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Abstract: Despite all efforts and massive investments, the restoration of mangroves has not always
been successful. One critical reason for this failure is the vulnerability of young mangroves, which
cannot grow because of hydrodynamic disturbances in the shallow coastal water. For a compre-
hensive study bridging ecological and engineering principles, a portable community-based reef is
proposed to shield mangroves from waves during the early stages of their growth. A series of field
observations were conducted on Amami Oshima Island (Japan), to observe the growth of young man-
groves and their survival rate under moderate wave conditions. The evolution of young mangroves
was also observed in the laboratory under a controlled indoor environment. At the research site,
it was confirmed that, after six months of germination, young mangroves could withstand normal
high waves. Laboratory-grown plants were lower in height and had fewer leaves compared with
the native mangroves on Amami. Based on these results, an economical reef system was designed.
For this purpose, the Ahrens formula for the design of a low-crested reef breakwater was revisited.
The results showed that a 50-cm-high reef constructed with 15-kg stones can protect mangroves that
are a few months old and effectively promote early mangrove growth.

Keywords: young mangroves; mangrove restoration; portable reef design; field observation;
Amami Oshima

1. Introduction

Mangrove forests are the most productive ecosystems on the planet among various
marine ecosystems [1]. The leaves and roots that filter the salt from seawater enable
mangroves to survive in the high tide, while they absorb oxygen for photosynthesis during
low tide [2]. Mangroves play a crucial role in protecting coastal regions by reducing the
damage caused by tsunamis, storm surges, and tropical cyclones and in saving human
settlements. Several studies on the 2004 Indian Ocean tsunami reported that the loss of
human life was significantly lower in the presence of mangrove forests, although it was
also dependent on the distance and elevation of human settlements from the coastline [3–5].
An interview-based survey revealed that local people in the Philippines believed that
mangroves protected their lives from the historical event of Typhoon Haiyan in 2013 [6].

The dynamic interaction between the mangrove system and ocean waves is not fully
understood, it is believed that mangroves reduce wave energy and promote sedimenta-
tion [7–9]. Mangroves work as a barrier, leading to changes in flow direction resulting
in vegetative surface friction, inducing wave energy dissipation and damping [10]. The
advantages of mangrove forests are referred to as “ecological resilience” for their ability
to absorb hydrodynamic disturbance [11]. Mangroves are also considered to be a green
infrastructure that contributes to disaster prevention through flood regulation, erosion
control, sediment trapping, nutrient recycling, wildlife habitat, and nurseries [1,12–16].

The mangrove area has been reduced by 45% in the past 23 years, shrinking its geo-
graphical coverage from 137,760 km2 [17] to 81,484 km2 [18] worldwide. The declining rate
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is most significant in developing countries in Asia [19,20]. If such degradation continues,
mangroves may disappear in the next 100 years [21]. This degradation is triggered by
multiple factors, such as urban development, industrialization, agricultural land expansion,
timber and charcoal production, and shrimp farming [16,20,22,23]. In Indonesia, Thai-
land, and Malaysia, the loss of mangrove forests is triggered by the conversion of land
to aquaculture, agriculture, and salt production [23,24]. Tin mining and wood harvesting
are also major causes of mangrove degradation in Thailand [24]. Half of the cleared man-
groves in Southeast Asia and in South and Central America were due to fish and shrimp
aquaculture [25,26]. Conservation actions have been implemented globally to compensate
for the loss from deforestation, aquaculture, urban development, industrialization, and
shrimp farming. Large-scale mangrove plantations were created in many countries of
South and Southeast Asia by nongovernmental organizations and nonprofit organizations
such as Wetland International (WI) and the International Union for the Conservation of
Nature (IUCN) [22,27]. The Mangroves for the Future initiative was set up through the
collaboration of multiple international agencies, such as the United Nations Development
Programme, United Nations Food and Agriculture Organisation, and IUCN, to promote
the sustainable conservation of coastal ecosystems [27]. The collective efforts of these
programs have emphasized the sustainability of coastal ecosystems. The cost of mangrove
restoration projects has varied from 1 to 10 million USD, as observed in projects that have
taken place in Pakistan, Indonesia, Vietnam, the Philippines, and Senegal [27].

In addition to these global initiatives, scientific communities are trying to develop
new ideas for protecting coastal areas from coastal hazards by incorporating the mangrove
ecosystem for ecological disaster risk reduction (Eco-DRR). Eco-DRR is an effort composed
of the restoration, conservation, and sustainable management of ecosystems to reduce the
risk of disaster [11]. The idea of rehabilitating mangroves on a hybrid raised platform
proposed recently [12] is expected to lead to new strategies for disaster risk reduction.
Ideally, mangrove replantation and conservation should be implemented as a community-
based approach (CBA) to improve the preparedness of the local community in response
to coastal disasters [28]. However, it has been reported that the success rate of large-
scale restoration is not necessarily high [27,29], creating a difficult situation for further
dissemination of the mangrove rehabilitation program globally [30,31]. A success rate of
only 10–20% was achieved in a community-based restoration program in the Philippines
because of inappropriate species and site selection [30,32], while 40% of mangrove seedlings
vanished and a 60% success rate was achieved in a similar attempt in Sri Lanka [33]. The
principal reasons for these failures are thought to be physical factors (e.g., unusually high
waves and less sediment supply [30]) and biological factors, such as the death of seedlings
resulting from the dense growth of algae, sapling damage by insects, eating away of young
seedlings by aramid crabs, and increase in predation rates by crabs on mangrove plants [31].
Biochemical factors, such as deficiencies of carbon, nitrogen, phosphorus, and other organic
matter in sediments, can lead to failure to maintain healthy mangrove seedlings [34]. It is
difficult to measure the success and failure of mangrove rehabilitation efforts because of
inadequate documentation, particularly when a project fails [32].

Hydrological factors, such as tides, wind-generated waves, and currents, significantly
influence the growth phase of young mangrove plants. Wave actions are higher in the wet-
land rehabilitation sites, causing flooding and damaging young mangrove seedlings [31].
Waves uproot the seedlings, mainly where propagules did not root firmly on loosely
deposited sediments [32,35–37]. In Colombia, 93% of seeds died during the initial four
months during a prolonged period of flooding. However, the high mortality ratio was not
necessarily caused by the inundation, but the uprooting of seedlings in soft sediments as a
result of wave actions was also responsible [35].

Simple countermeasures have been implemented to protect mangrove conservation
areas by local communities, e.g., constructing barriers made of rocks, logs, and sand bars
to attenuate wave actions and trap sediments [31]. Portable and inexpensive materials are
also preferable because they can be used for construction by local communities. Wooden
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piles were also tested in Thailand and Vietnam; however, the effectiveness of these methods
has not been sufficiently proved [38]. As a negative effect, they may even cause erosion and
sediment destabilization, affecting the natural mangrove settlements [31,39]. Ecological
engineering perspectives and applications are considered important steps in restoration [40].
However, the National Research Council of United States, stated that there are barriers
to implementing coastal engineering principles in mangrove restoration projects because
they are usually costly [40,41]. WI’s Mangrove Action Project identified the failed planting
techniques and emphasized the necessity of a new approach based on lessons learned from
the failed projects [42].

As previously reported, mangrove reforestation did not adequately incorporate engi-
neering principles. The aim of present study was to bridge the ecological and engineering
approaches. For example, a stone dike was used for mangrove reforestation (Figure 1).
However, in the end, the expansion of the mangrove forest was stopped owing to the
presence of the dike. Hence, the size of the stone should be carefully designed so that
the dike can be demolished at a later stage. In this study, a CBA called a “portable reef”
was developed to protect mangrove plants from hydraulic disturbances. The reef was
designed to achieve low-cost coastal protection by placing portable rubble or blocks in
front of mangrove plantation areas. It may take several months for mangroves to grow
sufficiently to withstand high waves. Therefore, a barrier must sustain its function, at least
during the first several months after plantation [12]. Accordingly, a portable reef for only
the very early stage of the plantation would have a simple structure. Once mangrove plants
grow sufficiently, the portable reef can be dismantled and relocated to other locations for
another community activity use. To confirm the feasibility of this concept, the present study
has two parts: (i) field and laboratory observations were conducted to understand the basic
ecology and growth rate of young mangroves, and (ii) the minimal design requirement for
an efficient portable reef was identified.
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Figure 1. Successful mangrove plantation in Chonburi, Thailand—however, the rubble dike stopped
the expansion of the forest [photo taken by one of the authors].

2. Materials and Methods

Mangrove growth was observed in the field and the laboratory for approximately six
months. The findings were used in designing a portable reef with an emphasis on reducing
stone weight, which is essential for community-based construction.

2.1. Field Survey

Field surveys were conducted in May 2019 and December 2019, and seaward expan-
sion of young mangrove shrubs was found on sediment deposition in the tidal inlets of
Amami Oshima Island (hereinafter “Amami”), Japan. The month of May is the postpollina-
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tion period, in which the species Kandelia obovata in the primeval mangrove forest produces
enormous seeds, whereas December is cold, and mangrove growth is not vibrant [43]. A
large colony of natural mangroves (K. obovata) was identified in Sumiyo Bay of Amami
near the inlets of the Yakugachi River and Sumiyo River (Figure 2). As observed in the
field survey, mangrove seedlings were transported from the mainstream of the primeval
forest and settled on the shallow mudflat with the fast-developing root system. While
many mangrove forests are facing degradation in Japan, the primeval mangrove forest
of Amami has been expanding for several decades [44]. This mangrove forest is located
in areas where the flow of rivers is mild, and the coast is shallow and calm. When the
tide recedes, the tidal flat becomes a place where organic matter from the river and the
ocean is deposited, providing a habitat for a variety of animals. In addition to the favorable
environmental conditions, the expansion of the area may also partially be attributed to the
breakwater constructed at the bay mouth, protecting the inner bay area from offshore high
waves (Figure 2).

During the survey conducted in May, 40 mangrove propagules were collected to
measure the size (Figure 3). Half were used for the plantation test in the Amami primeval
mangrove forest, and the rest were transported to a laboratory in Tokyo. A topography
survey was conducted to measure the ground level within the mangrove zone. The salinity
level and water temperature were recorded. An aerial survey was conducted using a
drone (Phantom 4 Pro; DJI Technology Co. Ltd., Shenzhen, China) to observe mangrove
shrub density in near-shore, midshore, and offshore regions. Drone images were validated
with field observations to confirm the densities of the mangrove plants. The elevation
of the mudflat was measured using laser range finders (TruPulse 360; Laser Technology
Inc., Centennial, CO, USA) (Figure 4). The predominant mangrove species observed in
the study site was K. obovata, which is a dwarf-type tree often found in India, Singapore,
Cambodia, Malaysia, the Philippines, Indonesia, Myanmar, Bangladesh, Thailand, and
Vietnam [45]. The genetic and phenotypic segregation suggests that the species K. candelin
originated from some parts of China and Japan, and it is now classified as a new species,
K. obovata [46]. This species is often found in the intertidal region of an estuary, which is
frequently inundated by tides, like other Rhizophora mangrove species [40]. K. obovata in
the Amami region produces seeds, particularly between the months of May and August,
which are suspended by tidal flow to colonize themselves in new locations.

During the December 2019 survey, the number of surviving mangrove plants, plant
height, number of leaves, root length, stem thickness, and stem color were investigated.
The plant age was estimated based on the growth rate between the two surveys. These
parameters were then compared with those of laboratory-grown plants under a controlled
environment. An in situ manual wave-generating test using a paper board was also con-
ducted to test the failure limitation of young mangrove plants against waves. Additionally,
the salinity level, water temperature, turbidity, current velocity (FP111; YSI Inc., Yellow
Springs, OH, USA), and water depth at high tides were measured during this second
campaign. Water levels were recorded using pressure gauges for approximately 2 h (DEFI2-
D10; JFE Co. Ltd., Chiba, Japan). The measured parameters were further considered in the
conceptual design of the portable reef.
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Figure 4. Measurement of the topography in the mangrove forest.

2.2. Laboratory Test

Twenty seeds of K. obovata were transported to the laboratory in Tokyo and planted
in a range of different types of soil: (i) Amami’s native soil, (ii) a mixture of sand, silt,
and compost, and (iii) coastal sand taken in Tokyo. The growth of these plants was
monitored for approximately six months from June to December 2019. The duration of
laboratory observations was consistent with that of the in situ plantation test in Amami. The
laboratory growing test was conducted to monitor the growth of mangroves in a controlled
environment. The test simulated a situation where mangrove plantations are started from
seedlings that were originally grown in a pot. Another important idea behind the field
survey and laboratory plantation was to investigate the early growing stage of mangrove
plants, because the design of the portable reef depends highly on initial plant growth.

3. Field Observation Results
3.1. Survey in the Study Site

The land slope of a mangrove forest approximately 80 m wide was measured to be as
mild as 1/100 on average. This can be considered as a gentle slope but not extremely flat.
The density of mangrove plants varied extensively depending on location, i.e., offshore,
midshore, and near-shore regions. When approaching the offshore area, it was observed
that the number of plants tended to decrease. The lowest mangrove densities were found
offshore, where water depths reached half a meter at high tide. Mangrove density was
very sparse offshore, whereas 2–4 plants/m2 in the midshore and 10–20 small mangrove
plants/m2 around two matured shrubs onshore were observed, as shown in Figure 5a,b.
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3.2. Mangrove Plantation Test at the Research Site

Figure 6a,b illustrate the plantation of mangroves and their growth from May 2019
to December 2019. Twenty seeds with an initial seedling length of 18.5 cm on average
(standard deviation of 3.5 cm) were planted in the offshore zone. The diameter of the seeds
varied among the seedlings, with the widest part being 5–10 mm. As shown in Figure 3,
some seedlings were completely straight, whereas the others were significantly curved, as
observed during the plantation. The color of the seeds varied from green to brownish-green.
Of the many plantations, one was made around an existing mangrove plant to clearly
identify it during a future survey, as in Figure 6a,b, and the remaining seedlings were
planted in nearby locations. In the December 2019 visit, it was found that the survival
rate of planted seedlings was 75% (15 out of 20 seeds). Hydrological disturbances, such
as high waves, unusual tides, and currents, especially during the typhoon season (July to
October), can result in the uprooting of seedlings in soft sediments. Fortunately, however,
no strong typhoon approached Amami during the half-year of this survey. Nevertheless,
the five seedlings died or washed away for some reason. Various microbial organisms,
such as bacteria, fungi, viruses, nematodes, and insects [47], and abiotic factors, such
as high salinity levels and low and extremely high temperatures, could have adversely
affected the growth of the mangrove plants [2]. The loss may also have been caused by
sapling damage by animals, e.g., sea crabs, which selectively eat young seedlings. The
water temperature and salinity level in May 2019 were 28.3 ◦C and 8‰, respectively, while
the temperature reduced to 26.1 ◦C and the salinity increased to 19‰ in December 2019.
The rise in salinity may have been because the water discharge from the two rivers is
higher in spring than in winter. The precipitation chart is shown in Figure 7, which also
supports the observation that salinity levels might have varied because of the difference in
precipitation, which is higher in the rainy season (around June) and lower in the winter
season (around December).
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3.3. Water-Level Observations

Figure 8 depicts water levels and their fluctuations in the study site, recorded using
the pressure sensor, on the one-day cycle of the predicted astronomical tide of the bay. The
water level fluctuates in correspondence with astronomical tides. It dropped from nearly
0.4 to 0.05 m above the ground level in 2 h, between high to medium tidal ranges. This
observation was conducted on a half-moon day during a medium tidal phase. However,
the actual water level oscillated with a short period of approximately 20 min on top of the
tidal curve. Although it has not been confirmed, this seems to be a sort of seiche that occurs
in the bay. As a result, actual currents in mangrove forests may be faster than those induced
by pure astronomical tidal forcing. However, the maximum velocity measured in the field
was approximately 10 cm/s. This is significantly slower than the velocity generated in a
tidal-dominant river mouth where a tidal current of more than 1 m/s often occurs [48].
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Because the water depth is very shallow in the study site, frictional effects are believed
to be responsible for a significant reduction in flow speed. This level of tidal currents is
considered to be less impactful to young mangroves.
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Figure 7. Monthly precipitation in 2019, recorded at Naze WMO Station in Amami (Lat 28◦22.7′ N
Lon 129◦29.7′ E)—source: Japan Meteorological Agency.
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Figure 8. Water levels recorded at 1-s intervals for approximately 2 h (19 December 2019) presented in coordination with
local astronomical tide data of the day.

3.4. In Situ Wave Experiment

In the December survey, an in situ wave experiment was conducted to observe the
strength of plants against waves. Waves were manually generated with a paper board for
approximately 2 min, which impacted different age groups of plants, such as a month, a
half year, and one year. The purpose of this test was to verify the differences in response
to waves and critical wave height among the three young mangroves in different growth
stages. The maximum wave height during manual wave generation was estimated to be
approximately 10 cm through visual analysis with a video image. Figure 9a shows a 17-cm-
long one-month-old mangrove that had two leaves, a short main root of approximately
2 cm, and thin subroots. The plant was mostly submerged during the test (Figure 9b). The
one-month-old plant was broken entirely and submerged by a 2-min continuous-wave
impact, as in Figure 9c,d, whereas a half-year-old and one-year-old mangrove 39 and
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80 cm in height, respectively, survived without visible damage, as shown in Figure 9e. The
six-month-old mangrove plant shown in Figure 9f developed a stiff root system with a
length of one third the total plant length. Hence, it was firmly rooted in the sediment and
could withstand the waves. The field investigation revealed that mangroves in the very
early stage of growth (a few months) were particularly weak, whereas a half-year-old or
older mangrove can sufficiently withstand moderate waves. Thus, special protection is
required to protect mangrove seedlings from high waves in the initial two to three months.
As a rough estimate, the failure limit of mangroves is considered to be a wave height of
0.1 m, which was used as a basis for the structural design of a portable reef.
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the wave test, and (f) half-year-old mangrove pulled out.

3.5. Comparison of Mangrove Growth between Laboratory and Field Experiments

Figure 10a,b illustrate the mangrove evolution in terms of plant height and number of
leaves in the laboratory. Mangrove growth was also measured six months after plantation
at the Amami research site, as shown in Figure 6b, and compared with the sixth-month
growth of plants in the laboratory. In the laboratory in Tokyo, the growth of the mangrove
plant was observed for six months, and measurements were taken for the first, third, and
sixth months. Pregerminated mangrove seeds (propagules) brought from the site were
planted to observe their growth in different soil states: native soil, a mixture of sand, silt,
and compost, and pure sand. The growth of mangroves was observed and measured in
terms of the average height and the average number of leaves with standard deviations,
as shown in Figure 10a,b. Pictures of propagule growth were taken at zero, one, three,
and six months of laboratory plantation, as shown in Figure 11a–d. Although the initial
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growth was similar among the three soil types, the fastest plant growth was observed in
the mixture of sand, silt, and compost after six months. Two plants in the mixture soil had
withered at the end of the sixth month, despite showing good growth until three months.
The average height of mangrove plants in Amami was 49 cm, with an average of 7.3 leaves
per plant, as in Figure 10a,b, while indoor plants demonstrated growth of a height of 38.5
cm with the number of leaves up to 4.3 on average. The laboratory-grown plants were
21% lower in height than the plants grown in Amami. Similarly, the average number of
leaves after six months was 41% lower than that of the plants at the Amami research site.
The laboratory-grown plants appeared weak, and the stems turned and bent downward,
as shown in Figure 11d. The plants grown in native soil looked healthiest among the
three soils.
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The germination of seedlings began with the development of the stem with a pair of
leaves in the first month in all soil media, as shown in Figure 11b. After the third month, the
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average height of plants in all soil media was 28 cm above the soil surface, with an average
number of leaves of 3.5. The average height and number of leaves grown in mangrove
plants in all types of soil medium at the end of the sixth month were 38.3 cm and 4.3,
respectively. The average increase in plant height and number of leaves in all soil media in
the first, third, and sixth months were 3.7, 7.7, and 9.7 cm and 2, 1.5, and 0.8, respectively.
With the arrival of new leaves, the plants lost their older leaves, which turned yellow and
withered before dropping off see Figure 11c,d. Loss of leaves and decrease in leaf growth
indicate lower leaf health because of environmental stresses [43]. This is probably because
of the low temperature in November and December, as shown in Figure 12.
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Figure 11. Growth of laboratory mangroves in (i) native soil, (ii) mix of sand, silt, and compost, and
(iii) pure sand (a) on day of the plantation (5 June 2019), (b) after one month (10 July 2019), (c) after
three months (9 September 2019), and (d) after sixth months (10 December 2019): an example of the
growth record has been uploaded as a time-lapse video at http://www.ide.titech.ac.jp/~takagi/
Labmangrove.html.

The air temperature differences in Tokyo and Amami for the period of six months
from June to December 2019 are shown in Figure 12. On average, the temperature in
Amami was 2.8 ◦C higher than in Tokyo. However, the maximum temperature in Tokyo
(28.8 ◦C) was 0.4 ◦C higher than that in Amami (28.4 ◦C) in August. In December, the
average temperature dropped to 8.5 ◦C in Tokyo, while that in Amami was 12.1 ◦C. The
cold weather during the early winter season probably retarded the growth of mangrove
plants and resulted in the withering of the leaves.

http://www.ide.titech.ac.jp/~takagi/Labmangrove.html
http://www.ide.titech.ac.jp/~takagi/Labmangrove.html
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The diameter of the laboratory mangroves remained almost unchanged and was
less than 4 mm on average, while the average stem diameter of Amami mangroves was
5.4 mm, which is 35% thicker than that of the laboratory mangroves. The Amami mangrove
stems appeared tougher and had a deeper green color than those in the laboratory. The
leaf surface of the Amami plants was also slightly thicker, whereas that of the laboratory
mangroves was thinner and lighter in color.
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Figure 12. Comparison of average minimum, mean, and maximum temperatures between Tokyo and Amami (Kagoshima
Prefecture)—source: Japan Meteorological Agency.

The observations of the plants grown in the laboratory suggest that mangrove plants
initially grown under a controlled environment do not necessarily show similar growth
to that of the plants grown in the field. Laboratory-grown plants were thin, with reduced
growth rate and leaf numbers of 20.8% and 41%, respectively, compared with the Amami
mangroves, clearly suggesting that the laboratory mangroves were weaker. Seedlings
raised in pots are often planted on the coast for mangrove restoration [31,49,50]. Such
plants grown in a different location may not acclimatize themselves well and may not easily
survive when transported and replanted in the field. In Sungai Haji Dorani, Malaysia,
only 30% of the transplanted plants survived [51]. Given all these observations, it is
ideal to replant mangroves directly in the required location rather than in nursery plan-
tations. It is expected that portable reefs placed in front of the mangroves can safeguard
seeds and young plants from hydrodynamic disturbances and promote the initial growth
of mangroves.

4. Case Study: Design of Portable Reef as a Community-Based Breakwater

A portable reef was investigated. It was a community-based breakwater composed
of a low-crested rubble mound with single-sized stones. In this section, a portable reef
designed as a case study based on the wave and topographic conditions in Amami is
described. Because many researchers have studied the stability, wave attenuation, and
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wave transmission of rubble breakwaters for several decades [52–57], the existing formulae
were used to address the extent to which the portable reef can be reduced in size while
maintaining favorable wave conditions for the growth of young mangroves.

4.1. Stability of Rubble Mound

A simple design is desirable to achieve an economical and community-oriented
countermeasure. The design of extreme wave conditions would result in heavy stone
weights in achieving sufficient structural stability, but such materials cannot be easily
handled as community-based activities without the use of heavy equipment. Hence,
extreme events, such as tropical cyclones, should be omitted from design considerations.
Based on field observations and astronomical tide levels at the study site in Amami, 40 cm
is considered the maximum water depth d. The breaking wave criteria proposed by
Weggel (HB < 0.78d) lead to a maximum wave height of approximately 0.3 m for this depth
condition. Hence, 0.3 m was the design wave height in this case analysis (Table 1). The
wave period was assumed to vary from 2 to 3.5 s as a short wave in very shallow waters.
Although the wave period seems negligible, it has a substantial impact on the portable
reef and mangrove plants. Following the convention in coastal engineering, a significant
wave (average of the upper one-third) was used as the design wave. In this case study, a
rubble mound was designed that can withstand the design waves and confirm how well
the transmitted waves can be mitigated.

Table 1. Design conditions.

Variables Notation Value

Wave heights H 0.3 m
Wave periods T 2 to 3.5 s
Water depth d 0.4 m

The traditional method of designing rubble breakwaters assumes a stable structure
with no damage or statically less than 5% damage levels [57]. A Hudson stability formula
was developed from experimental investigations on a permeable breakwater subjected
to nonovertopping waves. The equation states the relationship between the armor unit
weight and the wave height at the toe of the structure, as shown in Equation (1) [58]:

W =
γsHs3

KD(s− 1)3cotα
(1)

where W is the weight of a single armor unit, γs is the specific stone weight, KD is the
dimensionless stability coefficient, s is the specific gravity of the armor unit, α is the
structural slope angle, and Hs is the significant wave height. Equation (1) does not consider
the damage level, irregular wave conditions, wave period, storm duration, and permeability
of stones.

However, it is essential to allow deformation of the system to some extent, particularly
in the case of smaller stones. Hence, the formula obtained by Ahrens [59], which designs a
low-crested rubble-mound, reef-type breakwater without a multilayer cross section, was
applied. Figure 13 illustrates the concept of the low-crested breakwater. Here, hc

′ is the
initial crest height, and hc is the crest height at the end of the wave impacts, based on an
empirical equation from the experiment. In addition, B is the crest width (three median
stones wide: 3Dn50). The stability can be examined by considering the crest height that
sunk as a result of continuous wave impacts.

Equation (1) is analyzed for the range of significant wave heights (Hs), with KD being
1.2 for quarry stone, smoothly rounded for breaking waves [57]. Here, γs is taken as
2800 kg/m3, and the slope of the structure is considered to be 1V:2.5H, leading to a slope
angle α of 21.6◦. The relationship between Hs and the armor unit weight is plotted in
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Figure 14. When 0.3 m is used as the design wave height, the lowest stone weight is
calculated to be approximately 6 kg.
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Figure 13. Typical reef profile before and after damage, adapted from Ahrens (1989) [58].
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Figure 14. Required weight of single stone against a given wave height.

The structural stability with selected stone weights can be further investigated using
Equations (2)–(4). The stability number (Ns) of the unit is defined as [58]:

Ns =
Hs

2/3L1/3

∆Dn50
(2)

where L is the wavelength calculated using the wave period (T) and water depth. The
reduction in the crest height of the structure was estimated by the Equation (3) which was
modified by Van der Meer after reanalyzing the data of Ahrens [58]:

hc =

√
At

a exp Ns
(3)

a = −0.028 + 0.045 C′ + 0.034
hc
′

h
− 6× 10−9Bn

2 (4)

Here, At is the structural cross-sectional area (Bhc
′+C′hc

′2), C′ is the average structural
slope, Ns is the spectral stability number, Bn is the bulk number, and d is still water depth.
Short wave periods in the range between T = 2 and 3.5 s are assumed to calculate the
wavelength L =

√
gdT and wave steepness Sop = 2πHs/gT2. The deformation in crest height

(hc) can be estimated using Equations (3) and (4). Figure 15 shows a graph of the crest
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height reduction factor (hc/hc
′) versus wave steepness. If hc/hc

′ exceeds 1, the structure
is fully stable, whereas, when hc/hc

′ drops below 1, the structure is less stable [57]. The
structural stability increases with the increase in wave steepness. A stone weight more
than 15 kg showed hc/hc

′ > 1, indicating a stable condition for the design wave. Hence, for
the design considerations of stone, a weight of 15 kg can be used as an optimal weight,
rather than 6 kg.
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4.2. Wave Transmission and Cross-Sectional Design

Wave breaking and energy dissipation are promoted when waves are transmitted
over a reef [60]. The degree of wave transmission is estimated by the coefficient of wave
transmission (Kt), which is defined by the transmitted wave divided by the incident wave
heights (Ht/Hi). Wave transmission depends on the geometry of the reef, mainly on crest
width and water depth, wave conditions, permeability, freeboard (crest height above
water level) (Rc), and wave steepness (Sop) [61]. The prediction of the wave transmission
characteristics of breakwaters has been studied, and equations for Kt have been established.
The following equation is used for the present analysis of wave transmission over a portable
reef [57]:

Kt =

(
0.031

Hi
Dn50

− 0.24
)

Rc

Dn50
− 2.6 Sop − 0.05

Hi
Dn50

+ 0.85 (5)

Here, Kt is derived for the proposed portable reef design (Figure 16. The Kt value
markedly varies with the change in the relative crest height (Rc/Dn50). The minimum Kt
and maximum Kt expected of a portable reef breakwater fall between 0.07 and 0.51 for
wave periods of 2 to 3.5 s. The lower the relative crest height, the higher the transmission.
The lower the height of the breakwater, the smaller the stone volume required. However, a
reduction in the freeboard increases the transmission of the waves and adversely affects
the growth of mangroves. In the field experiments in Amami, it was found that mangroves
of approximately one- or two-month-old plants were washed away by waves, even at a
wave height of approximately 10 cm. Hence, Kt needs to be set below 0.3 in the case of a
wave height of 30 cm at the portable reef.
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As a result of these considerations, the breakwater cross section shown in Figure 17
was selected as one of the candidates to form the entire reef system as simply and feasibly
as possible for the local community. The total number of stones needed to form a trapezoid
per cubic meter was estimated as 145 (average of 15 kg each). Because of the low weight of
the stone, construction can be accomplished without the use of heavy machinery if several
workers collaborate. This is an advantage in areas where the ground is loose, such as
where mangroves grow. There is a possibility that the reef top may sink a little bit owing to
settlement, but it will be easy to replenish. A mangrove plantation is implemented after the
reef is installed. However, plants may be washed away because of the disturbance caused
by wave overtopping if planted immediately behind the reef. Therefore, it is recommended
to maintain a certain distance between the reef and the plantation. It is necessary in future
research to investigate how much distance is needed.
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5. Conclusions

The restoration of mangrove forests has not always been successful, despite enormous
attempts. In this study, the importance of protecting young mangroves from hydrodynamic
disturbances was addressed to improve the implementation of plantations. Early growth
of mangroves was studied both in the natural environment (a mangrove forest on Amami)
and in a controlled environment (a laboratory in Tokyo). It was observed that plants could
grow in any type of soil, even in the indoor environment, but the plants grown in the
field looked healthier and stronger than those in the laboratory after six months. The
mangrove growth test suggests that direct planting of seedlings in the restoration site is
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preferable rather than transporting germinated seedlings on a pot. Thus, a portable reef
system was proposed to act as an effective wave attenuator to facilitate the growth of
young mangrove seedlings. The Amami site was investigated to derive the design wave
conditions necessary for protecting early mangroves. Sixth-month old mangrove plants
can survive under normal wave conditions; hence, the service period of the portable reef
system can be set as short as six months. The examination of the low-crested breakwater
proposed by Ahrens was applied for the design of a portable reef system considering the
structural stability and wave transmission ratio. As an example, the reef dimensions were
designed and it was suggested that a 50-cm-high reef with approximately 15-kg stones is
sufficient to protect against waves and effectively promote early mangrove growth. Once
the mangroves have grown for about six months, the portable reef is no longer needed
and can be dismantled and transported to other locations in the vicinity for reuse. In this
way, community-based mangrove plantations should be able to continue in the long term
without a high cost.
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