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Abstract

We propose an action detection system for detecting human and vehicle actions in long
untrimmed videos, submitted for the TRECVID Activities in Extended Video (ActEV) 2020
challenge [1]. It utilizes an object detection and tracking stage to divide the initial video into
object tracks for all possible actors, followed by action localization to temporally localize and
classify all actions within these tracks. Finally, we conduct several experiments into spatial and
temporal relation modeling, both showing limited performance improvement, but demonstrating

the possibility of similar approaches for future video action detection research.
Besides the VIRAT dataset utilized for the challenge, we utilize networks pretrained on the
ImageNet and ActivityNet datasets. Summaries of the different submitted runs are as follows:

e 22342 - TTA-baseline: Standard two-stage system without any relation modeling

e 22442 - TTA-SRM: Same as baseline, but utilizing spatial relation modeling post-processing

e 22658 - TTA-SF2: System using multiple sampling rates for temporal action localization
e 22657 - TTA-SF: Same as SF2, but utilizing spatial relation modeling

From the run results, we can see that utilizing the multi-sampling rate action localization
slightly improves performance, while the relation modeling decreases performance, contrary to
our validation experiments. This seems to indicate that our relation modeling is still premature.

1 Introduction

Over the past few years, video understanding
has been receiving much attention within the re-
search community, as it may represent a culmi-
nation of previous breakthroughs in related areas
such as image understanding and object tracking.
But it is still far behind these in performance
and reliability, partially due to the many diffi-

culties inherently present in video analysis, such
as the larger degree of object variability and the
larger computing power required to process en-
tire videos in a unified manner. As such, in spite
of the advent of ever bigger and denser video
datasets annotated for such tasks, we currently
lack the ability to process these videos taking
into account both spatial and temporal features
simultaneously.
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Figure 1: System overview

In view of this, we choose a method which at-
tempts to isolate the spatial and temporal char-
acteristics of a video, first spatially identifying
actors which are expected to perform identifiable
actions, and then temporally localizing actions
for each actor, reassembling from these the full
spatio-temporal actions. Finally, we utilize ac-
tion relation modeling, in which we analyze both
the spatial distance relation between actors and
the temporal relation between actions, in order
to refine detections over long videos.

2 System

Our system is based on a framework with two
stages, a spatial stage and a temporal stage, as
shown in Figure 1. First, an object detection net-
work is run for each frame of the input video,
localizing all possible objects present in the
video. These detections are then concatenated
into object tracks utilizing a heuristic-based ob-
ject tracking system. These object tracks are
then used as input for an action localization
network which temporally localizes actions per-
formed by each object. These detected actions
are fused with the previously found spatial infor-
mation to identify the full spatial-temporal ac-
tions.

Finally, in order to rescore and remove erro-
neous proposals, we analyze modeling relations
between action proposals, both from the spatial
and temporal aspects. Both take the form of
post-processing, taking as input the list of pre-
viously detected action results and refining them
by modifying action classes, tweaking scores and

removing proposals where necessary.

2.1 Object Detection and Tracking

Given a video V composed of T' frames, described
as V = {I; € RWXHX3T  with I}, being the ky,
frame of the video with width W height H, we
run an object detection network, e.g. Faster R-
CNN [7], for every kyy, frame, spatially localizing
and classifying all objects on each frame, with
special attention to those that are likely to per-
form the actions we wish to detect, which we call
actors. In the case of the VIRAT dataset [6] uti-
lized in this challenge, these actors are composed
exclusively of persons and vehicles, so we focus
on these two object classes for object detection.

This frame-wise actor detection information
is then concatenated into object tracks, utilizing
a Kalman Filter [8] based object tracking system.
This system receives as inputs the spatial local-
ization and class of every actor detected in the
previous stage, and outputs for every actor a an
object track A, = {i; € Rw”"”}iito. Here, iy, is
the kg, frame of the video trimmed and centered
around actor a, of width w and height h, t; and
ty are the first and last frames where actor A is
present in the video respectively.

2.2 Temporal Action Localization

With object tracks for each actor in a video, we
then input them to a temporal action localiza-
tion network, e.g., the R-C3D network [9], which
aims to temporally localize and classify all ac-
tions present in a given track. The input for this
stage is the previously described object track A,,



Table 1: Frame-wise object detection results on the VIRAT validation subset

parking push/pull
person vehicle bike meter door tree dumpster prop object mAP
31.7 69.6 2.1 73.2 57.0 94.0 89.4 5.0 17.8 48.9

with the output being a list of temporal action
proposals, each proposal p consisting of a de-
tected class ¢, starting and ending frame indexes
t; and t;, and a confidence score s. This is done
separately for every object track of a given input
video.

Combining this information with the previ-
ously described spatial information for each re-
spective object track, we produce full spatio-
temporal action detection results. We then re-
alize post-processing in the form of two different
types of relation modeling, temporal and spatial,
on top of these proposals. This is done with the
primary intent of correcting wrongly detected ac-
tions, merging duplicates present in different ob-
ject tracks and removing those that are detected
in impossible conditions, such as actions involv-
ing interactions that are detected where there are
no other objects nearby.

2.3 Temporal Relation Modeling

For temporal relations, two approaches were
tested, one heuristic and one neural network-
based, both analyzing the relations between pro-
posals independently within each object track.
These are based on the idea that many actions
are often performed in succession to each other,
such as a person loading a vehicle expected to
have carried an object and opened the vehi-
cle trunk before the loading action and closed
the vehicle afterwards, with certain expected se-
quences having a higher probability of appear-
ing and therefore we can complete these patterns
where they’re expected or remove them where
they’re impossible to occur. As such, for both
approaches, the input is the list of proposals de-
scribed as the output of the previous section, and
the output is the same list with modified classes
and scores as necessary.

In the case of the heuristic approach, these se-
quence probabilities are directly estimated from
the training dataset, in the form of the percent-
age of times an action of class X is preceded
or succeeded by action of a different class Y
within a certain short time span, indicated as
pp(X,Y) for the probability of ¥ occurring be-
fore X and p,(X,Y) for the probability of ¥
ocurring after X. Note that in this definition
in general p,(X,Y) # pp(Y, X), as they are cal-
culated based on the occurrence rates of X and
Y respectively, such that

Pa(X,Y) = Xy 4 nNX—y
nx ny

=Y, X) (1)

with nx_,y being the number of times the pat-
tern of “X followed by Y” appears, and nx and
ny being the number of occurrences of actions of
classes X and Y respectively. With this informa-
tion, we create a set of temporal relations with
probabilities above an arbitrarily high thresh-
old 7,, and we rescore the confidence score for
those proposals without relations by multiplying
a(0<a<l).

On the other hand, the neural network-based
temporal relation model utilizes a graph neural
network in order to model temporally close pre-
dictions. With its input being the same list of
temporal action proposals output by the tempo-
ral action localization stage (Section 2.2), a re-
lation graph is built for each object track, with
nodes representing each prediction, and edges set
between predictions that are temporally close.
Using features extracted from each proposal by
a feature extractor, convolution is performed on
top of this graph in order to leverage information
from surrounding actions to correct mistakes in
both the classification and temporal localization
of each prediction.



Table 2: Temporal action localization results on the VIRAT validation subset
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2.4 Spatial Relation Modeling

For spatial relations, we model the spatial dis-
tance between action proposals in order to cor-
rect mistakes in the proposal results for actions
that involve interactions between actors, such as
two people talking to each other, or a person
loading an object into a car, where the system
is expected to individually identify the action for
each actor involved in it.

Specifically, given a proposal p starting in
frame tp and ending in frame ¢y, we calculate
the spatial distance between the center of its
detected bounding box and the equivalent cen-
ter for all other intersecting proposals in every
frame between to and ty, taking the proposal
with the lowest average distance over this time
period as its adjacent pair. After this step of
identifying paired proposals, we merge duplicated
proposals identified for different actors and syn-
chronize their temporal localization by averag-
ing their start and end times, as well as remove
actions that are expected to involve interactions
but have no valid pairings.

3 Experiments

Experiments were conducted for each stage sep-
arately, testing the performance for object detec-
tion and temporal action localization, as well as
for the entire video action detection task, train-
ing with the VIRAT dataset’s training subset and

testing on its validation subset.

For object detection we utilize a Faster-
RCNN model [7] with a ResNet-50 [4] backbone,
pretrained on ImageNet [2] and refined on VI-
RAT’s own training subset for frame-wise ob-
ject detection. Object detection is realized every
5 video frames for the 13 most common object
classes in the VIRAT dataset, although only per-
son and vehicle detection results are utilized for
the rest of the framework. The results of these
tests can be seen on Table 1.

For temporal action localization we utilize the
R-C3D network [9], pretrained on ActivityNet
[5] and trained on the canon tracks for each ac-
tor provided by VIRAT’s training subset, aim-
ing to temporally localize and classify all actions
in which that actor participates. We experiment
with two settings for video sampling, one base-
line which samples every 5 frames, and another
partially inspired by SlowFast networks [3], with
a “fast” track sampled once every 5 frames and a
“slow” track sampled every other frame, focusing
on longer and shorter actions respectively. The
results of these tests can be seen on Table 2.

Finally, experiments were conducted on
heuristic approaches to relation modeling post-
processing, refining the results given by the pre-
vious models. For spatial relation modeling, we
calculate the distance between pairs of actors in
order to find actors that are performing the same
action, taking into account actions that involve
interaction between different actors according to



their definitions. Using this information we then
enforce proposal interactions, synchronizing ac-
tions between actor pairs and removing proposals
for which no valid pairing is possible.

As for temporal relation modeling, we use
a probability-based heuristic approach, wherein
the probability of two action classes appearing in
quick succession is calculated from the training
subset for every class pair, and this information is
used to correct mistakes in proposals, rewarding
and penalizing them according to their surround-
ing actions and their respective probabilities.

The results of the submitted runs on the VI-
RAT testing set can be seen on Table 4. From
it we can see that, although the multiple sam-
pling rate action localization does indeed result
in a performance improvement, that isn’t the case
with the usage of relation modeling, which con-
sistently results in worse performances, contrary
to the results on the validation set, which re-
sulted on slight increases in action localization
performance. This could indicate the failure of
the spatial relation model implemented in cor-
rectly identifying proposal pairs with real object
detection results.

4 Conclusion

We presented our framework for video action de-
tection in the context of the ActEv challenge, and
our related experiments in action relation mod-
eling in hopes of tackling the challenges inher-
ent in this task. We showed the results of our
experiments in both the open VIRAT validation
subset for individual framework stages, as well
as the closed VIRAT testing subset for the full
framework, where although small performance
improvements were possible with adjustments to
the action localization network, the relation mod-
eling experiments did not equally translate to im-
provements to the full spatio-temporal action de-
tection task. While the results of our experiments
in relation modeling were not as successful as ex-
pected, we still have hope for relation modeling
for action detection tasks, and hope to continue
our research into such methods.

Table 3: Full spatio-temporal activity detection
results on the VIRAT testing subset

Partial AUDC Mean p-miss
TTA-SEF2 0.79753 0.75502
TTA-baseline 0.81868 0.78228
TTA-SF 0.83456 0.80451
TTA-SRM 0.85508 0.83174
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