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Abstract 

 

Emotion Recognition is a process that uses affective models and different measurement 

methods to identify behavioral states in the human body and label them as emotions or 

affective states. Brain Computer Interphases (BCIs) have adopted the use of emotions 

recognition under the domain of affective BCIs, which attempt to create systems able to 

detect affective states from neurophysiological signals, to enhance the human-computer 

interaction (HCI). 

 

The purpose of this research is to Identify emotional reactions using both 

electroencephalography (EEG) signals and participants’ individual characteristics under HCI 

scenarios. EEG traits and individual characteristics were analyzed to identify which ones are 

useful in the emotion classification process (represented as arousal and valence labels) from 

public emotion recognition dataset. Then, a videogame to elicit different emotions, while 

recording EEG signals, self-assessment emotional answers, and behavioral cues was 

designed, to analyze the correlation, and classification between EEG traits, arousal-valence 

responses and videogame time events as behavioral cues related with emotional reactions. 
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Chapter 1 

 

Introduction 

 

Human computer interaction is the study field of interaction between users and computers 

and the design, evaluation and implementation of computer interfaces that are receptive 

to the user's needs and habits [1]. One of the key aspects on those interactions with 

technology are human emotions due to their involvement in multiple cognitive processes 

such as attention, perception, imagination, thinking, learning, memory, decision making, 

and problem-solving [2]. When interacting with technology, emotions can shape these 

cognitive processes, altering the experience and the interaction performance with the 

machine, this is why it is important to build technological systems that can assess emotion 

to enhance the user experience. With potential use in fields as perceptual information, 

human health, arts and entertainment, companion technology and assistive computing [3], 

emotion recognition becomes a potential tool that can benefit the development of better 

computer interfaces. 

 

Emotion recognition using electroencephalographic signals is a recent and wider field of 

study where the researchers try to predict emotions using information derived from 

physiological signals. However, one of the many challenges faced by these kinds of 

researches is the selection of tools and data sources in the human body that allow to assess 

the emotions without being intrusive on the process they try to analyze and obtain higher 

accuracies on their emotion prediction. 

 

 



1.1. Human computer interaction 

 

Human computer interaction (HCI) is the field of computer science that concerned about 

“the design, evaluation and implementation of interactive computing systems for human 

use and with the study of major phenomena surrounding them” [4]. HCI groups several 

disciplines with different emphases: computer science (application design and engineering), 

psychology (cognitive processes and the empirical analysis of user behavior,) sociology and 

anthropology (interactions between technology, work, and organization), and industrial 

design (interactive products development). HCI focus on the study of the joint performance, 

and the communication structure between users and machines, together with the 

interface’s usability, reliability and functionality [5]. 

 

1.2. Emotion Recognition 

 

Emotion recognition is the process that uses affective models and measurement methods 

to identify human body states and categorize them as affective states. It aims to model the 

emotional interactions between a human and a computer by measuring the user behavioral 

cues related with emotions. Emotion recognition is a two-step process where: first, data is 

gathered from behavioral cues related to emotional states, like body movement or 

electrophysiological signals, using sensing devices (cameras, microphones, or physiological 

sensors). Second, the data is processed to analyze and identify changes and patterns related 

to the emotional states, applying machine learning, deep learning and data mining 

algorithms [6]. The initial goal of emotion recognition the design computer systems that can 

recognizes emotions and act according to this information [3]. 

 

1.3. Affective brain computer interfaces 

 

Brain computer interfaces (BCIs) are technological communication systems that allow users 

to interact with external devices using brain activity [7]. A BCI system can monitory and 



preprocess brain signals, to extract information and translate it into commands to execute 

a particular action. The result can be perceived by the user who can modulate his brain 

activity to accomplish his intents [8]. BCIs have adopted the use of emotions recognition 

under the domain of affective brain computer interfaces (aBCIs), which attempt to create 

devices able to detect affective states from neurophysiological signals to enhance the 

human-computer interactions [9]. Neurophysiological signals are closer to the origin of the 

affective states (activation of the sympathetic branch of the autonomic nervous system), 

the signals are less dependent on observable behavior, and less susceptible to deception. 

However, they require more intrusive techniques and sensors for measurement, and 

present difficulties while recording in real-world settings and interpreting them in a 

participant-independent manner [9],[10]. 

 

1.4. Electroencephalography (EEG) signal 

 

One of the most used neurophysiological signals for emotion recognition is 

electroencephalography (EEG), which measure the oscillations of local field potentials of 

neuronal masses detected at the scalp using electrodes. The neurophysiological 

measurement of emotions using EEG is complicated due of the low spatial resolution and 

the number electrodes to be placed on the participant’s head (around 8 to 128 depending 

on the experiment and the robustness of the equipment used). Furthermore, since most of 

the core affective structures are located in the ventral part of the brain, a direct assessment 

of the emotional activity by EEG, which primarily records signals from superficial neocortical 

regions, is difficult [9]. However, EEG provides great time resolution, allowing researchers 

to study phase changes in response to emotional stimuli and how it relates with other 

cognitive tasks [11]. A few methods for analyzing EEG data that correlates with emotion 

are: event-related potential (ERP), event related desynchronization/synchronization, 

steady-state visual evoked potentials, frequency-domain analysis, and frontal EEG 

asymmetry. 

  



Chapter 2 

 

Backgrounds and Aims 

 

This chapter will provide the detail about previous work and assumption that are used in 

this thesis. This chapter talks about emotion recognition, EEG signals, individual 

characteristics, affective models, emotional stimuli tools, limitations and the aim of this 

research. 

 

2.1. Emotion recognition 

 

Emotion is a psychological state that is accompanied by physiological changes that can lead 

to the modification of a person’s expressions, which are observable and measurable 

manifestations and can be perceived and evaluated by others as evidence of an emotional 

state [12]. For the identification of emotional states by HCI systems, varied approaches are 

grouped under the term emotion recognition, which uses affective models, and 

measurement methods to identify individuals’ behavioral states, related to emotion or 

affective states. Emotion recognition can be examined by pattern extraction through 

machine learning techniques from signals like speech, body movement, and facial 

expressions, or physiological signals that describe individuals’ behavior [13]. Figure 1 shows 

the basic pipeline for emotion recognition systems where the basic blocks are: input 

information (e.g., EEG, individual characteristics), affective model, emotional stimuli, 

feature extraction/feature selection, and classification/regression. 

 

 



 

 

Figure 1. Emotion recognition pipeline. 

 

2.2. EEG signals and emotion recognition 

 

The major difficulty with physiological signals approaches relays on the effective acquisition 

of these signals in real world and in unsupervised scenarios due to the lack of robust 

equipment designed to use outside laboratory; however, one of the advantages of using 

physiological signals for emotion recognition is the difficulty to disguise an individual’s 

affective states, this is the main reason why they are becoming so widely use in affective 

computing solutions. The limbic system is known for controlling basic motivations, including 

emotions, also, affect-related processing in the human brain is distributed across the 

brainstem, limbic, paralimbic, and neocortical regions [2]. 

 

EEG has gained increasing attention owing to its promise of potential applications in brain–

computer interface (BCIs) for assistive technological solutions to overcome physical and 

speech disabilities. Emotion recognition using EEG signals focuses its development on two 

main application fields: first, medical applications designed to provide assistance, 

enhancement, monitoring, assessment, and diagnosis of human psychiatric and 

neurological diseases; and, second, non-medical applications designed to entertain, 

educate, and monitor emotional states in a commercial or personal context [14], [15]. 

 



EEG records the oscillations of local field potentials of neuronal masses detected at the scalp 

using electrodes. The EEG activity recorded at the scalp surface consists mainly of the 

summed postsynaptic potentials of many neurons (called a neuronal mass) aligned in the 

same direction and firing synchronously. 

 

EEG signals are a powerful method for studying the brain’s responses to emotional stimuli 

because its measurement equipment is noninvasive, fast, and inexpensive. EEG data lacks 

spatial resolution and requires several electrodes (around 8 to 128 depending on the 

experiment and the robustness of the equipment used) to be placed on the participant’s 

head; however, it provides great time resolution, allowing researchers to study phase 

changes in response to emotional stimuli [11].Generally, EEG is measure using the 

International 10–20 system, that is an internationally recognized method to describe and 

apply the location of scalp electrodes (figure 2). 

 

 

Figure 2. International 10-20 system for EEG. 

 

2.2.1. EEG technique analysis and features 

 

Features are characteristics of the signal that describe the behavior according to different 

analysis domains, on this case, 2 types of features that have proved to be related with 

emotions were considered [16]: 

 



• Time domain features: are statistical parameters of the physiological signal time series, 

over a relatively a long-time window. 

• Frequency domain features: considers a frequency spectrum and different frequency 

bands related to signal activation produce by a specific stimulus. 

 

a. Time domain features: 

 

• Picard parameters [17], [18]: mean, standard deviations of the physiological signal, 

max/min ratio of the EEG signals. 

 

• Higher order statistics [19]: skewness measures the degree of asymmetry of a 

distribution around the signal’s mean. Kurtosis is the measure of relative heaviness 

of the tail of a distribution with respect to the normal distribution. 

 

• Hjorth variables [20] [21]: activity represents the signal power by the variance of a 

time function. Mobility represents the mean frequency or the proportion of 

standard deviation of the power spectrum. Complexity represents the change in 

frequency comparing the signal’s similarity to a pure sine wave, the value converges 

to 1 if the signals are similar. 

 

• Event-related potential (ERP): ERPs are signal patterns of the recorded EEG trace in 

response to a specific stimulus event. In the ERP methodology, a subject is 

repeatedly presented with a stimuli and stimulus presentation times are flagged in 

the raw EEG data and segmented to be averaged together. After averaging, a 

waveform is left that has positive and negative peaks and troughs of varying 

latencies called components. Each component in the waveform is either positive or 

negative and can be labeled according to polarity, order, or latency in ms [2]. 

 

 



b. Frequency domain features: 

 

Electrical oscillations detected on the human scalp using EEG have a frequency range that 

has been divided into frequency bands: delta (0.05–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), 

beta (12–30 Hz), and gamma (>30 Hz). 

 

• Power spectral densities (PSD): can be obtained by Welch’s method, over a specific 

time window, and averaged over a frequency bands range. 

 

• Power spectral asymmetry (PSA): is calculated with the PSD ratio between 

asymmetric pairs of electrodes in the frequency bands correlated with emotion. 

These pair of electrodes comprised two electrodes located in the same scalp region, 

but on the opposite side of the head. 

 

• Differential entropy (DE): can be defined as the entropy of continuous random 

variables and is used to measure its complexity. DE is equivalent to the logarithm of 

the energy spectrum (ES) in a certain frequency band for a fixed length EEG 

sequence [22] [23]. 

 

• Differential asymmetry (DASM) and rational asymmetry (RASM): are calculated as 

the differences and ratios between the DE of the asymmetric pairs of electrodes [24]. 

 

2.3. Individual characteristics and emotion recognition 

 

In any study, variation exists between individuals and insight into these differences can help 

explain and predict behavior. Almost every brain is composed of largely the same 

components, but different features have been modulated to varying degrees to produce 

individual differences, for example, emotional reaction like anxiety and depression can vary 

from person to person [2]. Individual characteristics are person-specific attributes such as 



demographic variables, psychological factors, and physiological and behavioral responses, 

that allow differences between individuals to be distinguished. 

 

Demographic characteristics describe an individual, based on inherit attributes that are 

categorized in a cultural level. A person inherits from the culture a set of lexically coded 

categories into which emotions are divided, and rules on how emotions are express and 

under what circumstances [2]. Examples of demographic characteristics include age [25], 

sex[26], ethnicity, and education [27]. 

 

Psychological factors are represented with personality traits, defined as continuous and 

consistent characteristic responses when a person acts under different circumstances. The 

Big Five model [28] is used to describe those individual responses using 5 traits: 

 

• Neuroticism: The degree of stimulus needed to arouse negative emotions in an 

individual, and reflected by emotional stability. 

• Extraversion: The degree to which a person is comfortable with relationships with 

others, and is reflected by degree of social and interpersonal interactions, need for 

stimulation, self-confidence, and amount and degree of competitiveness. 

• Openness to experience: The degree to which an individual can accept unfamiliar 

and novel things, and is reflected in active searching for new experiences in 

response to certain causes. 

• Agreeableness: The ability to get along, communicate, and cooperate with others, 

and is reflected by kindness to others. 

• Conscientiousness: The degree to which a person focuses on goals and displays 

concentration; it is reflected in organizational ability, self-restraint, persistence, 

and goal-oriented behavior. 

 



And, finally Behavioral characteristics are based on behavior of the person within a specific 

context, it describes physiological changes due to an external trigger, or behavioral patterns 

under a specific situation, for example: voice, gaits, and keystroke dynamics [29]. 

 

2.4. Emotional labels and affective models 

 

Affective models define the values and the emotional labels to be classified, using two 

approaches: the discrete model and the continuous dimensional model. 

 

The discrete model (figure 03. a.) assumes that emotions are discrete values with only a 

finite number of possible values. The model focuses on strong basic emotions (such as 

disgust, sadness, happiness, fear, anger, and surprise) and it cannot accommodate a variety 

of closely related emotions or combinations of emotions [30]. 

 

The continuous dimensional model (figure 03. b.) defines emotions as continuous values in 

a two-dimensional space. Russell circumplex model of emotion is a two-dimensional model 

that links arousal with valence. Arousal measures intensity, or how energized an individual 

feels, ranging from calmness to excitement. Valence measures how pleasant or unpleasant 

an individual feels, ranging from positive to negative [31]. 

 

 
a. 

 
b. 

Figure 3. Emotional labels and affective models [32]. 



 

To measure arousal and valence scores in emotion recognition experiments, questionnaires 

are used to assess the emotional values from the participants. The self-assessment manikins 

(SAM) [33] uses a scale from 1 to 9 to assign an arousal and valence score, where 1 is “very 

calm” and 9 is “very excited” for arousal, and 1 is “very negative” and 9 is “very positive” 

for valence. 

 

2.5. Emotional stimuli 

 

In traditional EEG emotion recognition, researchers often need to induce users’ emotional 

states using sounds, pictures and movies. These tools are well-known and used in different 

experiments and datasets related to the study of human emotions, for example: the 

International Affective Picture System (IAPS) [34], which is a series of standardized, 

emotionally-evocative photographs, and the International Affective Digital Sounds (IADS) 

database that uses sounds as acoustic emotional stimuli [35]. 

 

Video approach are used by showing clips, for example, clips from specific movie scenes or 

clips from music videos. Some well-known emotion recognition databases using videos as 

emotional stimuli and physiological signals, including EEG, are shown in table I. From the 

table is important to notice the different variables used in each research. The first one is 

the number of subjects, second is the number of EEG channels, and the third one is the 

emotion labels used to classify affective state in the participants in this case, only one work 

used four discrete basic emotion labels (happy, sad, fear and neutral) [36], against the 

arousal – valence labels used in the other works. 

  



TABLE I.  EMOTION RECOGNITION WORKS USING EEG AND VIDEOS AS EMOTIONAL STIMULI [37] 

 

DATASET Participants 
EEG 

channels 
Type of video Video length 

Elicit 
emotions 

MAHNOB-HCI 
[38] 

27 32 
Commercially 

produced movie clips 
34.9 - 117 s 

Arousal/ 
Valence 

DEAP [39] 32 32 Music videos 60 s 
Arousal/ 
Valence 

SEED [36] 15 6 Chinese movie clips 120 s 
Discrete 

emotions 
ASCERTAIN 

[40] 
58 8 Movie clip 51-127 s 

Arousal/ 
Valence 

AMIGOS [24] 40 14 Music videos ~250 s 
Arousal/ 
Valence 

 

However, there are some authors that assure that these tools and approaches evoked 

emotions in an indirect and passive way [41]–[43]. The ability to dynamically detect users’ 

emotional states is crucial to design adaptive emotion recognition system. One potential 

field of study are videogames as emotional elicit tool. Videogames are as digital interactive 

tools with the ability of elicit emotions in players, using resources as storytelling, game 

mechanics, aesthetics and digital media (as music, sounds, pictures, videos). Videogame 

play is cognitively demanding, and emotionally arousing and engaging, eliciting both 

positive and negative emotions on the players [44]. With this potential, some emotion 

recognition works have used videogames as an emotional stimulus, mainly under game 

development scenarios to target specific emotions as boredom, stress, fear or engagement 

[42], [43], [45]–[47]. The study of EEG signal on gaming scenarios can give an approximation 

on how emotions manifest on an HCI scenario level, not only for game related events, but 

also for cognition, training, and BCI applications [48]–[52]. In table II, some works where 

videogames are used as an emotional stimulus in emotion recognition experiments, along 

with EEG signals to identify and assess participants’ emotional reaction are summarized. 

 

  



 

TABLE II.  EMOTION RECOGNITION WORKS USING EEG AND VIDEOS AS EMOTIONAL STIMULI [53] 

 

Article Participants 
EEG 

Channels 
Video Game and Measured 

Emotions 
Game Play time 

length 
Elicit emotions 

[54] 28 14 
Train Sim World, Unravel, 
Slender—The Arrival, and 

Goat Simulator. 
5 min Arousal/Valence 

[55] 38 9 

Four architectural 
environments designed based 

on Kazuyo Sejima’s “Villa in 
the Forest” modifying 

illumination, color, and 
geometry. 

1.5 min Arousal/Valence  

[56] 35 24 
Candy Crush and Stickman 

Archers. 
10 min Discrete emotions 

[57] 14 19 
Tetris: medium, easy, and 

hard levels 
5 min Arousal/Valence 

 

2.6. Limitations of the overall emotion recognition pipeline 

 

The general pipeline of emotion recognition needs 2 basic sources of information to be able 

to classify emotions from the input data: the data describing the behavioral reactions 

related to the emotional experience from the participant, and the participant answers 

related to what they felt during the exposure to the emotional stimuli. In previous works, 

the experimental time window for emotion recognition goes from 35 seconds to 10 min 

approximately, all the works asked the participants to report how they felt after the 

experimental time window was over, even though, the questionnaires used to assess the 

emotional experience are presented to the participant immediately after the exposure to 

the emotional stimuli, long time windows do not allow to identify specific moments where 

the emotion takes place, due to the lack of labeling, this do not allow the study of dynamic 

changes of emotion inside the experimental time window. However, asking the participants 

their emotional assessment during the exposure to the stimuli can disrupt their perception 

against the stimuli and deliver wrong and not accurate assessment from the participants. 

 



Also, to predict more accurate emotional states it is important to identify which kind of 

input information is more relevant for the whole emotion recognition pipeline, and more 

specially, under HCI scenarios. Works like [24], [58], [59], [60], [61], [62] have focused on 

identify if individual characteristics are useful to increase the emotion recognition accuracy. 

Also, a numerous amount of works has reported to use different EEG characteristics to 

improve the emotion recognition process [16]. However, it is still unclear what 

characteristics perform better under HCI scenarios due to the bast amount of information 

that can be use and the interactive nature of the experimental task. 

 

2.7. Aims 

 

This study aims to propose an emotional elicit tool that allows to study the emotional 

reactions under HCI scenarios, both inside and after the experimental time window where 

the participant is expose to the emotional stimuli, using EEG and individual characteristics 

as input data. 

 

The main goal is to explore: 

 

a. Which input information is suitable to increase the accuracy of emotion recognition 

compare with an existing public dataset, from EEG and individual characteristics. 

b. How to build an emotional elicit tool that allows the study of emotional reaction within 

and after the exposure time window. 

c. Which EEG characteristics are correlated with self-assessment emotional responses, 

and emotional stimuli time events. 

d. The performance/regression classification of self-assessment emotional responses and 

emotional stimuli time events using EEG and individual characteristics information.  



Chapter 3 

 

Arousal and valence labels classification, 

using different EEG features, alongside 

age, sex, and personality traits 

 

3.1. Aim of this section 

 

The main objective of this chapter is to identify which EEG features and individual 

characteristics (age, sex, and personality traits) improve the performance of arousal and 

valence labels classification. The chapter explain the process and the results of testing the 

hypothesis that age, sex, and personality traits, can improve the classification accuracies for 

arousal and valence labels, when they are used alongside EEG data for emotion recognition 

processes by machine learning algorithms, using a public emotion recognition dataset. 

 

3.2. Methodology 

 

The methodology used to test the hypothesis focus on: 

 

• Select the dataset AMIGOS and identify the information related to participants, 

experiment protocol, emotional answers, individual characteristics and EEG signals. 

 



• Identify which EEG features were calculated in the original study and which other 

features could be calculated to analyze: their importance and the performance in 

the classification process of arousal and valence labels. 

 

• Analyze the classification performance of arousal and valence labels (emotional 

stimuli tool labels, and participants self-assessment answers labels), using basic 

classification models with the selected features. 

 

3.2.1. Dataset AMIGOS 

 

AMIGOS is a public emotion recognition dataset to study the relationship between affect, 

personality, and mood [24]. The dataset consists of multimodal recordings of participants 

and their responses to music video clips. 40 participants (male = 27, female = 13, aged 21–

40 years, mean age = 28.3 years) watched 16 videos (duration < 250 s) —four from each 

high and low arousal–valence emotional levels combination (figure 4. a.): high arousal and 

high valence (HAHV), high arousal and low valence (HALV), low arousal and high valence 

(LAHV), and low arousal and low valence (LALV). The experiment (figure 4. b.) consisted of 

an initial self-assessment session for arousal, and valence scores that participants felt 

before any stimuli were shown. Next, the 16 videos were presented in a random in random 

order with a fixed cross screen for 5 seconds at the beginning of each video, and at the end, 

each participant rated the video using arousal and valance scales from the SAM 

questionnaire (figure 4. c.). After the 16 trials, the recording session was ended. 

 



 

Figure 4. AMIGOS dataset characteristics 

 

In AMIGOS dataset, 14 EEG signals from Emotiv EPOC Neuroheadset (figure 4. d.) were 

recorded at 128-Hz sample rate and 14-bit resolution from electrodes AF3, AF4, F3, F4, F7, 

F8, FC5, FC6, T7, T8, P7, P8, O1, and O2. 

 

3.2.2. EEG features and individual characteristics data 

 

From AMIGOS dataset, 112 features were used in this study: demographic characteristics 

(2 features: age and sex), personality traits (5 features: neuroticism, extraversion, openness 

to experience, agreeableness, conscientiousness) which were acquired before the 

experiment using an online form, and EEG features (105) calculated from the preprocessed 

EEG signals recorded in the study. The EEG signals were averaged to the common reference, 

filtered with a band-pass frequency filter from 4.0Hz to 45 Hz, EOG removal was applied 

and then segmentation was performed. 

 

The 105 EEG features correspond to PSD and PSA between pairs of electrodes. PSD was 

calculated in five frequency bands: theta (3–7 Hz), slow alpha (8–10 Hz), alpha (8–13 Hz), 



beta (14–29 Hz), and gamma (30–47 Hz) for each electrode (70 features). PSD was obtained 

by Welch’s method (time window = 128 samples corresponding to 1 second) between 3 and 

47 Hz and averaged over the frequency bands. PSA was calculated between each of the 

seven pairs of electrodes in the five frequency bands (35 features). These pair of electrodes 

comprised two electrodes located in the same scalp region, but on the opposite side of the 

head: AF3/AF4, F3/F4, F7/F8, FC5/FC6, T7/T8, P7/P8, and O1/O2. 

 

Also, EEG features that were not include in the original study were calculated to analyze 

their performance in the classification process (154 features): fractal dimension (FD) and 

the differential entropy (DE) for each one of the EEG channels in the five frequency bands, 

the rational asymmetry (RASM) and differential asymmetry (DASM) for each of the seven 

pairs of electrodes in the five frequency bands were calculated (70 features). These EEG 

features are related to participants’ emotional [16], [20], [63], [64]. 

 

A total of. 266 features were used in this study. Feature selection methods [63] were applied 

to analyze how the different features are related with the classification labels and to obtain 

a reduced set of features (from the total 266 features), to analyze the improvement in the 

classification performance. Univariate selection and a recursive feature elimination with 

cross validation were applied to select the features that improve the classification rates and 

to build a second set of features [65]. 

 

3.2.3. Classifiers 

 

The classification process was performed for 2 different scenarios: first, the arousal (HA and 

LA) and valence (HV and LV) labels assigned to the emotional stimuli tools, and second the 

arousal (HA and LA) and valence (HV and LV) labels obtained by the participants self-

assessment responses. To transform the arousal and valence responses into classification 

labels, we use a threshold of 5.0 to convert the response values into binary labels to obtain 

categorical data. Both scenarios were analyzed with 2 set of input features: first the 



complete EEG, demographic characteristics, and personality traits features set (266), and 

EEG, demographic characteristics, and personality traits reduced feature set. 

 

The classifiers were chosen to test and compare the emotion recognition accuracy using 

simple machine learning models and 640 observations (16 videos × 40 participants), 

observations that had missing personality and EEG data were excluded. The classification 

was performed using PANDAS framework under python language. For the classification 

scenarios 5 classifiers were implemented: SVM with linear (C = 100) and RBF kernel (C = 100, 

gamma = 0.1), Naïve Bayes, Random Forest (estimators = 2000, max_depth = 300), and an 

artificial neural network (ANN) with 134 hidden units, one “relu” activation function hidden 

layer, and, for the output layer we used a “sigmoid” activation function (optimizer = 

“rmsprop”, batch size = 32, epochs = 100). Parameters were tuned using grid search with 

cross-validation. To evaluate the classifier accuracy, the mean accuracy, mean F1, and, 

mean area under the curve (AUC) scores were obtained using a 10-fold cross-validation 

approach over the training set of features (75% of all the dataset) [65]. 

 

3.3. Results 

 

3.3.1. Feature selection for arousal – valence labels 

 

Using the univariate feature selection algorithm propose by [66], we obtained the best 

features based on an analysis of variance, F-test, and p-value of the features related to the 

two arousal and valence labels scenarios, selecting 10% of significant features [67]. For the 

arousal (HA and LA) and valence (HV and LV) labels assigned to the emotional stimuli tools 

no features were selected by the univariate selection algorithms. Performing RFE with 

personal and EEG traits, 15 features for arousal label, and 1 feature for valence were 

selected. In this case, no demographic characteristics nor personality traits were selected 

by the algorithm. For arousal label, PSD from slow alpha (AF3), alpha (AF3), and gamma 

(FC5) bands; F3/F4 and F7/F8 PSA index in the theta band; FD of channel P8; DE in the theta 



(AF3, O1) and gamma (T8) bands; RASM in theta (T7/T8), slow alpha (F3/F4, O1/O2), beta 

(FC5/FC6), and gamma (F7/F8) bands were selected by the RFE. For valence label only, DE 

from F4 channel in the beta band was selected. 

 

For the labels obtained by the participants self-assessment responses, the features selected 

by the univariate selection algorithms were: openness, PSD in the theta (O2, P8), slow alpha 

(O2, T8), and alpha (O2, T8); PSA index for FC5/FC6 and T7/T8 in the theta, slow alpha, and 

alpha bands, for O1/O2 in the beta band, and for P7/P8 and O1/O2 in the gamma band; DE 

in theta (O2) and gamma (CH14); and DASM in the theta, slow alpha, and alpha bands for 

FC5/FC6, in beta for O1/O2, and in gamma band for P7/P8 and O1/O2. For valence label, 

important EEG features selected were: DE for AF3 and F7 in the theta band. Performing RFE 

with personal and EEG traits we obtained 16 features for arousal label: PSD in slow alpha 

(AF3, T8) and gamma band (FC6), PSA index in the theta (FC5/FC6), alpha (T7/T8), and 

gamma (FC5/FC6) bands; and DE in the theta (F3, T7, O1, O2, F4), slow alpha (P8, AF4), alpha 

(T7), beta (FC6), and gamma (AF3) bands. Also, We obtained 40 features for valence label: 

PSD in theta (P7, T8, AF4), slow alpha (AF3, T8), alpha (O1, T8), beta (T8, FC6), and gamma 

(T8, F8, AF4) bands, PSA index in the theta (F7/F8), slow alpha (AF3/AF4, F7/F8, T7/T8, 

O1/O2), alpha (FC5/FC6), and beta (F7/F8, O1/O2) band; FD in FC5, T7, O2 channels; DE in 

theta (F7, F3, F4), beta (F3, FC5, P8, F4, AF4), and gamma (AF3) bands; DASM for theta 

(AF3/AF4), alpha (P7/P8), and beta (F7/F8) bands; and RASM for beta (AF3/AF4, P7/P8), 

theta (AF3/AF4), slow alpha (O1/O2), and alpha (F7/F8) bands [65]. 

 

3.3.2. Classification of arousal and valence labels 

 

We tested the different machine learning classification models with a 10-fold cross-

validation for the two features sets. For the arousal (HA and LA) and valence (HV and LV) 

labels assigned to the emotional stimuli tools, the best classifiers were SVM with linear 

kernel (accuracy 0.52, F1 0.49, AUC 0.51); and ANN (accuracy 0.51, F1 0.67, AUC 0.56) 

respectively (table 3. a.). We used receiver operating characteristic (ROC) curves to describe 



the performance of the best classifiers obtained from each scenario. In Figure 5. a., shows 

the 10-fold cross-validation ROC curves for the arousal label scenario and the valence label 

scenario with the best accuracies scores. The curves show the best classification 

performance for arousal label was obtained using EEG traits with feature reduction and 

SVM with linear kernel classifier (0.52 accuracy score when AUC score is higher than chance). 

For the valence scenario, the second set of features and the ANN classifier had the best 

accuracy; in this case, the curve shows that the classification process was slightly higher 

than chance [65]. 

 

  

Figure 5. Best receiver operating characteristic curves with 10-fold cross-validation for arousal and valence labels. 

 

TABLE III.  CLASSIFIERS PERFORMANCE FOR EACH OF THE SCENARIOS WITH THE DEFINED SET OF TRAITS ACCURACIES, F1, AND 

AREA UNDER THE CURVE (AUC) SCORES 

a. 

Scenario 
Classifiers 

Label 

Dataset reduction (selected features) 

Mean accuracy 
Mean 

F1 
Mean AUC 

Arousal SVM linear 0.52 0.49 0.51 

Valence ANN 0.51 0.67 0.56 

 

b. 

Scenario Classifiers 

AMIGOS Full dataset 
Dataset reduction (selected 

features) 

F1 
Mean 

accuracy 
Mean 

F1 
Mean 
AUC 

Mean 
accuracy 

Mean 
F1 

Mean 
AUC 

Arousal 
SVM linear 0.592 0.63 0.60 0.66 0.62 0.58 0.65 

SVM RBF  0.68 0.67 0.71 0.64 0.63 0.67 

Valence SVM linear 0.576 0.53 0.56 0.47 0.61 0.65 0.62 

 



Table 3. b. shows the results for the arousal (HA and LA) and valence (HV and LV) labels 

obtained by the participants self-assessment responses. For the arousal scenario, the first 

set of features (EEG data, sex, age, and personality traits without reduction) performed 

better when SVM with RBF kernel (accuracy 0.68, F1 0.67, AUC 0.71) was used. For the 

valence scenario, the second set of features (EEG data, sex, age, and personality traits with 

reduction) performed better when SVM with linear kernel (accuracy 0.61, F1 0.65, AUC 

0.62) was used. In these cases, no demographic characteristics nor personality traits were 

selected in the reduced set of features; i.e., the improvement in the classification accuracies 

was owing to the EEG traits selected. ROC curves were used to describe the performance of 

the best classifiers obtained. Figure 5. b. shows the 10-fold cross-validation ROC curves for 

arousal and valence labels. The best accuracy scores were obtained for the arousal with 

0.68 and valence with 0.61. For the discrete emotions, we decided not to show the ROC 

curves owing to the low F1 scores obtained in each case [65]. 

 

3.4.  Discussion 

 

The results obtained in this work revealed that none of the current age, sex, and personality 

values had a correlation with arousal and valence labels from the emotional stimuli. 

However, compared with self-assessed emotional labels, some demographic characteristics 

and personality traits were chosen by the feature selection for arousal, this might be 

because the self-assessed responses relied on participants’ subjective emotion assessment. 

If so, demographic characteristics and personality traits would correlate more with the self-

assessed emotion responses than with the emotional labels from the stimuli videos. Feature 

selection showed only an improvement in the classification scores for the valence label; 

neither demographic characteristics nor personality traits were selected by the feature 

selection process, which shows that age, sex, and personality traits did not foster 

classification performance improvement for the selected labels. 

 



It is known form previous works that sex and age can be correlated with these emotional 

labels and can improve emotion recognition process [58]; however, it is still unclear how 

personality can be used to obtain better emotion recognition models. One of the possible 

reasons why sex, age, and personality were not chosen by the feature selection algorithms 

was because the nature of the data. If we adjust the values to a categorical and binary 

codification, the feature selection algorithms could select these kind of features (as age was 

selected in the Rukavina and colleagues’ work [58]). We decided to work with the 

continuous data owing to the real description of the population. Other possible limitation 

is related to the distribution of personalities in the participants, because the sample is 

relative small to obtain a vast distribution in the five personality traits assessed, and the 

reported scores are close to each other, implying that the participants exhibit the same type 

of personality among the group [24]. There is also a need for a behavioral metric that can 

identify differences between how people perceive and manifest emotions. Behavior 

changes and emotional reaction can vary from person to person owing to past experiences, 

memories, and context. 

 

Perceived emotions may be owing to exposure to the emotional stimuli (video in this case); 

however, the chosen dataset did not have information about arousal–valence scores 

related to the video time traces. In the scope of this analysis, we did not try to trace the 

changes in emotional response related to the emotional stimuli over time; instead, we 

wanted to determine EEG data, age, sex, and personality traits performance to classify 

emotions compared with the AMIGOS dataset results, in which the classification was made 

by averaging the time window. 

 

  



Chapter 4 

 

Interactive emotion stimulus tool design 

and correlation between EEG signal 

features with arousal and valence 

information and stimulus tool time-events 

 

After the analysis of arousal and valence labels classification with EEG and individual 

characteristic features, using a public emotion recognition dataset, some conclusions were 

found: 

 

• For small number of participants, demographic and personality features do not have 

major contribution in the emotion classification. 

• The measurement of emotional reactions cannot be done only relaying in self-

assessment questionnaires applied after the experimental time window, but instead, 

should be complemented with the acquisition of dynamic information inside the 

experimental time window that describe key events about the emotional behavior 

of the participants. 

• To obtain information about emotional behavior, an interactive emotional stimuli 

tool should be use, where the participants immerse themselves in the emotional 

task. 

 



According to these conclusions, a videogame was designed as an emotional stimulus tool to 

obtain and measure emotional reactions from the participants and to study the correlation 

between EEG signal features with: arousal and valence information (from self-assessment 

participants responses), and stimulus tool’s time-events reactions (as emotional behavioral 

information). 

 

4.1. Aim of this section 

 

The main objective of this chapter is to explore which EEG signal characteristics, induced by 

the interaction with the emotional stimulus tool, correlated with: the arousal-valence 

scores, and the emotional stimulus time-events. The chapter describes the videogame 

design to induce different emotional states, the EEG signals features calculation and 

correlation with: arousal-valence scores and stimulus time-events, and the 

regression/classification performance of arousal-valence scores and stimulus time-events 

using EEG signal features. 

 

The chapter explains the process and the results of testing the hypothesis that it is useful 

to consider stimulus time events (related to videogame tasks or game mechanics), self-

assessment answers, and EEG features, to analyze and understand how the participants 

reacts emotionally to the stimulus. 

 

4.2. Methodology 

 

The methodology used to test the hypothesis focus on: 

 

• Design of a videogame, as an emotional stimulus tool, to induce different emotional 

states. 

• Acquisition of EEG signals, self-assessment emotional responses, and stimulus time-

event information, while interacting with the emotional stimulus tool. 



• Correlation analysis of EEG signals features with: arousal-valence scores and 

stimulus time-events. 

• Regression performance of arousal – valence scores using EEG features. 

• Classification performance of stimulus time events using EEG features. 

 

4.2.1. Emotional stimulus tool 

 

The videogame design was based in two videogame development frameworks (the 

Mechanics-Dynamics-Aesthetics (MDA) framework, and the 6–11 framework), and the 

concept of flow in games. MDA framework [68], breaks the games into their distinct 

components (rules, system and fun) and its design counterparts (mechanics, dynamics and 

aesthetics), where aesthetics become the main element to create emotions in the 

participants using the game mechanics and dynamics. The 6–11 framework [69] defines six 

basic emotions and eleven instincts that interact with each other to elicit “fun” using game 

events that affects and influence the player’s experience. Finally, flow [70] refers to the 

player’s ability to choose and control actions inside a videogame environment. To be on 

flow, the game must achieve a balance between challenges and players’ abilities: if the 

game is too challenging and the player’s abilities are not that high, the game experience 

becomes anxious, in contrast, if the game is not that challenging and the player’s abilities 

are too high, the experience becomes boring. 

 

A 2D space theme platform game (figure 6) was designed with the following characteristics: 

the participant controls a spaceship to collect positive tokens (astronauts and coins) and 

avoid negative tokens (asteroids and aliens) across different game levels, to achieve the 

best possible score in each of the game level. The spaceship (avatar) is located in the left 

part of the screen and, the movement is limited to the y axis only with 3 controls: moving 

the spaceship to the upper part of the screen with the up-arrow key, moving the spaceship 

to the lower part of the screen with the down-arrow key, and increase the tokens’ scroll 

speed with the right-arrow key. All of these functions are controlled with one hand [53]. 



 

 

Figure 6. Game interface with the player’s avatar and different tokens deployed. The information gap is 

located in the upper part of the screen containing information about the spaceship’s damage, time 

remaining, the score, the distance traveled and an upper and a lower distance threshold (game mechanics) 

 

4.2.1.1. Videogame levels 

 

The videogame has 8 base levels that target 4 different emotional states according to 

Russell’s circumflex model of emotion [31] (2 levels per each dimensional emotion that we 

are trying to elicit). The emotional states are (figure 7): frustrated (high arousal and low 

valence—HALV) elicit by: H—hard, OA—only asteroids; excited (high arousal and high 

valence—HAHV) elicit by: N—normal, SU—speed up; calm (low arousal and high valence—

LAHV) elicit by: E—easy, WS—without speed; and bored (low arousal and low valence—

LALV) elicit by: SD—speed down, WT—without tokens. Each game level has its own music 

tracks, and each token has a distinctive sound to enhance the targeted emotion according 

to each level [71]–[74]. Characteristics of each game level are shown in table IV. 

 



 

Figure 7. Russell’s circumflex model of emotions for the game level designed, where the emotions selected 

are highlighted in the different quadrants of the two-dimensional plane. 

 

TABLE IV.  LEVEL CHARACTERISTICS 

 

Elicited 
Emotion 

Game 
scenarios’ 

names 
Controls 

Bad 
tokens 

Avatar’s 
speed 

Token’s speed Additional game mechanics 

HAHV - 
Excitement 

N 
SU 

Normal Normal Normal 
Normal 

Speed increases slow 
and gradually 

 

HALV - 
Frustrated 

H 
OA 

Inverted 
Normal 

Bigger 
size 

Decrease 
Normal 

Speed increases fast 
and gradually 

If collision, the size of the 
bad tokens increases 

If collision, the size of FOV 
decrease 

LAHV - 
Calm 

E 
WS 

Normal 
Fewer 

No tokens 
Normal 

Decrease 
No negative tokens 

In WS Only Good tokens 
appear on the screen 

LALV - 
Bored 

SD 
WT 

Normal 
Fewer or 

none 
Greater 

decrease 
Greater decrease 

No tokens 
In WT no tokens will appear 

on the screen 

 

Each game level, is composed of: a cross fixation screen displayed for 5 seconds, the game 

level in which the participant interacts directly with the virtual environment for 60 seconds, 

the SAM arousal and valence  questionnaires [33], and a game score feedback screen where 

a brief summary of the level performance is showed (figure 8). With this structure, the 



participants evaluate their emotional experience immediately after they stop playing each 

level, and will allow them to assess their performance without worrying about the 

emotional report. 

 

 

Figure 8. Game level’s structure [53]. 

 

4.2.1.2. Videogame structure 

 

Three stages were designed: Stage 1 is the basic stage that will include the basic videogame 

tokens (astronauts, asteroids and coins). For Stage 2 and Stage 3, the aesthetics of the 

background environment was changed and a distinctive new game element was added, 

represented as a new negative token. 

 

The game is divided in 4 phases (figure 9), for the first, second and third phase, the stage 1, 

2 and 3 were presented respectively. For the fourth and final phase, a final level was 

presented to the participant. This final level does not have a specific emotional label, but 

instead it works as the final videogame goal with two outcomes: win or lose, its structure is 

different from the previous levels, because it is intended to be a level that is modified 

according to the participant performance across the 3 first phases. In stages 1, 2, and 3, the 

eight game levels are presented in a random order, each stage takes approximately 16 

minutes to be completed, and the whole videogame takes about 1 h. 



 

 

Figure 9. Game structure composed by 4 phases containing the 3 designed stages [53]. 

 

4.2.1.3. Emotional stimulus tool evaluation 

 

A first version of the videogame was implemented, and the emotional results were tested 

from a control group of participants [75]. After analyzing the result, a second version of the 

videogame was designed, and its performance was analyzed with two participants group: a 

control group that tested the first version of the videogame (17 students, females—4, 

males—13, ages ranging between 21 and 25, mean 22.70 ± 1.31), and a second group with 

participants experiencing the videogame for the first time (13 students, females—2, 

males—11, ages ranging between 20 and 25, mean 22.0 ± 1.78). Both participant groups 

performed one session of gameplay in the computational laboratories from the Pedagogical 

and Technological University of Colombia (figure 10), in a simultaneous scheme using 

personal computers and earphones. At the end of the sessions, the researchers collected a 

log file from each of the participant’s gameplay, containing emotional questionnaires’ 

answers (arousal and valence scores), behavioral, and performance data for each game 

level. All participants agreed to participate in the experiment by signing an informed 

consent [75]. 



 

Figure 10. Participants performing the experiment in the evaluation stage. 

 

The arousal and valence dispersion among the 2 groups was analyzed. In figure 11, the 

arousal and valence scores from all the participants are represented in a two-dimensional 

plane. According to the arousal–valence dispersion, the participant reported different 

emotional states within each level, the obtained means are related to a generalized 

emotional experience among the participants, and they work as a reference on how each 

level is eliciting emotional states. The dispersion shows that it is possible to have a wide 

range of arousal–valence scores, and each of the designed game levels can induce the four 

emotional targets selected in the videogame design stage. 

 

Figure 11. Arousal–valence dispersion. Levels names: N—normal, SU—speed up, H—hard, OA—only 

asteroids, E—easy, WS—without speed, SD—speed down, WT—without tokens. Stage names: S01—Stage 

01, S02—Stage 02, S03—Stage 03. The colors are related to the emotional quadrants that we intent to 

induce: HAHV—black, HALV—blue, LAHV—orange, LALV—green. 

 



For “normal” and “speed up” levels (N, SU, black dots), HAHV scores were reported 

throughout the three stages. It is possible to see that the mean values are similar and the 

majority of the distribution is located in the HAHV quadrant, leading to infer that the excited 

emotion was achieved over the six levels. For “hard” and “only asteroids” levels (H, OA, blue 

dots), the arousal scores aimed to represent HA responses. However, valence scores 

distribution is located between HV and LV quadrants, making the mean reference to be 

located close to the neutral valance value, which lead to infer that the six levels produced 

two kind of emotions, excited and frustrated. 

 

For easy and without speed levels (E, WS, orange dots), LA responses were reported by the 

participants. For easy levels, HV scores were higher than the without speed levels’ valence 

scores. Without speed levels’ mean reference values are located close to the neutral 

valence value. In general, the easy levels’ mean reference values showed that calm emotion 

was induced by the six levels, and the without speed levels’ mean reference values showed 

that bored and calm emotion were induced in the participants. For speed down and the 

without tokens levels, LA responses were reported by the participants. Valence responses 

distribution is located between the two valence quadrants making the mean reference 

values to be located in the LV quadrant but close to the neutral valence value. In general, 

bored emotion was achieved over the six levels. Finally, for the final mission level, most of 

the answer distribution was located in the HAHV quadrant, leading to infer that excitement 

is the emotion felt by the participants while playing this last level. 

 

A repeated analysis of variance (RANOVA) was performed, followed by a Tukey H SD (HSD—

honestly significantly different) post hoc test to identify the stages with a significant 

difference (p < 0.05) within each group. After identifying the stages, a two tailed t- test was 

performed between the arousal and valence scores of the levels’ stages that had significant 

differences. The results showed that there is no significant difference between the 2 test 

groups concerning their arousal and valence responses between game levels. 

 



4.2.2. Type of Acquire Information 

 

4.2.2.1. Emotional self-assesses questionnaires 

 

To record the emotional experience from the participants after each game level, 2 

videogame screens with emotional questionnaires were designed. two variables from the 

self-assessment manikins (SAM) [33] were used: arousal (1 being “very calm” and 9 being 

“very excited”), and valence (1 being “very negative” and 9 being “very positive”). These 

questionnaires are manipulated using a mouse, virtual sliders, and buttons, the scales are 

represented with a guiding bar, numbers, and a graphic guide. The answers gave by the 

participants correspond to the game-level assessment after the 60 second time-window 

[53]. 

 

4.2.2.2. Emotional stimulus time events 

 

Inside each videogame level, the participant will interact with 2 kinds of events: positive 

and negative. We defined and gathered time information of the videogame events: first 

positive events, which happened when the participant’s avatar collided with a token that 

adds points to the overall score on the game level (is an event which aims to be pleasant 

for the participant), examples of positive tokens are: astronauts (as an emphatic element), 

coins, and power ups (as an identifiable element of reward). Second, negative events, which 

happened when the participant’s avatar collided with a token that takes points from the 

overall score on the game level (is an event which aims to be unpleasant for the participant), 

examples of negative tokens are: asteroids and enemies (as elements of danger and 

damage). Inside each game the time when the event happened and the type of event was 

recorded, and after each game level, the total amount of positive and negative events was 

recorded. Each event is also presented with an audio cue related to a sound produced when 

the participant collides with a token. 

  



 

4.2.2.3. Electroencephalography signals 

 

The EEG signals were acquired from 66 channels (64 EEG channels and 2 earlobe references) 

using a Biosemi Active Two amplifier system with active sensors (Biosemi, Amsterdam, 

Netherlands), at a sampling rate of 2048 Hz. The EEG electrodes were positioned on the 

head according to the International 10–20 system. ActiView was used to monitor and setup 

the signals prior recording, and the LSL’s Biosemi application software was used to record 

the signals. 

 

4.2.3. Experiment Setup 

 

4.2.3.1. Experiment protocol 

 

12 participants (female 4, male 8) with ages ranging from 25 to 43 (mean 32.10 ± 5.40) from 

the following countries: Japan, Macedonia, Greece, Canada, Filipins, and Vietnam, 

participated in the study. The experiment was conducted in an individual scheme, at the 

Laboratory for Future Interdisciplinary Research of Science and Technology (FIRST) from 

Tokyo Institute of Technology. The experiment was approved by the ethics committee of 

the Tokyo Institute of Technology (Approval No. A20039) and conducted in accordance with 

the Declaration of Helsinki. The procedures were explained to each participant prior the 

experiment, and they were allowed to rehearse using 3 practice levels corresponding to the 

normal level from the first stage of the stimulus. The experiment took about 2 hours and a 

half to be completed for each participant, 1 hour and a half for the experimental setting and 

1 hour for playing the videogame. Participants were positioned sitting in a reclining chair in 

a sound-attenuated chamber, and instructed to look at the monitor positioned 

approximately 70 cm away from their eyes during the experiment (figure 12). 

 



 

Figure 12. Participant performing the experiment. 

 

The videogame was presented to the participants using a 24” monitor, and the participants 

manipulated the videogame using a keyboard and a mouse. The chamber light was kept on 

during the experiment and participants were allowed to take breaks of unlimited time 

between each game level. To record the data, we used one computer with two sets of 

screens, keyboards and mice: the first set was used to show the stimulus and allow the 

participant to control the experiment task. The second set was used to monitor the signal 

acquisition and the participant’s performance during the task. The participants’ signals were 

recorded simultaneously with different software, and synchronized with LabRecorder-1.12 

(Lab Stream Layer (LSL) Swartz Center for Computational Neuroscience, University of 

California, San Diego, CA, USA) which gathered the EEG signals and the trigger events from 

the videogame. After signal inspections, information from 2 participants were rejected due 

to the high artifact contamination . 

 

4.2.3.2. EEG preprocessing 

 

Lab stream layer (LSL, Swartz Center for Computational Neuroscience, University of 

California, San Diego, CA, USA) recorded the data’s streams that contained the actual 

sample data related to the signal values, and event markers that came from the videogame, 

together with the timestamp for each sample that is read from a local high-resolution clock 



of the computer. To extract the signal related to each level, we identified the start level and 

finish level markers events of each level, generated from the game environment, and 

extracted the signals portion related to these time windows. 

 

Data were processed using MATLAB R2019b (The MathWorks, Inc., Natick, MA, USA), we 

reference the 64 channels’ signals to the ears and applied a finite impulse response (FIR) 

notch filter at 50 Hz, then we applied a FIR high pass filter at 1 Hz and a FIR low pass filter 

at 40 Hz, then down-sampled the signal at from 512 HZ to reduce the computational cost. 

Then we inspected and reject the noisy channels and referenced the signals to the average 

of the channels. Finally, we applied independent component analysis (ICA) [76]–[78], and 

inspected each of the components to manually reject the ones related with noise and 

artifacts (eye movement, blinks and muscular activity) [16], [79], [80]. 

 

4.2.3.3. EEG signal features calculation 

 

8 time-domain features (mean, standard deviations, ratio max/min, skewness, kurtosis, 

activity, mobility, complexity) and 10 frequency-domain features (power spectral density—

PDS, differential entropy—DE for 5 frequency bands: theta, alpha, beta, gamma bands, and 

full frequency spectrum) for each EEG channel (18 × 64 = 1152) were calculated; in addition, 

15 frequency-domain features (Power spectral asymmetry — PS-ASM, differential 

asymmetry — DASM, rational asymmetry — RASM) for each of the 27 pair of electrodes (15 

× 27 = 405) were also calculated. In total, 1557 EEG features were calculated and used for 

correlation analysis and predictions with emotional labels. For arousal and valence scores a 

60 seconds time window (related to the full gameplay of each of the 25-videogame levels) 

was considered, and for game time-events, a 500 ms time window (from the occurrence of 

all game events in each of the 24 levels from phases 1, 2, 3) was considered. 

 

 

 

 



4.3. Results 

 

4.3.1. Arousal–Valence Dispersion 

 

In figure 13, the arousal and valence scores from all the participants are represented in a 

two-dimensional plane. The participants reported different emotional states within each 

game level, where the obtained means are related to a generalized emotional experience, 

they work as a reference on how each game level elicited the emotional states. In table 3, 

we summarized the mean and standard deviation values for each of the game levels. 

 

 

Figure 13. Arousal–valence dispersion. Levels names: N—normal, S01—Stage 01, S02—Stage 02, S03—Stage 

03. The colors are related to the emotional quadrants that we intent to induce: high arousal and high 

valence (HAHV)—black, high arousal and low valence (HALV)—blue, low arousal and high valence (LAHV)—

orange, low arousal and low valence (LALV)—green. 

 

For normal and speed up levels (N, SU, black dots), HAHV scores were reported throughout 

the three stages. It is possible to see that the mean values are similar, and the majority of 

the distribution is located in the HAHV quadrant, leading to infer that the excited emotion 



was achieved over the six levels. For hard and only asteroids levels (H, OA, blue dots), the 

arousal scores aimed to represent HALV responses, leading to infer that the frustrated 

emotion was achieved over the six levels. 

 

For easy and without speed levels (E, WS, orange dots), LAHV responses were reported by 

the participants. For easy levels, HV scores were higher than the without speed levels’ 

valence scores. Without speed levels’ mean reference values are located close to the 

neutral valence value. In general, the easy levels’ mean reference values showed that calm 

emotion was induced by the six levels, and the without speed levels’ mean reference values 

showed that bored and calm emotion were induced in the participants. For speed down 

and the without tokens levels, LA responses were reported by the participants. Valence 

responses distribution is located between the two valence quadrants making the mean 

reference values to be located in the LV quadrant but close to the neutral valence value. In 

general, bored emotion was achieved over the six levels. Finally, for the final mission level, 

most of the answer distribution was located in the HAHV quadrant, leading to infer that 

excitement is the emotion felt by the participants while playing this last level. 

 

4.3.2. Game Events 

 

The number of positive and negative events obtained by each of the participants were 

inspected. In figure 14, an example of different participant’s performance according to the 

number of positive and negative events in each level is showed, along the arousal and 

valence responses reported. Participant 1 had a lower number of negative events across 

the game levels, in contrast, Participant 9 had a higher number of negative events in levels 

aimed to induce HALV and in the final game level. It is possible to see that the number of 

positive events is higher than the number of negative events, this is understandable 

because of the objectives proposed by the virtual environment of collecting positive tokens 

and avoid collision with negative tokens, however, there is still a high number of negative 

events that allowed the study of emotional reaction. 



 

  

Figure 14. Total amount of positive and negative events obtained by each participant across all the game 

levels along the arousal and valence responses. 

 

4.3.3. Spearman’s correlation between EEG features and arousal - valence scores 

 

To study the relation between the self-assessment responses and the EEG features, 

Spearman’s correlation was performed, the EEG features with a strong (equal or higher than 

|0.5|) correlation’s score and significant p-value (p < 0.005) are reported. The Spearman’s 

correlation was performed between the 1557 EEG features and the arousal-valence scores 

given by the participants after completed each of the videogame levels (60 seconds time 

window). 

 

On table V. a., the number of features correlated for each participant is showed. The lower 

amount of EEG features for arousal was 106 (6.8% of the total number of calculated 

features) and the higher amount was 287 (18.43%). For valence, the lower amount of EEG 

features was 7 (0.45%) and the higher amount was 323 (20.74%). On average, the number 

of features correlated with arousal was higher than the number of features correlated with 

valence (only for participant 5 the number of correlated features for valence was higher 

than for arousal). 

 

In contrast, when common correlated EEG features were considered, few common features 

had a correlation for the participants’ majority and arousal answers, it is possible to see 



from table V. b., that when we consider more participants the number of common features 

decrease. From the 1557 EEG features calculated, only 3 were common correlated for all 

the 10 participants, and 461 EEG features were unique among the 10 participants (461 traits 

had only one occurrence when the correlated EEG features of the 10 participants were 

inspected). For valence answers, fewer common features were found (the higher number 

was 4 participants with 1 common trait), and 480 features had only one occurrence when 

the correlated EEG features of the 10 participants were inspected. 

 

TABLE V.  NUMBER OF ELECTROENCEPHALOGRAPHY (EEG) TRAITS CORRELATED WITH AROUSAL AND VALENCE SCORE: (A) FOR 

EACH PARTICIPANT, (B) TRAITS COMMON AMONG PARTICIPANTS [53] 

 

a. Individual traits correlated for each 
participant 

 
 

b. Number of traits correlated common among 
participants 

Participant Gender 

Arousal Valence   

Number of participants 

Arousal Valence 

Num. of 
features 

Num. of 
features 

  Num. of 
features 

Num. of 
features 

1 Male 223 200   1/10 461 480 
2 Male 245 9   2/10 260 82 
3 Male 207 10   3/10 155 0 
4 Female 265 8   4/10 79 1 
5 Male 287 323   5/10 35 0 
6 Male 272 16   6/10 10 0 
9 Male 146 13   7/10 4 0 

10 Female 254 60   8/10 9 0 
11 Male 140 7   9/10 2 0 
12 Female 106 2   10/10 3 0 

Total   2145 648   Total 2145 648 

 

The correlation scores of the common features among participants was explored. PSD and 

DE traits on the theta band for channels in the frontal (F), central (C), and parietal (P) 

regions: FCz, CPz, Cz, FC1, FC2, C1, CP1, CP2 had positive correlation for the majority of the 

participants. In figure 15. a., the features correlated with arousal for all the participants and 

the dispersion of each trait is showed. In contrast, in figure 15. b., the only common 

correlated feature with valence for 4 participants is shown (complexity of PO3 channel had 

both positive and negative correlations and lower rho scores compare with the features 

correlated with arousal), from the dispersion is possible to identify that is more difficult to 

identify a clear pattern. There is a higher number of features that correlated with arousal 



scores than valence scores across all participants. Arousal scores are related with features 

in the theta frequency band and electrodes located in the frontal central, central, and 

central parietal regions. 

 

 

(a) 

  

(b) 

Figure 15. Spearman correlation score’s dispersion of features common for the participants. (a) Features 

correlated with arousal scores. The reported traits have positive rho scores with a mean value above 0.6. (b) 

Features correlated with valence scores, for 4 participants only one trait had a strong correlation, in this 

case, the correlations had positive and negative rho scores among participant whit scores no higher than 0.6 

[53]. 

 

The feature correlations with arousal scores vary between participants due the individual 

difference on behavior and reaction to the emotional content, and how each individual 

approached the experimental task. In addition, as can be related with the time window to 



extract the different traits, during to each level, different physiological activations can occur 

depending on the events and challenges that each game level presents. However, despite 

the difference between participants, it is possible to see that arousal scores can be describe 

by different EEG signal features. There are other features that correlated in an individual 

approach for both arousal and valence scores, for this reason, we decided to implement a 

regression algorithm to predict these scores and evaluate the performance on an individual 

level. 

 

4.3.4. Arousal and Valence Prediction using Bayesian Ridge Regression Model 

 

To identify the prediction performance of arousal and valence scores using the EEG traits, a 

Bayesian ridge regression model was implemented, to make predictions using 25 

observations per participant and EEG features selected form the 1557 calculated. Bayesian 

regression techniques can be used to include regularization parameters in the estimation 

procedure, this is done by introducing uninformative priors over the hyper parameters of 

the model. For Bayesian ridge regression the loss function is augmented in such a way that 

not only minimize the sum of squared residuals but also penalize the size of parameter 

estimates [66]. 

 

The z scores of each feature to normalize the values was calculated, then, the dataset was 

split into train set (75%) and test set (25%), and feature selection for regression approaches 

was performed, using mutual information [81] and grid search with repeated cross 

validation (splits = 10, repeats = 3, random state = 1) over the train set, with mean absolute 

error scoring. Features selected for arousal and valence score are related with time domain 

(standard deviation, complexity, mobility, kurtosis, skewness), and PSD and DE from theta, 

alpha, beta, gamma, and all EEG frequency spectrum. Then, the models were trained over 

the train set using the features selected, with a repeated cross validation scheme (splits = 

10, repeats = 3, random state = 1), and the mean absolute errors (MAE) and the mean 

square errors (MSE) were calculated as performance scores. 



 

 

(a) 

 

(b) 

Figure 16. Performance of Bayesian ridge regression predictions for arousal and valence scores. (a) Arousal 

score values and predictions over the train and the test set. (b) Valence score values and predictions over 

the train and the test set [53]. 

 

Finally, the obtained model was tested over the test set. Figure 16. a. shows the regression 

result. For arousal, MAE had an average of 0.973 ± 0.316 on train set, and 1.199 ± 0.321 on 

test set, MSE had an average of 1.786 ± 1.122 on train set and on test set 3.186 ± 2.876, the 

best result was achieved for Participant 6 in the train set (MAE: 0.406 ± 0.299, MSE: 0.328 

± 0.406). For valence, the MAE had an average of 1.199 ± 0.321 on train set, and 1.670 ± 

0.784 on test set, the MSE had an average of 2.504 ± 1.2112 on train set and on test set 

4.680 ± 4.032, the best result was achieved for participant 5 in the train set (MAE: 0.723 ± 

0.317, MSE: 0.806 ± 0.655). From the prediction models’ implementation, better result for 

arousal scores were obtained than valence scores in both the train set and the test set (only 



participant 5 got better results for valence than for arousal scores in both train and test set). 

In figure 16, it is possible to see the regression’s prediction of arousal and valence values 

across all videogame levels (25 game levels or observations) for each of the participants. In 

general, is easier to find EEG features that correlated and helps to describe the arousal 

answers given by the participants than valence answers. 

 

4.3.5. Analysis from time related events and EEG features 

 

Although, the time events were labeled as positive or negative according to the context of 

the videogame and the event that represented, the correlation allowed to determine if 

those time events have the same appraisal for each of the participants. To perform the 

correlation, the amount of both events (positive and negative) in each of the game levels 

per participants were counted, then Spearman’s correlation was calculated to identify 

which event types correlated with the answers gave by the participants. On figure 17 is 

showed: (a) the correlation score between arousal and number of events, and (b) the 

correlation score between valence and number of events. 

 

For arousal scores, the number of negative events had a positive correlation across the 

majority of the participants, only for participants 9 and 10, positive events correlated 

positively. For valence score, strong correlations were found for negative events 

(participants 4, 5, 8 and 10) and for positive events (participants 1, 7, 9). Presence of 

negative events can induce higher levels of arousals responses; this can be due to the nature 

of each of the designed game levels. With the results, it is possible to identify emotional 

reactions thought the identifications of game time events. 

 



 

a. 

 

b. 

Figure 17. Correlation between arousal–valence scores and number of events per game level. (a) Arousal 

correlations. (b) Valence correlations [53]. 

 

4.3.6. Spearman’s correlation between EEG features and game time events 

 

To study the relation between the game time events and the EEG traits, Spearman’s 

correlation was performed, the EEG features with a strong (equal or higher than |0.5|) 

correlation’s score and significant p-value (p < 0.005) are reported. First, the game time 

events that were too close from another event were excluded (if an event had another 

event inside the 500ms time window, that event was excluded from the analysis). For all 10 

participants, the excluded events were less than 15% of the total positive events, and less 

than 30% of the total negative events. The final number of events used in our analysis is 

showed in table VI. 

 

TABLE VI.  NUMBER OF POSITIVE AND NEGATIVE EVENTS PER PARTICIPANTS [53] 

 

 Participants 

Events 1 2 3 4 5 6 7 8 9 10 

Positive 470 428 437 409 465 478 467 445 450 320 

Negative 85 121 94 130 114 91 117 114 151 171 

 



 

Figure 18. EEG features correlated with game events. Theta band’s PSD and DE from electrodes on the 

occipital and central brain region and, alpha band’s PSD and DE from electrodes on the frontal-central and 

the occipital brain regions. The EEG features had a negative correlation with positive events and positive 

correlation with negative events [53]. 

 

The Spearman’s correlation was performed between the 1557 EEG features and the game 

time events inside each of the game levels. The EEG features were calculated, on a signal 

portion extracted from a time window of 500 ms (0 s at event onset). There is a high number 

of common features for all the participants, PSD and DE features of theta and alpha bands 

for all the EEG channels except of P2 correlated negative with positive events and positively 

with negative events. With lower rho scores, PSD features of beta band for all EEG channels 

except of: Fp1, AF7, F7, F5, FT7, FC5, Fpz, AF8, F8, and P2; and DE features of beta band for 

all EEG channels except of: Fp1, AF7, F7, F5, FT7, FC5, Fpz, AF8, F8, P2, Fp2, AF8, correlated 

negative with positive events and positively with negative events. As, example in figure 18, 

the traits and the topographical plots of channels with a rho scores stronger than 0.7 (rho 

> = |0.7|) are showed, the PSD and DE features related with the theta (channels: F1, F2, 

FC1, FC2, FCz, C1, C2, CP1, CPz, P1, P3, P4, P5, P6, P7, P8, P9, Pz, POz, PO3, PO4, PO7, PO8, 

O1, O2, Oz, Iz) and the alpha band (channels: FC1, FC2, FCz, CP1, P1, P3, P5, P7, PO3, PO7, 



PO4, O1, Oz) had a negative correlation with positive events (positive correlation with 

negative events). 

 

4.3.7. Game events classification using ensembling methods 

 

The ratio between the total amount of positive and negative events acquired during the full 

gameplay is not even, the number of positive events was higher than the number of 

negative events (figure 14, and table VI), because of this, it is necessary to implement a 

classification model for imbalance data on the classes. In ensemble classifiers, bagging 

methods build several estimators on different randomly selected subset of data. Ensemble 

methods use multiple learning algorithms to obtain better performance, bagging methods 

work by building multiple estimators on a different randomly selected subset of data, 

allowing to train the classifier that will handle the imbalance without to under-sample or 

oversample manually before training [82]. 

 

First, some of the observations from the majority class (undersample the positive events) 

are randomly deleted, to obtain the same number of observations from the minority class 

(negative events). Then, feature selection is performed with the under-sampled dataset 

using recursive feature elimination with cross validation and a support vector classification 

algorithm (linear kernel, regularization C = 100). The dataset is split into train set (75%) and 

test set (25%) with the selected features. Then, a balanced bagging classifier using decision 

trees as estimator, with 10-fold cross validation and the selected traits on the train set 

(without under-sampling dataset) is implemented. 

  



 

TABLE VII.  NUMBER OF POSITIVE AND NEGATIVE EVENTS PER PARTICIPANTS [53] 

 

   Events 

   Training Test 

Num. of 
Participants 

Gender N. Traits 
Acc F1 AUC 

Acc F1 
Mean Std Mean Std Mean Std 

1 Male 21 0.97 0.05 0.98 0.03 0.99 0.01 0.91 0.94 

2 Male 2 (Pz) 0.99 0.03 0.99 0.02 0.99 0.0 0.99 1.00 

3 Male 2 (PO3) 0.99 0.04 0.99 0.04 0.99 0.01 0.97 0.98 

4 Female 2 (Pz) 0.99 0.02 1.00 0.01 0.99 0.0 1.0 1.0 

5 Male 2 (Oz) 0.99 0.03 0.99 0.02 0.99 0.0 0.98 0.98 

6 Male 2 (POz) 0.99 0.02 0.99 0.01 0.99 0.01 0.98 0.99 

9 Male 2 (Pz) 1.0 0.01 1.0 0.01 1.0 1.0 1.0 1.0 

10 Female 2 (P8) 1.0 0.01 1.0 0.01 0.99 0.0 1.0 1.0 

11 Male 2 (PO4) 0.99 0.02 1.0 0.02 0.99 0.0 0.98 0.98 

12 Female 2 (P3) 0.99 0.05 0.99 0.05 0.99 0.0 1.0 1.0 

 

In the table VII, the classifier’s performance with accuracy (Acc), F1, and area under the 

curve (AUC) scores are showed. From the scores, it was clear the good performance of the 

classifiers to discriminate between positive and negative time events, the features selected 

from the majority of the participants were DE from the theta band and form the full EEG 

frequency spectrum, only for participant 1 the features selected were: DE theta (F1, C1, PO3, 

CPz, AFz, Fz, F2, FCz, CP2), DE alpha (F1, CPz, F2), and DE from the full EEG frequency 

spectrum (F1, C1, Pz, CPz, AFz, Fz, F2, FCz, CP2). The results proved that with each of the 

EEG signals is possible to identify emotional states in the participants using a smaller time 

window with game events and these events have a relation with the arousal-valence scores 

gave by the participants. 

  



4.4. Discussion 

 

Prior works have reported that higher frequency bands relate with emotions while using 

pictures, videos or recalling past experiences as emotional stimuli. For example, in [83], 

authors reported the presence of decrease of peaks in the alpha band for fear and sorrow 

emotions, in contrast of increase in peaks frequencies in the alpha band for joy and anger. 

Works using the SEED dataset [36], have reported that alpha, beta, and gamma had better 

emotion classification performance [84], [85]. Their findings showed that for positive 

emotion, beta and gamma frequency bands energy increases, and for neutral and negative 

emotions beta and gamma frequency bands have lower energy. In addition, neutral 

emotions have higher energy on alpha band [86]. Other works support these findings using 

pictures as emotional stimuli [87], and using the DEAP dataset [88]. EEG traits correlated 

with arousal for the majority of the participants shows that emotions can be described from 

the theta band of the central electrodes (FCz, FC1, FC2, Cz, C1, C2, CPz, CP1, CP2), however, 

on an individual approach, when performing regression to predict emotional values with 

feature selection, the selected features for each participant showed that traits from the 

alpha, beta and gamma band were selected in higher rate than the theta band traits. In 

addition, some time domain features like complexity and standard deviation of the 

channel’s signals are selected in the majority of the participants. 

 

Comparing with other works using videos as emotional stimuli [24], [36], [38], [39], [40], 

arousal and valence labels classification metrics (accuracy and F1 scores) have values 

around 0.5 and 0.8 using machine learning methods as support vector machines and k-

nearest neighbors. Arousal label classifications scores have better results than valence label 

classifications. In our case, we used regression analysis to predict the arousal and valence 

scores. The results showed error metrics higher than 0.4 but lower than 1.2 for MAE and 

the MSE showed values higher than 0.3 but lower than 3.5 for arousal scores, and error 

metrics higher than 0.7 but lower than 2.1 for MAE and the MSE showed values higher than 

0.8 but lower than 4.0 for valence scores. As previous works, classification/prediction of 



valence labels/scores is more difficult than for arousal. This is not only reflected on the 

performance metrics but also in the EEG features correlation with valence scores. This can 

be related to the process of rating overall positive and negative emotional experience on a 

task (video or videogame) that had diverse contents within the same long-time window. 

Depending on the content showed to the participant in a long time-window, the participant 

can have both positive and negative emotions on different moments inside the time 

window, making difficult to summarize the overall experience with one score and, at the 

same time, generalize the signal activation through the whole-time window, narrows the 

possibility of identify specific moments where each participant could feel different 

emotions related to high or low valence responses. Although, the results are consistent with 

previous works, more studies that analyze emotional reactions and EEG traits under 

interactive virtual environments are needed to contrast our findings using the same 

emotional stimuli nature.  



Chapter 5 

 

Event related potentials (ERP) activation in 

the presence of emotional stimuli tool time 

events 

 

5.1. Aim of this section 

 

While plotting the EEG signals related with the channels that highly correlated with 

emotional stimulus time events, some ERP components were found. The ERPs have some 

common characteristics related to positive and negative events across the 10 participants 

of this study. 

 

The main objective of this chapter is to describe the ERP activation related with emotional 

stimulus time events, that allow to describe emotional reactions using the EEG signals. The 

27 channels’ signals that correlated with the different events were inspected for this 

analysis. The channels’ signals portion around the analysis time window (0.5 s from the 

event occurrence) was extracted, and the mean values of the channel’s amplitude were 

calculated and plotted. Some clear ERP activations that manifested in the presence of a 

game time event were obtained, for some of the channels correlated with positive and 

negative events. 

 



In tables VIII, IX, and X, left, central and right brain regions channels’ signals are showed, 

respectively. To be able to distinguish the ERP behavior the channel’s signals were plotted 

with a time window of 2.0 seconds, event onset at 0 seconds, 0.5 seconds before event 

onset and 1.5 seconds after event onset. Although, for all the correlated channels there are 

amplitude characteristic’s contrast between positive and negative time events. Only the 

description for ERP components of channels FCz, F2, FC2, C2, P5, P7, P9, P4, P6, and P8 are 

described, due to the similar amplitude patterns that are found across all participants. For 

all channels, the signal’s frequencies are higher for negative time events signals than 

frequencies for positive time events signals. The presence of ERP components, are evidence 

of participants reacting of the occurrence of game time events, the frequency 

characteristics showed a distinction between the nature of the events that were distinctive 

according to each participant. 

 

  



TABLE VIII.  LEFT BRAIN REGION ERPS 
a. 

 F1 FC1 C1 

 

Positive 
time 

events 

   

Negative 
time 

events 

   
 

b. 

 CP1 P1 P3 

 

Positive 
time 

events 

   

Negative 
time 

events 

   
  



c. 

 P5 P7 P9 

 

Positive time events 

   

Negative time events 

   
 

d. 

 PO3 PO7 O1 

 

Positive time events 

   

Negative time events 

   
  



TABLE IX.  CENTRAL BRAIN REGION ERPS 
a. 

 Fz 

 

Positive time events 

 

Negative time events 

 
 

b. 

 CPz Pz POz 

 

Positive time events 

   

Negative time events 

   
  



c. 

 Oz Iz 

 

Positive time events 

  

Negative time events 

  
 

TABLE X.  RIGHT BRAIN REGION ERPS 
a. 

 F2 FC2 C2 

 

Positive time events 

   

Negative time events 

   
  



b. 

  P4 P6 P8 

 

Positive time events 

   

Negative time events 

   
 

c. 

  PO4 PO8 O2 

 

Positive time events 

   

Negative time events 

   
 



5.2. ERP on the left-brain region 

 

5.2.1. P5 – P7 – P9 channels 

 

• For positive time events: a negative ERP component is present around 300 ms 

(N300), with a stable patter before and after the ERP. 

 

• For negative time events: an amplitude increase before event time onset is present, 

peaking after the event and 100 ms time window, with a negative component 

around 250 ms (N250). Amplitudes are bigger than amplitudes for positive time 

events. 

 

5.3. ERP on the central brain region 

 

5.3.1. FCz channel 

 

• Positive time events: the signal exhibits similar characteristics of an ERP P200 (200 

milliseconds and positive amplitude), with a stable patter before and after the ERP. 

 

• For negative events: a slightly amplitude decrease before time event onset, and an 

ERP activation similar to P300 were found. 

 

5.4. ERP on the right brain region 

 

5.4.1. F2 – FC2 – C2 channels 

 

• Positive time events: an ERP component is present at 300 ms after event on set. 

 



• For negative time events: a amplitude decrease before time event onset is perceived, 

peaking around 0 seconds, with a P300 component. 

 

5.4.2. P4 – P6 – P8 channels 

 

• Positive time events: In contrast with the electrodes positioned in the same parietal 

line of left region, a slightly decrease on amplitude before event onset and a positive 

peak around 200 ms after a time event on set is perceived. 

 

• Negative time events: The ERPs activation for negative events presented higher 

signal’s frequency than the signal’s frequency for positive time events. 

 

5.5. Discussion 

 

Some ERP components elicited by visual stimuli can be modulated when the images have 

emotional content: P1 modulated by the presentation of emotional faces, N1 modulated by 

both pleasant and unpleasant stimuli component may represent early processes in the 

evaluation of emotional stimuli, N170 and P2 modulated by emotional faces [2]. However, 

when playing video games, several brain areas are stimulated (occipital lobe for visual 

processing, parietal and temporal lobes from auditory stimuli, and the frontal lobe for 

emotional processing, concentration and decision making) [57], and is important to study 

how particular events can be represented by EEG activity. Some works have focus their 

analysis on the relation of EEG and time events [89] [90]. When EEG activation in presence 

of game events was considered, strong correlation of features related to theta, alpha and 

beta frequency bands across all participants were found, with the strongest scores 

belonging to the theta and the alpha bands from electrodes positioned on the front, central 

and occipital brain regions. 

 



The findings are consistent with works that also analyze game events and the related EEG 

activation. In [51], the authors collected information about a variety of relevant game 

events, presumably negative events had strong responses with delta band signal 

component and delta/theta power increase, together with a strongly differentiated ERPs. 

In addition, rewarding events caused an increase in low delta signal component and high 

delta power with a robust ERP peaking and plateauing around the time of the P2 component. 

In this study, P2 characteristics on the EEG signals in presence of positive events were found 

for FCz, CPz, Pz, and POz channels, with stabilization before the event onset and after 0.5 

seconds of the event onset. In contrast, a pronounce peak in amplitude in presence of 

negative events, and a decrease in amplitude (negative amplitude) before the occurrence 

of the event was found for FCz channel, this suggest that the participants’ signal can predict 

when a negative event is about to occur (0.5s before the event). 

 

Although, the number of participants in our study is relatively small, the patterns found on 

the EEG signals across subjects suggest a common activation and perception for both 

positive and negative events, what is worth to highlight is that emotion appraisal (arousal 

and valence responses) is an individual process that depends on past experience, memories 

and cognitive process related to each participant, this can explain why, not too many 

common EEG features corralled among participants, but still there was higher number of 

EEG features that correlated in an individual level, for this kind of scenarios, participant 

tailored approaches to identify emotional reactions are more suitable due to the 

consideration of individual characteristics and reactions [47], [43]. It is necessary to conduct 

more experiments with a higher number of participants where characteristics as age, 

culture, sex, etc., can be considered to analyze the influence on emotion recognition 

process. 

  



Chapter 6 

 

Conclusion 

 

It is possible to identify emotional reactions using EEG traits using videogames as an 

emotional stimulus. Videogames are powerful tools to elicit emotions due to the 

combination of digital media as music, picture, videos, game mechanics and story-telling, 

with the interaction with virtual environments, becoming an efficient tool to study 

emotional reactions under HCI scenarios. It is important to analyze how to identify 

emotional reactions under interactive scenarios using EEG data that allows to detect 

patterns or correlated information with answers and reactions related to emotion. 

 

The emotional reactions came represented in self-assessment responses, and also, in game 

time events. For self-assessment responses, theta, alpha, beta and gamma bands of 

electrodes from the central, occipital, and temporal regions allows to predict arousal values 

better, in contrast, with the performance of predicting valence values. Addressing game 

events, we found that EEG traits related with the theta, alpha and beta band had strong 

correlations. Also, distinctive event-related potentials were identified in the presence of 

both types of game events that correlated with the emotional responses. 

 

6.1. Aim result 

 

a. Which input information is suitable to increase the accuracy of emotion 

recognition compare with an existing public dataset, from EEG and individual 

characteristics. 



 

Due to the nature of the individual characteristics (age, sex, and personality), and the small 

number of participants, this kind of information is not suitable to use in arousal-valence 

classifications. For that reason, information related to behavioral reactions related to the 

emotional stimulus tool were used to improve the classification performance. 

 

There are works that have study the common characteristics and also the difference 

between emotion appraisal and emotion recognition, with some assuring that culture is 

useful to increase the classification performance, however there is still need of more studies 

and evidence that support this conclusion. For the results using the dataset AMIGOS, there 

is no information about the nationality or cultural background of the participants in this 

particular study (the study belongs to the Queen Mary University of London, UK, University 

of Trento, Italy). From here, there is no data available for me to identify if the cultural 

background has some influence on the results. In the conducted experiment, participants 

from different nationalities were selected, because the aim of the study was to identify 

common characteristics in the EEG signals related to emotional appraisal, and as individual 

characteristics, to focus on how participants reacted to the emotional stimulus and each of 

the mechanics proposed with the videogame. As a conclusion, the definition of emotions 

and how each emotion is understood depends in a strong level on the cultural background, 

but how participants react to emotional events can be related more to the personal 

experience, and events that shaped the growth and the daily life perception. 

 

Regarding EEG features, PSD and DE features were more suitable to increase the 

classification performance of both arousal-valence scores and emotional stimulus time 

events. 

 

b. How to build an emotional elicit tool that allows the study of emotional reaction 

within and after the exposure time window. 

 



An emotional stimulus tool that allows the study of emotional reactions within and after an 

experimental time window was designed and implemented. The videogame is very simple 

because this allows to target the specific emotions for the experiment: 

 

• The challenges are easy to understand, this is related to the simple game mechanics, 

that were modified to target the different emotions. 

• The learning curve is shorter, this is related with the experiment time window and 

with the experiment length. 

• The tasks are engaging, this is related with the purpose of the game, where it is easy 

to identify the outcome of each level and the whole videogame, and how the 

performance would affect the final results that is win or lose. 

 

Taking these points into account, if the mechanics get more complex, or the structure 

change modifying the time exposure, the objective of the game, and the aim of each 

mechanics, getting specific emotions would be more difficult and more variables would be 

needed to consider for the analysis. 

 

To identify if the skill level of the participants affected the results obtained in the 

experiment, two sources of information were correlated with the arousal – valence 

responses from the participants. One, is the final game scenario score, related to the points 

got at the end of each videogame scenario while collecting good tokens and avoiding bad 

tokens. And two, is the final outcome of the videogame, that was defeating a final enemy, 

if the participant defeated this final enemy, they win the videogame objective, if not, they 

lose the videogame objective. 

 

Related to the level final scores, in the figure 19, the correlation scores from the participant 

and the dispersion of scenarios level score between the arousal – valence answers are 

shown. For arousal, only strong correlations were found for participants 1, 7, 9 and 10. 

However, from the distribution, it is possible to see that there is some pattern or tendency 



between the scores and the answers. For valence, only strong correlations were found for 

participants 1, 7 and 9, in this case the distribution does not have a clear tendency, what it 

makes more difficult to relate level scores with the valence answers. 

 

 

Figure 19. Correlation and dispersion between final game scenario scores and arousal valence answers. 

 

Regarding final videogame outcome (winning or losing the videogame objective), the 

behavior of the finals scores in each scenario according to the participant skills was 

inspected, the graphics (figure 20) showed that inside each game scenario, the participants 

who win have more positive scores and less negative scores in contrast with the participants 

who lost at the end. In this case, the participants had different performance levels as 

showed in the charts, and it is no clear that the skill level has a correlation with the 

emotional self-assessment responses. From the results and the data showed, the 

participant skill level does not affect the results from the experiment. 

 



 

Figure 20. Game scenarios scores across all game scenarios with arousal and valence answers, and final 
videogame outcome (win or lose). 

 

To identify if finger pressing keys have a correlation with emotion the time traces where the 

participant pressed a key related with the avatar movement, pressing up and down key 

arrows were recorded. In figure 21, it is possible to see that the number of pressed keys had 

a strong positive correlation with the arousal responses, looking at the distribution of the 

arousal response vs the number of keys pressed in each scenario, it is possible to see some 

kind of linear tendency. In contrast with the valence scores, only participant 5 had a strong 

positive correlation with the number of pressed keys. Inspecting the distribution with 

valence scores, there was no clear tendency. 

 

Inspecting the behavior of pressed keys in each scenario according to the participant skills, 

figure 22 showed that inside each game level, all the participants tend to have around the 

same number of pressing keys, the only strong difference is presented in the final game 

scenario, where participants pressed the keys with higher or lower number of times having 

different outcomes that can be related with emotion, for example: participant 01 and 05 

had around the same number of keystrokes in the main levels and in the final level, both 

participants won the videogame objective. In contrast participants 02, 03, and 04, had a 

higher number of keystrokes in the final scenario, compare with the main scenarios, where 

2 of them lost the videogame objective and one of them won the objective. 



 

Figure 21. Correlation and dispersion between number of pressed keys and arousal valence answers. 

 

As other example participant 06 and 10 had around the same number of keystrokes in the 

main levels and in the final level, in this case one participant won the videogame objective, 

and the other one lost. In contrast, participants 07, 08 and 09, had a higher number of 

keystrokes in the final level, and the three participants lost the videogame objective. What 

would be worth to explore is the aim or the intention of the key pressing task, for example, 

if the participant was trying to collect a token or if the participant was trying to avoid 

collision with a token, this information can give us more insights about the emotional 

reaction represented as correlation or ERPs in the EEG signals. 

 



 

Figure 22. Number of pressed keys across all game scenarios with arousal and valence answers, and final 
videogame outcome (win or lose) 

 

c. Which EEG characteristics are correlated with self-assessment emotional 

responses, and emotional stimuli time events. 

 

The correlation scores of the common features among participants was explored. PSD and 

DE traits on the theta band for channels in the frontal (F), central (C), and parietal (P) 

regions: FCz, CPz, Cz, FC1, FC2, C1, CP1, CP2 had positive correlation for the majority of the 

participants. In figure 15. a., the features correlated with arousal for all the participants and 

the dispersion of each trait is showed. In contrast, in figure b., the only common correlated 

feature with valence for 4 participants is shown (complexity of PO3 channel had both 

positive and negative correlations and lower rho scores compare with the features 

correlated with arousal), from the dispersion is possible to identify that is more difficult to 

identify a clear pattern. There is a higher number of features that correlated with arousal 

scores than valence scores across all participants. Arousal scores are related with features 

in the theta frequency band and electrodes located in the frontal central, central, and 

central parietal regions. 

 

There is a high number of common EEG features that correlated with game time events for 

all the participants, PSD and DE features of theta and alpha bands for all the EEG channels 



except of P2 correlated negative with positive events and positively with negative events. 

With lower rho scores, PSD features of beta band for all EEG channels except of: Fp1, AF7, 

F7, F5, FT7, FC5, Fpz, AF8, F8, and P2; and DE features of beta band for all EEG channels 

except of: Fp1, AF7, F7, F5, FT7, FC5, Fpz, AF8, F8, P2, Fp2, AF8, correlated negative with 

positive events and positively with negative events. 

 

d. The performance/regression classification of self-assessment emotional 

responses and emotional stimuli time events using EEG and individual 

characteristics information. 

 

For arousal regression, MAE had an average of 0.973 ± 0.316 on train set, and 1.199 ± 0.321 

on test set, MSE had an average of 1.786 ± 1.122 on train set and on test set 3.186 ± 2.876, 

we achieved the best result for Participant 6 in the train set (MAE: 0.406 ± 0.299, MSE: 0.328 

± 0.406). For valence regression, the MAE had an average of 1.199 ± 0.321 on train set, and 

1.670 ± 0.784 on test set, the MSE had an average of 2.504 ± 1.2112 on train set and on test 

set 4.680 ± 4.032, we achieved the best result for participant 5 in the train set (MAE: 0.723 

± 0.317, MSE: 0.806 ± 0.655). From the prediction models’ implementation, better result 

for arousal scores were obtained than valence scores in both the train set and the test set 

(only participant 5 got better results for valence than for arousal scores in both train and 

test set). 

 

From the classification scores, it was clear the good performance of the classifiers to 

discriminate between positive and negative time events, the features selected from the 

majority of the participants were DE from the theta band and form the full EEG frequency 

spectrum, only for participant 1 the features selected were: DE theta (F1, C1, PO3, CPz, AFz, 

Fz, F2, FCz, CP2), DE alpha (F1, CPz, F2), and DE from the full EEG frequency spectrum (F1, 

C1, Pz, CPz, AFz, Fz, F2, FCz, CP2). The results proved that with each of the EEG signals is 

possible to identify emotional states in the participants using a smaller time window with 



game events and these events have a relation with the arousal-valence scores gave by the 

participants. 

 

6.2. Future work 

 

In future research, it is important to address specific challenges like: the access to a wider 

and diverse population where participant exhibit different demographic characteristics, 

personality traits, and behavioral cues; the nature of the emotional stimuli, whether they 

are passive or active; the data gathered and its evaluation during stimuli exposure time; and 

the interaction type that the participant can experience during using HCI systems. For 

personalized HCI, it is important to analyze, not only intrinsic characteristics as demographic 

or personality traits, but also behavioral cues that manifest when using HCI systems and its 

context. For future works we would like to focus our approach on the capturing and 

analyzing behavioral cues, together with physiological signals, related to the use of a specific 

technology or the task being performed. 
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