T2R2 東京工業大学リサーチリポジトリ

Tokyo Tech Research Repository

論文 / 著書情報 Article / Book Information

題目(和文)		
Title(English)	Fluorination processes for growing metal fluoride epitaxial thin films	
著者(和文)	DAIXin	
Author(English)	Xin Dai	
出典(和文)	学位:博士(工学), 学位授与機関:東京工業大学, 報告番号:甲第12102号, 授与年月日:2021年9月24日, 学位の種別:課程博士, 審査員:一杉 太郎,平山 雅章,荒井 創,大友 明,鈴木 耕太,清水 亮太	
Citation(English)	Degree:Doctor (Engineering), Conferring organization: Tokyo Institute of Technology, Report number:甲第12102号, Conferred date:2021/9/24, Degree Type:Course doctor, Examiner:,,,,	
学位種別(和文)	博士論文	
Category(English)	Doctoral Thesis	
看別(和文)	論文要旨	
Type(English)	lish) Summary	

(博士課程) Doctoral Program

論 文 要 旨

THESIS SUMMARY

系 ・ コ 〜 ス : Department of, Graduate major in	応用化学 応用化学	系 コース	申請学位(専攻分 博士 野): Doctor of (工学) Academic Degree Requested
学生氏名:	DAI Xin		指導教員(主): 一杉 太郎
Student's Name	DAI AIII		Academic Supervisor(main)
			指導教員(副):
			Academic Supervisor(sub)

要旨(英文800語程度)

Thesis Summary (approx.800 English Words)

This doctoral thesis entitled "Fluorination processes for growing metal-fluoride epitaxial thin films" is composed of six chapters in total. This work reports novel routes to fabricate metal-fluoride epitaxial thin films using the magnetron sputtering method.

In Chapter 1, the author reviews the importance of fluorination processes to fabricate metal-fluoride epitaxial thin films for wide applications, including optics and F-ion batteries. The author proposes new approaches to fluorinate thin films based on the drawbacks of the conventional fluoride film-growth technology, such as incorporating F deficiencies and using toxic fluorination sources.

In Chapter 2, the author provides experimental information, including crystal structures of related materials, thin-film fabrication techniques, and characterization methods. The experimental fluorination processes, the main topics of this thesis, are classified as two methods. One method is fluorination using F-conducting substrates as the F-ion sources. This method was demonstrated in the fabrication of YF₃ (010) and EuF₂ (111) epitaxial films on MgF₂ (100) (Chapter 3) and CaF₂ (111) (Chapter 4), respectively. The other method is fluorination assisted by the non-toxic CF₄-H₂ mixed gas. This method was demonstrated in the fabrication of LaF₃ (001) epitaxial films on CaF₂ (111) and Nb-doped SrTiO₃ (100) substrates (Chapter 5).

In Chapter 3, through the fabrication of YF_3 epitaxial thin films, the author shows the basic concept of fluorinating metals using F-ion-conducting substrates. This method uses Y metal as the target material, ensuring that fluoride ions are supplied only from the substrate. Following the thermodynamic stability ($CaF_2 > YF_3 > MgF_2$), the F ions spontaneously diffuse from MgF_2 substrate to Y thin films at $700^{\circ}C$, forming YF_3 (010) epitaxial thin films. In contrast, spontaneous F-ion diffusion does not occur on the CaF_2 substrates; thus, Y metal films grow on the CaF_2 substrate. Transmission electron microscopy and secondary ion mass spectroscopy measurements show the uniform distribution of F ions in the YF_3 epitaxial thin films. Although fluorination was insufficient at low substrate temperature, single-phase fluoride thin films are obtained after post-deposition-annealing. The maximum thickness of YF_3 film is \sim 40 nm, smaller than the theoretical calculation of diffusion distance (4.2 μ m). This result suggests the importance of the kinetics of the F diffusion process in fluorination. Taken together, the fluorination method using F-ion conducting substrate is effective for the fabrication of metal-fluoride epitaxial thin films.

In Chapter 4, the author further demonstrates the feasibility of the method proposed in Chapter 3. The author focuses on the growth of EuF_2 (111) epitaxial thin films, which have not been reported yet. Because EuF_2 has the highest thermodynamical stability among the metal fluorides, the author expects that the Eu metal is fluorinated to EuF_2 on CaF_2 substrates. Indeed, the EuF_2 (111) epitaxial thin films are successfully fabricated on CaF_2 (111) substrates at 700°C with a maximum thickness of ~ 80 nm. The EuF_2 epitaxial thin films exhibit higher transmittance in the visible-light region than that of polycrystalline EuF_2 . The clear two absorption bands at 3.75 and 5.45 eV are clearly observed, suggesting the ideal Eu^{2+} states in the EuF_2 . This method is applied to oxides; EuO (100) epitaxial thin films are fabricated using yttria-stabilized zirconia (100) as an O-conducting substrate. Hence, this method using anion-conducting substrates has great

potential to fabricate epitaxial thin films of a wide variety of ionic compounds.

In Chapter 5, the author investigates the fluorination processes using the non-toxic CF₄ gas. The author confirmed that the fabrication of thick LaF₃ thin films is difficult because of the limitation in the fluorination using F-conducting substrates. Here, non-toxic CF₄ gas is introduced during the sputtering processes as the fluorination source. As a result, the LaF₃ (001) epitaxial thin films are successfully fabricated with the assistance of CF₄ gas. With the increase of the CF₄ ratio to 50%, the crystallinity of LaF₃ films improves obviously. Furthermore, a mixture of CF₄ and H₂ decreases the level of carbon impurities originating from CF₄. In addition, the author evaluates the ionic conductivity of the 400-nm-thick LaF₃(001) thin on Nb-doped SrTiO₃ (100) substrates. At room temperature, the ionic conductivity of LaF₃ (001) thin films is 4.3 × 10⁻⁶ S

In Chapter 6, the author summarizes and concludes this work, and describes the prospect of future research.

during the magnetron sputtering processes.

cm⁻¹, which is comparable to the previously reported value of bulk LaF₃. These results indicate that high-quality metal-fluoride epitaxial thin films are fabricated using CF₄-H₂ mixed gases

To sum up, this thesis proposes novel routes to fabricate metal-fluoride epitaxial thin films. The author deserves to receive a Doctor of Engineering from the Tokyo Institute of Technology.

備考 : 論文要旨は、和文 2000 字と英文 300 語を 1 部ずつ提出するか、もしくは英文 800 語を 1 部提出してください。

Note: Thesis Summary should be submitted in either a copy of 2000 Japanese Characters and 300 Words (English) or 1copy of 800 Words (English).

注意:論文要旨は、東工大リサーチリポジトリ(T2R2)にてインターネット公表されますので、公表可能な範囲の内容で作成してください。

Attention: Thesis Summary will be published on Tokyo Tech Research Repository Website (T2R2).