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Fast 3D lithography simulation by convolutional neural network 
 

Hiroyoshi Tanabe*, Shimpei Sato, Atsushi Takahashi 

Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550 Japan 
 

ABSTRACT   

Thin mask model has been conventionally used in optical lithography simulation. In this model the diffracted waves from 

the mask are assumed to be Fourier transform of the mask pattern. In EUV (Extreme UltraViolet) lithography thin mask 

model is not valid because the absorber thickness is comparable to the mask pattern size. Fourier transformation is not 

suitable for calculating the diffracted waves from thick masks. Rigorous electromagnetic simulations such as finite-

difference time-domain method, rigorous coupled wave analysis and 3D waveguide model are used to calculate the 

diffracted waves from EUV masks. However, these simulations are highly time consuming. We reduce the calculation 

time by adapting a CNN (Convolutional Neural Network).  

We calculate the far-field diffraction amplitudes from an EUV mask by using the 3D waveguide model. We divide the 

diffraction amplitudes into the thin mask amplitudes (Fourier transform of the mask pattern) and the residual mask 3D 

amplitudes. The incident angle dependence of the mask 3D amplitude for each diffraction order is fitted by using three 

parameters which represent the on-axis and the off-axis mask 3D effects. We train a CNN where the inputs are 2D mask 

patterns and the targets are the mask 3D parameters of all diffraction orders. After the training, the CNN successfully 

predict the mask 3D parameters. The CNN prediction is 5,000 times faster than the electromagnetic simulation.  

We extend the transmission cross coefficient formula to include the off-axis mask 3D effects. Our formula is applicable to 

arbitrary source shapes and defocus. We can use the eigen value decomposition method to accelerate the calculation. 

Keywords: lithography simulation, neural network, EUV mask 

1. INTRODUCTION  

The adoption of EUV lithography began in the mass production of logic and memory devices. Typical resolution of EUV 

lithography is 16 nm, assuming a moderate k1 factor of 0.4. In this case the minimum mask pattern size is 64 nm. Standard 

thickness of Ta absorber is around 60 nm and the aspect ratio of the mask pattern is nearly 1. High aspect absorbers induce 

several mask 3D effects such as CD (Critical Dimension) errors and pattern shifts.1,2 They also change the effective phase-

shift value near the absorber edge.3 It is necessary to include the mask 3D effects in EUV lithography simulation. 

Rigorous electromagnetic simulation methods such as FDTD (Finite-Difference Time-Domain) method4, RCWA5 

(Rigorous Coupled Wave Analysis) and 3D waveguide model6 accurately calculate the mask 3D effects. However, these 

simulations are highly time consuming. Semi empirical and fast methods have been developed to include the mask 3D 

effects approximately in the calculation.7-11 Recently with the advent of the deep learning software and hardware platforms 

some attempts have been made to solve the mask 3D effect problems by using deep neural networks.12-14 The targets of 

the deep neural networks in these models are the near-field diffraction amplitudes of thick masks calculated by 

electromagnetic simulations. The near-field amplitudes are described in coordinate space. 

Our model also uses a deep neural network to accelerate the calculation of mask 3D effects. Here we define the mask 3D 

amplitudes as the difference between the far-field diffraction amplitudes from a thick mask and those from a thin mask. 

Since the far-field diffraction amplitudes are described in momentum space, our model can be easily incorporated into 

TCC (Transmission Cross Coefficient) method15 and SOCS (Some Of Coherent Systems) model16 which is conventionally 

used in optical lithography simulations. 

In Sec.2 we parametrize the mask 3D amplitudes as functions of diffraction orders and source positions. In Sec. 3 we 

construct a convolutional neural network which predicts the diffraction amplitudes from 2D EUV mask patterns. In Sec. 4 

we extend the TCC method to include the off-axis mask 3D effects 
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2. PARAMETRIZATION OF THE DIFFRACTION AMPLITUDE  

One of the difficulties in the formulation of the 3D electromagnetic simulation is the number of the variables. The electric 

field has three components Ex, Ey and Ez while the light has only two polarizations. Therefore, one of the three electric 

field components is redundant to parametrize the diffraction amplitudes. 3D waveguide model6 uses the vector potential 

instead of the electromagnetic field. The model contains only two variables Ax and Ay which correspond to two 

polarizations. In the model Az is fixed to be zero after gauge transformation. 

Figure 1. shows a schematic view of light diffraction by an EUV mask. The light emitted from the secondary source at the 

position  (𝑠𝑥 , 𝑠𝑦) illuminates the mask from the oblique direction (𝑠𝑥 , 𝑠𝑦). The light is diffracted by the mask and it is 

scattered to the direction  (𝑘𝑥, 𝑘𝑦). The diffracted light passes the pupil at the position (𝑘𝑥, 𝑘𝑦).  

The diffraction momentum (𝑘𝑥 − 𝑠𝑥 , 𝑘𝑦 − 𝑠𝑦) is the difference between the outgoing momentum (𝑘𝑥, 𝑘𝑦) and the incident 

momentum (𝑠𝑥 , 𝑠𝑦). Here we specify only x and y components of the momentum because z component obeys the energy 

conservation law.  

As shown in Ref. 17 the diffraction amplitude 𝑨  of a thick mask is decomposed into the thin mask amplitude 𝑨FT and the 

mask 3D amplitude 𝑨3D. The thin mask amplitude  𝑨FT is calculated from the Fourier transformation of the mask pattern 

and it depends on the diffraction momentum  (𝑘𝑥 − 𝑠𝑥 , 𝑘𝑦 − 𝑠𝑦). 

𝑨(𝑘𝑥, 𝑘𝑦; 𝑠𝑥 , 𝑠𝑦) = 𝑨FT(𝑘𝑥 − 𝑠𝑥 , 𝑘𝑦 − 𝑠𝑦) + 𝑨3D(𝑘𝑥 , 𝑘𝑦; 𝑠𝑥 , 𝑠𝑦) .                                                  (1) 

The mask 3D amplitude 𝑨3D  is defined as the difference between the thick mask amplitude 𝑨 and the thin mask amplitude 

𝑨FT . The electromagnetic calculation of the thick mask amplitude is heavy. In Ref. 17 we fitted the mask 3D amplitudes 

of 1D mask patterns by using a CNN, which significantly reduced the computation time.  

In this study we use 3D waveguide model to calculate the thick mask amplitudes of 2D mask patterns. We assume a 

periodic boundary condition with the mask pattern pitch L (Fig. 2). In this case the diffraction momentum has a discrete 

value,   

 𝑘𝑥 − 𝑠𝑥 = 𝑙
2𝜋

𝐿
,    𝑘𝑦 −  𝑠𝑦 = 𝑚

2𝜋

𝐿
 ,                                                                                                            (2) 

where (𝑙, 𝑚 ) represents the diffraction order. For convenience we also discretize the incident momentum as follows. 

𝑠𝑥 = 𝑙𝑠
2𝜋

𝐿
,   𝑠𝑦 = 𝑚𝑠

2𝜋

𝐿
 ,                                                                                                                    (3) 

where ( 𝑙𝑠 , 𝑚𝑠) corresponds to the source position or incident angle. The pupil position or outgoing angle is specified by  

( 𝑙 + 𝑙𝑠, 𝑚 + 𝑚𝑠). After the discretization of the momentum, Eq. 1 is written as follows. 

𝑨(𝑙, 𝑚; 𝑙𝑠 , 𝑚𝑠) = 𝑨FT(𝑙, 𝑚 ) + 𝑨3D(𝑙, 𝑚; 𝑙𝑠, 𝑚𝑠) .                                                                         (4)  

All the elements of the thick mask amplitude are calculated simultaneously in 3D waveguide model. If we use FDTD 

method, we need to repeat the calculation for each incident angle. 

                                     

Fig. 1. Schematic view of light diffraction by an EUV mask.                        Fig. 2. Periodic mask pattern. 
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Fig. 3 Graphical representation of the diffraction amplitude. 

The diffraction amplitude depends on four numbers, the diffraction order (𝑙, 𝑚) and the source position ( 𝑙𝑠, 𝑚𝑠) . These 

numbers are restricted by the source shape and the pupil shape. Assuming the maximum  value of the source shape to be 

1 the source position is limited by the following equation.    

√𝑙𝑠
2 + 𝑚𝑠

2 ≤
𝑵𝑨

𝟒

𝐿

𝜆
                                                                                                                    (5) 

where NA=0.33 is the numerical aperture of the projection optics and =13.5 nm is the wavelength. The magnification of 

the projection optics is 1/4. In the same way the pupil shape limits the pupil position ( 𝑙 + 𝑙𝑠, 𝑚 + 𝑚𝑠) as follows.   

  √(𝑙 + 𝑙𝑠)2 + (𝑚 + 𝑚𝑠)2 ≤
𝑁𝐴

4

𝐿

𝜆
                                                                                             (6) 

Figure 3 shows the graphical representation of the diffraction amplitude. The center of the graph corresponds to the 

diffraction order (0, 0) at all source positions. The peak value is 0.44 and it is the largest among all diffraction orders. The 

right-side figure enlarges the amplitude at the diffraction order (2, 2). The amplitude depends on the source position 
( 𝑙𝑠, 𝑚𝑠), which implies the incident angle dependence of the diffraction amplitude. 

Figure 4 shows the polarization dependence of the diffraction amplitude. There are four possible combinations of incident 

and outgoing polarizations. The polarization change after diffraction is very small for EUV masks. For example, the 

maximum value of the diffraction amplitude from Ax to Ax polarization is 0.44 while the maximum amplitude from Ax to 

Ay polarization is 0.006. In the following discussion we will focus on the diffraction amplitude from Ax to Ax polarization. 

 

Fig.4 Polarization dependence of the diffraction amplitude. 
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                                                         Fig. 5 Decomposition of the diffraction amplitude. 

According to Eq. 4 the thick mask amplitude is divided into the thin mask amplitude and the mask 3D amplitude (Fig. 5). 

The contribution of the thin mask amplitude is dominant. The amplitude does not depend on the source position. It can be 

calculated from the Fourier transformation of the mask pattern.  

The contribution of the mask 3D amplitude is small but not negligible. The amplitude depends on the source position. We 

parametrize the mask 3D amplitude at each diffraction order (𝑙, 𝑚) as a linear function of the source position ( 𝑙𝑠, 𝑚𝑠). 

𝐴𝑥
3D(𝑙, 𝑚; 𝑙𝑠, 𝑚𝑠) ≅ 𝑎0(𝑙, 𝑚)+𝑎𝑥(𝑙, 𝑚) 𝑙𝑠+𝑎𝑦(𝑙, 𝑚) 𝑚𝑠 ,                                                        (7) 

where a0 is the on-axis mask 3D amplitude at the center of the source position. Both ax and ay are the slopes of the amplitude 

in the x and y directions of the source plane. The second and third terms in Eq. 7 represent the off-axis mask 3D amplitude. 

We included here only the linear terms, but we can include higher orders if necessary. 

3. CNN FOR THE MASK 3D AMPLITUDE 

The thin mask amplitude 𝐴𝑥
FT(𝑙, 𝑚 ) is the Fourier transform of the mask pattern and it can be calculated very fast. The 

mask 3D amplitude 𝐴𝑥
3D(𝑙, 𝑚; 𝑙𝑠 , 𝑚𝑠) is calculated by using the 3D waveguide model but the speed is slow. The mask 3D 

amplitude is characterized by three parameters a0, ax and ay. It is obvious that these three parameters are functions of the 

input mask pattern. We construct a CNN which reproduces the mask 3D amplitude. We expect that the CNN calculation 

is much faster than the electromagnetic simulation. 

Figure 6 shows the architecture of our CNN. We use Keras on TensorFlow for the deep learning software. The input mask 

pattern has 720X720 binary data. We first convert them to72X72 grayscale numbers by averaging the data. This is the  

 

Fig. 6. Architecture of our convolutional neural network. 
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Fig. 7. Training and verification of our convolutional neural networks. 

input to the CNN. Inside the CNN we repeat convolutions and maxpoolings three times. Outputs of the CNN are the real 

and imaginary parts of a0, ax and ay. As shown in Fig. 6, for large diffraction orders, we parametrize the amplitude with a0 

only because the area in the source plane, which represents the feasible combinations of diffraction orders and source 

positions is small. In total there are 1030 targets for CNN.  

For training data, we generated 199,900 random cut mask patterns.18 The pattern pitch is 120 nm on the mask. The space 

width is 60 nm, and the space length has random number. As shown in Fig. 7, the fitting error decreased rapidly during the 

training. After the training we verified our CNN with 100 new data. The difference between the electromagnetic 

calculations and CNN is very small. We can successfully predict the mask 3D amplitude by using the CNN. 

Figure 8 shows an example of the image intensities calculated by the electromagnetic simulation (EM), CNN and the 

Fourier Transformation (FT). It is well known that the mask 3D effect causes CD difference between two horizontal spaces 

at defocus positions, which is called as two-bar CD asymmetry.2 CNN successfully reproduces the two-bar CD asymmetry. 

Thin mask model (FT) does not show CD asymmetry at defocus positions. The right-bottom figure shows the result of 

CNN which excludes ax and ay parameters.  We cannot reproduce CD asymmetry without the off-axis mask 3D amplitude. 

 

                         Fig. 8. Two-bar CD asymmetry simulations by EM, CNN and FT. 
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                         Fig. 9. Comparison of the computation time of the diffraction amplitudes. 

Figure 9 compares the computation time of the EM simulation and the CNN prediction. Computation time is the time to 

calculate (or predict) the diffraction amplitudes. Other steps such as the intensity integration and the Fourier transformation 

are excluded.  

The most time-consuming part of the EM simulation is the large matrix calculation. Although the EM simulation does not 

use GPU the matrix calculation is paralleled inside CPU by using Intel MKL. The computation time of the EM simulation 

linearly increased as a function of the number of the input data.  

CNN prediction uses GPU. To get the full performance of GPU the number of the input data needs to be large. Computation 

time increases linearly beyond 300 input data. In this region the CNN prediction is 5,000 times faster than the EM 

simulation. 

4. EXTENDED TCC FORMULA 

SOCS model is often used in optical lithography simulation, especially in OPC (Optical Proximity Correction). The model 

decomposes TCC into a small number of eigen modes to accelerate the calculation.  However, TCC formula is based on 

the thin mask model and the formula needs to be extended when the thick mask model is used. We derived the extended 

TCC formula for 1D mask patterns in Ref. 17. In this section we extend the TCC formula for 2D mask patterns. 

We first rewrite the mask 3D amplitude in Equation 7 into the momentum form. 

                      𝑨3D(𝒌; 𝒔) ≅ 𝑨3D(𝒌 − 𝒔) + 𝜕𝑠𝑥𝑨3D(𝒌 − 𝒔)𝑠𝑥 + 𝜕𝑠𝑦𝑨3D(𝒌 − 𝒔)𝑠𝑦 .                                                               (8) 

As shown in Equation 1, the thick mask amplitude is the sum of the thin mask amplitude and the mask 3D amplitude. 

  𝑨(𝒌; 𝒔) = 𝑨FT(𝒌 − 𝒔) + 𝑨3D(𝒌; 𝒔) .                                                                                                               (9)                                                                               

Next, we convert the vector potential to the electric field. In coordinate space the electric field is calculated from the vector 

potential as follows.6 

𝑬(𝒙; 𝒔) = 𝑖𝑘𝑨(𝒙; 𝒔) +
𝑖

𝑘
∇𝒙(∇𝒙 ∙ 𝑨(𝒙; 𝒔)).                                                                                                                                     (10) 

In momentum space the above equation is written as 

                      𝑬(𝒌; 𝒔) = 𝑖𝑘𝑨(𝒌; 𝒔) −
𝑖

𝑘
(𝒌 ∙ 𝑨(𝒌; 𝒔))𝒌.                                                                                                        (11) 

Inserting Equations 8 and 9 into Equation 11 we obtain the following equation. 

                      𝑬(𝒌; 𝒔)  ≅ 𝑬(𝒌 − 𝒔) + 𝜕𝑠𝑥𝑬(𝒌 − 𝒔)𝑠𝑥 + 𝜕𝑠𝑦𝑬(𝒌 − 𝒔)𝑠𝑦 .                                                                              (12) 

Finally, the image intensity I is calculated from the electric field as follows (Abbe’s method). 

                     𝐼(𝒙) = ∬ 𝑆(𝒔) |∬  𝑬(𝒌; 𝒔) 𝑃(𝒌)𝑒−𝑖𝒌∙𝒙𝑑𝒌|
2

𝑑𝒔                                                                                          

        ≅ ∬ 𝑆(𝒔) |∬(𝑬(𝒌 − 𝒔) + 𝜕𝑠𝑥𝑬(𝒌 − 𝒔)𝑠𝑥 + 𝜕𝑠𝑦𝑬(𝒌 − 𝒔)𝑠𝑦) 𝑃(𝒌)𝑒−𝑖𝒌∙𝒙𝑑𝒌|
2

𝑑𝒔  

        = ∬ 𝑆(𝒔) |∬(𝑬(𝒌) + 𝜕𝑠𝑥𝑬(𝒌)𝑠𝑥 + 𝜕𝑠𝑦𝑬(𝒌)𝑠𝑦) 𝑃(𝒌 + 𝒔)𝑒−𝑖𝒌∙𝒙𝑑𝒌|
2

𝑑𝒔 ,                                           (13)             
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where S is the source intensity and P is the pupil function. In the case of high NA optics, the pupil function is a matrix 

which changes the direction of the electric field from the entrance pupil to the exit pupil.19  

By interchanging the order of the integrations in Equation 13 we get the following equation.   

𝐼(𝒙) ≅ ∬ 𝑇𝐶𝐶(𝒌; 𝒌′ )𝑬(𝒌) ∙ 𝑬(𝒌′)∗𝑒−𝑖(𝒌−𝒌′)∙𝒙𝑑𝒌𝑑k’   

                                        +2Re{∬ 𝑇𝐶𝐶𝑥(𝒌; 𝒌′)𝑬(𝒌) ∙ 𝜕𝑠𝑥𝑬(𝒌′)∗𝑒−𝑖(𝒌−𝒌′)∙𝒙 𝑑𝒌𝑑𝒌′}  

                                      +2Re{∬ 𝑇𝐶𝐶𝑦(𝒌; 𝒌′)𝑬(𝒌) ∙ 𝜕𝑠𝑦𝑬(𝒌′)∗𝑒−𝑖(𝒌−𝒌′)∙𝒙𝑑𝒌𝑑𝒌′}  ,                                                      (14) 
where TCC is the conventional transmission cross coefficient, 

𝑇𝐶𝐶(𝒌; 𝒌′) = ∬ 𝑆(𝒔) 𝑃(𝒌 + 𝒔)𝑃∗(𝒌′ + 𝒔)𝑑𝒔                                                                                         (15) 

and TCCx and TCCy are extended transmission cross coefficients which represent the off-axis mask 3D effect. 

                           𝑇𝐶𝐶𝑥(𝒌; 𝒌′) = ∬ 𝑠𝑥𝑆(𝒔) 𝑃(𝒌 + 𝒔)𝑃∗(𝒌′ + 𝒔)𝑑𝒔,                                                                                    (16) 

                           𝑇𝐶𝐶𝑦(𝒌; 𝒌′) = ∬ 𝑠𝑦𝑆(𝒔) 𝑃(𝒌 + 𝒔)𝑃∗(𝒌′ + 𝒔)𝑑𝒔.                                                                                    (17) 

TCC, TCCx and TCCy are Hermitian matrices. Therefore, we can use the eigen value decomposition method in the SOCS 

model. Our formula can be applied to arbitrary source shapes and defocus. We can accelerate the calculation by selecting 

small number of the eigen functions which have large eigen values. 

5. SUMMARY 

Diffraction amplitudes from thick EUV masks are calculated by using 3D waveguide model. The model contains two 

vector potentials Ax and Ay which represents two polarizations. There is no redundant variable in the model. 

We define the mask 3D amplitude as the difference between the thick-mask and thin-mask diffraction amplitudes. We 

decompose the mask 3D amplitude into three parts. One is the on-axis mask 3D amplitude, and others are the off-axis 

mask 3D amplitudes in x and y directions which depend on the incident angle of the illumination.  

We construct a CNN which can predict the diffraction amplitudes from 2D EUV mask patterns. After the training, the 

CNN successfully reproduce the mask 3D effects. CNN prediction is 5,000 times faster than the EM simulation. 

We extend the TCC formula to include the off-axis mask 3D effect. Our formula can be applied to arbitrary source shapes 

and defocus. There are three TCCs in the formula. All of them are Hermitian matrices and we can use the eigen value 

decomposition method to accelerate the calculation. 

In this study the mask area is small (720 nm X 720 nm) and the mask patterns are restricted to cut mask patterns. It is a big 

challenge to construct a CNN which covers large area and general mask patterns while keeping high accuracy. 
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