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Abstract: Uncertainties inherent in gate-opening speeds are rarely studied in dam-break flow ex-
periments due to the laborious experimental procedures required. For the stochastic analysis of
these mechanisms, this study involved 290 flow tests performed in a dam-break flume via varying
gate speeds between 0.20 and 2.50 m/s; four pressure sensors embedded in the flume bed recorded
high-frequency bottom pressures. The obtained data were processed to determine the statistical
relationships between gate speed and maximum pressure. The correlations between them were
found to be particularly significant at the sensors nearest to the gate (Ch1) and farthest from the gate
(Ch4), with a Pearson’s coefficient r of 0.671 and −0.524, respectively. The interquartile range (IQR)
suggests that the statistical variability of maximum pressure is the largest at Ch1 and smallest at Ch4.
When the gate is opened faster, a higher pressure with greater uncertainty occurs near the gate. How-
ever, both the pressure magnitude and the uncertainty decrease as the dam-break flow propagates
downstream. The maximum pressure appears within long-period surge-pressure phases; however,
instances considered as statistical outliers appear within short and impulsive pressure phases. A few
unique phenomena, which could cause significant bottom pressure variability, were also identified
through visual analyses using high-speed camera images. For example, an explosive water jet in-
creases the vertical acceleration immediately after the gate is lifted, thereby retarding dam-break flow
propagation. Owing to the existence of sidewalls, two edge waves were generated, which behaved
similarly to ship wakes, causing a strong horizontal mixture of the water flow.

Keywords: dam-break experiment; stochastic uncertainty; gate speed; bottom pressure; waveform

1. Introduction

A dam-break flow is a type of surge that can be generated by the sudden release of
water over a bed. In several branches of water engineering, a dam-break flow experiment
is commonly used as a benchmark to validate the performance of a numerical model.
For example, in the field of coastal engineering, this type of experiment is acknowledged as
a reliable technique for evaluating the effect of a tsunami-like solitary wave on structures.
The widespread use of this test is probably due in part to the fact that it can be easily
equipped by attaching a movable gate to the end of an existing wave flume. A typical
application of the dam-break flow test in coastal engineering is the examination of tsunami
forces acting on a fixed near-shore or inland structure, such as breakwaters, coastal dikes,
oil storage tanks, self-elevating seawalls, and general buildings. Relatively light-weight
objects or objects subjected to a buoyancy force, such as armor brock, shipping containers,
and cars, are often tested to investigate scatter or displacement caused by a tsunami
impact [1–7]. In addition, scouring due to strong flows can be investigated in a dam-break
flume [8,9].

The dynamics of the dam-break test, specifically near the gate, are particularly com-
plex and influenced by various physical phenomena. For example, the collapse of the
water column immediately after the release exhibits highly turbulent motion, which gen-
erates a mushroom-like jet [10] that may not be represented by the well-known Ritter’s
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solution [11]. Two-dimensional (2-D) dam-break flows are often assumed in numerical
models based on the Saint–Venant equations. However, they are often not valid for the ini-
tiation of the dam break because the bore motion is fully three-dimensional (3-D) with high
turbulence. Strong 3-D effects appear in regions of strong curvature, sudden constrictions,
and obstacles in the channel [12–14]. The initial water height of the reservoir is primarily
responsible for the scattering of experimental results [15]. The wave front velocity increases
with decreasing water depth ratio before and after the gate [16]. With a wet-bed down-
stream condition, water leaps are formed downstream of the gate [17]. The dam-break
wave behaves differently over rigid and erodible beds as the flow regime, and either inertial
or viscous flow predominate, thereby significantly strongly influencing the dam-break
inundation depth [18,19].

Numerous types of dam-break apparatus have been used experimentally. Among
these, the vertical gate type mechanism is the most widely used, wherein the gate is lifted
mechanically or manually with a weight and rope connection using a pulley [2,6,10,20,21].
Meanwhile, the swing gate system is gaining popularity owing to its economic advan-
tage, particularly in the case of large-sized flumes [4,22]. The upper reservoir type is
a mechanism that releases water from the top of the reservoir into a lower tank, and it
has the advantage of generating waves with different hydrodynamic characteristics [5].
Similarly, a pneumatic-type dam-break generator is an advanced mechanism in which
water is released instantaneously from a chamber at one end of the flume [3].

According to Lauber and Hager [12], gate lifting should be limited to a short critical
time tc, which is calculated as

tc = 1.25
√

h0/g, (1)

where h0 is the initial height of the water level in the dam-break tank, and g is the gravita-
tional acceleration. A gate opening time shorter than tc would not be able to significantly
influence the generation of a dam-break flow. von Häfen et al. [23] confirmed that the
Lauber-Hager criterion provides a conservative estimation of the required gate opening
time. Although experiments in previous studies describe a gate lifting speed, only a few
explain the details of the dam-break mechanisms. For example, in a study by Cagatay
and Kocaman [24], a gate made of Plexiglas holding 0.25 m (height) of water at rest was
lifted using a 15 kg weight; for this condition, a tc of 0.2 s was calculated. The removal
time in their experiment was estimated to be between 0.06 and 0.08 s, thus confirming
that their dam-break test satisfied the criteria. Hsu et al. [16] used an automatic gate
system with an air compressor, which enabled them to uplift the gate at a constant speed
of approximately 1.5 m/s.

Ritter [11] derived the theory of the dam-break problem based on simplified Saint–
Venant equations, excluding the effects of frictional and turbulent resistance. According to
this theory, the speed of the dam-break-induced wave (C) is formulated as a function of
gravitational acceleration (g) and water depth in the tank (h0) as

C = 2
√

gh0. (2)

However, this classical solution was not supported by experimental studies [25].
Schoklitsch [26] highlighted that dam-break experiments on a horizontal bed indicated that
actual velocities for the wave front were as low as 40% of the theoretical values obtained
using Ritter’s solution. To include the effect of resistance, Dressler [27] incorporated the
Chezy resistance term in the momentum equation and found that resistance elevates the
water surface and decreases the velocity. This effect is more predominant, particularly in
the wave front. A boundary-layer phenomenon in the wave front plays a similar role to
that in the steady-state flow past a body [28]. Furthermore, velocity profiles are affected by
the convection and deceleration of the upper dam-break flow [29].

Although all parameters are stochastic in nature to a certain extent, previous studies
often treated a dam-break flow test in a deterministic manner. In this study, the stochastic
characteristics of a dam-break flow are investigated by repeating the same experimental
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test at different gate speeds. Multiple uncertainties are induced because of the various
specifications of the dam-break flow experiment including the size, shape, and material of
flume, dam-break mechanisms, and total water volume. Various errors are also caused by
characteristics in measuring sensors. For example, in the case of pressure measurements,
the positioning of the pressure sensor, measurement frequency, vibration, and temperature
will have an effect on the final result. However, it is difficult to accurately quantify the
magnitude of each error and the contribution of each factor. As it is almost impossible to
derive a generalized dam-break formula while incorporating several parameters, this study
focuses only on the variability in hydrodynamic pressure caused by changes in the gate
opening speed.

The main objective of this study is to investigate the influence of gate opening speed
on hydrodynamics and the time-series distribution of pressure. Additionally, we want to
assess whether changes in gate speed cause any distinctive phenomenon or reveal any
further effect. Finally, outliers that typically occurred in the measurements are addressed.

2. Materials and Methods

The experiment was conducted using a small acrylic discharge flume (length: 3 m;
width: 0.38 m) with a 15-mm-thick vertical movable gate. The tank was mounted on three
base flames whose heights could be fine-tuned to ensure the levelness of the tank. A water
column (0.5 m × 0.5 m × 0.38 m) is initially maintained at rest, as shown in Figure 1.
A small gap between the gate and sidewalls causes water to leak out. To reduce this leakage
as much as possible, two guides are used to press the gate on each side. Thus, the present
flume was equipped with a gate guide, which protruded 2 cm from the face of the sidewalls.
Because the experiment started immediately after the water level in the reservoir reached
a predetermined level, the effect of the leak is considered negligible. The gate was quickly
lifted in the vertical direction using a rope connected to a pulley installed on the ceiling.
The pulley is placed directly above the gate, and the gate is pressed between two guides so
that it can be pulled vertically without wobble. The water was released and surged towards
the 2.5-m-long horizontal section of the flume; thereafter, it was released into a reservoir
placed beneath the end of the flume. Dam-break experiments can be performed in two
different downstream floor conditions, i.e., dry-bed and wet-bed conditions. This study
investigates the dam-break flow under dry-bed conditions because the event of a tsunami
propagating on land is a typical application of particular interest in the coastal engineering
field. Therefore, after each trial, the flume was carefully wiped and mopped to dry the bed.
The dam-break flow test was repeated 290 times. The gate opening speed was intentionally
changed at each trial, while the initial height of the water in the tank was maintained at
50 cm.

The precise motion of the gate was captured at a frame rate of 2400 fps using a high-
speed camera (Phantom Miro LC311, Nobby Tech Ltd., Tokyo, Japan). Among the cap-
tured photos, two images—when the gate detached from the floor and from the water
surface—were employed to calculate the average gate speed. A frame rate of 2400 fps is
sufficiently high to detect the timing of detachment. There may be a small error due to
human visual reading, but it should be within 2% (see Appendix A). The experiment was
conducted 290 times with gate speeds varying in the range of 0.20–2.50 m/s, as shown in
Figure 2. Four pressure sensors, referred to as Ch1–Ch4 (PS-1KD, Kyowa Co Ltd., rated
capacity = 50 kPa, natural frequency = 10 kHz), were installed at 0.7, 1.3, 1.9, and 2.2 m,
respectively, from the gate position on the centerline of the tank. The pressure sensors were
embedded at the bottom of the acrylic board such that their faces (ϕ = 6 mm) were leveled
with the flume bed without bumps. The pressure sensors are threaded using an R1/8
size screw, and the acrylic plate at the bottom of the tank is threaded with the same size
screw, which keeps the sensors in a horizontal position. All sensors were synchronized
with each other using a strain gauge converter (PCD-430A, Kyowa Co Ltd., Tokyo, Japan).
The recording frequency was set at 500 Hz to capture impulsive components that comprised
a short pressure signal. There are other devices available to measure the water level in the
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water flume, such as capacitance wave height gauges. However, the water elevation is
measured by a capacitance line, making it impossible to measure a few centimeters at the
tip of the line. Nevertheless, a pressure sensor can measure the water level change in the
order of a few millimeters if it is properly installed at the bottom of the tank. Therefore,
the pressure sensors can measure the characteristics of the dam-break wave, such as wave
tip arrival time and water level, more accurately.
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Figure 2. Test count histogram in terms of gate speed over a range of 0.20–2.50 m/s.

Two recent studies [5,6] measured dam-break pressures exerted on a vertical struc-
ture against tsunami impacts at a sampling frequency of 1 kHz. Although the sampling
frequency in this study (i.e., 500 Hz) is relatively low, the peak signals of bottom pressures
were sufficiently recorded, possibly because the water jet is not obstructed by any objects
but merely flows on a smooth bed. The accuracy of the recorded pressure is also subject to
other influencing factors, such as temperature, sensor type, and installation mechanism.
The uncertainties associated with measuring sensors, which are essentially unavoidable,
further justify the necessity for analyzing the measured data statistically.

It was assumed that the maximum pressure and the pressure rise rate are two funda-
mental parameters used to derive statistical uncertainties involved in gate speed. In this
study, pressure rise rate is defined as the maximum pressure divided by the prescribed rise
time (unit: kPa/s). Rise time tr is defined as the duration between the time at which the
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pressure reaches the maximum value and 20% of the maximum value, as shown in Figure 3.
A code was developed to automatically calculate tr. The 20% criterion was selected because
the algorithm inadvertently recognized insignificant fluctuations as the pressure started to
rise at smaller percentages (e.g., 10%). The sensors recorded impulsive and surge pressure
components; the pressure rise rate in the impulsive component (Figure 3a was considerably
lower than that in the surge component (Figure 3b), resulting in a broad range of rising
rates (between 0.3–100 kPa/s).
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3. Results
3.1. Statistical Analysis

The data were classified into five sub-groups to examine whether the gate speed
influenced the maximum pressure. Each group contained at least 30 samples within a bin
range of 0.45 m/s. The box plot shown in Figure 4 indicates the range of the first to third
quartile (Q1–Q3), referred to as the interquartile range (IQR), which represents the range in
which half of the data are plotted.

The IQR was found to be the smallest in Ch4 (35–63 Pa), whereas it was the largest in
Ch1 (127–433 Pa). In Ch1 (nearest to the gate), the IQR tended to increase as the gate speed
increased, which implies that lifting the gate at a higher speed will induce more pressure
variability. Furthermore, the maximum pressure becomes larger with an increase in gate
speed. This seems to be apparent as a considerably higher amount of water instantaneously
flashed when the gate was lifted faster. However, this positive trend is not observed in
the data collected at Ch2, Ch3, and Ch4, which implies that the influence of gate speed
on maximum pressure reduces as water propagates downstream. The Pearson’s r values
for the overall correlation between gate speed and maximum pressure was calculated to
be 0.671, 0.03, 0.005, and −0.524 at Ch1–Ch4, respectively (see Appendix B). The trends
at Ch1 and Ch4 were particularly significant. The statistical significance at the 95% level
was examined using an ANOVA test to evaluate whether the slope of the maximum
pressure was different from zero. Interestingly, Ch1 and Ch4 demonstrated a similar r
value, but along opposite gradients. It seems that a fast gate operation generates a more
dynamical water jet, thereby promoting the dissipation of waves and decreasing water
pressure in the downstream end.

The black dot in Figure 4 denotes a statistical outlier positioned above Q3 by an amount
greater than 1.5 times the IQR. All figures contain a certain number of outliers. For example,
6 out of 75 samples within the group of 1.11–1.56 m/s were determined as outliers for Ch4.
In addition, the data at Ch4 were plotted within a small range. Among the four channels,
the largest pressure was more frequently recorded at Ch1, accounting for 62% of all samples
(181 out of 290 samples), as shown in Table 1. In approximately half of the cases (149 out of
290 samples), the pressure tended to decrease as water propagated downstream (e.g., Ch1
> Ch2 > Ch3 > Ch4 or Ch1 > Ch2 > Ch4 > Ch3). However, 25 samples exhibited the largest
pressure at Ch4. These exceptional data cases appear to be caused by the said outliers.
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0.7, 1.3, 1.9, and 2.2 m from the gate, respectively.

In Figure 5, the observed wave speeds are plotted along with a theoretical velocity
calculated using Ritter’s solution (Equation (2)). The wave speed was calculated as the
distance between the two pressure sensors divided by the duration of the propagation.
A threshold corresponding to 20% of the maximum pressure introduced earlier was used to
define the wave arrival time. Because the wave speed is calculated by a systematic method
based on data, it may be slightly different from the actual velocity of the flow tip. However,
this error is estimated as less than 10% compared to the analysis performed using the high-
speed camera images (see Appendix C). The wave speed among the different experimental
trials was vastly scattered in the range of 1.5–4.0 m/s, which was 9–64% smaller than that
calculated using Ritter’s solution (4.4 m/s), thereby implying the influence of resistance
and turbulence. It is intuitively understandable that the faster the gate speed, the faster
is the wave speed. This characteristic was also confirmed by [22,30]. These two studies
demonstrated that the speed of the dam-break flow would become faster with an increase
in the gate velocity. Thus, the wave arrival time was linearly influenced by the gate opening
time. Additionally, a numerical analysis reproducing a vertical lifting gate shows that the
wave tip is delayed compared to an instantaneous opening of the dam gate [31]. Moreover,
the present study finds that waves get slightly more accelerated as they approach the
end of the flume. This acceleration may be due to the flow smoothing process, in which
it is transformed from an explosive jet to a uniform smoothed flow in a short distance,
as demonstrated in the next section. Furthermore, this acceleration may have been more
pronounced because the present experimental flume is short and is made of an acrylic board
with low roughness. In a longer flume, water flow is expected to decelerate over distance.
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Table 1. Number of cases for each pressure sensor that recorded the largest pressure.

Largest Pressure Occurred at Ch1 Largest Pressure Occurred at Ch3

Order Count Total Order Count Total

Ch1 > Ch2 > Ch3 > Ch4 74

181

Ch3 > Ch1 > Ch2 > Ch4 3

10

Ch1 > Ch2 > Ch4 > Ch3 75 Ch3 > Ch1 > Ch4 > Ch2 1

Ch1 > Ch3 > Ch2 > Ch4 20 Ch3 > Ch2 > Ch1 > Ch4 1

Ch1 > Ch3 > Ch4 > Ch2 1 Ch3 > Ch2 > Ch4 > Ch1 1

Ch1 > Ch4 > Ch2 > Ch3 10 Ch3 > Ch4 > Ch1 > Ch2 0

Ch1 > Ch4 > Ch3 > Ch2 1 Ch3 > Ch4 > Ch2 > Ch1 4

Largest Pressure Occurred at Ch2 Largest Pressure Occurred at Ch4

Order Count Total Order Count Total

Ch2 > Ch1 >Ch3 > Ch4 11

74

Ch4 > Ch1 > Ch2> Ch3 3

25

Ch2 > Ch1 > Ch4 > Ch3 40 Ch4 > Ch1 > Ch3> Ch2 1

Ch2 > Ch3 > Ch1 > Ch4 2 Ch4 > Ch2 > Ch1> Ch3 5

Ch2 > Ch3 > Ch4 > Ch1 1 Ch4 > Ch2 > Ch3> Ch1 9

Ch2 > Ch4 > Ch1 > Ch3 13 Ch4 > Ch3 > Ch1> Ch2 1

Ch2 > Ch4 > Ch3 > Ch1 7 Ch4 > Ch3 > Ch2> Ch1 6J. Mar. Sci. Eng. 2021, 9, x FOR PEER REVIEW 8 of 18 
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3.2. High-Speed Image Analysis

Figure 6 illustrates the water jet after 0.3 s of opening the gate for three different gate
speeds, namely, 0.70, 1.30, and 2.00 m/s. The water inside the tank was still partially
supported by the gate in the case with the lower gate speed, whereas the gate was totally
detached from the water surface in the other two faster cases. All high-speed images show
that a waterfall formed on the smooth free surface beneath the gate, which is connected
by an instantaneous hydraulic jump. It appears that the front of the three waves reached
approximately the same distance, irrespective of how fast the gate was lifted; this implies
that the initial water height predominantly determines an incipient speed of the water jet.
However, the thickness of the jet appears to be different at different gate speeds. The faster
the gate opens, the thicker the wave front is. This is consistent with the box plots for Ch1
in Figure 4, wherein the maximum pressure tends to significantly increase with gate speed.
Figure 7 shows the depth profile of the three dam-break flows at each sensor location (i.e.,
Ch1–Ch4), drawn manually based on the high-speed camera images. The waveforms at
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the point where the tip reaches are compared. The arrival time of the wave depends on
the gate speed. Hydraulic jumps occurred immediately after the gate. The water profile
was significantly different at Ch1, and it was highly dependent on gate speed. However,
the wave front tended to quickly dissipate, flatten, and smoothen as it surged on the
flatbed. All profiles became similar when they arrived at Ch2. When the wave reached
Ch4, all profiles changed to an almost similar shape, exhibiting smooth elongated ellipses.
The waveforms when reaching Ch2–Ch4 do not differ with gate speed, which is similar to
the finding in a study conducted by [22]. Their experiments show that the gate opening
time and speed do not have a significant effect on the waveform profile.
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3.3. Pressure Rise Analysis

As demonstrated in Figure 4, a few data that included extraordinarily large pressures
were considered statistical outliers. Figure 8a,b help to explain if these outliers were caused
by random errors and if they should be excluded. Six outliers at Ch4 were compared
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with six normal samples (they were ranked within the IQR). All outliers demonstrated
high-intensity short-duration pressures, known as impulsive pressures [32], which are
significantly larger than the following surge pressures. An impulsive pressure pulse occurs
in a very short period, on the order of 0.01 s. In contrast, the six normal samples did not
contain such impulsive spikes, despite demonstrating a short and steep pressure rise before
the arrival of the main surge. In terms of long duration pressure—the pressures reached up
to 800 Pa within a period of approximately 1 s—the surge components exhibit a similar
profile for all cases. Hence, statistical outliers may be explained as impulsive pressures
from a physical phenomenon perspective. In the experiment, the flow was released as
an explosive jet, and it fluctuated significantly as it propagated downstream. Furthermore,
the waterfront in the experiment demonstrated a concave upward shape, which implies
retardation caused by bottom resistance from the dry bed and momentum dispersion due
to strong turbulence.
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when each wave showed 20% of the maximum pressure at Ch1 to compare all profiles on the same
time scale.

3.4. Horizontal Turbulence Analysis

In theory, a dam-break flow is considered a pure 2-D phenomenon. In our experiment,
however, the dam-break flow was regulated by sidewalls, which act similarly to the flume
bed. Frictional stresses from the sidewalls inevitably generate horizontal turbulence,
eventually affecting the main free stream. To observe the horizontal behavior of a dam-
break flow, snapshots of the cross-sectional view for three different experimental trials
are shown in Figure 9. The high-speed images were captured from the downstream end
when a wave front reached Ch1 and Ch4. These images demonstrated that the water jet
entrapped air. In the experimental images at Ch4, notch-shaped flows were observed in
the middle of the flume, which indicated separation of the edge waves from the sidewalls.
Two edge waves collided and developed strong horizontal turbulence, forming a cross
wave. The water on the sidewalls was slightly raised, and it propagated as edge waves.
As the edge waves propagated further downstream, they deflected into the center of the
flume. Interestingly, the propagation of the edge waves resembled the surface waves
caused by a ship, referred to as the ship wake, which is considered to be the cumulative
result of impulses delivered at each point along its course [33].



J. Mar. Sci. Eng. 2021, 9, 67 10 of 17J. Mar. Sci. Eng. 2021, 9, x FOR PEER REVIEW 11 of 18 
 

 

 
Figure 9. Snapshots of three different dam-break experiment trials taken from the downstream 
end of the flume. Upper and lower panels show the flow when it reached Ch1 and Ch4, respec-
tively. The three gate speeds considered were: slow (0.43 m/s), medium (1.14 m/s), and fast (2.10 
m/s). 

4. Discussion 
The variability in the generated dam-break flows appears to change wave velocity, 

flow velocity, and water depth, thereby resulting in a change in the drag and buoyancy 
forces acting on the object of interest. Therefore, the location at which the object should be 
placed is a critical issue to ensure a successful experiment. Figure 4 suggests that experi-
mental results adjacent to the gate are not trustworthy due to the wide range of uncer-
tainty observed in the maximum pressure. Explosive water jets entrapping air, as cap-
tured in Figure 6, are likely to be responsible for the higher bottom pressures near the gate. 
Figure 10 illustrates how a dam-break flow behaves immediately after release, compared 
to the idealized streamline obtained using Ritter's solution. The actual water jet appears 
to be highly nonlinear, and it is influenced by bed friction, turbulence, and other complex 
mechanisms. Stansby et al. [10] used the term “mushroom-like jet” to describe this explo-
sive water jet. Cagatay and Kocaman [34] proved that the jet tends to be more explosive 
in a wet-bed condition rather than in a dry-bed condition. In addition, the present study 

Figure 9. Snapshots of three different dam-break experiment trials taken from the downstream end
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The three gate speeds considered were: slow (0.43 m/s), medium (1.14 m/s), and fast (2.10 m/s).

4. Discussion

The variability in the generated dam-break flows appears to change wave velocity,
flow velocity, and water depth, thereby resulting in a change in the drag and buoyancy
forces acting on the object of interest. Therefore, the location at which the object should
be placed is a critical issue to ensure a successful experiment. Figure 4 suggests that
experimental results adjacent to the gate are not trustworthy due to the wide range of
uncertainty observed in the maximum pressure. Explosive water jets entrapping air,
as captured in Figure 6, are likely to be responsible for the higher bottom pressures near
the gate. Figure 10 illustrates how a dam-break flow behaves immediately after release,
compared to the idealized streamline obtained using Ritter’s solution. The actual water jet
appears to be highly nonlinear, and it is influenced by bed friction, turbulence, and other
complex mechanisms. Stansby et al. [10] used the term “mushroom-like jet” to describe
this explosive water jet. Cagatay and Kocaman [34] proved that the jet tends to be more
explosive in a wet-bed condition rather than in a dry-bed condition. In addition, the present
study confirmed that the faster the gate opening speed, the thicker is the water jet. It is
considered that this occurs not only because of bottom friction, but also because of the
directional dispersion of momentum due to the rapid release of water. The streamline is
deformed vertically upward by the hydraulic jump that occurs immediately after the gate
is opened, thereby reducing the horizontal flow velocity; thus, this implies that the wave
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front in the experiment propagates at a slower speed when compared with theoretical
results. Because the flume used in this study was short in length, it is considered that the
waves were less affected by bottom friction, and the momentum dispersion process near
the gate may have been the determining factor for the wave speed.
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Figures 5 and 8 reveal that the range of uncertainty tends to decrease as the dam-break
wave propagates on the flatbed. Although the data measured at Ch4 fluctuate less, the gate
speed and maximum pressure were negatively correlated, with a Pearson’s r of −0.524.
The speed at which the gate should be lifted may be a fundamental question for researchers.
To investigate this, Equation (1) is reformulated to calculate the least required gate speed
vexp as

vexp ≥
g
√

h0/g
1.25

. (3)

Given a water depth of 0.5 m, vexp is calculated as 1.77 m/s under the current exper-
imental conditions. Although a total of 224 (77%) test cases in Figure 5 fail to meet this
criterion, the data plotted within the range of 2.01–2.46 m/s may be closer to the theoretical
dam-break flow.

The slower the gate opening speed is, the greater the uncertainty is in the dam break
flow propagation process [23]. Therefore, when pulling the gate up manually, it needs to be
opened as quickly as possible. However, as the experimental results are subject to change,
it is necessary to repeat the experiment sufficient number of times to ensure statistical
reliability. In contrast with manual operation, the gate lifting with a mechanical system
can reproduce constant dam break flows anytime. Nevertheless, to obtain reliable data,
von Häfen et al. [23] repeated the dam break experiments three times and confirmed that
outputs were mostly identical. Although it may pose extra laborious work, this type of
quality assurance process is required to increase the reliability of experimental data.

A turbulent boundary layer is developed at a large Reynolds number. For the layer
over a flat plate, the boundary-layer thickness δ is given as a function of distance x [35]
as follows:

δ(x) = 0.37x
(

U∞x
ν

)− 1
5
, (4)

where U∞ is the free stream velocity and ν is the kinematic viscosity. Assuming that
U∞ = 3.0 m/s (approximately the average velocity in the present experiment; see Figure 5)
and ν = 1.0 × 10−6 m2/s at 20 ◦C, δ is calculated to be 3.3 cm when the water reaches
x = 2 m. This magnitude of the boundary layer would be negligible in a real dam-break
phenomenon. However, it could be significant for an experimental condition in a small
flume (e.g., the flume in this study has a width of only 38 cm). Figure 9 shows that two edge
waves collide and generate complex turbulence in the middle of the flume. The occurrence
of an impulsive pressure, as shown in Figure 8a, can also be attributed to the complex
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interaction between the turbulent flows.
Several recent studies verified that 2-D dam-break dynamics can be adequately repro-

duced with a state-of-the-art algorithm, such as smoothed particle hydrodynamics [23,36]
and constrained interpolation profile [30]. In a real experimental flume, however, the
dam-break flow propagates in both the cross-sectional and horizontal directions. Therefore,
measuring the water level and pressure at the centerline of the tank and near the wall of
the tank may produce different results. As the present experiment used a small flume
with a length of 3 m, it seems the flows were not fully mixed vertically or horizontally.
Particularly, the dam-break flow exhibits a strong three-dimensionality immediately after
the gate, as already demonstrated by previous studies (e.g., [10,34]). Asadollahi et al. [37]
also compared the OpenFOAM 3-D numerical results with the water levels measured in
a dam break flume with a length of approximately 15 m. Their results show a discrepancy
between experiment and simulation at the nearest wave gauge (2.77 m from the gate),
in which the water level in the experiment appeared significantly higher than in the model.
However, after the bore propagated downstream, the numerical simulation was observed
to conform well with the experimental measurements of the water level at two gauges
located at 3.9 and 4.9 m from the gate.

5. Conclusions

Previous studies have presented dam-break experimental results; however, many of
them do not adequately explain the experimental uncertainties introduced by the gate
lifting operation. This study, through statistical analyses, revealed that gate lifting speed
significantly impacts on the hydrodynamics of the generated dam-break flow. A total
of 290 dam-break experimental trials were conducted at gate opening speeds ranging
between 0.20–2.50 m/s, while maintaining the initial water depth at a constant value (0.5 m).
Statistical and physical findings were derived, and these results are considered useful for
performing dam-break experiments in a reliable manner. In conclusion, the experimental
findings of this study can be summarized as follows:

• The gate speed significantly influences the volume of the water jet, and thus, the
pressure near the gate is particularly sensitive to the gate operation.

• The dam-break flow tends to be flattened as the wave advances because of dissipation
effects, and this is promoted by a strong vertical and horizontal turbulence.

• The gate speed affects the shape of the wave immediately after opening. However,
as the wave advances some distance, the gate speed no longer makes a noticeable
difference.

• The wave propagation speed in the experiment is considerably slower than that
calculated theoretically, which indicates the significant contribution of bed friction
and turbulence.

• The bottom pressure near the end of the flume exhibits a relatively small range of
statistical uncertainty, and thus, it may be considered reliable.

• The experimental data may contain statistical outliers, which resemble an error at first
glance, but may be physically interpreted as impulsive pressures.

• Because the experimental results are subject to chance, it is necessary to repeat the
experiment sufficient number of times to ensure statistical reliability.

Furthermore, this study addresses the significance of three-dimensionality, which is
inevitable in a limited size flume. This effect is expected to contribute to the generation
of complex hydrodynamics, such as two edge waves developed on the sidewalls and
propagated downstream, similar to a ship wake, collide in the center of the flume, forming
a cross wave. In future studies, the 3-D nature of the dam-break flow as a function of flume
length and width should be investigated in more detail.

Author Contributions: Conceptualization, H.T.; methodology, H.T. and F.F.; experiment F.F.; writ-
ing H.T.; funding acquisition, H.T. All authors have read and agreed to the published version of
the manuscript.
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Appendix A

Three snapshots of the high-speed camera when the tip of the acrylic gate (covered by
a rubber strip) was about to detach from the water. The estimated gate speed was 2.458 m/s,
which was ranked as the fastest among the 290 trials conducted. As the detection was
performed based on a human visual observation, there may be some randomness in reading
the timing of the detachment. However, the error is estimated as 1% at most. The same
detection error could arise when the gate detaches from the floor. Thus, a total error of up
2%. may be involved in the estimated gate speed.
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Appendix C

Figure 5 shows the wave speed calculation based on the pressure measured by the
sensors. We believe this method is appropriate because it can process numerous experimen-
tal data systematically in a uniform manner. However, this method does not necessarily
detect the tip of the wave. The actual wave speed may differ to some extent. Therefore,
we calculated the wave speed based on the wave tip detected visually from the image
taken by the high-speed camera and compared it with the pressure method. The difference
between the two methods was less than 10% for seven experimental samples. In both
methods, it was confirmed that the velocity increased in the downstream side of the flume.
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