+

1 (M ′), A−1(M ′), and A−2(M ′) by the same way as in the proof of Lemma 11. However,
from now on we will compute the sum of weights of the elements in each set instead of counting
the number of its elements.

For any set B, define w(B) =
∑
a∈Bw(a). We have φ(M ′ ,M) = w(A+

1 (M ′)) and φ(M,M ′) =
w(A−1(M ′)) +w(A−2(M ′)).

Suppose that u(M) > k. There must exist a matchingM0 such that φ(M0,M) > kφ(M,M0).
Similarly to the proof of Lemma 11, in the graph H(M,k) consider a perfect matching

S0 =M0 ∪ {{a′i , a
′
j}|{ai , aj} ∈M0} ∪ {{ai , a′i}|ai is unmatched in M0}

52

with weight W0. From the definition, we have

W0 = 2(w(A+
1 (M0))− kw(A−1(M0)))− 2kw(A−2(M0))

= 2(w(A+
1 (M0))− k (w(A−1(M0)) +w(A−2(M0))))

= 2(φ(M0,M)− kφ(M,M0))

> 0,

hence H(M,k) contains a positive weight perfect matching.

On the other hand, suppose there is a positive weight perfect matching S1 of H(M,k) with
weight W1. Let M1 = {{ai , aj} ∈ S1} and M2 = {{ai , aj}|{a′i , a

′
j} ∈ S1}. Similarly to the proof of

Lemma 11, we have A2(M1) = A2(M2), and

0 <W1

= (w(A+
1 (M1))− kw(A−1(M1))) + (w(A+

1 (M2))− kw(A−1(M2)))− 2kw(A−2(M1))

= (w(A+
1 (M1))− kw(A−1(M1))) + (w(A+

1 (M2))− kw(A−1(M2)))− kw(A−2(M1))− kw(A−2(M2))

= (φ(M1,M)− kφ(M,M1)) + (φ(M2,M)− kφ(M,M2)).

Therefore, we have either φ(M1,M) > kφ(M,M1) or φ(M2,M) > kφ(M,M2), which implies
u(M) > k.

Since the weights of people are bounded by N = poly(n), the unpopularity factor u(M)
must be in the form k = x/y, where x and y are integers not exceeding Nn. For a given value
of k, if we multiply the weights of all edges of H(M,k) by y, they will be integers with magni-
tude O(Nn) = poly(n). Therefore, we can still use the algorithm of Duan et al. [12] to find a
maximum weight perfect matching of H(M,k) with the same running time.

Moreover, there are at most O(N2n2) possible values of u(M). By performing a binary
search on the value of k, we have to run the above algorithm for O(logN2n2) = O(logn) times
as in the unweighted setting, hence the total running time is still O(m

√
n log2n).

The argument for mp instances still works for the weighted setting as well since H(M,k) is
still bipartite, hence we have the following theorems for the weighted setting rp and mp.

Theorem 8. Given a weighted rp instance I with integer weights bounded by N = poly(n) and
a matching M of I , there is an algorithm to compute u(M) in O(m

√
n log2n) time.

Theorem 9. Given a weighted mp instance I with integer weights bounded by N = poly(n) and
a matching M of I , there is an algorithm to compute u(M) in O(m

√
n logn) time.

53

5Finding a Weakly Stable Noncrossing Matching

In nmp, we introduced the definitions of WSNM and SSNM in Definitions 7 and 8, respectively.
An SSNM is a matching that is both noncrossing and stable, while a WSNM is “stable” in a
weaker sense as it may admit a blocking pair, just not a noncrossing one.

Observe that an SSNM may not exist in some instances. For example, in an instance of
two men and two women, with Lm1

= (w2,w1),Lm2
= (w1,w2),Lw1

= (m2,m1), and Lw2
= (m1,m2),

the only stable matching is {(m1,w2), (m2,w1)}, and its two edges do cross each other. On the
other hand, the above instance has two WSNMs: {(m1,w2)} and {(m2,w1)}.

It also turns out that a WSNM always exists in every instance. In this chapter, we will
constructively prove the existence of a WSNM by developing an O(n2) time algorithm to find
one in a given instance.

54

5.1 Outline of Algorithm

Without loss of generality, for each man mi and each woman wj , we assume that wj is in mi ’s
preference list if and only if mi is also in wj ’s preference list (otherwise we can simply remove
the entries that are not mutual from the lists). Initially, every person is unmatched (M = ∅).

Our algorithm uses proposals from men to women similarly to the Gale–Shapley algo-
rithm [16] in the original Stable Marriage Problem, but in a more constrained way. Let M be
the current matching. When a woman wj receives a proposal from a man mi , if she prefers her
current partner M(wj) to mi , she rejects mi ; otherwise if she is currently unmatched or prefers
mi to M(wj), she dumps M(wj) and accepts mi .

Consider a man mi and a woman wj not matched with each other. An entry wj in Lmi
has

the following possible states:

1. accessible (to mi), if (mi ,wj) does not cross any edge in M;

1.1. available (to mi), if wj is accessible to mi , and is currently unmatched or matched
with a man she likes less than mi , i.e. mi is going to be accepted if he proposes to
her (for convenience, if wj is currently matched with mi , we also call wj accessible
and available to mi).

1.2. unavailable (to mi), if wj is accessible to mi , but is currently matched with a man
she likes more than mi , i.e. mi is going to be rejected if he proposes to her;

2. inaccessible (to mi), if wj is not accessible to mi ;

For a man mi , if every entry in Lmi
before M(mi) is either inaccessible or unavailable,

then we say that mi is stable; otherwise (there is at least one available entry before M(mi)) we
say that mi is unstable.

The main idea of our algorithm is that, at any point, if there is at least one unstable man,
we pick the topmost unstable man mk (the unstable man mk with least index k) and perform
the following operations.

1. Let mk dump his current partner M(mk) (if any), i.e. remove (mk ,M(mk)) from M, and let
him propose to the available woman wl that he prefers most.

2. Let wl dump her current partner M(wl) (if any), i.e. remove (M(wl),wl) from M, and let
her accept mk’s proposal.

3. Add the new pair (mk ,wl) to M.

We repeatedly perform such operations until every man becomes stable. Note that throughout
the algorithm, every proposal will result in acceptance andM will always be noncrossing since
men propose only to women available to them.

55

5.2 Proof of Correctness

First, we will show that if our algorithm stops, then the matching M given by the algorithm
must be a WSNM.

Assume, for the sake of contradiction, thatM admits a noncrossing blocking pair (mi ,wj).
That means mi prefers wj to his current partner M(mi), wj prefers mi to her current partner
M(wj), and (mi ,wj) does not cross an edge in M, thus the entry wj in Lmi

is available and is
located before M(mi). However, by the description of our algorithm, the process stops when
every man becomes stable, which means there cannot be an available entry before M(mi) in
Lmi

, a contradiction. Therefore, we can conclude that our algorithm gives a WSNM as a result
whenever it stops.

However, it is not trivial that our algorithm will eventually stop. In contrast to the Gale–
Shapley algorithm [16] in the Stable Marriage Problem, in this problem a woman is not guar-
anteed to get increasingly better partners throughout the process because a man can dump
a woman too if he later finds a better available woman previously inaccessible to him (due to
having an edge obstructing them). In fact, it is actually the case where the process may not stop
if at each step we pick an arbitrary unstable man instead of the topmost one. For example, in
an instance of two men and two women with Lm1

= (w2,w1),Lm2
= (w1,w2),Lw1

= (m1,m2),Lw2
=

(m2,m1), the order of pickingm1,m2,m2,m1,m1,m2,m2,m1, . . . results in the process continuing
forever, with the matching M looping between {(m1,w2)}, {(m2,w2)}, {(m2,w1)}, and {(m1,w1)}
at each step.

Fortunately, it turns out that our algorithm always stop. We will prove that statement as
well as evaluating the worst-case running time of our algorithm after we introduce the explicit
implementation of the algorithm in the next section.

56

5.3 Implementation

To implement the above algorithm, we have to consider how to efficiently find the topmost un-
stable man at each step in order to perform the operations on him. Of course, a straightforward
way to do this is to update the state of every entry in every man’s preference list after each step,
but that method will be very inefficient. Instead, we introduce the following scanning method.

Throughout the algorithm, we do not know exactly the set of all unstable men, but we
instead keep a set S of men that are “possibly unstable”. Initially, the set S contains all men,
i.e. S = {m1,m2, . . . ,mn}, and at each step we maintain the set S of the form {mi ,mi+1, . . . ,mn} for
some i ∈ [n] (that means m1,m2, . . . ,mi−1 are guaranteed to be stable at that time). Note that
in the actual implementation, we can store only the index of the topmost man in S instead of
the whole set. At each step, we scan the topmost man mi in S and check whether mi is stable.
If mi is already stable, then we simply skip him by removing mi from S and moving to scan
the next man in S. If mi is unstable, then mi is indeed the topmost unstable man we want, so
we perform some operations on mi . Note that the operations may cause some men to become
unstable, so after that we have to add all men that are possibly affected by the operations back
to S. The details of the scanning and updating processes are as follows.

During the scan ofmi , letmprev be the matched man closest tomi that lies above him, and
let wfirst = M(mprev) (we let wfirst = w1 if there is no mprev). Also, let mnext be the matched man
closest to mi that lies below him, and let wlast =M(mnext) (we let wlast = wn if there is no mnext).
Observe that matching mi with anyone lying above wfirst will cross the edge (mprev,wfirst), and
matching mi with anyone lying below wlast will cross the edge (mnext,wlast). Therefore, the
range of all women accessible to mi ranges exactly from wfirst to wlast, hence the range of all
women available to mi ranges from either wfirst or wfirst+1 (depending on whether wfirst prefers
mi to mprev) to either wlast or wlast−1 (depending on whether wlast prefers mi to mnext). See Fig.
1.

Then in the available range, mi selects the woman wj that he prefers most.

Case 1: wj does not exist or mi is currently matched with wj .

That meansmi is currently stable, so we can skip him. We removemi from S and proceed
to scan mi+1 in the next step (called a downward jump).

Case 2: wj exists and mi is not currently matched with wj

That means mi is indeed the topmost unstable man we want, so we perform the opera-
tions on him by letting mi propose to wj and dump his current partner (if any).

Case 2.1: mprev exists and wj = wfirst.

That means wfirst dumps mprev to get matched with mi , which leaves mprev unmatched
and he may possibly become unstable. Furthermore, mprev+1, mprev+2, . . . ,mi−1 as well as mi
himself may also possibly become unstable since they now gain access to women lying above
wfirst previously inaccessible to them (if wfirst , w1). On the other hand, m1,m2, . . . ,mprev−1

clearly remain stable, hence we add mprev,mprev+1, . . . ,mi−1 to S and proceed to scan mprev in
the next step (called an upward jump).

57

mprev

mi

mnext

.

.

.

.

.

.

wfirst

wlast

.

.

.

.

.

.

available to mi iff wfirst

prefers mi to mprev

available to mi iff wlast

prefers mi to mnext

accessible to mi
available
to mi

Figure 5.1: Accessible and available women to mi

Case 2.2: mprev does not exist or wj , wfirst.

Case 2.2.1: mi is currently matched and wj lies geometrically below M(mi).

Then, mprev,mprev+1, . . . ,mi−1 (or m1,m2, . . . ,mi−1 if mprev does not exist) may possibly be-
comes unstable since they now gain access to women between M(mi) and wj previously inac-
cessible to them. Therefore, we perform the upward jump to mprev (or to m1 if mprev does not
exist), addingmprev,mprev+1, . . . , mi−1 (orm1,m2, . . . ,mi−1) to S and proceed to scanmprev (orm1)
in the next step, except when mi =m1 that we perform the downward jump to m2.

It turns out that this case is impossible, which we will prove in the next section.

Case 2.2.2: mi is currently unmatched or wj lies geometrically above M(mi).

Then all men lying above mi clearly remain stable (because the sets of available women
to m1,m2, . . . ,mi−1 either remain the same or become smaller). Also, mi now becomes stable as
well (because mi selects a woman he prefers most in the available range), except in the case
where wj = wlast (because the edge (mnext,wlast) is removed and mi now has access to women
lying below wlast previously inaccessible to him). Therefore, we perform the downward jump,
removing mi from S and moving to scan mi+1 in the next step, except when wj = wlast that
we have to scan mi again in the next step (this exception, however, turns out to be impossible,
which we will prove in the next section).

We scan the men in this way until S becomes empty (see Example 7). By the way we add
all men that may possibly become unstable after each step back to S, at any step S is guaranteed
to contain the topmost unstable man.

58

Example 7. Consider an instance of three men and three women with the following preference
lists.

m1 : w3,w1,w2

m2 : w2,w3,w1

m3 : w2,w1,w3

w1 : m3,m2,m1

w2 : m3,m2,m1

w3 : m3,m2,m1

Our algorithm will scan the men in the following order and output a matching M =
{(m2,w1), (m3,w2)}, which is a WSNM.

Step Process
M at the end

of step
S at the end

of step

0 ∅ {m1,m2,m3}
1 scan m1, add (m1,w3) {(m1,w3)} {m2,m3}
2 scan m2, add (m2,w3), remove (m1,w3) {(m2,w3)} {m1,m2,m3}
3 scan m1, add (m1,w1) {(m1,w1), (m2,w3)} {m2,m3}
4 scan m2, add (m2,w2), remove (m2,w3) {(m1,w1), (m2,w2)} {m3}
5 scan m3, add (m3,w2), remove (m2,w2) {(m1,w1), (m3,w2)} {m2,m3}
6 scan m2, add (m2,w1), remove (m1,w1) {(m2,w1), (m3,w2)} {m1,m2,m3}
7 scan m1 {(m2,w1), (m3,w2)} {m2,m3}
8 scan m2 {(m2,w1), (m3,w2)} {m3}
9 scan m3 {(m2,w1), (m3,w2)} ∅

59

5.4 Proof of Finiteness

First, we will prove the following lemma about the algorithm described in the previous section.

Lemma 15. During the scan of a man mi , if mi is currently matched, then mi does not propose
to any woman lying geometrically below M(mi).

Proof. We call a situation when a man mi proposes to a woman lying geometrically below
M(mi) a downward switch. Assume, for the sake of contradiction, that a downward switch
occurs at least once during the whole algorithm. Suppose that the first downward switch occurs
at step s, when a man mi is matched to wk = M(mi) and proposes to wj with j > k. We have mi
prefers wj to wk .

Consider the step t < s when mi proposed to wk (if mi proposed to wk multiple times,
consider the most recent one). At step t, wj must be inaccessible or unavailable tomi (otherwise
he would choose wj instead of wk), meaning that there must be an edge (mp,wq) with p > i and
k < q < j obstructing them in the inaccessible case, or an edge (mp,wq) with p > i, q = j, and wj
preferring mp to mi in the unavailable case.

We define a dynamic edge e as follows. First, at step t we set e = (mp,wq). Then, throughout
the process we update e by the following method: whenever the endpoints of e cease to be
partners of each other, we update e to be the edge joining the endpoint that dumps his/her
partner with his/her new partner. Formally, suppose that e is currently (mx,wy). If mx dumps
wy to get matched with wy′ , we update e to be (mx,wy′); if wy dumps mx to get matched with
mx′ , we update e to be (mx′ ,wy).

By this updating method, the edge e will always exist after step t, but may change over
time. Observe that from step t to step s, we always have x > i because of the existence of
(mi ,wk). Moreover, before step s, if mx dumps wy to get matched with wy′ , by the assumption
that a downward switch did not occur before step s, we have y′ < y, which means the index
of the women’s side of e’s endpoints never increases. Consider the edge e = (mx,wy) at step
s, we must have x > i and y ≤ q ≤ j. If y < j, then the edge e obstructs mi and wj , making
wj inaccessible to mi . If y = j, that means wj never got dumped since step t, so she got only
increasingly better partners, thus wj prefers mx to mi , making wj unavailable to mi . Therefore,
in both cases mi could not propose to wj , a contradiction. Hence, a downward switch cannot
occur in our algorithm.

Lemma 15 shows that a woman cannot get her partner stolen by any woman that lies
below her, which is equivalent to the following corollary.

Corollary 1. If a man mi dumps a woman wj to propose to a woman wk , then k < j.

It also implies that Case 2.2.1 in the previous section never occurs. Therefore, the only
case where an upward jump occurs is Case 2.1 (mprev exists and mi proposes to wfirst). We will
now prove the following lemma.

60

Lemma 16. During the scan of a man mi , if mnext exists, then mi does not propose to wlast.

Proof. Assume, for the sake of contradiction, that mi proposes to wlast. Since mnext exists, this
proposal obviously cannot occur in the very first step of the algorithm. Consider a man mk we
scanned in the previous step right before scanning mi .

Case 1: mk lies below mi , i.e. k > i.

In order for the upward jump from mk to mi to occur, mi must have been matched with
a woman but got her stolen by mk in the previous step. However, mi+1,mi+2, . . . ,mnext−1 are all
currently unmatched (by the definition of mnext), so the only possibility is that mk =mnext, and
thus his partner that got stolen was wlast. Therefore, we can conclude that wlast prefers mnext to
mi , which means wlast is currently unavailable to mi , a contradiction.

Case 2: mk lies above mi , i.e. k < i.

The jump before the current step was a downward jump, but sincemnext has been scanned
before, an upward jump over mi must have occurred at some point before the current step.
Consider the most recent upward jump over mi before the current step. Suppose than it oc-
curred at the end of step t and was a jump frommk′ tomj , with k′ > i and j < i. In order for this
jump to occur, mj must have been matched with a woman but got her stolen by mk′ at step t.
However, mi+1,mi+2, . . . ,mnext−1 are all currently unmatched (by the definition of mnext), so the
only possibility is thatmk′ =mnext, and thusmj ’s partner that got stolen was wlast. We also have
mj+1,mj+2, . . . ,mnext−1 were all unmatched during step t (otherwise wlast would be inaccessible
to mk′), and wlast prefers mnext to mj .

Now, consider the most recent step before step t in which we scanned mi . Suppose it
occurred at step s. During step s, mj was matched with wlast and wlast was accessible to mi .
However, mi was still left unmatched after step s (otherwise an upward jump over mi at step t
could not occur), meaning that wlast must be unavailable to him back then due to wlast prefer-
ring mj to mi . Therefore, we can conclude that wlast prefers mnext to mi , thus wlast is currently
unavailable to mi , a contradiction.

Lemma 16 shows that a man cannot get his partner stolen by any man lying above him,
or equivalent to the following corollary.

Corollary 2. If a woman wj dumps a man mi to accept a man mk , then k > i.

Now, we will show that the position of each woman’s partner can only move downward
throughout the process, which guarantees the finiteness of the number of steps in the entire
process.

Lemma 17. After a woman wj ceases to be a partner of a man mi , she cannot be matched with
any man mi′ with i′ ≤ i afterwards.

Proof. Suppose that wj ’s next partner (if any) is ma. It is sufficient to prove that a > i. First,
consider the situation when mi and wj cease to be partners.

61

Case 1: wj dumps mi .

This means wj dumps mi to get matched with ma right away. By Corollary 2, we have
a > i as required.

Case 2: mi dumps wj .

Suppose that mi dumps wj to get matched with wk . By Corollary 1, we have k < j.

Case 2.1: mi never gets dumped afterwards.

That means mi will only get increasingly better partner, and the position of his partner
can only move upwards (by Corollary 1), which means wj cannot be matched with mi again, or
any man lying above mi afterwards due to having an edge (mi ,M(mi)) obstructing. Therefore,
ma must lie below mi , i.e. a > i.

Case 2.2: mi gets dumped afterwards.

Suppose that mi first gets dumped by wy at step s. By Corollary 1, we have y ≤ k < j
(because mi only gets increasingly better partners before getting dumped). Also suppose that
wy dumps mi in order to get matched with mx. By Corollary 2, we have x > i. Similarly to the
proof of Lemma 1, consider a dynamic e first set to be (mx,wy) at step s. We have the index of
the men’s side of e’s endpoints never decreases, and that of the women’s side never increases.
Therefore, since step s, there always exists an edge (mx,wy) with x > i and y < j, obstructing
wj ’s access to mi and all men lying above him. Therefore, ma must lie below mi , i.e. a > i.

62

5.5 Running Time Analysis

Consider any upward jump from mi to mk with i > k that occurs right after mi stole wj from
mk . We call such a jump associated to wj , and it has size i − k.

For any woman wj , let Uj be the sum of the sizes of all upward jumps associated to wj .
From Lemma 17, we know that the position of wj ’s partner can only move upward throughout
the process, so we have Uj ≤ n − 1. Therefore, the sum of the sizes of all upwards jumps is∑n
j=1Uj ≤ n(n − 1) = O(n2). Since the scan starts at m1 and ends at mn, the total number of

downward jumps equals to the sum of the sizes of all upward jumps plus n−1, hence the total
number of steps in the whole algorithm is O(n2).

For each mi , we keep an array of size n, with the j-th entry storing the rank of wj in Lmi
.

Each time we scanmi , we query the minimum rank of available women, which is a consecutive
range in the array. Using an appropriate range minimum query (RMQ) data structure such as
the one introduced by Fischer [14], we can perform the scan with O(n) preprocessing time per
array and O(1) query time. Therefore, the total running time of our algorithm is O(n2).

In conclusion, we proved that our developed algorithm is correct and terminates inO(n2)
time, which also implicitly proves the existence of a WSNM in any instance.

Theorem 10. A weakly stable noncrossing matching exists in any instance with n men and n
women with strict preference lists.

Theorem 11. There is an O(n2) time algorithm to find a weakly stable noncrossing matching
in an instance with n men and n women with strict preference lists.

63

5.6 Generalization and Follow-Up Problems

In this chapter, we constructively proved that a WSNM always exists in any mp instance by
developing an O(n2) time algorithm to find one. Note that our algorithm does not require the
numbers of men and women to be equal. In the case that there are nM men and nW women,
the algorithm works similarly with O(nMnW) running time.

Our algorithm can also be generalized to the setting where people’s preference lists are
not strict. If we keep the definition of a blocking pair introduced in Definition 5 unchanged,
similarly to the way to define a weakly stable matching in [28], then we can modify the instance
by breaking ties in an arbitrary way. Clearly, a WSNM in the modified instance will also be a
WSNM in the original one (because every noncrossing blocking pair in the original instance
will also be a noncrossing blocking pair in the modified instance). Therefore, the algorithm
still works with the same running time.

Note that the definition of a WSNM allows multiple answers with different sizes for an in-
stance. For example, in an instance of three men and three women, with Lm1

= (w3,w1,w2),Lm2
=

(w1,w2,w3),Lm3
= (w2,w3,w1),Lw1

= (m2,m3,m1),Lw2
= (m3,m1,m2), and Lw3

= (m1,m2,m3),
both {(m1,w3)} and {(m2,w1), (m3,w2)} are WSNMs, but our algorithm only outputs the first
one with smaller size. This naturally prompted a follow-up problem of finding a WSNM with
maximum size in a given instance, which is deemed to be a practically better solution than
other WSNMs as it satisfies more people. Also, as we showed that an SSNM does not always
exist, another natural follow-up problem is to determine whether an SSNM exists in a given
instance, and to find one if it does.

After our result was first published in [48], both problems were subsequently solved
by Hamada et al. [22]. They developed algorithms to solve the first problem in O(n4) time
using dynamic programming, and the second problem in O(n2) time using the rural hospitals
theorem [17, 43, 44].

64

6Conclusion

In this thesis, we analyzed three open problems in matching under preferences using graph-
theoretic characterizations.

In Chapter 3, we studied rpmp in an hap instance where the preference lists are strict
but not complete, with every person’s preference list having the same length of a constant k,
and discovered a phase transition at α = αk , where αk ≥ 1 is the root of equation xe−1/2x =
1 − (1 − e−1/x)k−1. We also performed a simulation to help illustrate and verify the discovered
phase transition.

In many real-world situations, ties can and are likely to occur among people’s preference
lists as people may like two or more items equally. rpmp in the case with ties allowed was also
mentioned by Mahdian [37] and simulated by Abraham et al. [5] using a parameter t to denote
the probability that each entry in a preference list is tied with previous entry. Intuitively, and
also confirmed by the experimental results of [5], when ties are very likely to occur (t is very
close to 1), a popular matching is likely to exist even when α is as low as 1. However, the exact
phase transition point for each value of t, or whether it exists at all, has still not been found yet.
This leaves a possible future work of studying the transition point in this setting for each value
of t, both with complete and incomplete preference lists. Other future work includes studying
rpmp in other settings such as rp and chap, e.g. the latter in the most basic case where every
item has the same capacity c.

In Chapter 4, we developed an algorithm to compute the unpopularity factor of a given
matching inO(m

√
n logn) time for mp and inO(m

√
n log2n) time for rp. We also generalized the

notion of unpopularity factor to the weighted setting where people are given different voting
weights, and show that our algorithm can be slightly modified to support that setting with the
same running time. Our results also complete Tables 6.1 and 6.2, which show the updated
running time of the best known algorithms related to popularity in each setting with strict
preference lists, and with ties allowed, respectively.

While the problem of finding a matching that minimizes the unpopularity factor or the
unpopularity margin in a given matching is NP-hard, the problem of approximating the opti-
mum of either measure is still open. For the unpopularity factor in rp with strict preference
lists, the current best algorithm is the one developed by Huang and Kavitha [23], which ap-
proximates it up to O(logn) factor. A possible future work is to investigate whether there is a
better approximation algorithm for rp, or to develop one for hap. For the unpopularity margin,
however, there is currently no efficient algorithm to approximate the optimum, both in rp and
hap, which leaves a lot of rooms for future improvement.

65

Two-sided Lists One-sided Lists
Marriage

Problem (mp)
Roommates

Problem (rp)
House Allocation

Problem (hap)

Determine if a popular
matching exists

O(m) [18]
NP-hard [13, 20]

O(m+n) [5]

Find a matching M
that minimizes g(M) NP-hard [40]

Find a matching M
that minimizes u(M)

NP-hard [23]

Test popularity
of a given matching M O(m

√
n) [8] O(m

√
n logn) [8, 12]

O(m+n) [5]

Compute g(M)
of a given matching M

O((g + 1)m
√
n) [40]

Compute u(M)
of a given matching M

O(m
√
n logn) [§4] O(m

√
n log2n) [§4] O(m

√
n2) [40]

Table 6.1: Updated best known algorithms for an unweighted instance with strict preference
lists

Two-sided Lists One-sided Lists
Marriage

Problem (mp)
Roommates

Problem (rp)
House Allocation

Problem (hap)

Determine if a popular
matching exists

NP-hard [8]
O(m
√
n) [5]

Find a matching M
that minimizes g(M) NP-hard [40]

Find a matching M
that minimizes u(M)

Test popularity
of a given matching M O(m

√
n) [8] O(m

√
n logn) [8, 12]

O(m
√
n2) [40]

Compute g(M)
of a given matching M

O((g + 1)m
√
n) [40]

Compute u(M)
of a given matching M

O(m
√
n logn) [§4] O(m

√
n log2n) [§4] O(m

√
n2) [40]

Table 6.2: Updated best known algorithms for an unweighted instance with ties allowed in the
preference lists

66

In Chapter 5, we constructively proved that a WSNM always exists in any mp instance by
developing an O(n2) time algorithm to find one. We also posed two follow-up open problems,
finding a maximum size WSNM and determining whether an SSNM exists, which were both
subsequently solved by Hamada et al. [22].

Other related open problems include investigating the noncrossing matching in the geo-
metric version of the Stable Roommates Problem, where people can be matched regardless of
gender. The most basic and natural setting of this problem is where people are represented by
points arranged on a circle. This leads to a possible future work of developing an algorithm to
determine whether a WSNM or an SSNM exists in a given instance, and to find one if it does.

67

Bibliography

[1] A. Abdulkadiroğlu, P. A. Pathak, and A. E. Roth. The New York City High School Match.
American Economic Review, 95(2): 364–367 (2005). doi:10.1257/000282805774670167

[2] A. Abdulkadiroğlu, P. A. Pathak, A. E. Roth, and T. Sönmez. The Boston
Public School Match. American Economic Review, 95(2): 368–371 (2005).
doi:10.1257/000282805774669637

[3] A. Abdulkadiroğlu and T. Sönmez. Random Serial Dictatorship and the Core from Ran-
dom Endowments in House Allocation Problems. Econometrica, 66(3): 689–701 (1998).
doi:10.2307/2998580

[4] D. J. Abraham, K. Cechlárová, D. F. Manlove, and K. Mehlhorn. Pareto Optimality in
House Allocation Problems. Proceedings of 15th Annual International Symposium on Algo-
rithms and Computation (ISAAC), pp. 3–15 (2004). doi:10.1007/978-3-540-30551-4_3

[5] D. J. Abraham, R. W. Irving, T. Kavitha, and K. Mehlhorn. Popular Matchings. SIAM Jour-
nal on Computing, 37(4): 1030–1045 (2007). doi:10.1137/06067328X

[6] D. J. Abraham and T. Kavitha. Dynamic Matching Markets and Voting Paths. In Proceed-
ings of the 10th Scandinavian Workshop on Algorithm Theory (SWAT), pp. 65–76 (2006).
doi:10.1007/11785293_9

[7] N. Alon and J. Spencer. The Probabilistic Method. Third edition. John Wiley & Sons
(2008). doi:10.1002/9780470277331

[8] P. Biró, R. W. Irving, and D. Manlove. Popular Matchings in the Marriage and Roommates
Problems. In Proceedings of the 7th International Conference on Algorithms and Complexity
(CIAC), pp. 97–108 (2010). doi:10.1007/978-3-642-13073-1_10

[9] B. Bollobás, S. Janson, and O. Riordan. The phase transition in inhomogeneous random
graphs. Random Structures & Algorithms, 31(1): 3–122, (2007). doi:10.1002/rsa.20168

[10] Á. Cseh, C.-C. Huang, and T. Kavitha. Popular Matchings with Two-Sided Preferences
and One-Sided Ties. SIAM Journal on Discrete Mathematics, 31(4): 2348–2377 (2017).
doi:10.1137/16M1076162

[11] Á. Cseh and T. Kavitha. Popular Matchings in Complete Graphs. In Proceedings of the 38th
IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer
Science (FSTTCS), pp. 17:1–17:14 (2018). doi:10.4230/LIPIcs.FSTTCS.2018.17

68

https://doi.org/10.1257/000282805774670167
https://doi.org/10.1257/000282805774669637
https://doi.org/10.2307/2998580
https://doi.org/10.1007/978-3-540-30551-4_3
https://doi.org/10.1137/06067328X
https://doi.org/10.1007/11785293_9
https://doi.org/10.1002/9780470277331
https://doi.org/10.1007/978-3-642-13073-1_10
https://doi.org/10.1002/rsa.20168
https://doi.org/10.1137/16M1076162
https://doi.org/10.4230/LIPIcs.FSTTCS.2018.17

[12] R. Duan, S. Pettie, and H.-H. Su. Scaling Algorithms for Weighted Matching in General
Graphs. ACM Transactions on Algorithms, 14(1): 8:1–8:35 (2018). doi:10.1145/3155301

[13] Y. Faenza, T. Kavitha, V. Powers, and X. Zhang. Popular Matchings and Limits to Tractabil-
ity. In Proceedings of the 30th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pp. 2790–2809 (2019). doi:10.1137/1.9781611975482.173

[14] J. Fischer. Optimal Succinctness for Range Minimum Queries. In Proceedings of the
9th Latin American Symposium on Theoretical Informatics (LATIN), pp. 158–169 (2010).
doi:10.1007/978-3-642-12200-2_16

[15] M. L. Fredman. On computing the length of longest increasing subsequences. Discrete
Applied Mathematics, 11(1): 29–35 (1975). doi:10.1016/0012-365X(75)90103-X

[16] D. Gale and L. S. Shapley. College Admissions and the Stability of Marriage. American
Mathematical Monthly, 69: 9–15 (1962). doi:10.2307/2312726

[17] D. Gale and M. Sotomayor. Some remarks on the stable matching problem. Discrete Ap-
plied Mathematics, 11(3): 223–232 (1985). doi:10.1016/0166-218X(85)90074-5

[18] P. Gärdenfors. Match making: Assignments based on bilateral preferences. Behavioral Sci-
ence, 20: 166–173 (1975). doi:10.1002/bs.3830200304

[19] A. V. Goldberg. Scaling Algorithms for the Shortest Paths Problem. SIAM Journal on Com-
puting, 24(3): 494–504 (1995). doi:10.1137/S0097539792231179

[20] S. Gupta, P. Misra, S. Saurabh, and M. Zehavi. Popular Matching in Roommates Setting is
NP-hard. In Proceedings of the 30th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pp. 2810–2822 (2019). doi:10.1137/1.9781611975482.174

[21] D. Gusfield and R. W. Irving. The Stable Marriage Problem: Structure and Algorithms.
MIT Press (1989).

[22] K. Hamada, S. Miyazaki, and K. Okamoto. Strongly Stable and Maximum Weakly Stable
Noncrossing Matchings. In Proceedings of the 31st International Workshop on Combinatorial
Algorithms (IWOCA), pp. 304–315 (2020). doi:10.1007/978-3-030-48966-3_23

[23] C.-C. Huang and T. Kavitha. Near-Popular Matchings in the Roommates Problem. SIAM
Journal on Discrete Mathematics, 27(1): 43–62 (2013). doi:10.1137/110852838

[24] C.-C. Huang and T. Kavitha. Popular matchings in the stable marriage problem. Informa-
tion and Computation, 222: 180–194 (2013). doi:10.1016/j.ic.2012.10.012

[25] C.-C. Huang, T. Kavitha, D. Michail, and M. Nasre. Bounded Unpopularity Matchings.
Algorithmica, 61: 738–757 (2011). doi:10.1007/s00453-010-9434-9

[26] A. Hylland and R. Zeckhauser. The Efficient Allocation of Individuals to Positions. Journal
of Political Economy, 87(22): 293–314 (1979).

[27] R. W. Irving. An efficient algorithm for the “stable roommates” problem. Journal of Algo-
rithms, 6: 577–595 (1985). doi:10.1016/0196-6774(85)90033-1

69

https://doi.org/10.1145/3155301
https://doi.org/10.1137/1.9781611975482.173
https://doi.org/10.1007/978-3-642-12200-2_16
https://doi.org/10.1016/0012-365X(75)90103-X
https://doi.org/10.2307/2312726
https://doi.org/10.1016/0166-218X(85)90074-5
https://doi.org/10.1002/bs.3830200304
https://doi.org/10.1137/S0097539792231179
https://doi.org/10.1137/1.9781611975482.174
https://doi.org/10.1007/978-3-030-48966-3_23
https://doi.org/10.1137/110852838
https://doi.org/10.1016/j.ic.2012.10.012
https://doi.org/10.1007/s00453-010-9434-9
https://doi.org/10.1016/0196-6774(85)90033-1

[28] R. W. Irving. Stable marriage and indifference. Discrete Applied Mathematics, 48(3): 261–
272 (1994). doi:10.1016/0166-218X(92)00179-P

[29] R. W. Irving, T. Kavitha, K. Mehlhorn, D. Michail, and K. Paluch. Rank-
maximal matchings. ACM Transactions on Algorithms, 2(4): 602–610 (2006).
doi:10.1145/1198513.1198520

[30] T. Itoh and O. Watanabe. Weighted random popular matchings. Random Structures & Al-
gorithms, 37(4): 477–494 (2010). doi:10.1002/rsa.20316

[31] Y. Kajitami and T. Takahashi. The noncross matching and applications to the 3-side switch
box routing in VLSI layout design. In Proceedings of the IEEE International Symposium on
Circuits and Systems, pp. 776–779 (1986).

[32] T. Kavitha. A Size-Popularity Tradeoff in the Stable Marriage Problem. SIAM Journal on
Computing, 43(1): 52–71 (2014). doi:10.1137/120902562

[33] T. Kavitha. Popular Matchings of Desired Size. In Proceedings of the 44th International
Workshop on Graph-Theoretic Concepts in Computer Science (WG), pp. 306–317 (2018).
doi:10.1007/978-3-030-00256-5_25

[34] T. Kavitha, K. Mehlhorn, D. Michail, and K. E. Paluch. Strongly stable matchings in time
O(nm) and extension to the hospitals-residents problem. ACM Transactions on Algorithms,
3(2): 1–18 (2007). doi:10.1145/1240233.1240238

[35] T. Kavitha, J. Mestre, and M. Nasre. Popular mixed matchings. Theoretical Computer Sci-
ence, 412(24): 2679–2690 (2011). doi:10.1016/j.tcs.2010.03.028

[36] T. Kavitha and C. D. Shah. Efficient Algorithms for Weighted Rank-Maximal Matchings
and Related Problems. In Proceedings of the 17th International Symposium on Algorithms
and Computation (ISAAC), pp. 153–162 (2006). doi:10.1007/11940128_17

[37] M. Mahdian. Random popular matchings. In Proceedings of the 7th ACM Conference on
Electronic Commerce (EC), pp. 238–242 (2006). doi:10.1145/1134707.1134733

[38] F. Malucelli, T. Ottmann, and D. Pretolani. Efficient labelling algorithms for the maximum
noncrossing matching problem. Discrete Applied Mathematics, 47(2): 175–179 (1993).
doi:10.1016/0166-218X(93)90090-B

[39] D. Manlove and C. T. S. Sng. Popular Matchings in the Capacitated House Allocation
Problem. In Proceedings of the 14th Annual European Symposium on Algorithms (ESA), pp.
492–503 (2006). doi:10.1007/11841036_45

[40] R. M. McCutchen. The Least-Unpopularity-Factor and Least-Unpopularity-Margin Cri-
teria for Matching Problems with One-Sided Preferences. In Proceedings of the 15th
Latin American Symposium on Theoretical Informatics (LATIN), pp. 593–604 (2008).
doi:10.1007/978-3-540-78773-0_51

[41] E. McDermid and R. W. Irving. Popular matchings: structure and algorithms. Journal of
Combinatorial Optimization, 22: 339–358 (2011). doi:10.1007/s10878-009-9287-9

70

https://doi.org/10.1016/0166-218X(92)00179-P
https://doi.org/10.1145/1198513.1198520
https://doi.org/10.1002/rsa.20316
https://doi.org/10.1137/120902562
https://doi.org/10.1007/978-3-030-00256-5_25
https://doi.org/10.1145/1240233.1240238
https://doi.org/10.1016/j.tcs.2010.03.028
https://doi.org/10.1007/11940128_17
https://doi.org/10.1145/1134707.1134733
https://doi.org/10.1016/0166-218X(93)90090-B
https://doi.org/10.1007/11841036_45
https://doi.org/10.1007/978-3-540-78773-0_51
https://doi.org/10.1007/s10878-009-9287-9

[42] J. Mestre. Weighted popular matchings. ACM Transactions on Algorithms, 10(1): 2:1–2:16
(2014). doi:10.1145/2556951

[43] A. E. Roth. On the Allocation of Residents to Rural Hospitals: A General Property of
Two-Sided Matching Markets. Econometrica, 54(2): 425–427 (1986). doi:10.2307/1913160

[44] A. E. Roth. The Evolution of the Labor Market for Medical Interns and Residents:
A Case Study in Game Theory. Journal of Political Economy, 92(6): 991–1016 (1984).
doi:10.1086/261272

[45] A. E. Roth and A. Postlewaite. Weak Versus Strong Domination in a Market with Indivis-
ible Goods. Journal of Mathematical Economics, 4: 131–137 (1977).

[46] A. E. Roth and M. A. O. Sotomayor. Two-Sided Matching: A Study in Game-Theoretic
Modeling and Analysis (Econometric Society Monographs). Cambridge University Press
(1990). doi:10.1017/CCOL052139015X

[47] S. Ruangwises and T. Itoh. Random Popular Matchings with Incomplete Prefer-
ence Lists. Journal of Graph Algorithms and Applications, 23(5): 815–835 (2019).
doi:10.7155/jgaa.00513

[48] S. Ruangwises and T. Itoh. Stable Noncrossing Matchings. In Proceedings of the 30th
International Workshop on Combinatorial Algorithms (IWOCA), pp. 405–416 (2019).
doi:10.1007/978-3-030-25005-8_33

[49] S. Ruangwises and T. Itoh. Unpopularity Factor in the Marriage and Roommates Prob-
lems. Theory of Computing Systems (2020). doi:10.1007/s00224-020-09978-5

[50] B. Söderberg. General formalism for inhomogeneous random graphs. Physical Review E,
66(6): 066121 (2002). doi:10.1103/PhysRevE.66.066121

[51] J. J. M. Tan. A necessary and sufficient condition for the existence of a complete
stable matching. Journal of Algorithms, 12(1): 154–178 (1991). doi:10.1016/0196-
6774(91)90028-W

[52] P. Widmayer and C. K. Wong. An optimal algorithm for the maximum alignment of termi-
nals. Information Processing Letters, 10: 75–82 (1985). doi:10.1016/0020-0190(85)90067-5

[53] Y. Yuan. Residence exchange wanted: A stable residence exchange problem. European Jour-
nal of Operational Research, 90: 536–546 (1996). doi:10.1016/0377-2217(94)00358-0

71

https://doi.org/10.1145/2556951
https://doi.org/10.2307/1913160
https://doi.org/10.1086/261272
https://doi.org/10.1017/CCOL052139015X
https://doi.org/10.7155/jgaa.00513
https://doi.org/10.1007/978-3-030-25005-8_33
https://doi.org/10.1007/s00224-020-09978-5
https://doi.org/10.1103/PhysRevE.66.066121
https://doi.org/10.1016/0196-6774(91)90028-W
https://doi.org/10.1016/0196-6774(91)90028-W
https://doi.org/10.1016/0020-0190(85)90067-5
https://doi.org/10.1016/0377-2217(94)00358-0

