T2R2 東京科学大学 リサーチリポジトリ Science Tokyo Research Repository

論文 / 著書情報 Article / Book Information

論題(和文)	長時間加振時における実大複層粘弾性ダンパーの動的特性変化の簡易 予測
Title(English)	Simplified Prediction of changes in dynamic characteristics of Full-scale multi-layer viscoelastic damper under long-duration oscillation
著者(和文)	奥田翔平, 佐藤大樹, Osabel Dave
Authors(English)	Shohei Okuda, Daiki Sato, Osabel Dave
出典(和文)	日本建築学会大会学術講演梗概集, , , pp. 701-702
Citation(English)	,,,pp. 701-702
発行日 / Pub. date	2021, 9
権利情報	

21351

長時間加振時における実大複層粘弾性ダンパーの動的特性変化の簡易予測

			正会員	○奥田翔平*1	同	佐藤大樹*1
制振構造 粘弾性ダンパー	熱伝達 定常状態	簡易手法 温度・振動数依存	同	Osabel Dave ^{*1}		

1. はじめに

粘弾性ダンパーは、粘弾性体の温度依存性により熱伝導・ 伝達の影響を大きく受け、振動時に剛性や粘性などの動的特 性が変化することが特徴として挙げられる¹⁾. そのため、粘 弾性ダンパーを有する建物では、熱伝導・伝達の影響による 動的特性変化を考慮して設計する必要があり、考慮するため の評価手法に関する研究が進められている²⁾⁻⁴⁾. しかし、それ らは、2層せん断型粘弾性ダンパーを対象としており、複層せ ん断型粘弾性ダンパー(以後、複層ダンパー)への評価手法 の適応方法について明らかではない. そこで本論では、3次元 FEM 解析手法²⁾による検討を手掛かりに既往の動的特性変化 の簡易予測手法⁴⁾を拡張させた手法を提案し、実験値⁵⁾との比 較によりその精度を確認する.

2. 実験概要

文献 5)の複層ダンパーの長時間正弦波加振実験の概説を 行う.詳細は文献 5)を参照されたい. Fig.1 に,長時間加振 実験で使用した複層ダンパーの詳細図および温度計測点を 示す.また,Table 1 に実験の入力正弦波の諸元,実験時の 周辺温度,複層ダンパーの諸元をまとめたものを示す.た だし表中にて, t_a :加振時間, A_r :振幅, f_r :振動数,l:ダ ンパー長さ, A_s :せん断面積, d_v :粘弾性体厚,n:層数, V:粘弾性体体積を表す.実験では,Table 1 で示した正弦 波で Fig.1 の複層ダンパーを 26000 秒間加振し,各時間にお ける反力および Fig.1 に示す 4 箇所の計測点での温度を計 測した.

VL panets part	Support part
A,C B,D	
- 1060 - 790	- VE material
780 •C,D	
1	A,C B,D 1060 790 •C,D •A,B 60 460 100

Fig. 1 Full-scale viscoelastic damper specimen with the temperature measurement locations

3. 3 次元 FEM 解析 (定常時応答解析) による検討

定常応答解析 2)による複層ダンパーの検討を行う. 定常応 答解析とは,3次元 FEM プログラムによる静的弾性解析と定 常熱伝導解析を繰り返し行い、定常状態における正弦波変形 を受けるダンパーの温度分布、各要素の歪、ダンパー全体の 貯蔵・損失剛性を求める解析手法である.なお定常状態とは, 粘弾性ダンパーの長時間振動時に、エネルギー吸収による発 熱量と放熱量が釣り合い、温度および動的特性値が一定にな る状態のことを指す.解析手法の詳細は文献 2)を参照された い. Fig.2 に本解析で使用した解析モデルを示す. 本モデルは, Fig.1 のダンパーを基に ABAQUS ver. 2017⁶上で作成した. た だし、実際の解析では、XY 平面および XZ 平面においてモデ ルが対称であることに注目し、計算時間の短縮を図るため実 大のモデル (Whole) の 1/4 のモデル (Quarter) を使用してい る.本解析では、実験⁵に倣い、支持部(Support part)にX方 向強制変位 $u_{d,max} = 5.66$ mm を一定の振動数 $f_r = 0.277$ Hz で与 え,その反力をFdとした.また,鋼板の接着面,および対称 面以外に熱伝達を設定し、周辺温度は実験に従い設定した. Table 2 に本解析で使用した材料パラメータをまとめて示す. ただし, κ: 熱伝導率[N/s/℃], s: 比熱[Ncm/kg/℃], ρ: 密度 [kg/cm³], α_c: 熱伝達係数[N/s/cm/°C]であり、添え字は粘弾性 体 (VE), 鉄 (steel) に対応する. Fig.2 に定常状態における 温度状態図を示す. Fig.2 より, 粘弾性体において, 厚み方向 (z軸)における温度変化は大きいものの、それに直交する方 向(x, y軸)では温度が一定であることが確認できる.

temperature distribution

Table 1 Test information					Table 2 Analysis information								
Input wave Ambient temperature [°C]					Heat transfer analysis parameter								
Case	<i>t</i> _{<i>a</i>} [s]	A_r [mm]	f_r [Hz]	Support part	VE panels part	KVE	Ksteel	S VE	S st	eel	$ ho_{V\!E}$	$ ho_{\it steel}$	α_c
A-3L	26000	5.66	0.277	22	30	0.188	43.128	18.70×10	⁴ 46.63	×10 ³	1.0×10 ⁻³	7.8×10 ⁻³	0.026 ⁷⁾
VE damper test specimen					Viscoelastic material parameter (type : ISD-111)								
Specimen	<i>l</i> [mm]	$A_s [\mathrm{mm}^2]$	d_v [mm]	n [層] As/n [m	m^2] V [mm ³]	α	$G [N/mm^2]$	a _{ref}	b _{ref}	<i>p</i> 1	<i>p</i> 2	θ_{ref} [°C]	V VE
D2-3F	4024.5	9.12×10 ⁵	8	6 1.52×10	$0^5 7.29 \times 10^6$	0.588	0.0392	5.6×10 ⁻³	2.10	14.06	97.32	20	0.47

Simplified Prediction of changes in dynamic characteristics of Full-scale multi-layer viscoelastic damper under long-duration oscillation

Okuda Shohei, Sato Daiki, Osabel Dave

Fig.3(a)に, Fig.2 で示した Section-A における z 軸方向の温度 状態図を示す. ただし, Section-A は Fig.1 で示した計測点を 通るような断面である. Fig.3(a)より,粘弾性ダンパーの中心 側(Center Line: CL)に向かうにつれ、温度が上昇する傾向が あることがわかる. Fig.3(b)に, Fig.3(a)の z 軸における内部温 度分布図と文献 5)の実験値を合わせて示す.ただし、示す実 験値は、文献 5)における加振時間 ta=26000 sのときの各点そ れぞれの計測値である. Fig.3(b)より, 粘弾性体のみの内部温 度分布に注目すると、VE-3にてピークを持つ2次関数的な温 度分布であることが確認できる.熱は温度が高い所から低い 所へ流れていくことを考えると、VE-3を中心に内側と外側に 熱が流れていると考えられる. Fig.3(c)に各粘弾性体における 内部発熱量Qおよび各鋼板(Pl)からの熱伝達による放熱量 Qを合わせて示す. ただし, 各鋼板の放熱量Qは, Fig.3(b)中 に示す範囲における側面からの放熱量の合計である. Fig.3(c) より、内部発熱量のは、粘弾性体に依らず、おおむね一定で あることが確認できる.また、Fig.3(c)より、各鋼板の放熱量 Qは、Pl-1からの放熱量が支配的であることがわかる.

4. 複層ダンパーの動的特性簡易予測法

文献 4)にて、2 層せん断型粘弾性ダンパーを粘弾性体の一 次元体と捉えることで,粘弾性ダンパーの動的特性を簡易的 に予測できる手法-SPDC 手法-が示された.本章では, 複層 ダンパーの一次元体化の手法を示し, 文献 4)の簡易予測法を 適応することで, 複層ダンパーの動的特性を簡易的に予測す る. ただし, SPDC 手法の詳細は文献 4)を参照されたい. Fig. 4に、複層ダンパーの一次元体へのモデル化の概要を示す. 鉄板は熱伝導率が粘弾性体に比べ極めて大きく(約230倍), 定常状態において温度が一定であるとし、熱がダンパーの中 心側と外側2方向に流れるとする.また,x,y軸方向では温

東京工業大学

度分布が一定であり、各粘弾性体の発熱量もおよそ一定ある ことから、粘弾性体のみを厚み方向に合成した一次元体を考 え,その両端から熱が放熱され、定常状態になるとする.た だし、 θ_1 、 θ_2 はそれぞれ定常状態時の粘弾性体の最も外側、 最も内側の温度である.また一次元体化時の熱伝達係数α cl. α_{c2}は, 3D-FEM における Pl-1~Pl-3 の放熱量の合計および Pl-4~Pl-6 の放熱量の合計がそれぞれ両端からの放熱量と等し くなるような値として, $\alpha_{cl} = 0.023$ N/s/cm/°C, $\alpha_{c2} = 0.007$ N/s/cm/℃とした.以上より,SPDC により予測値を算出し実 験値と比較する.ただし、予測値の算出において使用した各 パラメータは, Table 2 で示した値と同じである. 収斂回数 N は収束するのに十分な回数として N = 30 とした. Fig. 3(b)に 定常状態における SPDC による内部温度分布の予測値と実験 値および解析値を合わせて示す.両端で誤差が確認されるも のの、その他の部分では精度よく温度分布が予測できている ことがわかる. Fig.5 に、B 点における温度時刻歴の実験結果 と解析結果,および SPDC の予測値を, Fig.6 に貯蔵剛性 K'_d , 粘性係数 C_dの時間変化の実験結果と解析結果,および SPDC による予測値を重ねて示す. SPDC によって精度よく, 複層ダ ンパーの温度と動的特性値が予測できていることがわかる.

5. まとめ

本論では、3次元 FEM 解析結果をもとに、複層ダンパーの 一次元体化の手法を検討し、複層ダンパーの動的特性の簡易 予測手法を提案し、その有用性を確認した.

[参考文献]

- 日本免難構造協会:パッシブ制振構造 設計・施工マニュアル 第3版、2013.1 笠井和珍ら:継続時間が長い外乱での温度上昇と熱伝導・伝達を考慮した粘弾性グ 会構造系論な学術、第599号、po.61-69, 2006.1 佐藤大樹ら:風応答振動時における粘弾性グンパーの特性及び正弦波による希 の特性及び正弦波による簡易評価手法,日本建
- 構造論工学論文集,第80巻,第710号,p571-581,2015年4月 奥田翔平ら:長時間風応答時の粘弾性ダンパーの動的特性変化の簡易予測,日本建築学会構造工学論 4)
- 第80巻、第710号、p571-581、2021年4月 5) 杉山暢方:長時間の風外力と長周期地震動における実大粘弾性ダンパーの特性評価実験及び解析手法の提案、 車 丁 大卒業論文集、2015年

大や来離メル、2010 年 ABAQUS Manual, Hibbitt, Karlson and Sorensen, Inc;1997. Osabel Dave : Study of Full-Scale Multi-Layered Viscoelastic Dampers under Long Duration Harmonic Loading (Part 2: Analytical Investigation using Three-Dimensional Finite Element Model) 日本建築学会関東支部, 2018.3

Tokyo Institute of Technology