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Abstract—This paper focuses on examination results when 
examinees selectively skip examinations to compare the 
difficulty levels of these examinations, e.g., university entrance 
examinations, certification examinations, and outcomes of 
students’ job-hunting activities. The resultant data is referred to 
as “selectively omitted examination data.” For instance, high 
school students select and apply to universities in consideration 
of the difficulty levels of the entrance examinations and their 
academic abilities. Based on their academic abilities, students 
skip university entrance examinations that are too challenging 
or too easy. In that case, the results include selectively omitted 
data. Existing methods, such as IRT and CTT, cannot estimate 
the difficulty levels of such examinations because of the omitted 
data. Understanding the difficulty level of these examinations 
can facilitate the formulation of a new index to assess 
organizational ability, number of students who pass, and 
difficulty of the examinations. This index would reflect the 
outcomes of the organizations’ education, corresponding with 
perspectives on examinations. Therefore, we propose a novel 
method, Peak Shift Estimation, to estimate an examination’s 
difficulty level based on selectively omitted examination data. 
We apply Peak Shift Estimation to the simulation data and 
demonstrate that it estimates the rank order of the difficulty 
level of examinations. 

Keywords—university entrance examination, simulation, 
linking, item response theory, educational organization rankings 

I. INTRODUCTION 

Many educational organization rankings have been 
developed to assess educational organizations’ environment 
[1, 2], for example the 100 Best Public High Schools in the 
U.S. [3], World University Rankings [4], and the Shanghai 
Jiao Tong Academic Ranking of World Universities [5]. They 
are based on multiple perspectives: teaching, research, 
citations, industry income, international outlook, opinion 
survey, SAT/ACT scores, AP test, IB test, and so on. However, 
we cannot refer to them when we assess educational 
organizations from an educational outcome perspective for 

particular domains, such as results of certification 
examinations, outcomes of students’ job-hunting activities, 
and entrance examination because examinees skip these 
examinations selectively. 

The purpose of this study is to propose a method to 
compare the difficulty levels of such examinations, which is 
referred to as “selectively omitted examination data.” Such 
data comprises the results of certification examinations and 
outcomes of students’ job-hunting activities, and are often 
archived. Universities usually track students’ job-hunting 
activities and document which company the students join. 
However, extant literature has not focused on this type of data. 
Knowledge of the examinations’ difficulty level can facilitate 
the formulation of a new index to assess the organization’s 
standards, pass rates, and examinations’ difficulty levels. This 
index would reflect the outcomes of student education from 
an examination perspective.  

The entrance examination data is a part of the selectively 
omitted examination data. High school students select 
universities to which they apply, considering the difficulty 
levels of entrance examinations and their academic abilities. 
Based on their academic abilities, students skip university 
entrance examinations that are too challenging or easy. 
Usually, high schools only share the number of students 
accepted by each university; meaning, they do not release the 
number of unsuccessful students. Consequently, one can 
collect information on the number of students accepted by 
different universities from different high schools without 
knowing their names.  

Fig. 1 depicts the selectively omitted examination data. 
The results are sorted according to the organization’s ability 
levels. Each examination has a peak, that is, a point at which 
acceptance is the highest. The peak corresponds with an 
organization’s higher ability level when the examination’s 
difficulty level increases. This implies that during the peak, 
the examination’s difficulty levels correspond with the 
organization’s ability levels. When the number of examinees 



is lower or higher than the number at the peak, the 
organization’s ability level is lower or higher than the 
examination’s difficulty level. In this figure, the organizations 
and examinations are arranged in the order of their ability and 
difficulty levels. Their consequent shapes are very regular; 
therefore, they can be easily sorted. However, the ability and 
difficulty levels are not known in real life, so they cannot be 
sorted without ingenuity. 

Methods such as Classical Test Theory (CTT) [6] and Item 
Response Theory (IRT) [7] have been used to compare the 
examinations’ difficulty levels or their items. IRT suggests 
that the relationship between the accuracy rate of each item 
and a person’s ability level can be expressed as a function. 
Therefore, different examinations’ difficulty levels can be 
estimated based on the function. 

Many studies have connected different tests using these 
methods, which is referred to as “linking” [8,9,10,11,12]. Liu 
and Walker [8] demonstrated a connection between the 
National Assessment of Educational Progress [13], the 
International Assessment of Educational Progress [14], the 
Armed Services Vocational Aptitude Battery [15], and the 
North Carolina End-of-Grade Tests [16]. Kolen and Brennan 
[9] linked American College Testing [17] and the Iowa Tests 
of Educational Development [18].  

One of the prerequisites of using IRT and CTT is that 
examinees are challenged to solve all examination items; 
therefore, they require data on who can or cannot solve what 
items. However, the data used in this study is not suitable for 
IRT and CTT because it includes examinees who skip 
examinations selectively. Further, information on the 
examinations that are skipped and why examinees skip them 
remains veiled. Thus, named after the shapes obtained in Fig. 
1, we propose a novel method, that is, Peak Shift Estimation. 

First, we introduced the algorithm for Peak Shift 
Estimation. Then, we apply it to the simulation data and 
demonstrate that it estimates the rank order of the 
examinations’ difficulty levels. 

II. PEAK SHIFT ESTIMATION 

Peak Shift Estimation step by step estimates examination 
ranks and organizations around their peak from top-rank 
examinations based on the acceptance number. The Peak 
Shift Estimation algorithm is mentioned below. For 
readability, examinations are referred to as university 
entrance examinations and organizations as high schools. The 
total number of high schools is designated by 𝑚, the total 
number of universities by 𝑛, the loop count by 𝑖 , a set of 
universities by 𝑈௜ , and a set of high schools by 𝐻௜ . The 
application of Peak Shift Estimation requires information on 
the top universities according to the difficulty level ranking. 
These are designated by 𝑈ଵ  in Step (0); Tokyo University 
corresponds to 𝑈ଵ in Japan. 

 
Fig. 1. Selectively omitted examination data. 

First, Peak Shift Estimation standardizes input data by 
considering the difference between the total number of 
students in high schools and the total acceptance number 
between universities. Table I depicts the procedure. Then, 
Peak Shift Estimation estimates the university entrance 
examination ranks and Table II depicts the procedure. 

Peak Shift Estimation determines 𝐻௜  at Estimating steps 
(1) and (2). This corresponds with determining high schools 
around the 𝑈௜’s peak of the standardized acceptance number 
of examinees (Fig. 2). The size of 𝐻௜ is relative to the size of 
𝑈௜. 

The tendency of accepted students from ⋃ 𝐻௝௜
ଵ  would be 

similar at 𝑈௜ and universities that have difficulty levels close 
to 𝑈௜. Hence, Peak Shift Estimation clusters universities based 
on the acceptance rate of ⋃ 𝐻௝௜

ଵ  and defines the top university 
cluster as 𝑈௜ାଵ (Fig. 3) at Estimating steps (3), (4), and (5). 

Peak Shift Estimation uses X-means, and the temporary 
difficulty level ranking is stochastically variable. The 
temporary difficulty level ranking was calculated more than 
once, and then their average was used. Then, the average was 
sorted and defined as estimating the difficulty level ranking. 

TABLE I.  STANDARDIZING STEP 

Step Processing 
Step (1) Divide each acceptance number by the corresponding 

total number of high school students. 

Step (2) Divide each number from step (1) by the total number 
of universities. 

TABLE II.  ESTIMATING STEP 

Step Processing 
Step (0) Rank 𝑈ଵ  number one of temporary difficulty level 

ranking. 
Loop steps 
(1)–(6). 

 

Step (1) Sort high schools according to the summation of 
acceptance rate of 𝑈௜ in descending order. 

Step (2) Define the top ቔ
|௎೔|

௡
ൈ 𝑚ቕ  high schools from step (1) 

ranking as 𝐻௜. 
Step (3) Cluster universities that are not ranked based on the 

acceptance rate of ⋃ 𝐻௝
௜
ଵ , with X-means [19]. 

Step (4) Sort the university clusters by an average acceptance 
rate of ⋃ 𝐻௝

௜
ଵ  in descending order. 

Step (5) Define the top university cluster from step (4) ranking 
as 𝑈௜ାଵ  and rank 𝑈௜ାଵ  as 𝑖 ൅ 1  of the temporary 
difficulty level ranking. 

Step (6) Stop the algorithm after all the universities are ranked. 



 
Fig. 2. Estimating steps (1) and (2). 

 
Fig. 3. Estimating steps (3), (4), and (5). 

III. SIMULATION DATA 

A. Generating Data 

Procedure of generating data: the procedure of high 
school data generation is described in table III and the 
procedure for generating university data is described in table 
IV. 

In real life, students take and pass several university 
examinations and then choose to enroll in one university. 
Using previously collected data, universities predict how 
many students would refuse to accept and then accept 
students more than the number of pre-planned entrance 
students. Even if universities cannot gather enough students, 
they accept additional students to match their planned number. 
Consequently, the number of students who chose the 
university became close to the number of entrance students 
planned by the university. University data steps (2), (3), and 
(4) express the results of this process.  

1) Parameters of generating data: The simulation 
parameters are listed in Table V. The relational expression 
between σ of students’ academic ability in each high school 
and σ of high schools’ average academic ability can be 
determined based on other parameters. 

Each high school is defined as i, number of high schools 
as k, each student in each high school as j, number of students 
at each high school as m, distribution of students’ academic 
ability as 𝑁ሺ0, 1ଶሻ, distribution of high schools’ average 
academic ability as 𝑁ሺ0,𝜎௔ଶሻ, distribution of students’ 

TABLE III.  HIGH SCHOOL DATA STEP 

Step Processing 

Step (1) Generate a number of high school students and allocate 
students’ academic ability following a normal distribution. 

Step (2) Generate a number of high schools and allocate their 
average academic ability following a normal distribution. 

Step (3) Considering the number of students in each high school, 
assign them stochastically to high schools whose average 
academic ability is close to students’ academic ability. 

Step (4) The standard deviation of students’ academic abilities for 
each high school was calculated. When at least one high 
school’s standard deviation exceeds the limitation, go back 
to Step (3). 

Step (5) Rank the high schools based on the average of their 
students’ academic abilities. 

 

TABLE IV.  UNIVERSITY DATA STEP 

Step Processing 

Step (1) Generate universities and allocate examinations’ difficulty 
levels to them following a normal distribution. Each 
university is allocated one examination. 

Step (2) Each high school student chooses universities to take 
entrance examinations, considering that the examinations’ 
difficulty levels are not over or under the student’s 
academic ability ± limitation of entrance examination 
ability. Each high school student chooses a number of 
universities and thus, becomes a candidate for the chosen 
universities. 

Step (3) In the order of the examinations’ difficulty levels, each 
university accepts candidates up to the number of university 
students according to the candidates’ academic ability. 
Universities cannot accept students who have already been 
accepted by other universities. Students become “accepted 
students” at universities that enroll them. 

Step (4) Each university considers candidates who have higher 
academic ability as acceptance students rather than entrance 
students with the lowest academic ability 

 
 

academic ability in each high school as 𝑁ሺ𝜇௘௜ ,𝜎௘ଶሻ, 𝑎௜ as the 
constant for each high school, 𝜇௘௜ ൌ 𝑎௜𝜎௔ , 𝑏௜,௝  as constants 
for each student, and each student’s academic ability as 𝑥௜,௝ ൌ
𝑎௜𝜎௔ ൅ 𝑏௜,௝𝜎௘. 

From 𝑁ሺ0, 1ଶሻ : distribution of high school students’ 
academic ability, 

0 ൌ
ଵ

௞௠
∑ ∑ ൫𝑎௜𝜎௔ ൅ 𝑏௜,௝𝜎௘൯

௠
௝

௞
௜  (1). 

1ଶ ൌ
ଵ

௞௠
∑ ∑ ൫𝑎௜𝜎௔ ൅ 𝑏௜,௝𝜎௘൯

ଶ௠
௝

௞
௜  (2). 

From 𝑁ሺ0,𝜎௔ଶሻ : distribution of high schools’ average 
academic ability, 

0 ൌ
ଵ

௞
∑ ሺ𝑎௜𝜎௔ሻ
௞
௜  (3), 𝜎௔ଶ ൌ

ଵ

௞
∑ ሺ𝑎௜𝜎௔ሻଶ
௞
௜  (4). 

From (3) and (4), 
∑ 𝑎௜
௞
௜ ൌ 0 (5), ∑ 𝑎௜

ଶ௞
௜ ൌ 𝑘 (6). 

From 𝑁ሺ𝑎௜𝜎௔,𝜎௘ଶሻ : distribution of students’ academic 
ability in each high school, 

𝑎௜𝜎௔ ൌ
ଵ

௠
∑ ൫𝑎௜𝜎௔ ൅ 𝑏௜,௝𝜎௘൯
௠
௝  (7), 𝜎௘ଶ ൌ

ଵ

௠
∑ ൫𝑏௜,௝𝜎௘൯

ଶ௠
௝  (8). 

From (7) and (8), 
∑ 𝑏௜,௝
௠
௝ ൌ 0 (9), ∑ 𝑏௜,௝

ଶ௠
௝ ൌ 𝑚 (10). 

From (2), (5), (6), (9), and (10), 
1ଶ ൌ 𝜎௔ଶ ൅ 𝜎௘ଶ (11). 

Then, 𝜎௔ and 𝜎௘ can be expressed by 𝜃 as shown below. 
𝜎௔ ൌ sin𝜃 (12), 𝜎௘ ൌ cos𝜃 (13). 

 



TABLE V.  SIMULATION SETTINGS 

Item 
Simulation 
Pattern 1 

Simulation 
Pattern 2 

𝜇 of students’ academic ability 0 

𝜎 of students’ academic ability 1 

Number of high schools 1,000 

Number of students at each high 
school 

100 

𝜇 of high schools’ average 
academic ability 

0 

𝜃 
1

12
𝜋,

2
12

𝜋,
3

12
𝜋,

4
12

𝜋,
5

12
𝜋 

𝜎 of high schools’ average 
academic ability 

sin 𝜃 

𝜎 of students’ academic ability in 
each high school 

cos𝜃 

Limitation of 𝜎 of students’ 
academic ability in each high 

school 
1.96 x 0.20 

Number of universities 100 

Number of entrance students in 
each university 

500 100 

𝜇 of the difficulty levels of 
entrance examinations 

0 

𝜎 of the difficulty levels of 
entrance examinations 

1 

Limitation of entrance examination 
ability 

1 

 

B. Results 

Data were generated by conducting 1,000 simulations 
(Table V). The number of entrance students in each university 
was set to 500 and 100, and the σ of high schools’ average 
academic ability was changed from sin 1/12𝜋 to  sin 5/12𝜋 
to evaluate their effect. The results are presented in Figs. 4, 5, 
6, 7, 8, and 9. 

Figs. 4 and 7 depict the candidates heatmaps between 
universities and high schools. The candidates are distributed 
between the two arcs and the distance between them 
decreases when the σ of high schools’ average academic 
ability increases. The σ of high schools’ average academic 
ability is not related to the high school students’ choice of 
taking entrance examinations. Figs. 4 and 7 are the same. 

Figs. 5 and 8 depict the entrance students’ heatmap 
between universities and high schools. The students of top- 
and bottom-ranked universities are concentrated in top- and 
bottom-ranked high schools. The students of middle-ranked 
universities are distributed between the two arcs. They 
choose to enroll in the highest-ranked university out of those 
whose examination they have cleared. The distance between 
the arcs decreases when the σ of high schools’ average 
academic ability increases, as is the case for candidates. In 
addition, the entrance students were widely scattered when 
their number in each university was large. 

The standard deviations of high school students’ academic 
abilities and examinations’ difficulty levels are the same; 
however, the number of students is far greater than the 
number of universities. Thus, high school students’ academic 
abilities are more widely distributed than examinations’ 
difficulty levels. Therefore, some of the highest-ranked high 
school students have no choice but to enroll in top-ranked 
universities, even if their difficulty levels are lower than the 
student’s academic abilities. The students who enroll in top-

ranked universities are concentrated in top-ranked high 
schools. High school students enroll in a university according 
to the difficulty levels. As the lowest-ranked universities lose 
their candidates, the arcs suddenly rise. 

Figs. 6 and 9 depict the heatmaps of accepted students 
between universities and high schools. The students who 
enroll in top-ranked universities are concentrated in top-
ranked high schools, respectively. Students at middle-rank 
universities are distributed between the two arcs. The 
distance between them decreases when the σ of high schools’ 
average academic ability increases, as is the case for 
candidates. The relative degree of concentration around high-
ranked high schools and universities increased. 

Each university considers candidates with higher academic 
ability as accepted students compared to the entrance students 
with lower academic ability. Accordingly, the students who 
are between the two arcs in Figs. 5 and 8 and above the lower 
arc in Figs. 6 and 9 become accepted students. 

IV. ESTIMATION 

Peak Shift Estimation was applied to the simulation data, 
the temporary difficulty level ranking was calculated 1,000 
times, and an average of the values was obtained. The average 
was sorted and defined as the difficulty level ranking. The 
simulation data included the results of 1,000 patterns; 
therefore, the difficulty level ranking was obtained for 1,000 
patterns. It is a prerequisite for Peak Shift Estimation to know 
the top-level universities; then, the universities are ranked 
according to the entrance examinations’ difficulty levels. 

In addition, IRT of one-parameter and two-parameter 
logistic models with marginal maximum likelihood were 
applied. IRT requires data about which student passed or 
failed each item. Consequently, IRT could not be applied to 
“selectively omitted examination data” without ingenuity. 
Hence, the data were processed as follows: 

i. Each high school generates students and assigns 
academic ability ranking. 

ii. Each university assesses students based on the number 
of accepted students from each university, considering 
their academic ability ranking. 

Tables VI and VII present examples of this process. High 
school A generates students a, b, c, d, and e and assigns 
academic ability ranking in an alphabetical order. University 
A determines the top three students (a, b, and c) as accepted. 

 

TABLE VI.  ACCEPTED STUDENTS OF HIGH SCHOOL A. 

High 
School 

Number of 
Students 

University 
A 

University 
B 

University 
C 

High 
School A 

5 3 2 1 

TABLE VII.  THE PROCESSED DATA OF HIGH SCHOOL A. 

Student University A University B University C 
Student a succeeded succeeded succeeded 
Student b succeeded succeeded failed 
Student c succeeded failed failed 
Student d failed failed failed 
Student e failed failed failed 

 



 
Fig. 4. Candidates’ Heatmap of Simulation Pattern 1, X-axis is the level of 
entrance examination and Y-axis is the level of high school; the bottom left 
high school and entrance examinations are top-rank.  

 

 
Fig. 5. Entrance Students’ Heatmap of Simulation Pattern 1, X-axis is the 
level of entrance examination and Y-axis is the level of high school; the 
bottom left high school and entrance examinations are top-rank. 

 

 

Fig. 6. Accepted Students’ Heatmap of Simulation Pattern 1, X-axis is the 
level of entrance examination and Y-axis is the level of high school; the 
bottom left high school and entrance examinations are top-rank. 

 
Fig. 7. Candidate Students’ Heatmap of Simulation Pattern 2, X-axis is the 
level of entrance examination and Y-axis is the level of high school; the 
bottom left high school and entrance examinations are top-rank. 

 

 
Fig. 8. Entrance Students’ Heatmap of Simulation Pattern 2, X-axis is the 
level of entrance examination and Y-axis is the level of high school; the 
bottom left high school and entrance examinations are top-rank. 

 

 
Fig. 9. Accepted Students’ Heatmap of Simulation Pattern 2, X-axis is the 
level of entrance examination and Y-axis is the level of high school; the 
bottom left high school and entrance examinations are top-rank. 



 
Fig. 10. Spearman’s Rank Correlation Coefficient in Pattern 1. 

 
Fig. 11. Spearman’s Rank Correlation Coefficient in Pattern 2. 

A. Spearman’s Rank Correlation Coefficient 

Figs. 10 and 11 depict the Spearman’s rank correlation 
coefficient between the difficulty level ranking and true 
ranking. The rank correlation coefficients of Peak Shift 
Estimation are high and stable, except in the case of 𝜃 ൌ
1/12𝜋 in pattern 1. On the other hand, the rank correlation 
coefficients of IRT depicted negative values. 

B. Peak Shift Estimation 

1) 𝜃 ൌ 5/12 𝜋 in Pattern 1: The case of 𝜃 ൌ 5/12𝜋 in 
pattern 1 is selected as a stable example. Figs. 12 and 13 
depict the difficulty level ranking and true ranking, one 
simulation data, and results of Peak Shift Estimation 
conducted 1,000 times. Fig. 13 depicts the estimation process 
of one simulation data and results of Peak Shift Estimation 
conducted only once. In Fig 14, polygonal lines represent the 
number of accepted students for each university from each 
high school. The lines are color-coded according to the 
clustering group, wherein the red line represents the top 
university cluster ( 𝑈௜ାଵ ) and the markers are ⋃ 𝐻௝௜

ଵ , 
according to Estimating Steps (3) and (4). 

The top true-ranking universities are clustered into small 
size groups from Fig. 13; however, the middle and low true-
ranking universities are clustered into the middle-size group. 
In addition, the mean of 1,000 estimated rankings is ordered 
according to the real ranking from Fig. 12. 

Peak Shift Estimation succeeded in extracting ⋃ 𝐻௝௜
ଵ  from 

the high schools with the highest academic abilities and 
small-size group of the top university (𝑈௜ାଵ) from Fig. 14. 

2) 𝜃 ൌ 5/12 𝜋 in Pattern 2: The case of 𝜃 ൌ 5/12𝜋 in 
pattern 2 was selected as an example of lower acceptance rate. 
Figs. 15 and 16 depict the difficulty level ranking and true 
ranking, one simulation data, and results of Peak Shift 
Estimation conducted 1,000 times. Fig. 17 depicts the 
estimation process of one simulation data, and Peak Shift 
Estimation conducted only once. 

From Fig. 16, the universities are clustered into larger 
groups compared to 𝜃 ൌ 5/12𝜋  in pattern 2 (Fig. 13). In 
addition, the mean of 1,000 estimated rankings is ordered 
according to the real ranking from Fig. 15. 

The gap in the number of accepted students between high 
schools is small. This caused ⋃ 𝐻௝௜

ଵ  to include high schools 
with lower academic ability, as shown in Fig. 17. Similarly, 
the gap in the number of accepted students between 
universities is also small, which produces large-clustered 
groups. 

3) 𝜃 ൌ 1/12 𝜋 in Pattern 2: The case of 𝜃 ൌ 1/12𝜋 in 
pattern 2 is selected as an unstable example. Figs. 18 and 19 
depict the difficulty level ranking and true ranking, one 
simulation data, and results of Peak Shift Estimation 
conducted 1,000 times. Fig. 20 depicts the estimation process 
of one simulation data and results of Peak Shift Estimation 
conducted only once. 
The universities are clustered into larger groups and 

sometimes, 𝑈௜ାଵ  includes universities with lower true 
ranking than 𝑈௜  from Fig. 19. However, the means of 
estimated ranking conducted 1,000 times and the real ranking 
are positively correlated from Fig. 18. 
As shown in Fig. 20, the gaps in the number of accepted 

students between high schools and universities are very small, 
which produced large-clustered groups. 

 

Fig. 12. θ=5/12 π in pattern 1; difficulty level ranking and true ranking, one 
simulation data, and Peak Shift Estimation conducted 1,000 times; error bar 
depicts standard deviation. 

 

Fig. 13.  θ=5/12 π in pattern 1; difficulty level ranking and true ranking, one 
simulation data, and results of Peak Shift Estimation conducted only once. 



 

Fig. 14. θ=5/12 π in pattern 1; the estimation process of one simulation data, 
and results of Peak Shift Estimation conducted only once, the red line 
represents the top university cluster (𝑈௜ାଵ). 

 

Fig. 15. θ=5/12 π in pattern 2; difficulty level ranking and true ranking, one 
simulation data, and Peak Shift Estimation conducted 1,000 times; error bar 
depicts standard deviation. 

 

Fig. 16.   θ=5/12 π in pattern 2; difficulty level ranking and true ranking, one 
simulation data, and results of Peak Shift Estimation conducted only once. 

 

Fig. 17. θ=5/12 π in pattern 2; the estimation process of one simulation data 
and results of Peak Shift Estimation conducted only once, the red line 
represents the top university cluster (𝑈௜ାଵ) 

 

Fig. 18. θ=1/12 π in pattern 1; difficulty level ranking and true ranking, one 
simulation data, and Peak Shift Estimation conducted 1,000 times; error bar 
depicts standard deviation. 

 
Fig. 19. θ=1/12 π in pattern 2; difficulty level ranking and true ranking, one 
simulation data, and one-time peak shift estimation. 

 

Fig. 20. θ=1/12 π in pattern 2, the estimation process of one simulation data 
and results of Peak Shift Estimation conducted only once, the red line 
represents the top university cluster (𝑈௜ାଵ) 

C. Item Response Theory 

Figs. 21 and 22 depict the results of IRT of the two-
parameter logistic models with marginal maximum 
likelihood. Figs. 21(a) and 22(a) depict the standardized 
number of accepted students and true ranking. Figs. 21(b) and 
22(b) depict the difficulty level ranking and true ranking. 

The middle-ranking universities accept a larger number of 
students, and their difficulty level ranking is estimated to be 
low (Fig. 21). The examinations’ difficulty levels and high 
schools’ average academic ability are allocated following a 
normal distribution; therefore, the difficulty levels of middle-
ranking universities and academic ability of students of 
middle-ranking high schools are close. Consequently, a lot of 
students choose middle-ranking universities and get accepted. 
IRT estimates that universities that accept many students 
have a low difficulty level. 

The peak of the standardized number of accepted students 
moves toward the left (Fig. 22). The number of entrance 



 

Fig. 21. θ=5/12 π in pattern 1. (a) number of accepted students, (b) 
Difficulty-level ranking and true ranking; error bar depicts standard 
deviation. 

 
Fig. 22. θ=5/12 π in pattern 2. (a) number of accepted students, (b) 
Difficulty-level ranking and true ranking; error bar depicts standard 
deviation. 

students in each university was low, and students with low 
academic ability could not pass the examination. In this case 
the peak of the difficulty level ranking also moved toward the 
left. Consequently, the rank correlation coefficients of IRT 
embody negative values. 

V. CONCLUSION 

This paper proposes Peak Shift Estimation as a novel 
method to estimate an examination’s difficulty level based on 
“selectively omitted examination data.” It also verified the 
accuracy of Peak Shift Estimation using the simulation data. 
This estimated difficulty level of the examination reflects the 
outcomes of the organization’s education, corresponding with 
perspectives on examinations, and the Peak Shift Estimation 
can be applied to university entrance examinations, 
certification examinations, and outcomes of students’ job-
hunting activities. 

However, this study is not without its limitations. The 
application of Peak Shift Estimation requires information on 
the top examinations as a precondition and in certain cases, for 
example, new category certification examinations, this 
information is not known. The accuracy and robustness of 

Peak Shift Estimation had to be evaluated under various 
situations; for example, the different number of entrance 
students between universities, different number of students 
between high schools, and biased distribution of high schools’ 
average academic ability or distribution of students’ academic 
ability in each high school. Therefore, future research should 
focus on applying Peak Shift Estimation to real data and verify 
its applicability. 
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