T2R2 東京工業大学リサーチリポジトリ

Tokyo Tech Research Repository

論文 / 著書情報 Article / Book Information

題目(和文)	量子alcoveモデルの組合せ論
Title(English)	Combinatorics of the quantum alcove model
著者(和文)	河野隆史
Author(English)	Takafumi Kouno
出典(和文)	学位:博士(理学), 学位授与機関:東京工業大学, 報告番号:甲第12052号, 授与年月日:2021年9月24日, 学位の種別:課程博士, 審査員:内藤 聡,田口 雄一郎,加藤 文元,水本 信一郎,鈴木 正俊
Citation(English)	Degree:Doctor (Science), Conferring organization: Tokyo Institute of Technology, Report number:甲第12052号, Conferred date:2021/9/24, Degree Type:Course doctor, Examiner:,,,,
 学位種別(和文)	博士論文
Category(English)	Doctoral Thesis
種別(和文)	要約
Type(English)	Outline

Combinatorics of the quantum alcove model —Thesis outline—

Takafumi Kouno Tokyo Institute of Technology

August 2021

This article describes the outline of the Ph. D. thesis, entitled "Combinatorics of the quantum alcove model" ([2]).

The quantum alcove model and Schubert calculus The quantum alcove model, introduced in [4] (and generalized to arbitrary weights in [6]), is a combinatorial tool, which appears in many branches of mathematics; for example, the quantum alcove model is used to describe explicitly the t=0 specialization of symmetric (or nonsymmetric) Macdonald polynomials ([8] and [7]; see also [9]).

As another example, we focus on Schubert calculus. Let G be a connected, simply-connected simple algebraic group over \mathbb{C} , $H \subset G$ a maximal torus, W the Weyl group, P the weight lattice, and Q^{\vee} the coroot lattice of G; also, we denote by $W_{\mathrm{af}} = W \ltimes Q^{\vee}$ the affine Weyl group associated to G, and set $W_{\mathrm{af}}^{\geq 0} := W \ltimes Q^{\vee,+}$, where $Q^{\vee,+} := \{\alpha^{\vee} \in Q^{\vee} \mid \alpha^{\vee} \geq 0\}$. Let $K_{H \times \mathbb{C}^*}(\mathbf{Q}_G)$ denote the $(H \times \mathbb{C}^*)$ -equivariant K-group of the semi-infinite flag manifold \mathbf{Q}_G associated to G; in $K_{H \times \mathbb{C}^*}(\mathbf{Q}_G)$, we have the line bundle classes $[\mathcal{O}(\lambda)]$ for $\lambda \in P$, and the semi-infinite Schubert classes $[\mathcal{O}_x]$ for $x \in W_{\mathrm{af}}^{\geq 0}$. In the Schubert calculus, one considers the expansion in $K_{H \times \mathbb{C}^*}(\mathbf{Q}_G)$ of the following form:

$$[\mathcal{O}(\lambda)] \cdot [\mathcal{O}_x] = \sum_{y \in W_{\mathrm{af}}} c_{x,\lambda}^y [\mathcal{O}_y],$$

where $c_{x,\lambda}^y \in \mathbb{Z}[P]((q^{-1}))$. By the *Chevalley formula* in [6], the coefficients $c_{x,\lambda}^y$ are explicitly described in terms of the quantum alcove model.

In the quantum alcove model, one considers the collection $\mathcal{A}(w,\Gamma)$ of admissible subsets associated to a certain sequence of roots Γ corresponding to $\lambda \in P$, called a λ -chain.

Quantum Lakshmibai-Seshadri paths Quantum Lakshmibai-Seshadri (QLS) paths, introduced in [7], are combinatorial objects related to the representation theory of quantum affine algebras; for example, QLS paths appear in the study of Kirillov-Reshetikhin modules and level-zero extremal weight modules.

For a dominant weight λ , let us take a certain λ -chain (called the $lex \lambda$ -chain). It is known in [7] that there exists a bijection from $\mathcal{A}(e,\Gamma)$ to the set $\mathrm{QLS}(\lambda)$ of QLS paths of shape λ which preserves crystal structures; here $e \in W$ is the identity element of W.

Interpolated QLS paths —Main result 1— We consider the following problem: "Is there a relationship between the quantum alcove model and the set of QLS paths for an arbitrary weight $\lambda \in P$?" To give an answer to this problem, we define the set $IQLS(\lambda)$ of interpolated QLS paths of shape λ , which can be thought of as a generalization of QLS paths. We then construct an explicit injection $\mathcal{A}(w,\Gamma) \to IQLS(\lambda) \times W$ which preserves some important statistics including weights. In the thesis, we give some applications of this injection to the equivariant K-group of ordinary flag manifolds. Remark that the extended abstract of this part of the thesis is contained in [1].

Quantum Yang-Baxter moves —Main result 2— In general, there exists two or more λ -chains for a fixed $\lambda \in P$. Hence we need to consider the relationship between two collections $\mathcal{A}(w,\Gamma_1)$ and $\mathcal{A}(w,\Gamma_2)$ for λ -chains Γ_1 and Γ_2 , where $\lambda \in P$ and $w \in W$. If λ is dominant and Γ_2 is obtained from Γ_1 by a certain deformation procedure called the Yang-Baxter transformation, then it is known in [5] that there exists a bijection from $\mathcal{A}(e,\Gamma_1)$ to $\mathcal{A}(e,\Gamma_2)$ which preserves some important statistics including weights and heights. This bijection is given in terms of quantum Yang-Baxter moves. As our second main result, we provide a generalization of quantum Yang-Baxter moves. Let $\lambda \in P$ be an arbitrary weight, and $w \in W$. Take λ -chains Γ_1 and Γ_2 such that Γ_2 is obtained from Γ_1 by the Yang-Baxter transformation. We prove that there exist certain (explicit) subsets $\mathcal{A}_0(w,\Gamma_1) \subset \mathcal{A}(w,\Gamma_1)$ and $\mathcal{A}_0(w,\Gamma_2) \subset \mathcal{A}(w,\Gamma_2)$ such that

- there exists a "sign-preserving" bijection $Y: \mathcal{A}_0(w, \Gamma_1) \to \mathcal{A}_0(w, \Gamma_2)$ which preserves some important statistics including weights and heights,
- there exists a "sign-reversing" involution I_1 on $\mathcal{A}(w, \Gamma_1) \setminus \mathcal{A}_0(w, \Gamma_2)$ (resp., I_2 on $\mathcal{A}(w, \Gamma_2) \setminus \mathcal{A}_0(w, \Gamma_2)$) which preserves some important statistics including weights and heights.

In the thesis, we give an application of this generalization of quantum Yang-Baxter moves to the representation theory of quantum affine algebras. Remark that this part of the thesis is based on [3].

References

- [1] T. Kouno, A generalization of Lakshmibai-Seshadri paths and Chevalley formula for arbitrary weights, *RIMS Kôkyûroku* **2161** (2020), 211–218.
- [2] T. Kouno, Combinatorics of the quantum alcove model, Ph. D. thesis in Tokyo institute of Technology (2021).
- [3] T. Kouno, C. Lenart, and S. Naito, New structure on the quantum alcove model with applications to representation theory and Schubert calculus, arXiv:2105.02546.
- [4] C. Lenart and A. Lubovsky, A generalization of the alcove model and its applications, *J. Algebr. Comb.* **41** (2015), no. 3, 751–783.
- [5] C. Lenart and A. Lubovsky, A uniform realization of the combinatorial R-matrix for column shape Kirillov-Reshetikhin crystals, Adv. Math. 334 (2018), 151–183.
- [6] C. Lenart, S. Naito, and D. Sagaki, A general Chevalley formula for semi-infinite flag manifolds and quantum K-theory, arXiv:2010.06143.
- [7] C. Lenart, S. Naito, D. Sagaki, A. Schilling, and M. Shimozono, A uniform model for Kirillov-Reshetikhin crystals II: Alcove model, path model, and P=X, Int. Math. Res. Not. **2017** (2017), no. 14, 4259–4319.
- [8] D. Orr and M. Shimozono, Specializations of nonsymmetric Macdonald-Koornwinder polynomials, J. Algebr. Comb. 47 (2018), no. 1, 91–127.
- [9] A. Ram and M. Yip, A combinatorial formula for Macdonald polynomials, *Adv. Math.* **226** (2011), no. 1, 309–331.