T2R2東京工業大学リサーチリポジトリ Tokyo Tech Research Repository

論文 / 著書情報 Article / Book Information

論題(和文)	履歴ダンパーを有する制振建物の実効変形比に着目した性能評価 その 1 部材構成モデルとせん断モデルの応答評価
Title(English)	Performance evaluation of passively controlled structure building with hysteretic damper based on effective damper deformation (Part 1:Response evaluation of material model and shear model)
著者(和文)	樹下亮佑, 澤侑弥, 佐藤大樹, 戸張涼太, 吉永光寿, 安永隼平, 金城陽介
Authors(English)	Ryosuke Kinoshita, Yuya Sawa, Daiki Sato, Ryota Tobari, Mitsutoshi Yoshinaga, Jumpei Yasunaga, Yosuke Kaneshiro
出典(和文)	 ┃ 日本建築学会大会学術講演梗概集, , , pp. 925-926
Citation(English)	Summaries of technical papers of annual meeting, , , pp. 925-926
発行日 / Pub. date	2020, 9
	 一般社団法人 日本建築学会

履歴ダンパーを有する制振建物の実効変形比に着目した性能評価

その1 部材構成モデルとせん断モデルの応答評価

T	E会員 (〕樹下亮佑*1	同	澤侑弥*1	同	佐藤大樹*1	同	戸張涼太 ^{*2}
	同	吉永光寿*2	同	安永隼平*3	同	金城陽介*3		

超高層建物	鉄骨構造建物	制振構造
履歴ダンパー	実効変形比	塑性率

1. はじめに

制振構造はダンパーの粘性減衰,塑性履歴エネルギー の消散により,建物の振動エネルギーを軽減させ,建物 の振動および主架構の損傷を低減させるものである¹⁾。石 井・笠井は状態N/R解析より得られる骨組特性値から作成 できる実効変形比を考慮したせん断モデル化手法の提案 を行った²⁾。古谷らは,骨組特性値を用い,30層鉄骨構造 建物において,時刻歴応答解析を行うことなく,有効な 制振部材の配置形式および投入量の判断を行える制振性 能評価指標の提案を行った³⁾。また,戸張らは中層から超 高層のアスペクト比の異なる建物の応答低減効果につい て検討し,文献 3)の制振性能評価を複数の建物にも適用 しその有効性を確認した⁴⁾。

本報では高い制振効果を得るために重要な検討項目で ある実効変形比に着目した性能評価を目的とする。せん 断モデルでの実効変形比の検討の妥当性を確認するため, 本報その1では複数の地震動レベルでの部材構成モデルと せん断モデルの応答比較,実効変形比の精度検証を行う。

2. 解析モデル

2.1 部材構成モデル(Mモデル)概要

検討対象建物は 35 階建ての鉄骨構造建物とする 4。解 析はRESP-Dを用いて行う。Fig.1(a)に検討建物の軸組図, (b)に基準階伏図を示す。Table1 に建物諸元を示す。主架 構のみの1 次固有周期は 3.97s である。本報では主架構は 弾性とし、構造減衰は1 次固有周期に対して、2%となる 初期剛性比例型とする。また、X 方向のみ検討を行う。

2.2 ダンパーモデル化概要

高さ方向のダンパー配置は Fig.1 に示すように連層配置 とする。ダンパーは履歴型ダンパーとして座屈拘束ブレ ースを用い,塑性化部と弾性部で構成される。部材長さ L_d に対して,塑性化部 $L_d/3$,塑性化部断面積 A_d に対して 弾性部断面積 $2A_d$ とする。塑性化部には LY225 材を用い完 全弾塑性とする。第1層のダンパー降伏層せん断力 dQ_{y1} を 基準とし,地震層せん断力係数の高さ方向分布 (A_i 分布) に基づく設計用層せん断力分布をもとに4段階とする⁴)。 なお、ダンパー量は dQ_{y1} = 0.005~0.03 の計 6 種とする。

Performance evaluation of passively controlled structure building with hysteretic damper based on effective damper deformation (Part 1:Response evaluation of material model and shear model)

2.3 S^(NR)モデル概要

主架構バネ(擬似フレーム剛性 K_{fs})は弾性としてモデ ル化する。以下に、S^(NR)モデルのダンパーモデル化概要を 示す。状態 N/R 解析より、状態 N の実効変形比 α_N 、擬似 ブレース剛性 K_{bs} および擬似ダンパー剛性 K_{ds} の骨組特性 値²⁾を得る。状態 N 解析より、*i* 層 *j* 番目の付加系におけ る相対変形水平成分 $\delta_{dN,(i,j)}$ と*i* 層の層間変形 $\delta_{N,i}$ を用いて $\alpha_{N,(i,j)}$ が得られる。

$$\alpha_{N,(i,j)} = \delta_{dN,(i,j)} / \delta_{N,i} \tag{1}$$

擬似ブレース剛性 $K_{bs,i}$ は状態 N/R 解析により算出できる。 状態 R の $i \exists j$ 番目の付加系の負担軸力の水平成分 $F_{dR,(i,j)}$ と $i \exists$ の層間変形 $\delta_{R,i}$ で剛性 $K_{dR,(i,j)}$ (式(2))を各付加系設置 箇所について計算し、 $i \exists$ のダンパー総数を N_{dj} とすると、 擬似ブレース剛性 $K_{bs,i}$ を得られる。

$$K_{dR,(i,j)} = F_{dR,(i,j)} / \delta_{R,i} , \quad K_{bs,i} = \sum_{j=1}^{N_{d,j}} \alpha_{N,(i,j)} \times K_{dR,(i,j)}$$
(2,3)

擬似ダンパー剛性 *K*_{ds,i} は M モデルのダンパー剛性水平成 分 *K*_{d,(i,j})を用いて算出できる(式(4))。

$$K_{ds,i} = \sum_{j=1}^{Ndj} (\alpha_{N,i})^2 \times K_{d,(i,j)}$$
(4)

Fig.3(a)~(c)にそれぞれ an, Kbs, Kds の高さ方向分布を示す。

Ryousuke KINOSHITA, Yuya SAWA, Daiki SATO Ryota TOBARI, Mitsutoshi YOSHINAGA Jumpei YASUNAGA, Yosuke KANESHIRO

3. 入力地震動概要

ART HACHINOHE (位相特性: HACHINOHE1968EW, 以下, ART HACHI) を使用する。Fig.4(a)に速度応答スペ クトル(*h* = 2, 5, 10%), (b)にエネルギースペクトルを示す。 ART HACHI の 0.2~2.0 倍波の計 10 波を入力地震動として 時刻歴応答解析を行う。

4. 時刻歴応答解析結果

4.1 応答比較

Fig.5 に M モデルと S^(NR)モデルの応答比較を示す。層間 変形角と層せん断力は概ね一致することがわかる。しか し、地震動レベルとダンパー量の増加に伴い S^(NR)モデル は M モデルよりも大きく評価される。絶対加速度におい

*1 東京工業大学

- *² JFE シビル株式会社
- *³ JFE スチール株式会社

ては0.4 倍波までは一致するがそれ以降はMモデルよりも 大きな応答を示した。ダンパーのエネルギー吸収率も0.4 倍波までは一致するがそれ以降は M モデルより小さく評 価されることが確認できる。

4.2 実効変形比の比較

実効変形比(α_e)の定義を以下に示す。Mモデルの α_e は *i* 層のダンパーの最大変形の水平成分 $\delta_{i,max,i}$, *i* 層の最大層 間変形 $\delta_{max,i}$ とすると式(5a)より得られる。また, S^(NR)モデ ルの α_e は*i* 層の擬似ダンパーの最大変形 $\delta_{ds,max,i}$, 擬似フレ ームの最大変形 $\delta_{fs,max,i}$ とし,式(1)の $\alpha_{N,i}$ を用いて式(5b)より 得られる。

$$\alpha_{e,i} = \delta_{d,\max,i} / \delta_{\max,i} \tag{5a}$$

$$\alpha_{e,i} = \alpha_{N,i} \times \left(\delta_{ds,\max,i} / \delta_{fs,\max,i} \right)$$
(5b)

Fig.6 に各地震波における M, S^(NR)モデルの α_e の関係を示 す。概ね全てのダンパー量,地震動レベルで α_e の差は± 10%程度である。 α_e が1に近いほど精度が良く,0に近づ くにつれ M モデルよりも小さくなる傾向を示した。

5. まとめ

M および S^(NR)モデルの応答比較を行った。最大層間変 形角,層せん断力は概ね一致するが,地震動レベル,ダ ンパー投入量の上昇に伴い,誤差を示した。また,実効 変形比の比較において,±10%程度の誤差であり,せん 断モデルを用いた実効変形比の検討の妥当性を確認した。 本報その2では,塑性率に着目した検討を行う。 謝辞および参考文献はその2にまとめて記す。

*1 Tokyo Institute of Technology

*2 JFE Civil Engineering & Construction Corporation

*3 JFE Steel Corporation