T2R2 東京工業大学リサーチリポジトリ Tokyo Tech Research Repository

論文 / 著書情報 Article / Book Information

論題(和文)	 調和加振による超弾性三次元角柱模型の曲げ振動性状の評価 その 2 : 振動台を用いた調和加振実験の概要
Title(English)	Evaluation of bending vibration characteristics on a 3D hyper-elastic square cylinder model by harmonic excitation Part2: Outline of harmonic excitation experiment using a shaking table
著者(和文)	長尾悠生, 山口雄大, 佐藤大樹, 中川尚大, 丸山勇祐, 田村哲郎
Authors(English)	Yuki Nagao, Yudai Yamaguchi, Daiki Sato, Naohiro Nakagawa, Yusuke Maruyama, Tetsuro Tamura
出典(和文)	 日本建築学会大会学術講演梗概集, , , pp. 939-940
Citation(English)	,,,pp. 939-940
発行日 / Pub. date	2021, 9
	 一般社団法人 日本建築学会

調和加振による超弾性三次元角柱模型の曲げ振動性状の評価 その2:振動台を用いた調和加振実験の概要

			正会員	○長尾 悠生*1	正会員	山口	雄大*2
			同	佐藤 大樹*2	同	中川	尚大*1
超弹性模型	調和加振	曲げ振動	同	丸山 勇祐*1	同	田村	哲郎*2
振動台実験	連続体振動	高次モード					

1. 緒言

本報は、超弾性三次元角柱模型(以降,模型)の空力 振動実験¹⁾の適切な評価のため、調和加振により模型の曲 げ振動性状を詳細に把握することを目的としている.本 報その1では、調和加振実験の評価を行うため、連続体振 動理論に基づいて線形伝達関数(周波数応答関数)を導 出し、モード打ち切り誤差の補正に関して検証を行った. 本報その2では、実際に空力振動実験¹⁾で観測された振幅 レベルにおける模型の周波数応答特性を得ることを目的 として実施した調和加振実験の概要について報告する.

2. 実験模型の概要

実験に用いる模型の諸元を Table1 に,模型の写真を Fig.1 に示す.この模型は既報 1)で空力振動実験に用いた 模型の1つで,軟質ウレタンフォームから切り出して作成 した辺長比D/B=1, アスペクト比 $H/\sqrt{BD}=6$ の一様な 正四角柱である.模型全体が柔らかく曲げ変形し,大変 形後も原型回帰する超弾性の性質を有している.模型の 一端は接着剤で剛な板に接着され,固定端となっている. Table1 に示す固有振動数と減衰定数は,既報 2)の自由振動 実験での評価値である.既報 2)では,空力振動実験の結 果を基にして振幅の区分を設け,その振幅区分ごとに固 有振動数と減衰定数をアンサンブル平均して評価を行っ ている.Table1 に示している値は,その評価値のうち,共 振風速下での風直交方向の応答の標準偏差に該当する振

実験装置の概要

実験装置の概略図を Fig.2 に示す.加振器の上に設置し た振動テーブルに模型の底板を接着して固定しており, 模型に大振幅を与えても底板が動いたり浮き上がったり しないことを確認している.加振器はサンエス製永久磁 石振動加振器/起振器 SSV-125を用いており,サンエス製 デジタル振動制御装置 DSC40-SMARTと,サンエス製電力 増幅器 SVA-ST-1K に接続されている.加振の指令は機器 に接続した PC を用いて与え,加振器の運動の制御は振動 テーブル上に固定した加速度計で加速度を計測しながら 行う仕組みである.なお,加振器は防振マットと防振 テープにより防振対策を施しており,実験時に加振器自 体が共振して動くことがないようにしている.Fig.3 に, 模型のY面の測定点の概略図を示す.図に示す8点の測定

Evaluation of bending vibration characteristics on a 3D hyper-elastic square cylinder model by harmonic excitation

Table1 Parameters of	Laser Displacement	Ĩ	
Material	Soft Urethane	Sensor	Y ← ●
Breadth B [m]	0.08		
Depth D [m]	0.08	->	
Height H [m]	0.48		Mode
Density ρ [kg/m ³]	15.8		<
Natural frequency f_1 [Hz]*	$3.48\sim3.57$	Base	
Damping ratio h_1^*	$0.022 \sim 0.055$	Shaking table	Acce
*Values based on the free vibration	tests in Reference 2)		

Fig.2 Experimental apparatus

Target excitation amplitude a 0 [mm]	0.4	1	1.6	2.2	2.8
Target frequency range [Hz]	$1 \sim 10$	$1\sim 30$	$1 \sim 10$	$1 \sim 10$	$1 \sim 10$

点(Ch.01~Ch.08)で模型の定常応答を測定する.応答は, 振動テーブル外に設置したレーザ変位計(キーエンス製 IL600)により電圧として計測され,変位に変換される. なお,振動テーブルの運動もレーザ変位計で測定する.

4. 実験方法と評価方法

本実験では、加振振動数と加振変位振幅を制御した調 和型の水平加振力を発生させて模型の基礎励振を行う. 加振振幅はTable2に示す5通りとした.なお、本実験は、 先述のように模型の空力振動特性の評価を行うために曲 げ振動性状を把握することを目的としているため、空力 振動実験¹⁾における模型の大変形時の応答振幅を実現でき るよう考慮したうえで、振動台の性能を勘案して加振振

> NAGAO Yuki, YAMAGUCHI Yudai, SATO Daiki, NAKAGAWA Naohiro, MARUYAMA Yusuke, and TAMURA Tetsuro

Part2: Outline of harmonic excitation experiment using a shaking table

幅を決定している.加振振動数の範囲は、1次の共振点を 観測できるような範囲(1Hz ~ 10Hz)とし, a₀=1.0mm の場合のみ、2次の共振点を観測できるよう、さらに高振 動数域(1 Hz ~ 30 Hz)まで加振を行うこととした. 測 定は以下の手順で行う.

- [1] 制御用 PC で目標の加振変位振幅と振動数を設定し, 加振器を作動させる.
- [2] 加振器が目標の変位と振動数に達し、模型の過渡応 答が消えたことを確認してから、レーザ変位計によ り計測を開始する.
- [3] 定常応答を 50 秒間計測したら終了する.

以上の手順を繰り返す.サンプリング周波数は1000 Hz と し、加振振動数のステップ幅は、共振点付近では 0.1 Hz ~ 0.05 Hz, それ以外の箇所では 0.5 Hz とした.

以上の実験で得られた時刻歴応答波形(50000 プロット) から,加振振動数ごとに振幅と位相を算出する.振幅は, 時刻歴応答波形の全てのピークの平均値とし、位相は、 加振波形と模型の各測定点における応答波形のピークの ずれから算出する.

5. 実験結果の概要

Fig.4 に、本実験で得られた 1 次の共振点付近の加振振 動数と模型の応答振幅(z = 440 mm の 2 箇所の測定点

(Ch.01 と Ch.04) における相対変位振幅の平均)の関係 を加振振幅ごとにプロットで示す. 各プロットと加振振 幅の対応関係は凡例に示す通りである.また,図中に黄 色と桃色で示した直線は、それぞれ既報 1)の空力振動実 験における共振風速下での z = 440 mm の測定点の応答変 位(風直交方向)の標準偏差と最大値を表している.こ の図から、本実験において、意図通りに空力振動実験に おける大変形領域と同レベル程度の応答振幅を実現でき ていることが分かる.

Fig.5 に、加振振幅 $a_0 = 1.0$ mm で加振した場合の z = 440mm の測定点における周波数応答線図(絶対変位応答伝達 率)を示す. 図の左側の縦軸が振幅, 右側の縦軸が加振 波と応答波の位相差を表している. Fig.5 では, Fig.4 の 1 次の共振点に加えて 21 Hz 付近にも振幅の小さなピーク が見られる.このピークに合わせて 180°の位相変化が起 こっていることからも共振点であると判断でき、加振振 幅 ao = 1.0 mm の実験において, 意図通りに 2 次の共振点 までを観測できたことが確認できる.

Fig.6 に,加振振幅 a0 = 1.0 mm で,加振振動数が 3.5 Hz と 21.4 Hz の場合の応答波形の一部を示す. どちらの波形 も定常的であり、また、測定点間で波形のピークの発生 時刻に大きなずれがないことが確認できる. さらに,2つ の図では振幅の大小関係や正負が異なることから、振動 モードが異なっていることが分かる. Fig.7(a)に, Fig.6 の

*1 前田建設工業

*2 東京工業大学

Fig.4 Average of relative response amplitude on z=440[mm] around the 1st resonant point

Fig.5 Frequency-response on z=440[mm] when $a_0=1.0$ [mm] (Absolute displacement response transmissibility)

2 つの振動数における模型の振動モードと、連続体の曲げ 振動理論における1次モード形と2次モード形を示す.ま た, Fig.7(b)に, 3.5 Hz と 21.4 Hz で加振を行っている時の 模型の変形の様子を捉えた写真を示す. これらの図から, 3.5 Hz での加振時は1次モード, 21.4 Hz での加振時は2 次モードで模型が振動しており、それぞれ理論の1次モー ド形と2次モード形によく一致していることが確認できる. 6. 結言

本報その2では、振動台を用いて超弾性三次元角柱模型 の調和加振実験を行い、意図通りの結果が得られたこと を確認した.本報その3では、本実験結果と本報その1で 示した伝達関数の理論式のカーブフィットを行い、模型 の固有振動数とモード減衰定数を評価することを試みる. (謝辞及び参考文献はその3にまとめて示す.)

-940-

^{*1} Maeda Corporation

^{*2} Tokyo Institute of Technology