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Global 1-km present and future 
hourly anthropogenic heat flux
Alvin Christopher Galang Varquez   ✉, Shota Kiyomoto, Do Ngoc Khanh & Manabu Kanda

Numerical weather prediction models are progressively used to downscale future climate in cities 
at increasing spatial resolutions. Boundary conditions representing rapidly growing urban areas 
are imperative to more plausible future predictions. In this work, 1-km global anthropogenic heat 
emission (AHE) datasets of the present and future are constructed. To improve present AHE maps, 30 
arc-second VIIRS satellite imagery outputs such as nighttime lights and night-fires were incorporated 
along with the LandScantM population dataset. A futuristic scenario of AHE was also developed while 
considering pathways of radiative forcing (i.e. representative concentration pathways), pathways of 
social conditions (i.e. shared socio-economic pathways), a 1-km future urbanization probability map, 
and a model to estimate changes in population distribution. The new dataset highlights two distinct 
features; (1) a more spatially-heterogeneous representation of AHE is captured compared with other 
recent datasets, and (2) consideration of future urban sprawls and climate change in futuristic AHE 
maps. Significant increases in projected AHE for multiple cities under a worst-case scenario strengthen 
the need for further assessment of futuristic AHE.

Background & Summary
68% of the global population is predicted to be urban-dwellers by the year 20501. The rate of urbanization, com-
monly estimated in terms of urban population growth, differs by region with most developing nations increasing 
faster than developed ones. Rapid urban population increase elicits an increase in vulnerability or exposure to 
multiple environmental risks. These risks (e.g. heat stresses, epidemics, natural disasters) may be exacerbated by 
multiple factors such as air pollution, urban-induced modifications to weather, and the irreversible impacts of 
global climate change. Among the factors contributing to the aforesaid risks is anthropogenic heating (or anthro-
pogenic heat emission, AHE) which is human-induced heat emitted into the atmosphere. The environmental 
risks that arise from AHE intensification vary per city and climate condition. Thus, spatiotemporal AHE infor-
mation are essential to drive studies2–5 which utilize climate models to deeply understand the interaction of cities 
(e.g. urban heat islands) and background climate change.

To date, global or regional AHE datasets are continually being developed. Known databases include works of 
Flanner et al.2, Sailor et al.6, Allen et al.7 (commonly called Large scale Urban Consumption of energy or LUCY), 
and more recent databases of Yang et al.8, Jin et al.9, and Dong et al.10. This work aims to fill prevailing gaps in 
estimation and model usage of AHE, namely:

 1. AHE datasets remain coarsely represented despite the improvement in spatial grid spacing (see technical 
validation for inter-comparison of existing high-spatial-resolution datasets);

 2. Futuristic AHE maps that are in line with a city or country’s plausible response to climate change (e.g. 
shared-socioeconomic and representative concentration pathways) are also lacking and are limited to 
annual or monthly values;

 3. Developing cities, remote industrial locations, or non-target cities remain underrepresented;
 4. As a result of the above, spatial details of AHE and their projections are still limited in climate models.

While using the methodology of Dong et al.10 as a baseline, we constructed a present-day AHE and a future 
AHE datasets (collectively referred to as AH4GUC) that consider spatial changes due to projected urban sprawl-
ing, and climate change scenarios. AH4GUC (units: Watts/m2 or W/m2) is provided in monthly-typical hourly 
values for the present (2010s) and future (2050 s). The spatial resolution is 30 arc-seconds (~1-km). AH4GUC is 
an expansion and improvement of the dataset by Dong et al.10.
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Relevant, robust, and freely accessible datasets were used as inputs. These datasets correspond to country-level 
energy consumption data, digital maps, satellite images, urban growing models, and climate model out-
puts which are operationally maintained to improve its accuracy and performance. Population maps such as 
LandScanTM 11 contain spatial information of population with 30 arc-second resolutions and is freely available for 
non-commercial use. The Visible Infrared Imaging Radiometer Suite (VIIRS)12, a scanning radiometer installed 
by NASA, can provide improved nighttime light distribution and improved fire detections compared to its pre-
decessors. In this study, VIIRS nighttime lights and night-fire distributions were incorporated into the model to 
improve the top-down method of estimating present AHE. Two types of climate-change model outputs prescribed 
by standard plausible climate and socio-economic pathways (Intergovernmental Panel on Climate Change fifth 
assessment13) were used to specify future AHE scenario. The first represents radiative forcing or so-called “rep-
resentative concentration pathways” (RCP)14. The second (commonly called socio-economic pathways or SSP15) 
defines future socio-economic conditions. A pair of RCP and SSP (based on scenario matrix16 concept) may be 
used to define future energy consumption or future monthly air temperatures. Combining a scenario with the 
datasets mentioned earlier, a global urban sprawl dataset, and a population growth model, future AHE (2050 s 
scenario defined by RCP8.5 and SSP3) map was constructed.

In summary, the highlights of the dataset are as follows:

 1. Improved spatial heterogeneity of AHE distribution in urban centers with the incorporation of the VIIRS 
nighttime lights distribution maps of NOAA.

 2. Consideration of future changes in population distribution and energy consumption through a combi-
nation of available datasets: an urban-growth probability global map; SSP model outputs of country-level 
population, gross domestic product (GDP), and energy consumption; and RCP model outputs of near-sur-
face air temperatures.

 3. Detection and incorporation of heat-emission point sources using open-source satellite products.

AH4GUC was verified using AHE datasets constructed using the bottom-up approach, and recent present 
and futuristic AHE datasets. Results reveal improved representation in downtown commercial areas showcas-
ing more spatial heterogeneity, unlike other existing datasets. Confirmed using satellite images (e.g. ESRI and 
Google), AHEs in remote regions were also captured in detail in the AH4GUC unlike other existing datasets. 
Unlike other future datasets, the dataset considers horizontal urban sprawl (i.e. population growths at previously 
non-urbanized locations). In the future, developed cities, tending to have higher AHE, will emit lower anthro-
pogenic heat in the 2050 s. On the other hand, AHE will increase for low-income but rapidly developing cities. 
Overall, the global increase in AHE remains to be expected.

AH4GUC may be used to feed global climate models increasingly capable of running finer spatial resolutions. 
More importantly, the dataset will aide in the developmental planning of cities offering first-hand information 
of high AHE locations for any city or town of interest. The simple model presented herein can also be used to 
construct other future AHE scenarios.

Methods
AH4GUC was created to meet three objectives. First, improvement and construction of a present-state 
high-spatial-resolution AHE dataset developed by Dong et al.10. The second objective is the development and 
application of a methodology for estimating future distribution (2050 s) of AHE. Third is to incorporate a dataset 
that enables the detection of point sources of AHE.

General framework. AHE datasets are constructed either through a “top-down” approach or a “bottom-up” 
approach. The main difference between them is in the scale of known input information. For the “top-down” 
approach, usually, energy consumption is coming from a regional/country-level and then scaled down into grid-
ded information. For the “bottom-up” approach, it either utilizes actual AHE measurements or known energy 
consumption information for specific sites, scaled-up to its gridded value. Although more accurate, AHE using 
“bottom-up” approaches are difficult to implement and update due to the lack of actual measurements or energy 
consumption information for points within grids. In this study, we follow the “top-down” approach of Dong et al.10  
(Top of Fig. 1 inside grey-filled region). As with other top-down approaches2,7, the law of energy conservation is 
assumed in the methodology, such that all energy produced is eventually released to the atmosphere within the 
global domain. The energy consumed is later emitted into the atmosphere as heat, and this process occurs almost 
simultaneously. Under this assumption, annual-average anthropogenic heat of the country (Qf−y) is assumed to 
be equal to the sum of the primary energy consumption and anthropogenic heat from metabolic processes (QM). 
Primary energy consumption of the country can be further partitioned to components such as “heat loss” (QL), 
and AHE of “industrial and agricultural” (QIA), and “commercial, residential, and transport sectors” (QM) (Eq. 1).

= + + +−Q Q Q Q Q (1)f y L CRT IA M

The country-level (bulk) quantities of the components in Eq. 1 can be obtained by using energy balance statistics 
that relate the amount of consumption per component to the total primary energy consumption. Energy balance 
statistics provided by the International Energy Agency (IEA) were used (see Table 1). Various settings to spatially 
allocate the AHE from each sector were defined in Dong et al.10.

The workflow of this study is shown in Fig. 1. All inputs used in this study are listed in Table 1. The improve-
ments to the existing AHE dataset10 and the method to construct the futuristic AHE are contained outside of 
the grey-filled region (i.e. methodology of Dong et al.10) of Fig. 1. The following sub-sections (blue-filled region) 
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represent the specific processes to update the work of Dong et al.10. The sub-sections, “Adjustments of popula-
tion inputs using VIIRS nighttime lights” and “Inclusion of high heat-emission point sources”, discuss how the 
present and future population input estimates the QCRT, QIA, and QM in AH4GUC. The bulk country-level values 
of population, energy consumption & GDP, and the background climate that affects the future population distri-
bution setting, future country-level primary energy consumption, and future temporal weighting factors of AHE, 
respectively, are discussed in the sub-section, “Incorporating climate-change scenarios through SSP and RCP”. 
The procedure to estimate the future distribution of population is discussed in the sub-section “Urban sprawling 

Urban growing 
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Fig. 1 Workflow of AH4GUC construction. AH4GUC directly influences the components bounded by red 
boxes in the methodology of Dong et al.10, region in grey (figure used with permission).

Input Datasets Name/Description Resolution

Population LandScanTM 36 30 arc-second (appx. 1-km)

Nighttime Lights VIIRS DNB Nighttime Lights37 30 arc-second (appx. 1-km) 
resampled to LandScanTM

Nightfire VIIRS Nightfire verson 3.0 (Gravite)38 30 arc-second (appx. 1-km) 
resampled to LandScanTM

Energy Consumption and Energy 
Intensity

Energy Balance Statistics from the International Energy Agency (IEA)39 Country-level

Shared-socioeconomic Pathways (SSP) by The International Institute of 
Applied Systems Analysis (IIASA)40 Regional-level

Energy intensity level of primary energy (MJ/$2011 PPP GDP)33 Country-level

Monthly Surface Air Temperature
NCEP/NCAR 40-Year Reanalysis Project (2012 output)41 2.5 arc-degrees

Climate, Environmental Retrieval, and Archive (CERA); The World Data 
Center for Climate (WDCC)32

1~2.5 arc-degrees, varying 
(Supplementary Table S1)

Table 1. Model Inputs.
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and population distribution change”. The sub-section “Country-level energy consumption” is also discussed to 
mention how country-level primary energy consumption can be estimated from the SSP. Each sub-section is also 
situated under the time period of the AHE construction it applies.

Construction of present scenario. Adjustments of population inputs using VIIRS nighttime lights. LandScanTM  
(2013)11 and Global Radiance Calibrated Products of the Defense Meteorology Satellite Program/Operational 
Linescan System (DMSP-OLS)17 were previously used by Dong et al.10 to represent the population and nighttime 
lights at 1-km spatial resolution, respectively. The Global Radiance Calibrated Products of DMSP-OLS are no 
longer updated and was replaced with the monthly-available composite data from the Visible Infrared Imaging 
Radiometer Suite carried by the Suomi National Polar-orbiting Partnership (VIIRS) nighttime lights18, a more 
accurate dataset19,20 than then DMSP-OLS nighttime lights.

Nighttime lights intensity is needed to adjust the population density dataset. The LandScanTM dataset was 
found to mainly indicate population of residential areas. Using this raw population alone may underestimate final 
AHE of commercial areas. Nighttime lights, which are of higher intensity at commercial areas, were used to adjust 
the population map to assign new weighting parameters when downscaling country-level AHE into each grid.

Average radiance composite images (v1) from the VIIRS Day/Night Band from the period January 2014 to 
March 2016 (period available during the time the research was conducted) were downloaded and resampled 
using spatial averaging to the resolution of LandScanTM. Unlike the Global Radiance Calibrated Products of 
DMSP-OLS (nanowatts/cm2/sr), the range of values (watts/cm2) vary from one image to another. A single input 
nighttime-lights dataset (henceforth referred to as nVIIRS) was acquired by calculating the 20% trimmed mean 
of all images for each grid (or pixel) to capture the general nighttime light condition.

The derived nighttime-lights dataset was used to adjust the population density information calculated from 
LandScanTM. The steps are as follows:

 1. Estimate a linear regression curve between both datasets within the same country boundary.
 2. Using the Tukey’s method, detect outliers and calculate a second linear regression from the non-outliers.
 3. Population value at the outlier grids having nighttime light intensity above a certain threshold are replaced 

with a new population value calculated using the second linear regression.
 4. Repeat the process for all grids and countries.

In the above procedure, the threshold nighttime light value was set to vary per country in order to con-
sider intercountry differences. Because of the units and dynamic range of the nVIIRS, the lower threshold value 
(600) for the population-adjustment algorithm used in Dong et al.10 is not applicable. After inspecting multiple 
downtown commercial areas of capital cities, it was also found that setting an absolute threshold value may limit 
downtown detection for countries that have generally lower nighttime lights detection (e.g. Jakarta or Manila). To 
ensure intercountry variability, percentile thresholding using all grids’ nighttime light samples within a country 
were used to determine a country-specific threshold. To prevent over adjustment outside of commercialized 
cities, a percentile threshold value of 99.9% was used. The whole procedure results to a new global distribution of 
population-adjusted by nighttime light values that exhibit higher in commercial areas.

Energy consumption and socio-economic inputs. In the work of Dong et al.10, the annual total primary energy 
consumption of each country was taken from the U.S. Energy Information Administration (EIA) (see Table 1). 
In this study, this information was taken from the SSP database (The International Institute of Applied Systems 
Analysis, IIASA). The main purpose for using the energy consumption information of the SSP database is to pro-
vide consistency between energy consumption used as input for the present and future AHE estimates.

Acquiring the energy consumption values from the SSP database for each country was not straightforward 
because of certain limitations which include: (1) various providers providing different outputs for the same SSP 
scenario exists and (2) the SSP database for total energy consumption are only available regionally (i.e. group of 
neighboring countries). To address the variability of SSPs from various providers, an ensemble average of mul-
tiple model outputs (AIM, GCAM4, IMAGE, and MESSAGE) was calculated for the same level of SSP. Lack of 
country-based information was addressed using the concept of “energy intensity” which relates gross domestic 
product (GDP), a country-based parameter available in the SSP database (see section on Incorporating climate 
chance scenarios through SPP and RCP), with energy consumption. Energy intensity (m) has the units of energy 
consumption (TJ) per unit of GDP (purchasing power parity, billion US$2010/year). High values of m mean 
relatively high industrial energy output in proportion with GDP. In this study, we used the definition of “energy 
intensity” to estimate energy consumption of each country by multiplying GDP with a country’s m. Country-level 
m information was taken from The World Bank for the year 2010. Country-level total primary energy consump-
tion was downscaled from regional-levels values using the following equation.

= ×
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=
∈

EC EC m
m
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where ECp corresponds to the primary energy consumption; and the indices yr, c, r, SSP corresponds to year, 
country, region, and SSP level, respectively. The assumption of using m of 2010 was based on an earlier analysis 
revealing negligible changes in the energy intensity from 2010 to 2015 (latest available report from World Bank).

Construction of future scenario. Urban sprawling and population distribution change. To estimate a 
1-km future distribution of AHE, a 1-km spatial projection of population density for a specified period is needed. 
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Its projections must also be consistent with the known total projections for each country (available from the SSP 
database). In this study, distributed population projection was achieved using two steps:

 1. extract 1-km urbanization probability for the future from a global urban growing projection dataset;
 2. construct a model to downscale the country-level population projection into 1-km grids using the project-

ed urbanization probability and present population density distribution. The grid positions match the AHE 
for the present condition.

Spatiotemporal changes in population density coincides with urban growing, which occurs either horizon-
tally (e.g. conversion of vegetated land to an urban structure) or vertically (e.g. demolishing smaller buildings 
in place of taller ones). Information on futuristic urban growth can be used to project population. During the 
construction of AH4GUC, a high-spatial-resolution global urbanization probability map21 (GUGPS) was publicly 
available and was then used in the work. The resolution coincides with that of the population dataset used in this 
study and that of Dong et al.10. This conveniently removes the extra work of resampling either dataset. A specific 
feature is that the mapped urban growing projections are in terms of integer-type probability values (i.e. not 
simply urban or non-urban) for a non-urban grid to become urban for a year in the future. GUGPS was created 
using an urban growing model called SLEUTH22, an urban growing model that utilises growth coefficients finely 
calibrated in the model from known geospatial information (i.e. topographic slope, land cover, restricted areas 
for urbanization, urban cover, transportation networks, and hill-shade for visualization) of a target region. In the 
GUGPS implementation of SLEUTH, the target regions were represented by tiles containing cities (i.e. urban 
growth rates are unique to each tile).

High urbanization probability values for a location in GUGPS map means a higher chance for the said loca-
tion to urbanize. A higher chance for urbanization also translates to a higher population increase under the trivial 
assumption that with urbanization comes population increase. We estimated future spatial projection of popula-
tion density by combining the annual urbanization probabilities from GUGPS with the most recent population 
density data of LandScanTM. Furthermore, country-level population from the SSP was used as the constraint. The 
method23 is further explained.

To predict the distribution of future population density, a discretized form of the logistic model24 was imple-
mented for each grid of the same country as follows,
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where P refers to the population value at the coordinates n, i, and j, referring to the year (discrete), longitudinal, 
and latitudinal coordinates, respectively. Parameters r and K are the natural population growth and the limiting 
values for population growth for each grid, respectively. They are assumed, in this study, to inherently represent 
population influx, net increase (births and deaths) of people, and inter-decadal factors (change in infrastructure 
or policies) influencing population growth. K was set to the maximum population density value of all grids within 
the same country for the year 2013. On the other hand, r was assumed to be a linear function of the urbanization 
probability fi j

n
,  outputted from SLEUTH using the following equations,
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where a and b are grid-varying internal parameters for future years obtained by minimizing the root-square dif-
ference of the country-level total estimated Pi j

n
,  for n = 2001 (starting period), 2006, 2009, 2010, 2012 and their 

corresponding real values taken from LandScanTM. An additional constraint for the minimization was also set 
such that the absolute percentage error between the country-level total of estimated Pi j

n
,  and those from the SSP 

should not exceed 1%. a and b were then recalculated for every decadal interval (i.e. a and b were set to the same 
value from the period 2041 to 2050). Also, grids =P( 0)i j

n
,  that will be affected by urban encroachment 

=+f( 0)i j
n
,

1  was initialized with a +Pi j
n
,

1 value of 10.
Future prediction of nighttime lights was not conducted for two reasons. First, it is uncertain how 

country-level indicators from SSP and urban sprawl quantitatively relate with nighttime lights intensity. Second, 
nighttime lights were mainly used to adjust the population distribution to have more representation in commer-
cial areas. Commercial areas are assumed to not change up to the target future period. Lastly, urban shrinking was 
also not modeled in this study since depopulation does not necessarily result in removal of urban cover.

Incorporating climate-change scenarios through SSP and RCP. As briefly described earlier, Integrated Assessment 
Models (IAM) and global climate models (Coupled Model Intercomparison Project Phase 5 or CMIP5), which 
utilizes SSP and RCP as inputs, model the socio-demographic and climate information that are needed to estimate 
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the future AHE. From SSP, projections of country-level energy consumption at decadal intervals can be obtained 
using the method introduced earlier (see section on Energy consumption and socio-economic inputs). In addition, 
projections of country-level total population at decadal intervals are also available and were used to estimate the 
future spatial distribution of population for each country (see section on Urban sprawling and population distri-
bution change). Meanwhile, monthly mean near-surface air temperature (tas) projections were also downloaded 
from the CMIP5 models. The monthly mean values of tas are used to downscale the annual-average AHE to its 
monthly values.

In this study, we utilized the SSP3, which assumes a region experiencing high mitigation and adaptation 
challenges to climate change. From the SSP, country-based population and GDP projections are available. The 
population was taken from the SSP3 modeled by the International Institute for Applied Systems Analysis (IIASA), 
the National Center for Atmospheric Research (NCAR). GDP was taken from the ensemble average of GDP 
projections of SSP3 modeled by The Organization for Economic Cooperation and Development (OECD: 177 
countries estimated) and IIASA (150 countries estimated).

tas from the RCP8.5 (high climate forcing) was taken from the ensemble average of all model outputs main-
tained by the Climate, Environmental Retrieval, and Archive (CERA) in The World Data Center for Climate 
(WDCC). The RCP8.5 models used are listed in Supplementary Table S1.

In the future AHE dataset, energy-consumption data were missing for a few countries and districts. Thus, 
future AHE distribution were unavailable for North Korea, Taiwan, Guam, South Sudan, Seychelles, Western 
Sahara, São Tomé and Príncipe, French Guiana, Carribean islands east of Puerto Rico, Falkland Islands, and a few 
islands including and surrounding American Samoa.

Scenarios were finally constructed from the combination of SSP and RCP types. Using the concept of climate 
scenario matrix15, a “worst-case” scenario was constructed under RCP8.0-SSP3. This scenario assumes that the 
future AHE is an integrated result of minimal global efforts to adapt and mitigate climate change.

Inclusion of high heat-emission point sources. The top-down approach, which mainly utilizes bulk 
energy consumption quantities and population density distributions, tends to overestimate the AHE com-
pared with the bottom-up approach. One of the possible reasons is that few districts exist which emit significant 
amounts of anthropogenic heat without necessarily having very large population density values or extremely 
high nighttime light intensity. These locations include manufacturing buildings and power plants. In this study, 
a simplified approach of including the detected combustion sources in the AHE estimation is introduced. 
These potentially high AHE districts were detected and assigned additional weighting to the grid allocation of 
country-level AHE. Detection of high-heat emission point sources were conducted using the VIIRS night fire 
datasets (VIIRS-Nightfire)25 (see Table 1).

VIIRS-Nightfire is a product of VIIRS which contains information regarding the day-to-day location of 
detected combustion sources. For example, flared gas volume is detected in VIIRS-Nightfire which are usually 
attributed to refineries and liquified natural gas terminals26. Version 3.0 (GRAVITE) of the VIIRS-Nightfire, 
the latest available version when the study was conducted, was downloaded for the period December 2017 
until February 2018 from the database (Table 1). The following filtering procedure was necessary to detect the 
close-to-permanent combustion sources (flared gas volume) in the AHE estimation:

 1. Using the geographical location (latitude and longitude) of the combustion sources, daily occurrences of 
combustion within a 30-arc second grid are summed and stored as the grid’s scalar value.

 2. Temporary heat sources detected by VIIRS are removed by setting a threshold value of the grid’s frequen-
cy of combustion occurrence to 3. Grid’s with less than or equal to 3 days of combustion occurrence (e.g. 
biomass burning, moving heat sources, fire incidents) were assumed to be temporary or artificial, and not 
considered in the AHE estimation.

After conducting the above procedure, a global distribution of daily frequencies of combustion sources di j
hot
,  

was obtained. di j
hot
,  was assumed as a weighting for the amount of anthropogenic heat in the detected combustion 

source relative to the other sources within the same country. The same di j
hot
,  was used to estimate the future AHE 

distribution. This means that existing refineries or liquified natural gas terminals of a country were assumed to 
operate in the same manner until 2050. Equation 1 was modified and the grid value for each AHE component is 
now estimated as follows,
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Each component is estimated per grid of position (i, j) and are based on the ratio of its final energy consumption 
to the total primary energy consumption (ECp) calculated from the energy balance statistics (EIA database). RL, 
RCRT, RIA are the respective ratios of the final energy consumption (allocated to “heat loss”, “industrial and agri-
cultural”, and “commercial, residential, and transportation” sectors) to the total primary energy consumption 
within each country. Ai,j refers to the area (m2) of the grid. A′i,j corresponds to the area of a populated grid. When 
population density is greater than 0, A′i,j is set to Ai,j. On the other hand, A′i,j was set to 0 for uninhabited grids. 
PD*

i,j is the value of the population density adjusted by nighttime lights (see section on Population and nighttime 
lights consideration) at grid (i, j).

Equation 8 was based on previous findings27,28 that waste heat from point sources such as power stations and 
incineration plants account for 10~11% of the final energy consumption. Here, we set the allocation for Qpoint 
to be 10% of a country’s final energy consumption. To conserve the total primary energy consumption with the 
introduction of Qpoint, adjustments were made to QL and QIA. The adjustments were made based on the energy 
consumption by industrial sectors and the energy losses (i.e. waste heat). s (Eqs. 9 and 11) is the ratio between 
the [amount of final energy consumption allocated to “heat loss”] to the [sum of this value and the final energy 
consumption allocated to “industrial sectors”]. s determines the adjusted values for QL and QIA in order to com-
pensate for the inclusion of Qpoint. ECp is in the units of Joules (J) and T corresponds to a 1-year period in terms 
of seconds (s).

Data Records
AH4GUC is a database which contains maps of hourly-representative anthropogenic heat emissions (AHE) rep-
resenting the periods 2010s and 2050 s. The AHE of 2050 s represents a single future scenario based on RCP8.5 
and SSP3 climate change pathways. This future “worst-case” scenario assumes minimal or no adaptation and mit-
igation measures implemented in all countries. Monthly-averaged and annual-averaged values representing the 
2010s and 2050 s are also provided. All files are available in single-band raster format (GeoTIFF format) are freely 
accessible through Figshare29 and at a university-maintained server (Tokyo Institute of Technology, http://urban-
climate.tse.ens.titech.ac.jp/). Each pixel contains integer formats of AHE in units of W per sq. m. per 100,000. 
GeoTIFFs can be further analyzed or process using any GIS software or programming tools, such as R or Python.

Technical Validation
AH4GUC was verified using multiple existing AHE datasets created using either “top-down” and “bottom-up” 
approaches (see Methods). The AHE map of the 2010s was compared with the “bottom-up” datasets of Moriwaki 
et al.30 and Iamarino et al.31 prepared for Tokyo and London, respectively. The dataset was also compared with 
other recently released “top-down” datasets, such as the AH-DMSP8, PF-AHF9, and the dataset of Dong et al.10 
(DONG). For the 2050 s scenarios, future scenarios from PF-AHF and Flanner2 (FL) were used for its validation. 
Focusing mainly on the intensity and spatial distribution, the annual-averaged AHE values were mainly used. 
Since no modifications in the methodology10 were implemented to the estimation of monthly and hourly values, 
readers are advised to refer to Dong et al.10 for its verification. In this section, we verify AH4GUC in terms of its 
performance relative to other datasets when inspecting multiple large cities across varying spatial resolutions and 
zonal/meridional means.

The most important comparison is whether the datasets constructed from “top-down” approaches (i.e. 
“top-down” datasets) compare reasonably with the “bottom-up” approaches (i.e. “bottom-up” datasets). 
Present-day (2010s) annual-averaged AHE from various datasets were mapped in their finest available native 
resolutions for Tokyo and London as shown in Fig. 2. Both cities were selected for the availability of “bottom-up” 
datasets. The Tokyo21 and London22 “bottom-up” datasets (Fig. 1a,c) correspond to AHE of 1997 and 2008, 
respectively. Since the “bottom-up” datasets were constructed from actual heat sources (i.e. records of actual 
building locations and individual energy consumption, traffic), we assumed that they represent a more accurate 
spatial distribution than those from the “top-down” approaches but are difficult to update given the stringent 
requirement of actual heat sources and intensities. The “top-down” datasets, except for AH-DMSP, mostly capture 
the relatively higher emissions at the city-centers. Both AH4GUC and DONG capture spatial heterogeneity of 
AHE quite well in Tokyo, while AH4GUC, DONG, and PF-AHF represent better London’s AHE.

In Tokyo (Fig. 2a,b,e,f,i,j), the AHE values at the city center (reddish and white region at the center of Fig. 2a) 
appear slightly more dispersed in AH4GUC (Fig. 2b) than DONG (Fig. 2e). Higher spatial heterogeneity can be 
found, especially at the city-center, for AH4GUC better resembling the “bottom-up” dataset, whereas DONG 
appears to have higher values spread uniformly at the city center. The city center of Tokyo seats the Imperial 
Palace which is largely surrounded by parks and vegetated land (i.e. low AHE). The main reason for their differ-
ences can be attributed to the replacement of DMSP-OLS with the VIIRS nighttime lights dataset in the construc-
tion of AH4GUC. For the same city, the highest available resolutions of PF-AHF (Fig. 2f) and FL (Fig. 2i) were 
not enough to capture spatial heterogeneity of the city-center. The main reason for this was that the population 
map used to downscale the energy consumption data into AHE of each grid was not sufficient to capture the 
AHE, especially, in the commercial areas. PF-AHF and FL appear to slightly shift the high AHE region north-
west and outwards from the city center. This region represents a relatively high residential population, which 
means globally-available population datasets tend to reasonably capture the residential population more than 
the locations of the populace during the daytime (i.e. workplaces, offices, commercial areas). Also, despite the 
high-spatial resolution of the PF-AHF, its estimated AHE distribution for Tokyo appears uniformly distributed 
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for grids within the same administrative boundaries (i.e. the same population value was assigned for grids within 
the same administrative boundaries). This implies the lack of detailed spatial representation of the population in 
the region. Overall comparing the grid values at grids with “bottom-up” information for Tokyo, the Pearson cor-
relation coefficients for DONG, AH4GUC, AH-DMSP, FL, and PF-AHF are 0.697 (two-tailed p-value: 2.5E-139), 
0.719 (4.0E-155), 0.003 (0.91), 0.003 (0.92), and 0.182 (1.E-8), respectively.

In London (Fig. 2c,d,g,h,k,l), the “top-down” datasets generally show a wider area of large AHE values than the 
“bottom-up” dataset (Fig. 2c). These larger estimates by the “top-down” datasets were mainly attributed to the dif-
ference in the target period of estimation. At the city-center (reddish and white region at the center of Fig. 2c), the 
improvement of AH4GUC (Fig. 2d) was noticeable compared with DONG (Fig. 2g) in terms of the representa-
tion of AHE values at the city-center. Similar to the comparisons in Tokyo, PF-AHF also depicted higher values at 
the immediate surroundings of the city-center compared to DONG but relatively lower values at the city-center 
were estimated. This suggests the lack of daytime representation (when people are generally situated in the work-
place such as in commercial areas located at the city-center) from the global population dataset. However, unlike 
Tokyo, spatial heterogeneity of AHE values was captured by the PF-AHF (i.e. no uniformity of values within the 
same administrative boundaries). The coarse resolution of FL also failed to capture intense AHE values at the 
city-center revealing the same tendency as PF-AHF (see visual comparisons of “top-down” datasets resampled 
using averaging to the same resolution as FL). Overall comparing the grid values at grids with “bottom-up” infor-
mation for London, the Pearson correlation coefficients for DONG, AH4GUC, AH-DMSP, FL, and PF-AHF are 
0.667 (two-tailed p-value: 0.0), 0.78 (0.0), 0.526 (4.3E-211), 0.574 (3.4E-260), and 0.34 (3.3E-81), respectively.

During the time of this investigation, the AH-DMSP contained an inherent error where AHE appeared shifted 
westward throughout the whole global domain (as evident from Figs. 2 and 3). Disregarding this inherent error, 
AH-DMSP still showed the poorest resemblance with the “bottom-up” datasets (Fig. 2 and Fig. 3). The main 
reason behind this was that among the globally available “top-down” datasets, the AH-DMSP did not primarily 
use population maps as a weighting factor to downscaling energy consumption of the country (i.e. population 
was used for masking above a certain threshold). Nighttime lights information is not enough to represent AHE.

Fig. 2 Comparison of anthropogenic heat emission datasets for Tokyo and London. “Bottom-up” approaches 
by (a) Moriwaki et al.21 and (c) Iamarino et al.22 for Tokyo and London, respectively; (b,d) AH4GUC; (e,g) 
DONG10; (f,h) PF-AHF9; (i,k) FL2; (j,l) AH-DMSP8. Values lower than 5 W/m2 are masked.
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The “top-down” datasets were also compared in the same manner for other megacities as shown in Fig. 3. 
“top-down” datasets resampled to the same resolution as FL using averaging are shown in Supplementary 
Figure S1. In summary, the same tendency could be said as with the comparisons in Tokyo and London. For 
most cities, little differences were found in DONG and AH4GUC when viewed over wider domains. However, 
the differences become more apparent at the city-center (where DONG tends to be slightly more uniform) and 
at detected point sources (see Methods; also discussed later). As confirmed early in the discussion of Tokyo 
and London, the improvement caused by the replacement of DMSP-OLS with VIIRS is quite obvious at the 
city-centers. Commercial areas characterized by clusters of tall buildings have lower (higher) values than the 
residential areas in DONG (AH4GUC). In Jakarta for example, the intensity of lights from the DMSP-OLS were 
all below the fixed nighttime-lights threshold for adjustment in DONG which resulted in its underestimation of 
AHE in commercial areas (Supplementary Figure S2).

As with Tokyo and London, the level of spatial detail throughout the cities was not well captured by 
PF-AHF, FL, and AH-DMSP (Fig. 3) when compared with DONG and AH4GUC. Such that, AHE mapped 
from PF-AHF appears uniformly distributed at grids within the same administrative boundary despite its high 
spatial-resolution. Likewise, FL shows spatial heterogeneity adequate to its level of resolution, while occasionally 
featuring uniform distribution at grids within the same administrative boundary. AH-DMSP was found to be dif-
ferent from the other “top-down” datasets with their centers shifted geospatially westwards from the city-center.

The Pearson correlation coefficients comparing the selected “top-down” datasets with each other are summa-
rized on Fig. 4. Generally, AH4GUC tends to spatially correlate well with other datasets. However, differences in 
mean AHE estimates can be seen. The global average AHE of the present period by DONG, AH4GUC, PF-AHF, 
FL, and AH-DMSP are 0.030 W/m2, 0.031 W/m2, 0.039 W/m2, 0.027 W/m2, and 0.018 W/m2, respectively. The 
slight global increase of AHE by 0.001 W/m2 in the AH4GUC compared to DONG is mainly attributed to the 
nighttime lights adjustment which concentrates the downscaled AHE values at urban areas especially at large 
administrative boundaries. This higher global average value of AH4GUC also appears in PF-AHF. The global 
averages can be further decomposed by mean values of AHE across the same latitude and longitude (Fig. 5).  

Fig. 3 Comparison of global anthropogenic heat emission datasets for selected megacities. Figures on the same 
row correspond to cities: Jakarta (a,b,c,d,e), Delhi (f,g,h,I,j), Pearl River Delta (k,l,m,n,o), Paris (p,q,r,s,t). 
Figures on the same column correspond to the datasets: DONG10 (a,f,k,n), AH4GUC (b,g,l,q), PF-AHF9 
(c,h,m,r), FL2 (d,i,n,s), AH-DMSP8 (e,j,o,t). Values lower than 1 W/m2 are masked.
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We defined zonal (meridional) mean to refer to the spatial mean of AHE across the same latitude (longitude) bins 
of 0.5° intervals. In this latitudinal and longitudinal analyses, all datasets were resampled via averaging to match 
the same spatial resolution as FL (the version with 0.5° resolution). Zonal and meridional sum of powerplants 
(dataset prepared by the Global Energy Observatory23) are also overlain on Fig. 5.

Comparing the “top-down” datasets across latitudes and longitudes reveal similarities and differences. All 
datasets generally suggest significantly large AHEs at regions located at the midlatitudes (20° to 60° latitude; 
Fig. 5a) and longitudes corresponding large continents such as North America (−50°~−120° longitude), Europe 
(−10°~60° longitude), and Asia (Fig. 5b). The zonal and meridional means of AHE also generally coincide with 
the total number of geolocated powerplants listed in the Global Powerplant Database23. It is to be carefully noted 
that not all powerplants around the world are geolocated here. Consistent with the calculated global average, 

Fig. 4 Matrix of Pearson correlation coefficients between “top-down” datasets of samples at a global scale. All 
datasets were resampled to the same resolution of FL using averaging.

Fig. 5 Zonal mean (a) and meridional mean (b) of anthropogenic heat emission (left-hand side vertical axis) and 
quantity of detected powerplants35 (right-hand side vertical axis). All datasets resampled to FL resolution (0.5°) 
and statistics estimated at 0.5° intervals. (c) shows a global map of AH4GUC for 2010s in native resolution.
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AH4GUC and PF-AHF generally have higher values than the other datasets throughout the latitudinal and longi-
tudinal averages, while PF-AHF (green lines in Fig. 5) tends to have lower estimates of AHE. From the meridional 
mean, it can be seen that the larger peaks alternate between AH4GUC and PF-AHF, while much larger peaks are 
apparent in the PF-AHF.

At the latitude range of −40°~40°, PF-AHF shows relatively larger peaks compared with the other datasets. On 
the other hand, AH4GUC and DONG generally have larger values at northern areas of the midlatitudes. From 
the meridional mean (Fig. 5b), it can be seen that these large values appear more obvious over regions in Russia, 
Canada and Europe. Zooming in through these regions such as Russia (shown in Supplementary Figures S3–S5), 
it appears that the detailed LandScanTM and nighttime lights allows more detailed detection AHE at industrial 
locations not necessarily listed in the Global Powerplant Database.

Figure 6 shows the differences in future estimates of AHE from AH4GUC, PF-AHF, and FL. Note that in FL, 
the 2040 s estimate is shown instead due to availability. On the primary vertical axis (left-hand vertical axis), the 
same analyses as Fig. 3 is shown showing zonal and meridional mean of future AHE from the “top-down” datasets 
(for reference with the present, the 2010s AHE from AH4GUC is also shown). On the secondary vertical axis 
(right-hand vertical axis), the difference of AHE between the 2050 s and 2010s according to AH4GUC is shown. 
Comparing the future datasets, the global averages are 0.047 W/m2, 0.049 W/m2, and 0.050 W/m2 for FL, PF-AHF, 
and AH4GUC, respectively. The excess 0.001 W/m2 in AH4GUC compared with the other datasets comes from 
larger estimates at detected hot spots located at the middle and higher latitudes of the northern hemisphere as 
explained earlier and in Fig. 3. Moreover, inputs for the future projection of AHE from AH4GUC were based on 
worst-case climate change scenarios (RCP8.5 and SSP3, see Methods) with additional consideration for urban 
sprawling. To supplement existing future scenarios provided by PF-AHF and FL, AH4GUC provides an extreme 
AHE scenario that considers the detailed representation of urbanization changes to the future. From the method-
ology presented in this work, other climate-change scenarios may also be considered.

The projected increase in AHE from 2010s to 2050 s reveals two distinct increases along the latitude (Fig. 6a), 
namely: from the equator up to 15° North, and at the mid-latitudes. Along the longitude (Fig. 6b), the increase 
is also more significant east of 0° longitude. A map of the changes in AHE from the 2010s to 2050 s is shown 
in Fig. 6c with the color range of visualized AHE reduced for visibility. Large projected increases in AHE are 

Fig. 6 Zonal mean (a) and meridional mean (b) of present and future anthropogenic heat emission (left-hand 
side vertical axis); and the zonal and meridional mean difference (upper chart in a and b) between the present 
2010s and future 2050 s calculated from AH4GUC (right-hand side vertical axis). Red-filled and green-filled 
regions correspond to a zonal or meridional 2050 s increase and decrease of emissions, respectively. All datasets 
resampled to FL resolution (0.5°) and statistics estimated at 0.5° intervals. (c) shows a global map of the 
difference between 2050 s and 2010s of the AH4GUC in native resolution.
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located in Asia, Africa, and some countries in South America and North America. In the United States, the West, 
Northwest, and Southwest states will have increasing emissions while decreases are felt for some less urbanized 
areas in the Mid-West, South East, Mid-Atlantic, and North East US. In Europe, the western countries will gener-
ally be emitting lower AHE in the 2050 s compared with the 2010s; while the AHE of Eastern Europe is expected 
to increase. A decrease in AHE by the 2050 s is most prominent in South Korea and Japan. Decreases in AHE are 
attributed mainly to population decline throughout the country and depopulation in rural areas.

Another significant difference between existing “top-down” approaches and AH4GUC is the considera-
tion of point sources using VIIRS Nightfire datasets (see Methods). In the AH4GUC, a portion of the annual 
energy loss was allocated to the grids representing point sources of each country. 9.17% of all 29,910 powerplants 
(estimated using zonal statistics of the surrounding powerplants with a radius of 10-km) listed in the Global 
Powerplant Database23 were found to coincide with the detected point sources suggesting that not all powerplants 
have detectable heat emissions from VIIRS. An example of a powerplant in the Netherlands coinciding with the 
detected point source is shown in Supplementary Figure S6. On the other hand, many powerplants were also 
found to have detected point sources surrounding it by more than 10-km away (Supplementary Figure S7). This 
suggests the possibility that the geospatial location of powerplants listed in the Global Powerplant Database23 
may also refer to headquarters of powerplants slightly located farther from its high-heat-emitting components.

Usage Notes
We hope that this AH4GUC, which is a major improvement from previously estimated “top-down” datasets and 
that of Dong et al.10, will provide researchers and urban planners with detailed distribution of anthropogenic heat 
emissions of the present and the 2050 s period. Its future AHE projection, which considers urban growth and 
population projections under worst-case scenario, will be useful in climate change modeling where urbanization 
is not well represented.

With the advancement of computational speed, general circulation models (GCM), which are used to model 
the effects of climate change, are becoming more capable of wide-scale simulations at high-spatial resolutions. 
Alongside this, high-spatial maps of urban parameters, which can serve as surface boundaries to GCMs urban 
surface models, are becoming necessary. Global maps of future AHE, such as the AH4GUC, can contribute to 
existing future scenarios (e.g. PF-AHF and FL).

This dataset is highly recommended to users who wish to estimate the possible changes in the global dis-
tribution of AHE between the present and the 2050 s. When investigating for specific cities, users have to care-
fully inspect both AH4GUC and DONG datasets and decide suitability for the city. Furthermore, given that the 
worst-case defines the future AHE scenario in this dataset, adaptation and mitigation strategies were not assumed. 
The primary reason for this was that urban sprawling data (used as input) was mainly generated from historical 
urban cover information and an SSP3 pathway. Furthermore, users have to be aware that this was derived using 
a “top-down” approach and is expected to be less accurate from those that were estimated from “bottom-up” 
approaches (see Technical Validation). Hence, adjustments may be needed for certain regions. The AH4GUC will 
serve as an alternative data or additional option for locations with inaccurate or missing AHE records.

Finally, AH4GUC is the first “top-down” dataset to incorporate global point sources automatically derived 
from VIIRS Nightfire32 outputs. According to Elvidge et al.32, the VIIRS Nightfire captures high-radiant emissions 
associated with gas flares, biomass burning, volcanoes, and industrial sites such as steel mills. Although we pro-
cessed the long-term VIIRS Nightfire dataset to detect more frequently occurring emissions such as those from 
industrial sites, the algorithm introduced in this work may be further improved in the future.

A strong limitation can be found in the usage of urban growing scenario to map future population. To estimate 
future population distribution, urban an growing probability map was needed (see “Methods”). During the con-
struction of AH4GUC, GUGPS was the only latest publicly available dataset that provides a 1-km urban growing 
probability projection based on the historical growth of cities. We assumed that combining this dataset with the 
total country-level population assumed from the SSP will force the future AHE intensities to be somehow consist-
ent with the designed future climate scenario (e.g. SSP3-RCP8.5). This assumption remains uncertain since urban 
growth itself should also be linked with the defined SSP.

The above limitations may be addressed by improving the SLEUTH model used in GUGPS or by incorporat-
ing more recent urbanization scenarios or datasets that are consistent with SSP. GUGPS was constructed using 
the SLEUTH model, which utilizes growth coefficients derived from historical geospatial datasets (see “Methods” 
section). The growth coefficients33 physically represent various mechanisms of urbanization (e.g. diffusion, 
growth along roads). The coefficients may be manually adjusted to match the definition of the SSP. To achieve 
this, a priori understanding of the underlying assumptions of the SSP and the individual effects of each growth 
coefficient to urban growing must be known. Specific future policies of the country may also be introduced by 
adjusting the said growth coefficients in SLEUTH. Another way to be overcome the said limitation would be to 
utilize more recent urbanization datasets that are more compatible with SSPs. The work by Chen et al.34, which 
provides different conditions of global urban cover changes for each SSP, may be used to replace the GUGPS 
dataset or combine with it to provide urbanization probability maps.

Code availability
The codes for constructing the dataset were written in Python language and can be downloaded from https://
urbanclimate.tse.ens.titech.ac.jp/ or may be requested directly from the corresponding author. The inputs used 
to construct the present and future AHE datasets are all publicly available online with sources cited within this 
manuscript. Specific pre-processed inputs may be requested from the corresponding author upon request.
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