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SHAKE-TABLE TEST OF A 4-STORY FRAME-WALL RC STRUCTURE
TO INVESTIGATE THE COLLAPSE MECHANISM AND SAFETY LIMIT
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Kota MIURA, Kisho FUJITA, Yu TABATA ,
Masaki MAEDA, Alex SHEGAY and Kenji YONEZAWA

To investigate an evaluation method of collapse mechanisms and the safety limit of RC buildings, a shake-table test of a 1/4 scale model of a 4-
story RC structure with shear walls was carried out. The specimen was designed to exhibit a frame-sway mechanism in both directions. In the
test, the first-floor wall failed in flexure in the X-direction as designed; however, the first-floor wall in the Y-direction failed in shear, which did not
match the design. Moreover, collapse mechanism and safety limit of the whole frame was discussed comparing the analytical result with the test
result.
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Fig. 3
Table 1 RC 4 1/4
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Fig. 1 Calculation method of seismic capacity index

Fig. 2 Evaluation method of collapse mechanism and safety limit 
based on seismic capacity index
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Table 2 Table 3 1
Table 4
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13)

Table 2 Table 3

X2 G3

1/2 Fig.3(b) X G1
1/2 Y1 Y2

13)
CW2 X
13)

G3
1.8%

1/25rad. 1/20rad. 14)

Fig. 2

1

X Y
X 2

Fig. 2(a) Y 1

Member Column Wall Beam Slab

C1 CW1 CW2 G1 G2 G3

Size
(mm)

130×130 80×700 70×400 100×140 100×150 120×90 70

Main bar 6-D10 24-D10 8-D13 + 6-D6 3/3-D6 4/4-D6 2/2-D6
D4@80(X-dir.)
D4@60(Y-dir.)

Hoop/
Stirrup

D4@60 D4@50
D4@100

(cross-ties D4@50)
D4@60 D4@60 D6@30

(a) Appearance of the test structure

Y1 and Y2 frame X2 frame X1 and X3 frame
(c) Elevations of the test structure

Fig. 3 (a) General view; (b) plan view; (c) X- and Y-direction elevations of the test structure

(b) Plan view of the test structure

G1:750
from Y2 axis

G2:750
(0.5×1500)

G3:375
(0.5×750)

G3:375
(0.5×750)

G1:750
from Y1 axis

Effective width of slabs
in analysis models

Table 1 List of Members
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h
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Fig. 5 Story shear- inter-story drift relationships by pushover analyses

Rigid areaLine element

Hinge Hinge Pin

(a) Pre-wall failure model (b) Post-wall failure model
Fig. 4 Models for pushover analysis

Table 2 Tested material properties of concrete
 (average of 1st-4th stories at the day of the test).

Grade Compressive
strength(N/mm2)

Young’s modulus
(N/mm2)

Fc30 (early strength) 53.1 2.97×104

Table 3 Tested material properties of reinforcement

Diameter
(mm) Grade

Yield
strength
(N/mm2)

Maximum
strength
(N/mm2)

Young’s
modulus
(N/mm2)

4 SD295A 402 533 1.90×105

6 SD345 419 613 1.97×105

10 SD345 339 562 1.93×105

13 SD390 407 602 1.95×105

Table 4 Calculated flexural strength and ultimate deformation 
capacity of all members

G1 G2 G3
X-dir. Y-dir. X-dir. Y-dir. X-dir. Y-dir.

Compression side
/ Upper tension

8.9 12.8 23.6 10.0 14.5 6.2

Tension side /
Lower tension

5.1 6.3 18.5 4.4 6.4 1.7

43.2 59.7 325.2 98.1 39.9 117.0 44.1 48.6 27.7

Compression side
/ Upper tension

0.038 0.039 0.042 0.044 0.039

Tension side /
Lower tension

0.044 0.043 0.044 0.050 0.047

Column Wall Beam
CW2CW1C1

Flexural
strength

(kNm)

Ultimate
deformation

(rad.)

Estimated large enough

184.9 15.1 89.2

0.0220.021

Shear strength(kN)
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Fig. 7 Time histories and response spectra of input waves
(c) Response spectra of input waves
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Fig. 8 Damage state of structural members after the final excitation (Run9)

Table 5 Outline of test result

Run
X-direction Y-direction

EventMagnifi
-cation

Q1max

(kN)*
Rmax (rad.)
[story] **

Magnifi
-cation

Q1max

(kN) *
Rmax (rad.)
[story] **

1 20% 51.2 1/1384[2nd] 20% 48.6 1/1475[2nd] Member cracking
2 80% 167.0 1/320[2nd] 60% 128.0 1/447[1st]
3 160% 292.4 1/154[2nd] 100% 195.1 1/210[2nd] 1st floor column and wall yielding

4 240% 402.9 1/73[3rd] 150% 290.2 1/77[2nd] Frame-sway mechanism reached

5 260% 437.8 1/34[2nd] 170% 292.2 1/32[2nd] Cover concrete spalling of 1st story column and wall (X-dir.) and significant shear
cracking and cover concrete spalling of 1st floor wall (Y-dir.)

6 130% 290.1 1/45[3rd] 100% 248.6 1/33[1st] Checked residual seismic capacity by small input magnification
7 220% 406.7 1/29[2nd] 120% 243.1 1/25[1st] Shear failure of 1st story wall in Y-dir.
8 220% 427.8 1/25[2nd] - - -
9 260% 444.2 1/18[2nd] - - - Flexural failure of 1st story wall in X-dir.

*Q1max: Maximum base shear force, **Rmax: Maximum inter-story drift angle [story where inter-story drift angle is the largest].

1st

4th3rd

2nd

(a-2) Y-direction
Run1 X:20% Y:20%
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(a) Story shear – inter-story drift angle relationships

(b) Story shear
distribution

Fig. 9 Story shear – inter-story drift angle relationships results and story shear distribution from the shake-table test
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After an earthquake, it is important to judge the safety of buildings and make an efficient recovery plan. For that, it

is necessary to know quantitatively the damage level and safety limit of buildings. An evaluation method of residual

seismic capacity is described in the Japanese Standard for Post-earthquake Damage Level Classification of Buildings;

however, the method does not consider the difference of deformation capacity of members such as walls and frames

(columns and beams). Even though evaluation methods were proposed in previous research for the damage level and

safety limit of RC buildings, the focus of the method has been mainly for moment-resting frames. Moreover, not enough

experimental investigation has been done to verify the application of these methods. In this research, a new evaluation

method for the collapse mechanism and safety limit of dual structures, which have members with different deformation

capacity, was proposed. A shake-table test has been carried out to investigate the applicability of the proposed method

to RC buildings consisting of moment resisting frames and shear walls.

The test specimen was a 1/4 scale model of a 4-story RC building with multi-story shear walls in both X- and Y-

directions. The structure was designed to exhibit a total collapse mechanism (frame-sway mechanism) and so, plastic

hinges were designed at the bottom of columns and walls in the first story and beam ends of each story. To investigate

the difference of collapse mechanism in the X- and Y-directions, contribution ratio of shear wall to the whole seismic

capacity was varied. In the X-direction, two shear walls were placed with the intention of making the failure of shear

walls dominate the collapse mechanism of the whole structure (i.e., the failure point of walls corresponded to the global

structural safety limit). In the Y-direction, only one shear wall was used such that failure of columns and beams would

dominate the global collapse mechanism, which meant that failure of the wall would not correspond to the global

structural safety limit. The design concept was quantitatively confirmed based on seismic capacity indices using results

of nonlinear pushover analyses.

In the shake-table test, scaled artificial ground motions compatible with the Japanese standard spectrum were used

as input. The damage of walls preceded in both directions and at the end of the test, the walls were severely damaged

and the whole structure was close to collapse. The strength and the deformation capacity of the structure were higher

than predicted by the analysis. Finally, the collapse mechanism and the safety limit of the specimen was evaluated. As

a result, the collapse mechanism of the X-direction frame was wall-dominant and the wall failure point corresponded to

the safety limit, consistent with the results obtained from analyses before the test. In the Y-direction, the collapse

mechanism was also wall-dominant, even though a frame-dominant response was anticipated. It was estimated that

the accumulated damage of columns and beams by former shakings degraded their seismic capacity after the wall

collapse, which was not considered in the proposed analytical evaluation method, and so, the proposed method was

improved considering the effect of accumulated damages of members simply. As a result, the collapse mechanism and

safety limit reevaluated by the method was consistent with the test result and the applicability of the method was

proved.
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