T2R2東京工業大学リサーチリポジトリ Tokyo Tech Research Repository

論文 / 著書情報 Article / Book Information

論題(和文)	高摩擦弾性すべり支承を有する超高層免震建物のクリープ性を考慮し た風応答予測 その1:時刻歴風応答解析	
Title(English)	Wind-response prediction of high-rise base-isolated buildings with high- friction sliding bearing incorporating creep property Part1. Time history wind-response analysis	
著者(和文)	川又哲也, 二村夏樹, 佐藤大樹, 桑素彦, 石田琢志	
Authors(English)	Tetsuya Kawamura, Natsuki Futamura, Daiki Sato, Motohiko Kuwa, Takushi Ishida	
出典(和文)	日本建築学会大会学術講演梗概集, , , pp. 651-652	
Citation(English)	,,,pp. 651-652	
発行日 / Pub. date	2021, 9	

高摩擦弾性すべり支承を有する超高層免震建物のクリープ性を考慮した風応答予測 その1:時刻歴風応答解析

正会員	○川又哲也*1	同	二村夏樹*2
同	佐藤大樹*2	同	桑素彦*1
同	石田琢志*1		

超高層免震建物 高摩擦弾性すべり支承 時刻歴風応答解析

1. はじめに

近年,超高層建物にも免震構造が積極的に採用される ようになり耐風設計の重要性が増している。さらに、風 方向風外力には平均成分が存在するため免震部材のクリ ープ変形について検討する必要がある 1)。弾性すべり支承 は通常クリープ性を有さないが、滑動時の剛性がないこ とや摩擦力が軸力変動の影響を受けること等により、風 外力により滑動が生じる場合はクリープ性を有するとみ なされる²⁾。竹中らは、クリープ性を顕著に有する鉛プラ グ型積層ゴム(LRB)を対象に、実験の考察を踏まえてク リープ性を考慮した風応答評価法の提案を行っている³⁾。 しかし、提案された評価法の超高層免震建物への適用は LRBを有するモデルにとどまっており^{1,3},異なる復元力 特性をもつすべり支承やその他流体系ダンパーを含む超 高層免震建物への適用はなされていない。また、膨大な 計算量を要する時刻歴応答解析 4が必要であり実用的では ない。そこで本報では、高摩擦弾性すべり支承を有する 超高層免震建物を対象に、クリープ性を考慮した風応答 評価法の適用および時刻歴応答解析を用いないクリープ 性を考慮した風応答予測手法の提案を目的とする。本報 その1では、その第一段階として、時刻歴応答解析による 風応答性状の把握を行う。

2. 検討モデルおよび風外力概要

2.1 検討モデル

図1に示す上部構造縮約10質点,免震層1質点の11質 点系等価せん断モデルを用いる。高さH=150m,辺長比 D/B=1(D, B:幅,奥行き,D=B=50m)とする。

上部構造の 1 次固有周期 $_{1}T = 3.0$ s, 建築密度 $\rho = 180$ kg/m³ とし, 質量は高さ方向に一様と想定した。上部構造の内部粘性減衰は瞬間剛性比例型とし, $_{1}T$ に対して減衰定数 h = 2%とする。上部構造の i 質点目の剛性 $_{u}k_{i} \ge 1$ 次固有モードが直線となるように式(1)より決定した⁵)。

$$k_{i} = \frac{u_{1}\omega^{2} u_{i}m_{i} u_{1}\phi_{i} + u_{i}k_{i}(u_{1}\phi_{i+1} - u_{1}\phi_{i})}{u_{1}\phi_{i} - u_{1}\phi_{i-1}} \quad (i = 0 \sim 10) \quad (1)$$

ここで u1ω:上部構造のみの1次固有円振動数, umi, u1¢: 上部構造 i 質点目の質量, 1 次固有モードを表し, uk11 = 0,

Wind-response prediction of high-rise base-isolated buildings with high-friction sliding bearing incorporating creep property Part1. Time history wind-response analysis $u_1\phi = 0 とする。免震層は天然ゴム系積層ゴム支承 (NRB)$ と高摩擦弾性すべり支承 (ESB) とオイルダンパー (OD)で構成されるとする。図 2 に NRB, ESB の復元力特性および OD の減衰特性,図 3 に免震層の復元力特性を示す。 $なお <math>\delta_0$, δ_{0y} , Q_{0y} :免震層の変位,すべり出し変位および 荷重, Q_{NRB} , Q_{ESB} , Q_0 , Q_{OD} : NRB, ESB,免震層の復元 力,OD の減衰力, C_1 , K_{ESB} : OD 0 1 次減衰係数, ESB 01 次剛性を表し,OD 0 2 次減衰係数 $C_2 = 20.34$ kN · s/cm とする。免震層の面密度 $\rho_0 = 3644$ kg/m², NRB の剛性 K_{NRB} = 818 kN/cm とし,式(2)より免震周期 $T_0 = 6.08$ s とする。

 $T_0 = 2\pi \sqrt{(\rho BDH + \rho_0 BD)/K_{NRB}}$ (2) ESB のすべり出しせん断力係数 α_s , OD のリリーフせん 断力係数 α_D の合計が 0.01~0.05 となる α_s , α_D の組み合わ せを作成した。なお, α_s , α_D は 0.01 刻みで 0~0.05 とす る。以降,例として $\alpha_s = 0.01$, $\alpha_D = 0.02$ のモデルを S1D2 と呼ぶ。OD のリリーフ速度 $v_D = 32$ cm/s とし, リリーフ 荷重 Q_{DD0} は重力加速度 g を用いて式 (3)より決定される。

 $Q_{\text{ODD}} = \alpha_D (\rho BDH + \rho_0 BD)g$ (3) ESB のすべり出し変形 $\delta_{\text{ESBy}} = 7.713 \text{ cm}$ とし、すべり出し荷 重 O_{ESB0} は式(4)より決定される。

 $Q_{\text{ESB0}} = \alpha_{\text{S}} \left(\rho B D H + \rho_0 B D \right) g \tag{4}$ 2.2 風外力概要

風外力は風洞実験結果^のを用いる。なお,時刻歴応答解 析の過渡応答の影響を避けるため各波形前後に50sのエン ベロープを設け,中間の600s(10分間)での応答を評価 に用いる。また,9波のアンサンブル平均により評価する。

KAWAMATA Tetsuya^{*1}, FUTAMURA Natsuki^{*2} SATO Daiki^{*2}, KUWA Motohiko^{*1} ISHIDA Takushi^{*1}

3. 時刻歷解析結果

3.1 免震層最大変位

図4に免震層の最大変位(例として S1D0/D1, S2D0/D1) を示す。また、図5に全モデルの免震層の最大変位 δ ,maxの 比較を示す。なお、図中の σ は9波のアンサンブル平均 である。 σ は風方向、風直交方向ともに、 δ ,maxの8~17% 程度となった。風方向ではS1~3モデル、風直交方向では S1モデル、S2D0/D1、S3D0において δ ,maxがすべり出し変 位を上回る結果となった。また図5より、 α Dが大きくな るほど δ ,max が小さくなり、その傾向は風方向よりも風直 交方向で顕著である。これは、OD は変動成分にのみ有効 であり、平均成分を有する風方向では α D による影響が風 直交方向よりも小さいためと考えられる。

- *1 戸田建設株式会社
- *2東京工業大学

3.2 最上層最大加速度

図6に全モデルの最上層の最大加速度 *a*_{10,max}の比較を示 す。免震層最大変位と同様に, *ab* が大きくなるほど最上 層の最大加速度が小さくなり,その傾向は風方向よりも 風直交方向で顕著であることが確認できる。また,風方 向では D0 と D1~4の差が大きくなっている。

3.3 ピークファクター

図7に*i*質点目(*i*=0~10)の風方向,風直交方向ピークファクター*g_{Di}*,*g_{Li}*(例としてS1D0/D1,S2D0/D1)を示す。 風直交方向のS1D0/D1,S2D0において,免震層のピークファクター*g_{L0}*が上部構造よりもやや大きくなっているものの,概ねピークファクターは 3~4 程度となっており, 全層のピークファクターを一定値とする荷重指針⁷⁾の想定と大きく外れていないことが確認できる。

4. おわりに

本報その1では、検討モデルを示し時刻歴風応答解析 結果を示した。その2では、風方向について、クリープ 性を考慮した風応答評価の考え方を示すとともに、クリ ープ性を考慮しない場合との対応関係の確認を行う。

謝辞,参考文献 その2にまとめて示す。

*¹TODA Corporation *² Tokyo Institute of Technology