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This article describes the outline of the Ph. D. thesis, entitled “Combi-
natorics of the quantum alcove model” ([2]).

The quantum alcove model and Schubert calculus The quantum
alcove model, introduced in [4] (and generalized to arbitrary weights in [6]),
is a combinatorial tool, which appears in many branches of mathematics; for
example, the quantum alcove model is used to describe explicitly the ¢ = 0
specialization of symmetric (or nonsymmetric) Macdonald polynomials ([§]
and [7]; see also [9]).

As another example, we focus on Schubert calculus. Let G be a connected,
simply-connected simple algebraic group over C, H C G a maximal torus, W
the Weyl group, P the weight lattice, and Q" the coroot lattice of G; also,
we denote by Wy = W x Q¥ the affine Weyl group associated to G, and set
W37 =W x Q¥F, where Q¥ := {a¥ € Q" | a¥ > 0}. Let Kyxc-(Qq)
denote the (H x C*)-equivariant K-group of the semi-infinite flag manifold
Q¢ associated to G; in Kp«c+(Qg), we have the line bundle classes [O(A)]
for A € P, and the semi-infinite Schubert classes [O,] for € WZ°. In the
Schubert calculus, one considers the expansion in Kp«c+(Qg) of the following

form:
O] -[0:] = ) ¢,0,),
yEWaf
where ¢/, € Z[P](¢™"). By the Chevalley formula in [6], the coefficients
cgycy ), are explicitly described in terms of the quantum alcove model.
In the quantum alcove model, one considers the collection A(w,T") of

admissible subsets associated to a certain sequence of roots I' corresponding
to A € P, called a A-chain.



Quantum Lakshmibai-Seshadri paths Quantum Lakshmibai-Seshadri
(QLS) paths, introduced in [7], are combinatorial objects related to the rep-
resentation theory of quantum affine algebras; for example, QLS paths appear
in the study of Kirillov-Reshetikhin modules and level-zero extremal weight
modules.

For a dominant weight A, let us take a certain A-chain (called the lex
A-chain). It is known in [7] that there exists a bijection from A(e,I") to the
set QLS(A) of QLS paths of shape A which preserves crystal structures; here
e € W is the identity element of W.

Interpolated QLS paths —Main result 1— We consider the following
problem: “Is there a relationship between the quantum alcove model and
the set of QLS paths for an arbitrary weight A € P?” To give an answer to
this problem, we define the set IQLS(A) of interpolated QLS paths of shape A,
which can be thought of as a generalization of QLS paths. We then construct
an explicit injection A(w, ') — IQLS(A) x W which preserves some important
statistics including weights. In the thesis, we give some applications of this
injection to the equivariant K-group of ordinary flag manifolds. Remark that
the extended abstract of this part of the thesis is contained in [1].

Quantum Yang-Baxter moves —Main result 2— In general, there
exists two or more A-chains for a fixed A\ € P. Hence we need to consider
the relationship between two collections A(w, 1) and A(w,I's) for A-chains
I'y and I'y, where A € P and w € W. If X\ is dominant and I'y is obtained
from I'y by a certain deformation procedure called the Yang-Bazter trans-
formation, then it is known in [5] that there exists a bijection from A(e, I')
to A(e,I'y) which preserves some important statistics including weights and
heights. This bijection is given in terms of quantum Yang-Bazter moves. As
our second main result, we provide a generalization of quantum Yang-Baxter
moves. Let A € P be an arbitrary weight, and w € W. Take A\-chains I'; and
['s such that T’y is obtained from I'; by the Yang-Baxter transformation. We
prove that there exist certain (explicit) subsets Ag(w,T';) C A(w,T'y) and
Ao(w,I'y) C A(w, ') such that

e there exists a “sign-preserving” bijection Y : Ag(w, 1) — Ag(w,T's)
which preserves some important statistics including weights and heights,

e there exists a “sign-reversing” involution I; on A(w,Ty) \ Ag(w, )
(resp., Is on A(w,T'5) \ Ag(w,I's)) which preserves some important
statistics including weights and heights.



In the thesis, we give an application of this generalization of quantum Yang-
Baxter moves to the representation theory of quantum affine algebras. Re-
mark that this part of the thesis is based on [3].
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