
論文 / 著書情報
Article / Book Information

題目(和文) 集約署名の研究

Title(English) Studies on Aggregate Signature

著者(和文) 手塚真徹

Author(English) Masayuki Tezuka

出典(和文) 学位:博士(理学),
 学位授与機関:東京工業大学,
 報告番号:甲第11711号,
 授与年月日:2022年3月26日,
 学位の種別:課程博士,
 審査員:田中 圭介,伊東 利哉,尾形 わかは,鹿島 亮,安永 憲司

Citation(English) Degree:Doctor (Science),
 Conferring organization: Tokyo Institute of Technology,
 Report number:甲第11711号,
 Conferred date:2022/3/26,
 Degree Type:Course doctor,
 Examiner:,,,,

学位種別(和文) 博士論文

Type(English) Doctoral Thesis

Powered by T2R2 (Science Tokyo Research Repository)

http://t2r2.star.titech.ac.jp/

Studies on Aggregate Signature

Masayuki Tezuka

Supervisor: Keisuke Tanaka

Department of Mathematical and Computing Science

School of Computing

Tokyo Institute of Technology

February 1, 2022

Acknowledgements

First and foremost, I would express my great deal of gratitude to my supervisor Professor

Keisuke Tanaka for support and encouragement. I appreciate that he spent a lot of time for

our discussion and gave us valuable advice. I am very honored to belong to his laboratory.

I would like to thank Prof. Toshiya Ito, Prof. Wakaha Ogata, Prof. Ryo Kashima, and

Prof. Kenji Yasunaga, undertaking the referee of my doctoral thesis. Based on their feedbacks,

we would be more than happy to improve my work.

I would also like to thank all members and related members of Tanaka Laboratory. Espe-

cially, I would thanks to Dr. Masahiro Ishii, Dr. Yuyu Wang, Dr. Kazumasa Shinagawa, Dr.

Cid Reyes Bustos, Keisuke Hara, Yusuke Yoshida, Xiangyu Su, Shinji Yoshino, Daiki Hiraga,

Kyohei Sudo, and Hiroki Yamamuro. I am happy to have a fruitful time in collaboration

studies with them.

At last, I would express my gratitude to my parents for their support. Also I would like

to thank my beloved dogs’ Pudding, Candy, and Karin.

1

Contents

1 Introduction 4

1.1 A Study on the Synchronized Aggregate Signature Scheme 4

1.2 A Study on the T-out-of-N Redactable Signature Scheme 8

1.3 Road Map . 12

2 Preliminaries 14

2.1 Notations . 14

2.2 Bilinear Groups . 14

2.3 Computational Assumptions . 15

2.4 Digital Signature . 15

2.5 Random Oracle Model . 17

3 Synchronized Aggregate Signature 18

3.1 Syntax . 18

3.2 Security . 19

3.3 Modified Camenisch-Lysyanskaya Signature Scheme 21

3.4 Synchronized Aggregate Signature Scheme by Lee et al. 22

3.5 Conversion from MCL Signature to Aggregate Signature by Lee et al. 24

3.6 New Security Proof . 25

4 T-out-of-N Redactable Signature 31

4.1 Syntax . 31

4.2 Security . 34

4.3 BGLS Aggregate Signature Scheme . 38

4.4 Shamir’s Secret Sharing Scheme . 39

4.5 Our Construction . 40

2

4.6 Security Proof for Unforgeability . 43

4.7 Security Proof for Transparency . 56

5 Conclusion 57

3

Chapter 1

Introduction

This thesis consists of two studies which are related to aggregate signature. These studies

summarized as follows.

1.1 A Study on the Synchronized Aggregate Signature

Scheme

Aggregate Signature. Aggregate signature schemes originally introduced by Boneh, Gen-

try, Lynn, and Shacham [11] allow anyone to convert n individual signatures (σ1, . . . , σn)

produced by different n signers on different messages into the aggregate signature Σ whose

size is much smaller than a concatenation of the individual signatures. This feature leads sig-

nificant reductions of bandwidth and storage space in BGP (Border Gateway Protocol) routing

[11, 40, 8], bundling software updates [1], sensor network data [1], authentication [47], and

blockchain protocol [54, 29, 59]. After the introduction of aggregate signature schemes, various

aggregate signature schemes have been proposed: sequential aggregate signature schemes [41],

identity-based aggregate signature schemes [23], synchronized aggregate signature schemes

[23, 1], and fault-tolerant aggregate signature schemes [25].

Synchronized Aggregate Signature. Synchronized aggregate signature schemes are a

special type of aggregate signature schemes. The concept of the synchronized setting aggregate

signature scheme was introduced by Gentry and Ramzan [23]. Ahn, Green, and Hohenberger

[1] revisited the Gentry-Ramzan model and formalized the synchronized aggregate signature

scheme. In this scheme, all of the signers have a synchronized time period t and each signer

4

can sign a message at most once for each period t. A set of signatures that are all generated

for the same period t can be aggregated into a short signature.

It is useful to adopt synchronized aggregate signature schemes to systems which have

a natural reporting period, such as log or sensor data. As mentioned in [29], synchronized

aggregate signature schemes are also useful for blockchain protocols. For instance, we consider

a blockchain protocol that records several signed transactions in each new block creation. The

creation of an additional block is a natural synchronization event. These signed transactions

could use a synchronized aggregate signature scheme with a block number as a time period

number. This reduces the signature overhead from one per transaction to just one synchronized

signature per block iteration.

Several provable secure synchronized aggregate signature schemes with bilinear groups have

been proposed (see Fig. 1.1). Ahn, Green, and Hohenberger [1] constructed two synchronized

aggregate signature schemes based on the Hohenberger-Waters [28] short signature scheme.

One is constructed in the random oracle model and the other is constructed in the standard

model. The security of both schemes relies on the computational Diffie-Hellman (CDH) as-

sumption. Lee, Lee, and Yung [38] proposed a synchronized aggregate signature scheme based

on the Camenisch-Lysyanskaya signature (CL) scheme [16]. This is the efficient synchronized

aggregate signature scheme with bilinear groups in that the number of pairing operations in

the verification of an aggregate signature and the number of group elements in an aggregate

signature is smaller than those of [23, 1]. The security of this scheme relies on the one-time

Lysyanskaya-Rivest-Sahai-Wolf (OT-LRSW) assumption [42] in the random oracle model. As

the provable secure synchronized aggregate signature schemes without bilinear groups, Hohen-

berger and Waters [29] proposed the synchronized aggregate signature scheme based on the

RSA assumption.

Camenisch-Lysyanskaya Signature Scheme. Camenisch and Lysyanskaya [16] proposed

the CL scheme which has a useful feature called randomizability. This property allows anyone

to randomize a valid signature σ to σ′ where σ and σ′ are valid signatures on the same

message. The CL scheme is widely used to construct various schemes: anonymous credentials

[16], anonymous attestation [5], divisible E-cash [17], batch verification [15], group signatures

[6], ring signatures [4], and aggregate signatures [55]. The security of the CL scheme relies on

the Lysyanskaya-Rivest-Sahai-Wolf (LRSW) assumption which is an interactive assumption.

An interactive assumption allows us to design an efficient scheme, however, these are not

preferable.

5

Scheme Assumption Security pp vk Agg Agg Ver

size size size (in Pairings)

GR [23] CDH + ROM EUF-CMA∗ O(1) ID 3 3

AGH [1] §4 CDH EUF-CMA in CK O(k) 1 3 k + 3

AGH [1] §A CDH + ROM EUF-CMA in CK O(1) 1 3 4

LLY [38] OT-LRSW + ROM EUF-CMA in CK O(1) 1 2 3

(interactive assumption)

LLY [38] 1-MSDH-2 + ROM EUF-CMA in CK O(1) 1 2 3

(New proof) (static assumption)

In our work, we prove that the scheme LLY [38] satisfies the EUF-CMA security in the certified-key model

under the 1-MSDH-2 assumption in the random oracle model.

Figure 1.1: Summary of synchronized aggregate signature schemes with bilinear groups. In the

column of “Assumption”, “ROM” means the random oracle model. In the column of “Security”,

“CK” means the certified-key model. “pp size”, “vk size”, “Agg size”, “Agg Ver” mean the number

of group elements in a public parameter pp, a verification key vk, an aggregate signature, and

the number of pairing operations in aggregate signatures verification respectively. The scheme

GR [23] is an identity-based scheme that has a verification key size of “ID”. In the scheme

AGH [1], k is a special security parameter. As mentioned in [1], k could be five in practice.

∗ Note that Gentry and Ramzan [23] only provided heuristic security arguments.

Modified Camenisch-Lysyanskaya Signature Scheme. Pointcheval and Sanders [50]

proposed the Modified q-Strong Diffie-Hellman-2 (q-MSDH-2) assumption which is defined on

a type 1 bilinear group. This assumption is a q-type assumption [9] where the number of in-

put elements depends on the number of adversarial queries. They proved that the q-MSDH-2

assumption holds in the generic bilinear group model [10] and the CL scheme satisfies the weak-

existentially unforgeable under chosen message attacks (weak-EUF-CMA) security under the

q-MSDH-2 assumption. Moreover, they proposed the modified Camenisch-Lysyanskaya sig-

nature (MCL) scheme which has randomizability. Then, they showed that the MCL scheme

satisfies the existentially unforgeable under chosen message attacks (EUF-CMA) security un-

der the q-MSDH-2 assumption. Their modification from the CL scheme to the MCL scheme

6

incurs a slight increase in the complexity.∗

Our Results. To our knowledge, the most efficient synchronized aggregate signature scheme

with bilinear groups is Lee et al.’s [38] scheme. However, the security of this scheme relies on

the interactive assumption (the OT-LRSW assumption). Even if interactive assumptions hold

in the generic group model or bilinear group model, the concerns about these assumptions arise

in a cryptographic community. This fact causes a barrier to the use of this scheme. Also, it is

not desired that the security of the scheme depends on q-type assumptions. Because the size of

these assumptions grows dynamically and this fact leads to inefficiency of the scheme. Hence,

it is desirable to prove the security of this scheme under the non-q-type (static) assumptions

or construct another efficient synchronized aggregate signature scheme whose security does

not rely on interactive assumptions or q-type assumptions.

Security Proof under the Static Assumption. In this paper, we give a new security

proof for Lee et al.’s synchronized aggregate scheme under the static assumption in the ran-

dom oracle model. More specifically, we convert from the MCL scheme to Lee et al.’s [38]

synchronized aggregate signature scheme. Then, we reduce the security of Lee et al.’s scheme

to the one-time EUF-CMA (OT-EUF-CMA) security of the MCL scheme in the random or-

acle model. We refer the reader to Section 3.5 for details about these techniques. Since the

OT-EUF-CMA security of the MCL scheme is implied by the 1-MSDH-2 assumption, the

security of Lee et al.’s scheme can be proven under the 1-MSDH-2 assumption. We can regard

the 1-MSDH-2 assumption as the static assumption. Therefore, we can see that the security

of Lee et al.’s scheme relies on the static assumption. Notably, while the EUF-CMA security

of the MCL scheme is proved under the q-type assumption, the security of Lee et al.’s synchro-

nized aggregate signature scheme can be proven under the static assumption in the random

oracle model.

In general, there is a trade-off that efficiency is reduced when we design a scheme based on

weaker computational assumptions. Surprisingly, we can change the assumptions underlying

the security of Lee et al.’s [38] scheme from the interactive assumption (OT-LRSW) to the

static assumption (1-MSDH-2) with almost the same reduction loss. Specifically, the size of

verification key vk, the size of aggregate signature Σ, and the number of pairing operations in

an aggregate signature verification do not increase at all.

∗Their modification from the CL scheme to the MCL scheme increases the number of group elements in a

signature and an aggregate signature from 2 to 3.

7

Related Works Boneh et al. [11] proposed the first full aggregate signature scheme which

allows any user to aggregate signatures of different signers. Furthermore, this scheme allows us

to aggregate individual signatures as well as already aggregated signatures in any order. They

constructed a full aggregate signature scheme in the random oracle model. Hohenberger, Sahai,

and Waters [27] firstly constructed a full aggregate signature scheme in the standard model by

using multilinear maps. Hohenberger, Koppula, and Waters [26] constructed a full aggregate

signature scheme in the standard model by using the indistinguishability obfuscation.

Several variants of aggregate signature schemes have been proposed. One major variant is

a sequential aggregate signature scheme which was firstly proposed by Lysyanskaya, Micali,

Reyzin, and Shacham [41]. In this scheme, an aggregate signature is constructed sequentially,

with each signer modifying the aggregate signature in turn. They constructed a sequential

aggregate signature scheme in the random oracle model by using families of trapdoor per-

mutations. Lu, Rafail Ostrovsky, Sahai, Shacham, and Waters [40] firstly constructed the

sequential aggregate signature scheme in the standard model based on the Waters signature

scheme.

Furthermore, Lee et al. [38] proposed a combined aggregate signature scheme. In this

scheme, a signer can use two modes of aggregation (sequential aggregation or synchronized

aggregation) dynamically. They constructed a combined aggregate signature scheme in the

random oracle model based on the CL scheme.

1.2 A Study on the T-out-of-N Redactable Signature

Scheme

Redactable Signature. Recently, due to the development of IoT devices, the number of

electronic data is steadily increasing. It is indispensable for future information society to make

use of these data. When we use data, it is important to prove that the data has not been

modified in any way. A digital signature enables a verifier to verify the authenticity of M by

checking that σ is a legitimate signature on M . However, in our real-world scenario, when

we use data, the confidential information should be deleted from the original data. A digital

signature cannot verify the validity of a message with parts of the message removed.

A redactable signature scheme (RSS) is a useful cryptographic scheme for such a situation.

This scheme consists of a signer, a redactor, and a verifier. A signer signs a message M with a

secret key sk and generates a valid signature σ. A redactor who can become anyone removes

8

some parts of a signed message from M , generate a redacted message M ′, and updates the

corresponding signature σ′ without the secret key sk. A verifier still verifies the validity of the

signature σ′ on message M ′ using vk.

An idea of a redactable signature scheme was introduced by Steinfeld, Bull, and Zheng [57]

as a content extraction signature scheme (CES). This scheme allows generating an extracted

signature on selected portions of the signed original document while hiding removed parts of

portions. Johnson, Molnar, Song, and Wagner [35] proposed a redactable signature scheme

(RSS) which is similar to a content extraction signature scheme.

Security of Redactable Signature. Security of a redactable signature scheme was argued

in many works. Brzuska, Busch, Dagdelen, Fischlin, Franz, Katzenbeisser, Manulis, Onete,

Peter, Poettering, and Schröder [13] formalized three security notions of a redactable signature

for tree-structured messages in the game-based definition.

• Unforgeability: Without the secret key sk it is hard to generate a valid signature σ′ on

a message M ′ except to redact a signed message (M,σ).

• Privacy: Except for a signer and redactors, it is hard to derive any information about

removed parts of the original message M from the redacted message M ′.

• Transparency: It is hard to distinguish whether (M,σ) directly comes from the signer

or has been processed by a redactor.

Derler, Pöhls, Samelin, and Slamanig [21] gave a general framework of a redactable signature

scheme for arbitrary data structures and defined its security.

Camenisch, Dubovitskaya, Haralambiev, and Kohlweiss [14] proposed unlinkable redactable

signature. This signature satisfies unforgeability and unlinkability which is a variant security

notion of privacy. They used an unlinkable redactable signature scheme to construct an

anonymous credential scheme [18]. Later, Sanders [52] constructed an unlinkable redactable

signature scheme to obtain an efficient anonymous credential scheme. Moreover, Sanders [53]

constructed a revokable group signature scheme based on an unlinkable redactable signature

scheme.

Additional Functionalities. Following additional functionalities for a redactable signature

scheme were proposed.

9

• Disclosure Control [46, 44, 45, 24, 32, 33, 30, 51, 43]: Miyazaki, Iwamura, Matsumoto,

Sasaki, Yoshiura, Tezuka, and Imai [46] proposed the disclosure control. The signer or

intermediate redactors can control to prohibit further redactions for parts of the message.

• Identification of a Redactor [31, 34]: Izu, Kanaya, Takenaka, and Yoshioka [31] pro-

posed the redactable signature scheme called “Partial Information Assuring Technology

for Signature” (PIATS). PIATS allows a verifier to identify the redactor of the signed

message.

• Accountability [49]: Pöhls and Samelin proposed an accountable redactable signature

scheme that allows deriving the accountable party of a signed message.

• Update and Marge [39, 48]: Lim, Lee, and Park [39] proposed the redactable signature

scheme where a signer can update signature by adding new parts of a message. Moreover,

Pöhls and Samelin [48] proposed the updatable redactable signature scheme that can

update a signature and marge signatures derived from the same signer.

• Compactness [58]: Most redactable signature schemes, to remove parts of the signed

message, we need pieces of information for each part we want to remove. That is, if a

signed message consists of l elements, the number of elements in an original signature is at

least linear in l. Tezuka and Tanaka [58] introduce compactness for redactable signature

schemes. Compactness requires that the size of an original signature and signature for a

subdocument (redacted message) are indipendent regardless of the number of elements

in messages.

Motivation. Consider the case where a citizen requests the signed secret document disclo-

sure to the government. To disclose the secret signed document, the government must remove

sensitive data from it. A decision of deletion for confidential information of a document is

performed by multiple officers in the government meeting.

One of the simple solutions is that the signer of the secret document gives the signing key

sk to the meeting chair. The chair takes a vote on removing sensitive information and removes

it from the secret document and signed it using sk. However, if the meeting chair is malicious,

it is risky for the secret document signer to give the meeting chair a signing key sk. Therefore,

the secret document signer wants to avoid giving a signing key sk to others.

If we try to adapt the original RSS on this situation, we suffer from the following problem.

RSS allows anyone to redact message parts and even removes the necessary information.

10

Moreover, a malicious chair can redact message parts form the signed document regardless of

the decision of the officers.

Our Contributions. We introduce the new notion of t-out-of-n redactable signature scheme

to overcome this problem. This scheme is composed of a signer, n redactors, a combiner, and

a verifier. The signer designates n redactors and a combiner, generates a key pair (vk, sk)

and redactor’s secret key {rk[i]}ni=1 and sends rk[i] to the redactor i. Then signer decides

parts of a message that redaction is allowed, signs the message, and sends its signature to n

redactor and a combiner. Each redactor i selects parts of the signed message that he or she

wants to remove, generates a piece of redaction information RIi, and sends it to the combiner.

The combiner collects all redaction information {RIi}ni=1, extracts signed message parts which

at least t redactors want to remove using {RIi}ni=1, generates the redactable signature. The

verifier can verify the validities of signatures.

Now, we reconsider applying the t-out-of-n redactable signature scheme to the above redac-

tion problem. Let the secret document signer be a signer of the t-out-of-n redactable signature

scheme, officers be redactors, and the meeting chair be a combiner. The secret document signer

does not have to give the signing key sk to the chair. Our t-out-of-n redactable signature only

allows the chair to redact parts of message which at least t officers wants to remove.

We consider the one-time redaction model which allows redacting signed message only one

time for each signature and gives the unforgeability, privacy, and transparency security of the t-

out-of-n redactable signature scheme in the one-time redaction model. Also, we give a concrete

construction of the t-out-of-n redactable signature scheme which satisfies the unforgeability,

privacy, and transparency security.

Our construction is based on the (t, n)-Shamir’s secret sharing scheme and the redactable

signature scheme proposed by Miyazaki, Hanaoka, and Imai [44] which use the aggregate

signature scheme proposed by Boneh, Gentry, Lynn, and Shacham [11] based on the BLS

signature scheme [12]. Our technical point is to adapt (t, n)-Shamir’s secret share scheme and

compute Lagrangian interpolation at the exponent part of the group element to reconstruct

information for the redaction. Security of our scheme is based on the computational co-CDH

assumption in the random oracle model.

Related Works. We present several signatures that allow editing signed message. More

details of the overview of related works, see [20, 7].

• Append-Only Signature [36]: Kiltz, Mityagin, Panjwani, and Raghavan [36] introduce

11

the notion of the append-only signature scheme. In this scheme, we can only publicly

append message blocks to a signed message and update the signature correspondingly.

• Sanitizable Signature [2]: Ateniese, Chou, de Medeiros, and Tsudik [2] introduce the

notion of the sanitizable signature scheme. In this scheme, a signer selects a sanitizer

who can modify the signed message and generate a signature. The sanitizer can modify

some parts of message blocks of the signed document, but he or she cannot remove

message blocks. In the redactable signature, anyone can redact parts of the signed

message without the secret key. However, in the sanitizable signature scheme, each

sanitizer has the sanitizer’s secret key and the only the sanitizer designated by signer

can sanitize parts of the message using own sanitizer’s secret key.

• Protean Signature [37]: Krenn, Pöhls, Samelin, and Slamanig [37] introduce the notion

of the protean signature scheme. This scheme allows removing and editing some parts

of message blocks. They give the construction of the protean signature scheme from a

sanitizable signature scheme and a redactable signature scheme in the black box way.

1.3 Road Map

We describe the road map of this thesis. In Chapter 2, we introduce notations and review

bilinear groups, digital signature and the random oracle model (ROM). These primitives play

an important role in both our studies.

In Chapter 3, we study for the Camenish-Lysyanskaya signature based synchronized aggre-

gate signature scheme. At first, we review the definition of synchronized aggregate signature

scheme and its security. Second, we review the modified Camenisch-Lysyanskaya (MCL) sig-

nature scheme [50] whose security is used to prove the synchronized aggregate signature by

Lee et al. [38]. Then, we review the synchronized aggregate signature by Lee et al. [38]

and provide the high-level idea of our new conversion technique from a MCL signature to a

synchronized aggregate signature by Lee et al. Finally, we provide the improved security proof

for the aggregate signature by Lee et al. by using our conversion technique.

In Chapter 4, we study for the extension of redactable signature. At first, we propose a

t-out-of-n redactable signature signature scheme and its security notions. Second, we review

the BGLS aggregate signature scheme and the Shamir’s secret sharing scheme. Then, based on

these primitives, we propose our t-out-of-n redactable signature scheme construction. Finally,

we prove security for our construction of t-out-of-n redactable signature scheme.

12

In Chapter 5, we summarize our result and describe some open problems.

13

Chapter 2

Preliminaries

2.1 Notations

Let 1λ be the security parameter. A function f(λ) is negligible in λ if f(λ) tends to 0 faster

than 1
λc for every constant c > 0. PPT stands for probabilistic polynomial time. For an integer

n, [n] denotes the set {1, . . . , n}. For a finite set S, s
$←− S denotes choosing an element s

from S uniformly at random. For a group G, we define G∗ := G\{1G}. For an algorithm A,

y ← A(x) denotes that the algorithm A outputs y on input x.

2.2 Bilinear Groups

We introduce a bilinear group generator. Let G be a bilinear group generator that takes

as an input a security parameter 1λ and outputs the descriptions of multiplicative groups

G = (p,G1,G2,GT , e) where G1, G2, and GT are groups of prime order p and e is an efficient

computable, non-degenerating bilinear map e : G1 ×G2 → GT .

1. Bilinear: for all u ∈ G1, v ∈ G2 and a, b ∈ Zp, then e(u
a, vb) = e(u, v)ab.

2. Non-degenerate: for any g1 ∈ G∗ and g2 ∈ G∗
2, e(g1, g2) ̸= 1GT

.

Bilinear groups are classified into following three types [22]: Type 1 pairings: G1 = G2;

Type 2 pairings: G1 ̸= G2 but there exists an efficient homomorphism ψ : G2 → G1; Type

3 pairings: G1 ̸= G2 and there are no efficiently computable homomorphisms between G1

and G2.

14

2.3 Computational Assumptions

Boneh, Gentry, Lynn, and Shacham [11] introduced the computational co-Diffie-Hellman as-

sumption (co-CDH) which is the variant of the computational Diffie-Hellman (CDH) assump-

tion. They used this assumption to prove the security of their aggregate signature scheme.∗

Assumption 2.1 (Computational co-Diffie-Hellman Assumption [11]). Let G be a type-2

pairing-group generator. The computational co-Diffie-Hlleman (co-CDH) assumption over G is

that for all λ ∈ N, for all G = (p,G1,G2,GT , e)← G(1λ), given (G, g1, gα1 , h) where g1, h← G2

and α
$←− Zp as an input, no PPT adversary can, without non-negligible probability, outputs

hα. We write the advantage of co-Diffie-Hlleman assumption for A as

Advco-CDH
G,A = Pr

[
A(g1, g

α
1 , h) = hα

∣∣∣(p,G1,G2,GT , e)← G(1λ), α
$←− Zq, g1

$←− G1, h
$←− G2

]
.

Pointcheval and Sanders [50] introduced the new q-type assumption which is called the

Modified q-Strong Diffie-Hellman-2 (q-MSDH-2) assumption. This is a variant of the q-Strong

Diffie-Hellman (q-SDH) assumption and defined on a type 1 bilinear group. By using this

assumption, the weak EUF-CMA security for CL signature scheme and EUF-CMA security

The q-MSDH-2 assumption holds in the generic bilinear group model [10]. In this work, we

fix the value to q = 1 and only use 1-MSDH-2 assumption in a static way. We can regard

1-MSDH-2 as a static assumption.

Assumption 2.2 (Modified 1-Strong Diffie-Hellman-2 Assumption [50]). Let G be a type-

1 pairing-group generator. The Modified 1-Strong Diffie-Hellman-2 (1-MSDH-2) assumption

over G is that for all λ ∈ N, for all G = (p,G,GT , e)← G(1λ), given (G, g, gx, gx2
, gb, gbx, gbx

2
, ga, gabx)

where g ← G∗ and a, b, x
$←− Z∗

p as an input, no PPT adversary can, without non-negligible

probability, output a tuple (w,P, h
1

x+w , h
a

x·P (x)) with h ∈ G, P a polynomial in Zp[X] of degree

at most 1, and w ∈ Z∗
p such that X + w and P (X) are relatively prime.†

2.4 Digital Signature

Definition 2.3 (Digital Signature Scheme). A digital signature scheme DS is composed of

following four algorithms (DS.Setup,DS.KeyGen,DS.Sign,DS.Verify).

∗In the case of G1 = G2, the co-CDH assumption reduces to the CDH assumption.
†In the q-MSDH-2 assumption, an input is changed to (G, g, gx, . . . , gxq+1

, gb, gbx, . . . , gbx
q+1

, ga, gabx) and

the condition of the order of P (x) is changed to at most q.

15

• DS.Setup(1λ) : Given a security parameter λ, return the public parameter pp. We assume

that pp defines the message spaceMpp.

• DS.KeyGen(pp) : Given a public parameter pp, return a verification key vk and a signing

key sk.

• DS.Sign(pp, sk,m) : Given a public parameter pp, a signing key sk, and a message m ∈
Mpp, return the signature σ.

• DS.Verify(pp, vk,m, σ) : Given a public parameter pp, a verification key vk, a message

m ∈Mpp, and a signature σ, return either 1 (Accept) or 0 (Reject).

For DS, we require the following correctness.

• Correctness: A digital signature scheme DS is correct if for all λ ∈ N, pp← DS.Setup(1λ),

for all m ∈ Mpp, (vk, sk) ← DS.KeyGen(pp), σ ← DS.Sign(pp, sk,m), then DS.Verify(pp,

vk,m, σ) = 1 holds.

Definition 2.4 (EUF-CMA). Existentially unforgeable under chosen-message attacks (EUF-

CMA) security for a digital signature scheme DS is defined by the following unforgeability

game between a challenger and an adversary A.

• The challenger computes pp← DS.Setup(1λ), (vk, sk)← DS.KeyGen(pp) initializes Q←
{}, and sends (pp, vk) to A.

• A is given access to a signing oracle OSign(·). Given an input m, OSign computes σ ←
DS.Sign(pp, sk,m), update Q← Q ∪ {m} and returns σ to A.

• Finally, A outputs a forgery (m∗, σ∗).

DS is EUF-CMA secure if for all λ ∈ N and all PPT adversaries A, the advantage

AdvEUF-CMA
DS,A := Pr [DS.Verify(pp, vk,m∗, σ∗) = 1 ∧m∗ /∈ Q] is negligible in λ.

If the number of signing oracle OSign query is restricted to the one-time in the unforgeability

security game, we call DS satisfies the one-time EUF-CMA (OT-EUF-CMA) security.

16

2.5 Random Oracle Model

In this thesis, security of signature schemes is proved in the random oracle model (ROM) [3].

In this model, a hash function is regarded as an ideal random function. Instead of computing

a hash value, all the parties can obtain hash values by querying the random oracle with an

input.

In a security reduction in the ROM, the reduction simulates security the random oracle

in the security game. The reduction can set(program) and output hash values as long as the

distribution of output value is indistinguishable from a uniform distribution. This property

is called programmability and widely used in security reductions. Compared to the standard

model, it allows us to construct efficient signature schemes with the provable security.

17

Chapter 3

Synchronized Aggregate Signature

In this cahpter, at first, we review the definition of a synchronized aggregate signature scheme

and its security model, review the DSMCL scheme proposed by Pointcheval and Sanders [50].

This is used for security proof for the synchronized aggregate signature scheme proposed by

Lee et al. Then, we describe Lee et al.’s aggregate signature scheme construction. Finally,

we give a new security proof for Lee et al.’s scheme under the 1-MSDH-2 assumption in the

random oracle model.

3.1 Syntax

Synchronized aggregate signature schemes [23, 1] are a special type of aggregate signature

schemes. In this scheme, all of the signers have a synchronized time period t and each signer

can sign a message at most once for each period t. A set of signatures that are all generated for

the same period t can be aggregated into a short signature. The size of an aggregate signature

is the same size as an individual signature. Now, we review the definition of synchronized

aggregate signature schemes.

Definition 3.1 (Synchronized Aggregate Signature Schemes [23, 1]). A synchronized aggre-

gate signature scheme SAS for a bounded number of periods is a tuple of algorithms (SAS.Setup,

SAS.KeyGen, SAS.Sign, SAS.Verify, SAS.Aggregate, SAS.AggVerify).

• SAS.Setup(1λ, 1T) : Given a security parameter λ and the time period bound T , return

the public parameter pp. We assume that pp defines the message spaceMpp.

• SAS.KeyGen(pp) : Given a public parameter pp, return a verification key vk and a signing

key sk.

18

• SAS.Sign(pp, sk, t,m) : Given a public parameter pp, a signing key sk, a time period

t ≤ T , and a message m ∈Mpp, return the signature σ.

• SAS.Verify(pp, vk,m, σ) : Given a public parameter pp, a verification key vk, a message

m ∈Mpp, and a signature σ, return either 1 (Accept) or 0 (Reject).

• SAS.Aggregate(pp, (vk1, . . . , vkr), (m1, . . . ,mr), (σ1, . . . , σr)) : Given a public parameter

pp, a list of verification keys (vk1, . . . , vkr), a list of messages (m1, . . . ,mr), and a list of

signatures (σ1, . . . , σr), return either the aggregate signature Σ or ⊥.

• SAS.AggVerify(pp, (vk1, . . . , vkr), (m1, . . . ,mr),Σ) : Given a public parameter pp, a list

of verification keys (vk1, . . . , vkr), a list of messages (m1, . . . ,mr), and an aggregate

signature, return either 1 (Accept) or 0 (Reject).

Correctness: Correctness is satisfied if for all λ ∈ N, T ∈ N, pp ← SAS.Setup(1λ, 1T), for

any finite sequence of key pairs (vk1, sk1), . . . (vkr, skr) ← SAS.KeyGen(pp) where vki are all

distinct, for any time period t ≤ T , for any sequence of messages (m1, . . .mr) ∈ Mpp, σi ←
SAS.Sign(pp, ski, t,mi) for i ∈ [r], Σ← SAS.Aggregate(pp, (vk1, . . . , vkr), (m1, . . . ,mr), (σ1, . . . , σr)),

we have

SAS.Verify(pp, vki,mi, σi) = 1 for all i ∈ [r]

∧ SAS.AggVerify(pp, (vk1, . . . , vkr), (m1, . . . ,mr),Σ) = 1.

In a signature aggregation, it is desirable to confirm that each signature is valid. This is

because if there is at least one invalid signature, the generated aggregate signature will be

invalid.∗ In this work, before aggregating signatures, SAS.Aggregate checks the validity of each

signature.

3.2 Security

We introduce the security notion of synchronized aggregate signature schemes. The EUF-CMA

security of synchronized aggregate signature schemes proposed by Gentry and Ramzan [23]

captures that it is hard for adversaries to forge an aggregate signature without signing key

∗Fault-tolerant aggregate signature schemes [25] allow us to determine the subset of all messages belonging

to an aggregate signature that were signed correctly. However, this scheme has a drawback that the aggregate

signature size depends on the number of signatures to be aggregated into it.

19

sk∗. However, they only provided heuristic security arguments in their synchronized aggregate

signature scheme.

Ahn, Green, and Hohrnberger [1] introduced the certified-key model for the EUF-CMA

security of synchronized aggregate signature schemes. In this model, signers must certify

their verification key vk by proving knowledge of their signing key sk. In other words, no

verification key vk is allowed except those correctly generated by the SAS.KeyGen algorithm. In

certified-key model, to ensure the correct generation of a verification key vki ̸= vk∗, EUF-CMA

adversaries must submit (vki, ski) to the certification oracle OCert. As in [1, 38], we consider

the EUF-CMA security in the certified-key model.

Definition 3.2 (EUF-CMA Security in the Certified-Key Model [1, 38]). The EUF-CMA

security of a sequential aggregate signature scheme SAS in the certified-key model is defined

by the following unforgeability game between a challenger C and a PPT adversary A.

• C runs pp∗ ← SAS.Setup(1λ, 1T), (vk∗, sk∗) ← SAS.KeyGen(pp∗), sets Q ← {}, L ← {},
tctr ← 1, and gives (pp, vk∗) to A.

• A is given access (throughout the entire game) to a certification oracle OCert(·, ·). Given

an input (vk, sk), OCert performs the following procedure.

– If the key pair (vk, sk) is valid, L← L ∪ {vk} and return “accept”.

– Otherwise return “reject”.

(A must submit key pair (vk, sk) to OCert and get “accept” before using vk.)

• A is given access (throughout the entire game) to a sign oracle OSign(·, ·). Given an input

(“inst”,m), OSign performs the following procedure.

(“inst” ∈ {“skip”, “sign”} represent the instruction for OSign where “skip” implies

that A skips the concurrent period tctr and “sign” implies that A require the signature

on message m.)

– If tctr /∈ [T], return ⊥.

– If “inst” = “skip”, tctr ← tctr + 1.

– If “inst” = “sign”, Q ← Q ∪ {m}, σ ← SAS.Sign(pp∗, sk∗, t,m), tctr ← tctr + 1,

return σ.

• A outputs a forgery ((vk∗1, . . . , vk
∗
r∗), (m

∗
1, . . . ,m

∗
r∗),Σ

∗).

20

A sequential aggregate signature scheme SAS satisfies the EUF-CMA security in the certified-

key model if for all PPT adversaries A, the following advantage

AdvEUF-CMA
SAS,A := Pr


SAS.AggVerify(pp∗, (vk∗1, . . . , vk

∗
r∗), (m

∗
1, . . . ,m

∗
r∗),Σ

∗) = 1

∧ For all j ∈ [r∗] such that vk∗j ̸= vk∗, vk∗j ∈ L

∧ For some j∗ ∈ [r∗] such that vk∗j∗ = vk∗,m∗
j∗ /∈ Q


is negligible in λ.

3.3 Modified Camenisch-Lysyanskaya Signature Scheme

Pointcheval and Sanders [50] proposed the modified Camenisch-Lysyanskaya signature scheme

which supports a multi-message (vector message) signing. In this work, we only need a single-

message signing scheme. Here, we review the single-message modified Camenisch-Lysyanskaya

signature scheme DSMCL = (DSMCL.Setup,DSMCL.KeyGen,DSMCL.Sign,DSMCL.Verify) as follows.

• DSMCL.Setup(1
λ) :

G = (p,G,GT , e)← G(1λ). (G is a type-1 pairing-group generator)

Return pp← G.

• DSMCL.KeyGen(pp) :

g
$←− G∗, x

$←− Z∗
p, y

$←− Z∗
p, z

$←− Z∗
p, X ← gx, Y ← gy, Z ← gz.

Return (vk, sk)← ((g,X, Y, Z), (x, y, z)).

• DSMCL.Sign(pp, sk,m) :

Parse sk as (x, y, z)

w
$←− Zp, A

$←− G∗, B ← Ay, C ← Az, D ← Cy, E ← AxBmxDwx.

Return σ ← (w,A,B,C,D,E).

• DSMCL.Verify(pp, vk,m, σ) :

Parse vk as (g,X, Y, Z), σ as (w,A,B,C,D,E).

If (e(A, Y) ̸= e(B, g)) ∨ (e(A,Z) ̸= e(C, g)) ∨ (e(C, Y) ̸= e(D, g)), return 0.

If e(ABmDw, X̃) = e(E, g), return 1.

Otherwise return 0.

21

Pointcheval and Sanders [50] proved that if the q-MSDH-2 assumption holds, then the

DSMCL scheme satisfies the EUF-CMA security where q is a bound on the number of adaptive

signing queries. In this work, we only need the OT-EUF-CMA security for the DSMCL scheme.

Theorem 3.3 ([50]). If the 1-MSDH-2 assumption holds, then the DSMCL scheme satisfies the

OT-EUF-CMA security.

3.4 Synchronized Aggregate Signature Scheme by Lee

et al.

We describe the synchronized aggregate signature scheme by Lee et al. [38]. Let T be a

bounded number of periods which is a polynomial in λ. The synchronized aggregate signa-

ture scheme by Lee et al. SASLLY = (SASLLY.Setup, SASLLY.KeyGen, SASLLY.Sign, SASLLY.Verify,

SASLLY.Aggregate, SASLLY.AggVerify) [38] is given as follows.†

• SASLLY.Setup(1
λ, 1T) :

1. G = (p,G,GT , e)← G(1λ), g
$←− G∗. (G is a type-1 pairing-group generator)

2. Choose hash functions:

H1 : [T]→ G, H2 : [T]→ G∗, H3 : [T]× {0, 1}∗ → Zp.

3. Return pp← (G, g,H1, H2, H3).

• SASLLY.KeyGen(pp) :

1. x
$←− Z∗

p, X ← gx.

2. Return (vk, sk)← (X, x).

• SASLLY.Sign(pp, sk, t,m) :

1. m′ ← H3(t,m), E ← H1(t)
skH2(t)

m′sk.

2. Return (E, t).

• SASLLY.Verify(pp, vk,m, σ) :

†The SASLLY scheme described here is slightly different from the original ones [38] in that the range of H2

is changed from G to G∗.

22

1. m′ ← H3(t,m), parse σ as (E, t),.

2. If e(E, g) = e(H1(t)H2(t)
m′
, vk), return 1.

3. Otherwise return 0.

• SASLLY.Aggregate(pp, (vk1, . . . , vkr), (m1, . . . ,mr), (σ1, . . . , σr)) :

1. For i = 1 to r, parse σi as (Ei, ti).

2. If there exists i ∈ {2, . . . , r} such that ti ̸= t1, return ⊥.

3. If there exists (i, j) ∈ [r]× [r] such that i ̸= j ∧ vki = vkj, return ⊥.

4. If there exists i ∈ [r] suth that SASLLY.Verify(pp, vki,mi, σi) ̸= 0,

return ⊥.

5. E ′ ←
∏r

i=1Ei.

6. Return Σ← (E ′, w).

• SASLLY.AggVerify(pp, (vk1, . . . , vkr), (m1, . . . ,mr),Σ) :

1. There exists (i, j) ∈ [r]× [r] such that i ̸= j ∧ vki = vkj, return 0.

2. For i = 1 to r, m′
i ← H3(t,mi).

3. Parse Σ as (E ′, w).

4. If e(E ′, g) = e (H1(t),
∏r

i=1 vki) · e
(
H2(t),

∏r
i=1 vk

m′
i

i

)
, return 1.

5. Otherwise, return 0.

Now, we confirm the correctness. Let (vki, ski)← SASLLY.KeyGen(pp) and σi ← SASLLY.Sign(pp,

ski, t,mi) for i ∈ [r] where vki are all distinct. Then, for all i ∈ [r], Ei ← H1(t)
skiH2(t)

m′
iski

holds wherem′
i ← H3(t,mi) and σi = (Ei, t). This fact implies that SASLLY.Verify(pp, vki,mi, σi) =

1. Furthermore, let Σ← SASLLY.Aggregate(pp, (vk1, . . . , vkr), (m1, . . . ,mr), (σ1, . . . , σr)). Then,

E ′ =
r∏

i=1

Ei = H1(t)
∑n

i=1 skiH2(t)
∑n

i=1 m
′
iski

holds where Σ = (E ′, t) andm′
i ← H3(t,mi) for all i ∈ [r]. This fact implies that SASLLY.AggVerify(pp,

(vk1, . . . , vkr), (m1, . . . ,mr),Σ) = 1.

23

3.5 Conversion from MCL Signature to Aggregate Sig-

nature by Lee et al.

Before security analysis the synchronized aggregate signature proposed by Lee et al, we explain

an intuition that there is a relationship between the DSMCL scheme and Lee et al.’s aggregate

signature scheme. Concretely, we explain that there is a conversion from the DSMCL scheme

to Lee et al.’s aggregate signature scheme.

Our idea of conversion is a similar technique in [38] which converts the Camenisch-Lysyanskaya

signature CL scheme to the synchronized aggregate signature scheme. However, the form of

signatures in CL and DSMCL, we cannot immediately convert DSMCL scheme to the synchronized

aggregate signature scheme. Thus, we need to modify the conversion technique in [38].

Now, we explain an intuition of our conversion. We start from the DSMCL scheme in Section

3.3. A signature of the DSMCL scheme on a message m is formed as

σ = (w,A,B = Ay, C = Az, D = Cy, E = AxBmxDwx).

where w
$←− Zp and A

$←− G∗
1. If we can force signers to use same w, A, B = Ay, C = Az, and

D = Cy, we can obtain an aggregate signature

Σ =

(
w,A,B,C,D,E ′ =

r∏
i=1

Ei = A
∑r

i=1 xiB
∑r

i=1 mixiD
∑r

i=1 wxi

)
on a message list (m1, . . . ,mr) from valid signatures (σ1, . . . σr) where σi = (w,A,B,C,D,Ei) is

a signature on a messagemi generated by each signer. If we regardE ′ as E ′ = (ADw)
∑r

i=1 xiB
∑r

i=1 mixi ,

verification of the aggregate signature Σ on the message list (m1, . . . ,mr) can be done by

checking the following equation.

e(E ′, g) = e

(
ADw,

r∏
i=1

vki

)
· e

(
B,

r∏
i=1

vkmi
i

)
Then, required elements to verify the aggregate signature Σ are F = ADw, B, and E ′. Similar

to Lee et al.’s conversion, the three verification equations e(A, Y) = e(B, g), e(A,Z) = e(C, g),

e(C, Y) = e(D, g) in DSMCL.Verify is discarded in this conversion. We use hash functions to

force signers to use the same F and B for each period t. We choose hash functions H1 and

H2 and set F ← H1(t) and B ← H2(t). Then, we can derive Lee et al.’s aggregate signature

scheme. In this derived aggregate signature scheme, a signature on a message m and period t

is formed as

σ = (E = H1(t)
xH2(t)

mx, t).

24

An aggregate signature Σ′ on a message list (m1, . . . ,mr) and period t is formed as

Σ =

(
E ′ =

r∏
i=1

Ei = H1(t)
∑r

i=1 xiH2(t)
∑r

i=1 mixi , t

)

where σi = (Ei = H1(t)
xiH2(t)

mixi , t) is a signature on a message mi generated by each signer.

In our conversion, we need to hash a message with a time period for the security proof. This

conversion technique is used for our security proof in next section.

3.6 New Security Proof

We reassess the EUF-CMA security of the SASLLY scheme. In particular, we newly prove

the EUF-CMA security of the SASLLY scheme under the 1-MSDH-2 assumption. By using

the conversion technique described previous section, we simulate a signature in the aggregate

signature scheme Lee et al. in the reduction.

Theorem 3.4. If the DSMCL scheme satisfies the OT-EUF-CMA security, then, in the random

oracle model, the SASLLY scheme satisfies the EUF-CMA security in the certified-key model.

proof. We give an overview of our security proof. Similar to the work in [38], we reduce the

EUF-CMA security of the SASLLY scheme to the OT-EUF-CMA security of the DSMCL scheme.

We construct a reduction algorithm according to the following strategy. First, the reduction

algorithm chooses a message mDSMCL
at random, make signing query on mDSMCL

, and obtains

its signature σDSMCL
= (wDSMCL

, ADSMCL
, BDSMCL

, CDSMCL
, DDSMCL

, EDSMCL
) of the DSMCL scheme.

Then, the reduction algorithm guesses the time period t′ of a forged aggregate signature and

an index k′ ∈ [qH3] at random where qH3 be the maximum number of H3 hash queries. Then

reduction algorithm programs hash values as H1(t
′) = ADSMCL

D
wDSMCL
DSMCL

, H2(t
′) = BDSMCL

, and

H3(t
′,mk′) = mDSMCL

. For a signing query on period t ̸= t′, the reduction algorithm generate

the signature by programmability of hash functions H1, H2, and H3. For a signing query on

period t ̸= t′, if the query index j of H3 is equal to the index k′, the reduction algorithm can

compute a valid signature by using σDSMCL
(This can be done by using the conversion technique

in Section 3.5.). Otherwise, the algorithm should abort the simulation. Finally, the reduction

algorithm extracts valid forgery of the DSMCL scheme from a forged aggregate signature on

time period t′ of the SASLLY scheme.

Now, we give the security proof. Let A be an EUF-CMA adversary of the SASLLY scheme,

C be the OT-EUF-CMA game challenger of the DSMCL scheme, and qH3 be the maximum

25

number of H3 hash queries. We construct the algorithm B against the OT-EUF-CMA game

of the DSMCL scheme. The construction of B is given as follow.

• Initial setup: Given an input pp = GDSMCL
and vk = (gDSMCL

, XDSMCL
, YDSMCL

, ZDSMCL
)

from C, B performs the following procedure.

– G ← GDSMCL
, g ← gDSMCL

, pp∗ ← (G, g), vk∗ ← XDSMCL
. t′

$←− [T], k′
$←− [qH3], tctr ← 1,

L← {}, T1 ← {}, T2 ← {}, T3 ← {}, Q← {}.

– mDSMCL

$←− Zp, query C for the signature on the messagemDSMCL
and get its signature

σDSMCL
= (wDSMCL

, ADSMCL
, BDSMCL

, CDSMCL
, DDSMCL

, EDSMCL
),

– Give (pp∗, vk∗) to A as an input.

• OCert(vk, sk) : If vk = gsk, update a list L ← L ∪ {vk} and return “accept” to A.

Otherwise return “reject” to A.

• OH1(ti) : Given an input ti, B responds as follows.

– If there is an entry (ti, ·, Fi) (‘·’ represents an arbitrary value or ⊥) for some Fi ∈ G1

in T1, return Fi.

– If ti ̸= t′, r(1,i)
$←− Zp, Fi ← gr(1,i) , T1 ← T1 ∪ {(ti, r(1,i), Fi)}, return Fi.

– If ti = t′, T1 ← T1 ∪ {(ti,⊥, ADSMCL
D

wDSMCL
DSMCL

}, return ADSMCL
D

wDSMCL
DSMCL

.

• OH2(ti) : Given an input ti, B responds as follows.

– If there is an entry (ti, ·, Bi) (‘·’ represents an arbitrary value or ⊥) for some Bi ∈ G∗
1

in T3, return Bi.

– If ti ̸= t′, r(2,i)
$←− Z∗

p, Bi ← gr(2,i) , T2 ← T2 ∪ {(ti, r(2,i), Bi)}, return Di.

– If ti = t′, T2 ← T2 ∪ {(ti,⊥, BDSMCL
)}, return BDSMCL

.

• OH3(ti,mj) : Given an input (ti,mj), B responds as follows.

– If there is an entry (ti,mj,m
′
(i,j)) for some m′

(i,j) ∈ Zp in T3, return m
′
(i,j).

– If ti ̸= t′ ∨ j ̸= k′, m′
(i,j)

$←− Zp, T3 ← T3 ∪ {(ti,mj,m
′
(i,j))}, return m′

(i,j).

– If ti = t′ ∧ j = k′, T3 ← T3 ∪ {(ti,mj,mDSMCL
)}, return mDSMCL

.

• OSign(“inst”,mj) : Given an input (“inst”,mj), B performs the following procedure.

26

– If tctr /∈ [T], return ⊥.

– If “inst” = “skip”, tctr ← tctr + 1.

– If “inst” = “sign”,

∗ If tctr ̸= t′, E ← X
r(1,ctr)
DSMCL

X
r(2,ctr)m

′
(ctr,j)

DSMCL
where r(1,i), r(2,i), and m

′
(i,j) are retreived

from (tctr, r(1,ctr), Fctr) ∈ T1, (tctr, r(2,ctr), Bctr) ∈ T2, and (tctr,mj,m
′
(ctr,j)) ∈ T3

respectively. Q← Q∪{mj}, return σctr,j ← (E, tctr), then update tctr ← tctr+1.

∗ If tctr = t′ ∧ j = k′, Q ← Q ∪ {mj}, return σctr,j ← (EDSMCL
, ti), then update

tctr ← tctr + 1

∗ If tctr = t′ ∧ j ̸= k′, abort the simulation.

• Output procedure: B receives a forgery ((vk∗1, . . . , vk
∗
r∗), (m

∗
1, . . . ,m

∗
r∗),Σ

∗) outputted

by A. Then B proceeds as follows.

1. If SASLLY.AggVerify(pp
∗, (vk∗1, . . . , vk

∗
r∗), (m

∗
1, . . . ,m

∗
r∗),Σ

∗) ̸= 1, then abort.

2. If there exists j ∈ [r∗] such that vk∗j ̸= vk∗ ∧ vk∗j /∈ L, then abort.

3. If there is no j∗ ∈ [r∗] such that vk∗j∗ = vk∗ ∧m∗
j∗ /∈ Q, then abort.

4. Set j∗ ∈ [r∗] such that vk∗j∗ = vk∗ ∧m∗
j∗ /∈ Q.

5. Parse Σ∗ as (E∗′, t∗).

6. If t∗ ̸= t′, then abort.

7. m∗
j∗

′ ← H3(t
∗,m∗

j∗)

8. If m∗
j∗

′ = mDSMCL
, then abort.

9. For i ∈ [r∗]\{j∗}, retrieve xi ← sk∗i of vk∗i from L.

10. F ′ ← H1(t
∗), B′ ← H2(t

∗), m′
i ← H3(t

∗,m∗
i) for i ∈ [r∗]\{j∗},

E ′ ← E∗′ ·
(
F ′

∑
i∈[r∗]\{j∗} xiB′

∑
i∈[r∗]\{j∗} xim

′
i

)−1

.

11. Return (m∗
DSMCL

, σ∗
DSMCL

)← (m∗
j∗ , (wDSMCL

, ADSMCL
, B′, CDSMCL

, DDSMCL
, E ′)).

We confirm that if B does not abort, B can simulate the EUF-CMA game of the SASLLY

scheme.

• Initial setup: First, we discuss the distribtuon of pp∗. In the original EUF-CMA game

of the SASLLY scheme, pp∗ = (G, g) is constructed by G = (p,G,GT , e) ← G(1λ) and

g
$←− G∗. In the simulation of B, pp∗ is a tuple (GDSMCL

, gDSMCL
). This tuple is constructed

27

by C as GDSMCL
= (p,G,GT , e) ← G(1λ) and gDSMCL

$←− G∗. Therefore, B simulates pp∗

perfectly. Next, we discuss the distribution of vk∗. In the original EUF-CMA game of

the SASLLY scheme, vk is computed by x
$←− Z∗

p and vk∗ ← gx. In the simulation of B, vk∗

is set by XDSMCL
. Since XDSMCL

is computed by C as xDSMCL

$←− Zp and XDSMCL
← gxDSMCL ,

distributions of vk between the original game and simulation of B are identical. Hence,

the distributions of (pp∗, vk∗) are identical.

• Output of OCert: This is clearly that B can simulate the original EUF-CMA game of

the SASLLY scheme perfectly.

• Output of OH1: In the original game, hash values of H1 is chosen from G uniformly

at random. In the simulation of B, if ti ̸= t′, the hash value H(ti) is set by gr(1,i)

where r(1,i)
$←− Zp. Obviously, in this case, B can simulate OH1 perfectly. If ti =

t′, the hash value H(ti) is set by F = ADSMCL
D

wDSMCL
DSMCL

= A
1+yDSMCL

zDSMCL
wDSMCL

DSMCL
where

YDSMCL
= g

yDSMCL
DSMCL

, ZDSMCL
= g

zDSMCL
DSMCL

, and wDSMCL
is chosen by C as wDSMCL

← Zp. For

fixed yDSMCL
∈ Z∗

p and zDSMCL
∈ Z∗

p, the distribution α where α
$←− Zp and wDSMCL

$←− Zp,

α ← 1 + yDSMCL
zDSMCL

wDSMCL
are identical. This fact implies that B also simulate OH1

perfectly in the case of ti = t′. Therefore, B simulates OH1 perfectly.

• Output of OH2: As the same argument of OH1 , if ti ̸= t′, B can simulate hash values

H(ti) perfectly. In the case of ti = t′, the hash value H(ti) is set by BDSMCL
= AyDSMCL =

gxDSMCL
yDSMCL . For fixed xDSMCL

∈ Z∗
p, the distributions of B where yDSMCL

$←− Z∗
p, B ←

gxDSMCL
yDSMCL and B

$←− G∗ are identical. Therefore, B simulates OH2 perfectly.

• Output of OH3: If ti ̸= t′∨j ̸= k′, clearly B can simulateOH3 perfectly. If ti = t′∧j = k′,

the hash value H3(ti,mj) is set by mDSMCL
. Since mDSMCL

is chosen by B as mDSMCL

$←− Zp,

B simulates OH3 perfectly.

• Output of OSign: For the sake of argument, we denote XDSMCL
= g

xDSMCL
DSMCL

(xDSMCL
∈ Z∗

p).

If ti ̸= t′, B sets E ← X
r(1,i)
DSMCL

X
r(2,i)m

′
(i,j)

DSMCL
and output the signature σ = (E, ti). Now we

confirm that σ is a valid signature on the message mj. The following equation

E = X
r(1,i)
DSMCL

X
r(2,i)m

′
(i,j)

DSMCL
= (g

xDSMCL
DSMCL

)r(1,i)(g
xDSMCL
DSMCL

)r(2,i)m
′
(i,j)

= H1(ti)
xDSMCLH2(ti)

xDSMCL
m′

(i,j)

holds where m′
(i,j) = H3(ti,mj). This fact implies that

e(E, g) = e(H1(ti)H2(ti)
m′

(i,j) , vk∗)

28

holds. Therefore, σ is valid signature on the message mj.

If ti ̸= t′ ∧ j = k′, B sets E ← EDSMCL
, return σi,j ← (E, ti) to A. We also confirm

that σ is a valid signature on the message mj. In the case, H1(ti) = ADSMCL
D

wDSMCL
DSMCL

,

H2(ti) = BDSMCL
, and H3(ti,mj) = m′

(i,j) = mDSMCL
hold. Since EDSMCL

is the valid

signature of the DSMCL scheme on message mDSMCL
,

e(EDSMCL
, g) = e(ADSMCL

B
mDSMCL
DSMCL

D
wDSMCL
DSMCL

, XDSMCL
)

= e((ADSMCL
D

wDSMCL
DSMCL

)B
mDSMCL
DSMCL

, XDSMCL
)

holds. This implies that e(E, g) = e(H1(ti)H2(ti)
m′

(i,j) , vk∗) where m′
(i,j) = H3(ti,mj).

By the above discussion, we can see that B does not abort, B can simulate the EUF-CMA

game of the SASLLY scheme.

Second, we confirm that when A successfully output a valid forgery ((vk∗1, . . . , vk
∗
r∗), (m

∗
1, . . . ,

m∗
r∗),Σ

∗) of the SASLLY scheme, B can forge a signature of the DSMCL scheme. Let ((vk∗1, . . . , vk
∗
r∗),

(m∗
1, . . . ,m

∗
r∗),Σ

∗) be a valid forgery output by A. Then there exists j∗ ∈ [r∗] such that

vk∗j∗ = vk∗. By the verification equation of SASLLY.Verify,

e(E∗′, g) = e

(
H1(t

∗),
r∗∏
i=1

vk∗i

)
· e

(
H2(t

∗),
r∗∏
i=1

(vk∗i)
m∗

i

)

holds where Σ∗ = (E∗′, t∗) and H3(t
∗,m∗

i) = m∗
i
′ for i ∈ [r∗]. If B does not abort in Step

6 of Output procedure, t∗ = t′ holds. This means that H1(t
∗) = ADSMCL

D
wDSMCL
DSMCL

and

H2(t
∗) = BDSMCL

hold. These facts imply that

E∗′ = H1(t
∗)

∑r∗
i=1 sk

∗
iH2(t

∗)
∑r∗

i=1 m
∗
i
′sk∗i

=
(
ADSMCL

D
wDSMCL
DSMCL

)∑r∗
i=1 x

∗
i

B
∑r∗

i=1 m
∗
i
′x∗

i
DSMCL

holds where sk∗i = x∗i is a secret key corresponding to vk∗i .

By setting F ′ ← ADSMCL
D

wDSMCL
DSMCL

and B′ ← BDSMCL
,

E ′ = E∗′ ·
(
F ′

∑
i∈[r∗]\{j∗} xiB′

∑
i∈[r∗]\{j∗} xim

′
i

)−1

= (ADSMCL
D

wDSMCL
DSMCL

)x
∗
j∗B

m∗
j∗

′x∗
j∗

DSMCL

Moreover, e(ADSMCL
, YDSMCL

) = e(BDSMCL
, gDSMCL

), e(ADSMCL
, ZDSMCL

) = e(CDSMCL
, gDSMCL

), and

e(CDSMCL
, YDSMCL

) = e(DDSMCL
, gDSMCL

) holds. If B does not abort in Step 8 of Output pro-

cedure, m∗
j∗ is a not queried message for the signing of the OT-EUF-CMA game of the DSMCL

29

scheme. Therefore, if B does not abort and outputs (m∗
DSMCL

, σ∗
DSMCL

)← (m∗
j∗ , (wDSMCL

, ADSMCL
, B′,

CDSMCL
, DDSMCL

, E ′)), B can forge a signature of the DSMCL scheme.

Finally, we analyze the probability that B succeeds in forging a signature of the DSMCL

scheme. First, we consider the probability that B does not abort at the simulation of signatures.

B aborts the simulation of OSign if tctr = t′ ∧ j ̸= k′. The probability that B succeeds in

simulating OSign is at least 1/qH3 . Next, we consider the probability that B aborts in Step 6

of Output procedure. Since B chooses the target period t′ ← [T], the probability t∗ ̸= t′

is 1/[T]. Finally, the probability that B aborts in Step 8 of Output procedure is 1/p.

Let AdvEUF-CMA
SASLLY,A

be the advantage of the EUF-CMA game for the SASLLY scheme of A. The

advantage of the OT-EUF-CMA game for the DSMCL scheme of B is

AdvOT-EUF-CMA
DSMCL,B

≥
AdvEUF-CMA

SASLLY,A

T × qH3

(
1− 1

p

)
.

Therefore, we can conclude the proof of Theorem 3.4.

By combining Theorem 3.3 and Theorem 3.4, we have the following corollary.

Corollary 3.5. If the 1-MSDH-2 assumption holds, then, in the ROM, the SASLLY scheme

satisfies the EUF-CMA security in the certified-key model.

30

Chapter 4

T-out-of-N Redactable Signature

In this chapter, at first, we introduce the notion of t-out-of-n redactable signature, define its

security. Second, we review the aggregate signature scheme by Boneh, Gentry, Lynn, and

Shacham [11] and Shamir’s secret sharing scheme [56]. Then, we give a t-out-of-n redactable

signature scheme by using these primitives. Finally, we prove that our scheme satisfies un-

forgeability and transparency.

4.1 Syntax

We explain the t-out-of-n redactable signature scheme in the one-time redaction model. A t-

out-of-n redactable signature scheme in the one-time redaction model (t, n)-RS is a signature

scheme that has a signer, n redactors, a combiner, and a verifier. The signer designates n

redactors and the combiner.

The signer selects a threshold t and the number of redactors n. Then, he or she runs key

generation algorithm and gets (vk, sk, {rk[i]}ni=1). The vk is published and the redactor’s key

rk[i] is sent to the redactor i.

The signer signs a message M with an admissible description ADM which represents parts

of the message that redactors cannot remove from the message M . In the processing of the

signing, a random document ID (DID) is added to the message M , then the signature σ is

generated. (M,ADM,DID, σ) generated by the signer is sent to n redactors and the combiner.

Each redactor i checks whether DID has never been seen before. If he or she has seen it,

then aborts. Also, if the signature is invalid, then aborts. Otherwise, he or she selects parts

of the message that he or she wants to remove and makes the redaction information RIi and

sends it to the combiner. The protocol works only once for DID which redactors have not seen

31

before.

The combiner collects pieces of redaction information {RIi}ni=1. From {RIi}ni=1, the combiner

extracts parts which at least t redactor want to remove. Finally, the combiner outputs the

redacted message M ′, ADM, DID, and its updated valid signature σ′.

The signature is verified using the signer’s public key vk. In the verification, it is possible

to prove the validity of the (M,ADM,DID, σ) made by a legitimate signer or redacted by the

redaction protocol for that signature while keeping redactors anonymity.

Now, we formalize the t-out-of-n redactable signature scheme in the one-time redaction

model for set. In the following, we assume that a message M is a set and use following

notations. An admissible description ADM is a set containing all elements which must not be

redacted.

A modification instruction MOD is a set containing all elements which a redactor want to

redact from M . ADM ⪯ M means that ADM is a valid description. (i.e.,ADM ∩M = ADM.)

MOD
ADM
⪯ M means that MOD is valid redaction description respect to ADM and M . (i.e.,

MOD ∩ ADM = ∅ ∧ MOD ⊂ M .) A redaction M ′ MOD← M would be M ′ ← M\MOD. In the

following definition, we explicit ADM and DID in the syntax.

Definition 4.1. A t-out-of-n redactable signature scheme in the one-time redaction model

(t, n)-RS is composed of four components (RS.Setup,RS.KeyGen,RS.Sign,RS.Redact,RS.Verify).

• RS.Setup(1λ) : A setup algorithm is a randomized algorithm. Given a security parameter

λ, return the public parameter pp. We assume that pp defines the message spaceMpp.

• RS.KeyGen(pp, t, n) : A key generation algorithm is a randomized algorithm that a signer

runs. Given a public parameter 1λ, a threshold t and the number of redactors n, return

a signer’s public key vk, a signer’s secret key sk, and redactor’s secret keys {rk[i]}ni=1.

• RS.Sign(pp, sk,M,ADM) : A signing algorithm is a randomized algorithm that a signer

runs. Given a public parameter pp, signer’s secret key sk, a messageM and an admissible

description ADM, return a message M , an admissible description ADM, a document ID

(DID), and a signature σ.

• RS.Redact : A redact protocol is a 1-round interactive protocol between the combiner

and n redactors. Each redactor i generates redaction information RIi and sends to the

combiner. The combiner collects all redaction informations {RIi}ni=1 and finally outputs

the redacted signature (M ′,ADM,DID, σ′). We describe the protocol as follows:

32

– Given an input (M,ADM,DID, σ) from the signer, each redactor i selects a modi-

fication instruction MODi and runs a redact information algorithm RS.RedInf with

(pp, vk, rk[i],M,ADM,DID, σ,MODi,Lu−1
i). Lu−1

i is the list which stores on DID sent

from the signer. It is used for t-th input of the RS.RedInf by redactor i and L0 = ∅.
In the processing in RS.RedInf, if DID is previous input to RS.RedInf then redactor

i stop interacting with a combiner. Otherwise, output the redact information RIi

and the updated list Lu
i . Each redactor i sends RIi to the combiner.

– The combiner runs a deterministic threshold redact algorithm RS.ThrRed with

(pp, vk,M,ADM,DID, σ, {RIi}ni=1) as an input. In the algorithm RS.ThrRed, MOD

is derived from {RIi}ni=1 and it redacts a message M based on MOD. RS.ThrRed

outputs a redacted message M ′, ADM, DID and the updated signature σ′. Finally,

the combiner outputs (M ′,ADM,DID, σ′) as an output of RS.Redact protocol.

• RS.Verify(pp, vk,M,ADM,DID, σ) : Given an input (pp, vk,M,ADM,DID, σ), return ei-

ther 1 (Accept) or 0 (Reject).

Correctness

We require the correctness that all honestly computed and redacted signatures are accepted.

Definition 4.2 (Correctness). A t-out-of-n redactable signature scheme in the one-time redac-

tion model (t, n)-RS is correct, ∀λ ∈ N, ∀k ∈ N,

∀Mu
0 , ∀ADMu ⪯Mu

0 , ∀MODu
i

ADMu

⪯ Mu
0 for u ∈ [k] and i ∈ [n],

pp← RS.Setup(1λ), (vk, sk, {rk[i]}ni=1)← RS.KeyGen(pp, t, n),

For u = 1 to k,

(M0,ADM
u,DIDu, σu

0)← RS.Sign(pp, sk,Mu
0 ,ADM

u),

For i ∈ [n],

(RIui ,Lu
i)← RS.RedInf(pp, vk, rk[i],Mu

0 ,ADM
u,DIDu, σu

0 ,MODu
i ,Lu−1

i),

(Mu
1 ,ADM

u,DID, σu
1)← RS.ThrRed(pp, vk,Mu

0 ,ADM
u,DIDu, σu

0 , {RIui }ni=1),

we require the following for all u ∈ [k]:

• If DIDk /∈ Lu−1
i , RS.Verify(pp, vk,Mu

t ,ADM
u,DIDu, σu

b) = 1 for all b ∈ {0, 1}.

• If DIDk ∈ Lu−1
i , RS.Verify(pp, vk,Mu

0 ,ADM
u,DIDu, σu

0) = 1.

33

4.2 Security

We give the security notion of unforgeability, privacy, and transparency for a redactable sig-

nature scheme in the one-time redaction model.

Unforgeability. Unforgeability requires that without a signer’s secret key sk, it should be

infeasible to compute a valid signature σ′ on (M ′,ADM,DID) except to redact a signed message

(M,ADM,DID, σ) even if t− 1 redactors keys are corrupted.

Definition 4.3 (Unforgeability). The unforgeability against redactors security of a t-out-of-n

redactable signature scheme in the one-time redaction model (t, n)-RS Π is defined by the

following unforgeability game between a challenger C and a PPT adversary A.

1. C runs pp ← RS.Setup(1λ), (vk, sk, {rk[i]}ni=1) ← RS.KeyGen(pp, t, n), and gives (pp, vk)

to an adversary A.

2. A is given access (throughout the entire game) to a sign oracle OSign(·, ·) such that

OSign(M,ADM), returns (M,ADM,DID, σ)← RS.Sign(pp, sk,M,ADM).

3. A is given access (throughout the entire game) to a redact oracleORedact(·, ·, ·, ·, ·). ORedact

is defined as follows:

For an u-th query (M,ADM,DID, σ,MOD):

(a) (RIi,Lu
i)← RS.RedInf(pp, vk, rk[i],M,ADM,DID, σ,MOD,Lu−1

i) for i = 1, ..., n.

(b) (M ′,ADM,DID, σ′)← RS.ThrRed(pp, vk,M,ADM,DID, σ, {RIi}ni=1).

(c) Return (M ′,ADM,DID, σ′).

4. A is given up to t − 1 times access (throughout the entire game) to a corrupt oracle

OCorrupt(·), where OCorrupt(i) outputs a rk[i] of a redactor i.

5. A outputs (M∗,ADM∗,DID∗, σ∗).

A t-out-of-n redactable signature scheme in the one-time redaction model (t, n)-RS satis-

fies the unforgeability security if for all PPT adversaries A, the advantage Adv
Uf-(t,n)-RSS
(t,n)-RS,A =

Pr[RS.Verify(pp, vk,M∗,ADM∗DID∗, σ∗) = 1∧ (M∗,ADM∗,DID∗) /∈ (QSign ∪QRedact)] is negligi-

ble in λ.

Here, qs is the total number of queries to OSign, (Mi,ADMi) is an i-th input for OSign,

(M i,ADMi,DIDi, σi) is an i-th output of OSign and QSign :=
⋃qs

i=1{(M i,ADMi,DIDi)}. Also, qr

34

is the total number of queries toORedact, (M i,ADMi,DIDi, σi,MODi) is an i-th input forORedact,

(M ′i,ADMi,DIDi, σ′i) is an i-th output of ORedact and QRedact :=
⋃qr

i=1{(M ′i,ADMi,DIDi)}.

Privacy. Privacy requires that except for a signer, n redactors, and a combiner, it is infeasi-

ble to derive information on redacted message parts when given a message-ADM-DID-signature

pair.

Definition 4.4 (Privacy). The privacy of a t-out-of-n redactable signature scheme in the

one-time redaction model (t, n)-RS Π is defined by the following weak privacy game between

a challenger C and a PPT adversary A.

1. C runs pp ← RS.Setup(1λ), (vk, sk, {rk[i]}ni=1) ← RS.KeyGen(pp, t, n), and gives (pp, vk)

to an adversary A.

2. A is given access (throughout the entire game) to a sign oracle OSign(·, ·) such that

OSign(M,ADM), returns (M,ADM,DID, σ)← RS.Sign(pp, sk,M,ADM).

3. A is given access (throughout the entire game) to a redact oracleORedact(·, ·, ·, ·, ·). ORedact

is defined as follows:

For an u-th query (M,ADM,DID, σ,MOD):

Let w be the number of queries to OLoRredact when A makes an u-th query to ORedact.

(a) (RIi,Lu+2w
i)← RS.RedInf(pp, vk, rk[i],M,ADM,DID, σ,MOD,Lu+2w−1

i) for

i = 1, ..., n.

(b) (M ′,ADM,DID, σ′)← RS.ThrRed(pp, vk,M,ADM,DID, σ, {RIi}ni=1).

(c) Return (M ′,ADM,DID, σ′).

4. A is given access (throughout the entire game) to a left-or-right redact oracleOLoRredact(·, ·, ·, ·, ·, ·).
OLoRredact is defined as follows:

For an w-th query (M0,ADM0,MOD0,M1,ADM1,MOD1):

Let u be the number of queries to ORedact when A makes an w-th query to OLoRredact.

(a) Compute (M c,ADMc,DIDc, σc)← Sign(pp, sk,M c,ADMc) for c ∈ {0, 1}.

(b) For i = 1, · · ·n, compute

(RI0i ,Lu+2w−1)← RS.RedInf(pp, vk, rk[i],M0,ADM0,DID0, σ0,MOD0,Lu+2w−2
i)

(RI1i ,Lu+2w)← RS.RedInf(pp, vk, rk[i],M1,ADM1,DID1, σ1,MOD1,Lu+2w−1
i).

35

(c) For i = 1, ..., n, compute

(M c′,ADMc,DIDc, σc′)← RS.ThrRed(pp, vk,M c,ADMc,DIDc, σc, {RIci}ni=1).

(d) If M0′ ̸=M1′ ∨ ADM0 ̸= ADM1, return ⊥.

(e) Return (M b′,ADMb,DIDb, σb′). (b is chosen by C in step 1.)

5. A outputs b∗.

A t-out-of-n redactable signature scheme in the one-time redaction model (t, n)-RS satisfies

the privacy security if for all PPT adversaries A, the following advantage Adv
Priv-(t,n)-RSS
(t,n)-RS,A =

|Pr[b = b∗]− 1/2| is negligible in λ.

Transparency. Transparency requires that except for a signer, n redactors, and a combiner,

it is infeasible to distinguish whether a signature directly comes from the signer or has been

redacted by redactors.

Definition 4.5 (Transparency). The privacy of a t-out-of-n redactable signature scheme in the

one-time redaction model (t, n)-RS Π is defined by the following weak privacy game between

a challenger C and a PPT adversary A.

1. C chooses a bit b
$←− {0, 1}, runs pp← RS.Setup(1λ), (vk, sk, {rk[i]}ni=1)← RS.KeyGen(pp, t, n),

and gives (pp, vk) to an adversary A.

2. A is given access (throughout the entire game) to a sign oracle OSign(·, ·) such that

OSign(M,ADM), returns (M,ADM,DID, σ)← RS.Sign(pp, sk,M,ADM).

3. A is given access (throughout the entire game) to a redact oracleORedact(·, ·, ·, ·, ·). ORedact

is defined as follows:

For an u-th query (M,ADM,DID, σ,MOD):

Let w be the number of queries to OSign/Redact when A makes an u-th query to ORedact.

(a) (RIi,Lu+2w
i)← RS.RedInf(pp, vk, rk[i],M,ADM,DID, σ,MOD,Lu+2w−1

i) for

i = 1, ..., n.

(b) (M ′,ADM,DID, σ′)← RS.ThrRed(pp, vk,M,ADM,DID, σ, {RIi}ni=1).

(c) Return (M ′,ADM,DID, σ′).

36

4. A is given access (throughout the entire game) to a sign or redact oracleOSign/Redact(·, ·, ·).
OSign/Redact is defined as follows:

For an w-th query (M,ADM,MOD):

Let u be the number of queries to ORedact when A makes an w-th query to OSign/Redact.

(a) Compute (M,ADM,DID0, σ)← RS.Sign(pp, sk,M,ADM).

(b) For i = 1, . . . n, compute

(RIi,Lu+2w−1
i)← RS.RedInf(pp, vk, rk[i],M,ADM,DID0, σ,MOD,Lu+2w−2

i).

(c) Compute (M ′,ADM,DID0, σ0)← RS.ThrRed(pp, vk,M,ADM,DID0, σ, {RIi}ni=1).

(d) Compute (M ′,ADM,DID1, σ1)← RS.Sign(pp, sk,M ′,ADM).

(e) For i = 1, . . . n, Lu+2w
i ← Lu+2w−1

i ∪ {DID1}.

(f) Return (M ′,ADM,DIDb, σb).

5. A outputs b∗.

A t-out-of-n redactable signature scheme in the one-time redaction model (t, n)-RS Π satisfies

the transparency security if for all PPT adversaries A, the following advantage Adv
Tran-(t,n)-RSS
(t,n)-RS,A =

|Pr[b = b∗]− 1/2| is negligible in λ.

Theorem 4.6. If t-out-of-n redactable signature scheme in the one-time redaction model

(t, n)-RS Π satisfies transparency, then it satisfies privacy.

We prove Theorem 4.6 in a similar way of [13, 21].

proof. Assume that PPT adversary APriv that wins the privacy game with probability 1/2 +

ϵPriv where ϵPriv is non-negligible in λ. Let CTran be the challenger in transparency game.

Now we construct a PPT adversary BTran that wins the transparency game with probability

1/2 + ϵPriv/2 using APriv. The operation of BTran is following.

• BTran receives (pp, vk) from CTran, chooses a bit c← {0, 1} and sends vk to APriv.

• For each query (M,ADM) of APriv to OSign, BTran queries (M,ADM) to OSign and gets

(M,ADM,DID, σ) and sends it to APriv.

37

• For each query (M0,ADM0,MOD0,M1,ADM1,MOD1) of APriv to OLoRredact, BTran checks

M0′ = M1′ where M0′ = M0/MOD0 and M1′ = M1/MOD1. If so, BTran queries

(M c,ADMc,MODc) to OSign/Redact and BTran returns its result to APriv. Otherwise, BTran

returns ⊥ to APriv.

• BTran receives a guess b∗ from APriv. If b∗ = c, BTran outputs 0, otherwise BTran outputs 1.

If b = 0, OSign/Redact always redacts and the view of APriv is the same as in the privacy

game. However, if b = 1, each signature is fresh and the output of APriv is useless to win the

transparency game. Therefore, the win probability of BTran in transparency game is ϵTran =

1/2(1/2 + ϵPriv) + 1/2 · 1/2 = 1/2 + ϵPriv/2. Therefore, the advantage of BTran in transparency

game is non-negligible in λ.

4.3 BGLS Aggregate Signature Scheme

Boneh, Gentry, Lynn, and Shacham [11] proposed the aggregate signature scheme which is

based on the Boneh-Lynn-Shacham (BLS) signature scheme [12]. Our construction of t-out-of-

n redactable signature is based on the BGLS aggregate signature scheme. Here, we review the

the BGLS aggregate signature scheme ASBGLS = (ASBGLS.Setup,ASBGLS.KeyGen,ASBGLS.Sign,

ASBGLS.Verify,ASBGLS.Aggregate,ASBGLS.AggVerify) is given as follows.∗

• ASBGLS.Setup(1
λ) :

1. G = (p,G1,G2,GT , e) ← G(1λ), g1
$←− G∗

1, g2
$←− G∗

2. (G is a type-2 pairing-group

generator)

2. Choose hash functions: H : {0, 1}∗ → G1.

3. Return pp← (G, g1, g2, H).

• ASBGLS.KeyGen(pp) :

1. x
$←− Zp, X ← gx2 .

2. Return (vk, sk)← (X, x).

• ASBGLS.Sign(pp, sk,m) :

∗If we remove two algorithms ASBGLS.Aggregate and ASBGLS.AggVerify from ASBGLS, then this scheme cor-

respond to the BLS signature scheme.

38

1. h← H(m), σ ← hsk.

2. Return σ.

• ASBGLS.Verify(pp, vk,m, σ) :

1. h← H(m).

2. If e(σ, g2) = e(h, vk), return 1.

3. Otherwise return 0.

• ASBGLS.Aggregate(pp, (vk1, . . . , vkr), (m1, . . . ,mr), (σ1, . . . , σr)) :

1. If there exists (i, j) ∈ [r]× [r] such that i ̸= j ∧mi = mj, return ⊥.

2. If there exists i ∈ [r] suth that ASBGLS.Verify(pp, vki,mi, σi) ̸= 0,

return ⊥.

3. Σ←
∏r

i=1 σi.

4. Return Σ.

• ASBGLS.AggVerify(pp, (vk1, . . . , vkr), (m1, . . . ,mr),Σ) :

1. If there exists i ∈ [r] suth that ASBGLS.Verify(pp, vki,mi, σi) ̸= 0,

return 0.

2. For i = 1 to r, hi ← H(mi).

3. If e(Σ, g2) =
∏r

i=1 e (Hi, vki), return 1.

4. Otherwise, return 0.

Boneh et al prove that the EUF-CMA security of [11] the BGLS aggregate signature scheme

under the co-CDH assumption in the ROM.

4.4 Shamir’s Secret Sharing Scheme

In order to construct a t-out-of-n redactable signature scheme, we use the (t, n)-Shamir’s secret

sharing scheme [56]. The (t, n)-secret sharing scheme is composed of a dealer and n users.

The dealer decides a secret s, computes secret shares {si}ni=1, and gives the secret share si to

the user i. If any t of n secret shares or more shares are collected, we can reconstruct the

secret s from them. While, with less than t secret shares, we cannot recover the secret s.

We refer to the (t, n)-shamir’s secret sharing scheme in [19].

39

1. The dealer chooses the secret s ∈ Z and sets a0 ← s.

2. The dealer chooses a1, · · · , at−1 ∈ {0, · · · , p− 1} independently at random and gets the

polynomial f(X) =
∑t−1

i=0 aiX
i.

3. The dealer computes f(i), sets si ← (i, f(i)), and sends the secret share si to the user i.

If we collect t or more secret shares, we can reconstruct the secret s by the Lagrange interpo-

lation. Let J ⊂ {1, · · · , n} and |J | = t. If we have secret shares {sj}j∈J = {(j, f(j))}j∈J , we
can compute s =

∑
i∈J

(
f(i)

∏
j∈J,j ̸=i j(j − i)−1

)
.

4.5 Our Construction

We give a concrete construction of t-out-of-n redactable signature scheme in one-time redaction

model (t, n)-RS Π1. Let ℓ, d be polynomials in λ and M a message having a set data structure

(i.e., M = {m1, ...,mℓ}) and #M ≤ ℓ.

RS.Setup(1λ) :

1. Run G = (p,G1,G2,GT , e)← G(1λ).

2. Choose g1
$←− G∗

1, g2
$←− G∗

2.

3. Choose a hash function H : {0, 1}∗ → G1.

4. Return pp = (G, g1, g2, H)

RS.KeyGen(pp, t, n) :

1. Choose x̃
$←− Zq, compute ỹ ← gx̃2 , and set (vkFix, skFix)← (ỹ, x̃).

2. Choose a0, a1, · · · , at−1
$←− Zq independently at random and gets the polynomial f(X) =∑t−1

i=0 aiX
i.

3. For i = 0 to n, compute xi ← f(i), yi ← g
f(i)
2 .

4. Set (vkAgg, skAgg)← (y0, x0), rk[i]← (i, xi) for all i ∈ [n].

5. Set (vk, sk)← ((vkFix, vkAgg, t, n), (skFix, skAgg)).

6. Return (vk, sk, {rk[i]}ni=1).

40

RS.Sign(pp, sk,M,ADM) : (Note that ADM is a set containing all blocks which must not be

redacted.):

1. Parse sk as (skFix, skAgg).

2. If ADM ⪯̸M , (i.e., ADM ∩M ̸= ADM.) then abort.

3. Choose document ID DID
$←− {0, 1}d.

4. Compute hADM ← H(DID||ord(ADM)).

ord(ADM) denotes a lexicographic ordering to the elements in ADM.

5. For mj ∈M , compute hmj
← H(DID||mj).

6. Compute σFix ← hskFixADM.

7. Compute σADM ← h
skAgg
ADM, σmj

← h
skAgg
mj for mj ∈M .

8. Compute Σagg ← σADM ·
∏

mj∈M σmj
.

9. Set σ ← (σFix,Σagg).

10. Return (M,ADM,DID, σ).

RS.Redact : RS.Redact is an interactive protocol between the combiner and n redactor. The

combiner interacts with the n redactors and finally outputs the redacted signature.

1. Each redactor i selects a modifiction instruction MODi. Let Li be the list which stores

DIDs, L0
i = ∅, and Lu−1

i the list which used in the input of u-th running of the PPT

algorithm RS.RedInf by the redactor i.

The redactor i runs RS.RedInf(pp, vk, rk[i],M,ADM,DID, σ,MODi,Lu−1
i).

RS.RedInf(pp, vk, rk[i],M,ADM,DID, σ,MODi,Lu−1
i) :

(a) Parse vk as (vkFix, vkAgg, t, n) and σ as (σFix,Σagg).

(b) If DID ∈ Lu−1
i then abort.

(c) Update Lu
i ← Lu−1

i ∪ {DID}.

(d) Check MODi

ADM
⪯ M . (i.e., MODi ∩ ADM = ∅ ∧MODi ⊂M .)

41

(e) Compute hADM ← H(DID||ord(ADM)).

ord(ADM) denotes a lexicographic ordering to the elements in ADM.

(f) For mj ∈M , compute hmj
← H(DID||mj).

(g) If e(σFix, g2) ̸= e(hADM, vkFix) then abort.

(h) If e(Σagg, g2) ̸= e (hADM, vkAgg) ·
∏

mj∈M e(hmj
, vkAgg) then abort.

(i) For mj ∈ MODi, compute RIi,mj
← h

rk[i]
mj .

(j) For mj /∈ MODi, set RIi,mj
← ∅.

(k) Set a redaction information RIi of redactor i as RIi ← {RIi,mj
}mj∈M

(l) Output (RIi,Lu
i).

For one DID, redactor i runs RS.RedInf only once. This can be done by introducing a

table Li.

2. Each redactor i sends (i,RIi) to the combiner.

3. The combiner collects all n redaction information {RIi}ni=1.

4. The combiner runs the PPT algorithm RS.ThrRed(pp, vk,M,ADM,DID, σ, {RIi}ni=1).

RS.ThrRed(vk,M,ADM,DID, σ, {RIi}ni=1) :

(a) Parse vk as (vkFix, vkAgg, t, n) and σ as (σFix,Σagg).

(b) Parse RIi as {RIi,mj
}mj∈M .

(c) For mj ∈M , define RImj
= {RIi,mj

}ni=1.

(d) Define MOD = {mj|mj ∈M ∧#RImj
≥ t}

(e) For mj ∈ MOD, define InRImj
← {i ∈ N|{RIi,mj

} ̸= ∅}.

(f) For mj ∈ MOD, choose subset Jmj
⊂ InRImj

such that #Jmj
= t.

(g) For mj ∈ MOD, compute σmj
←
∏

i∈Jmj

(
RIi,mj

)γi,Jmj ,

where γi,Jmj
=
∏

j∈Jmj ,j ̸=i j(j − i)−1.

(h) Compute σMOD ←
∏

mj∈MOD σmj
, Σ′

agg ← Σagg/σMOD.

(i) Set M ′ ←M\{MOD}, σ′ ← (σFix,Σ
′
agg).

42

(j) Return (M ′,ADM,DID, σ′).

5. The combiner outputs (M ′,ADM,DID, σ′).

RS.Verify(pp, vk,M,ADM,DID, σ) :

1. Parse vk as (vkFix, vkAgg, t, n) and σ as (σFix,Σagg).

2. If ADM ∩M ̸= ADM, return 0.

3. Compute hADM ← H(DID||ord(ADM)).

ord(ADM) denotes a lexicographic ordering to the elements in ADM.

4. For mj ∈M , compute hmj
← H(DID||mj).

5. If e(σFix, g2) ̸= e(hADM, vkFix), return 0

6. If e(Σagg, g2) = e (hADM, vkAgg) ·
∏

mj∈M e(hmj
, vkAgg), return 1. Otherwise output 0.

Correctness

If pp← RS.Setup(1λ), RS.KeyGen(pp, t, n), and (M,ADM,DID, σ) is honestly generated by the

RS.Sign and has not been processed by the RS.Redact protocol, RS.Verify(M,ADM,DID, σ) = 1

always holds. If (M,ADM,DID, σ) is honestly generated the RS.Sign and (M ′,ADM,DID, σ′)

is honestly redacted from (M,ADM,DID, σ) by RS.Redact protocol, (M ′,ADM,DID, σ′) passes

the verification in the RS.Verify. Therefore, our construction of t-out-of-n redactable signature

scheme in the one-time redaction model satisfies correctness.

4.6 Security Proof for Unforgeability

Overview of Unforgeability Security Proof. Before describing unforgeability security

proof for our proposed scheme, we explain the outline of the proof. For convenience of our

security proof, we introduce new notations. Let qs be the total number of queries from an

adversary to OSign, (Mi,ADMi) an i-th input for OSign, (M i,ADMi,DIDi, σi) the i-th output

of OSign. We denote

QSign :=

qs⋃
i=1

{(M i,ADMi,DIDi)}, QAD
Sign :=

qs⋃
i=1

{(ADMi,DIDi)}.

43

Also, let qr be the total number of queries from an adversary to ORedact,

(M i,ADMi,DIDi, σi,MODi) an i-th input for ORedact, (M ′i,ADMi,DIDi, σ′i) the i-th output of

ORedact. We denote

QRedact :=

qr⋃
i=1

{(M ′i,ADMi,DIDi)}, QAD
Redact :=

qr⋃
i=1

{(ADMi,DIDi)}.

We assume the following three types of PPT adversaries that breaks the unforgeability

security in our proposed scheme.

• An adversary A1 that outputs a forgery (M∗,DID∗,ADM∗, σ∗) such that (ADM∗,DID∗) /∈
(QAD

Sign ∪QAD
Redact).

• An adversary A2 that outputs a forgery (M
∗,DID∗,ADM∗, σ∗) which satisfies (ADM∗,DID∗) ∈

(QAD
Sign ∪QAD

Redact). Moreover, there is M̃ such that (M̃,ADM∗,DID∗) ∈ (QSign ∪QRedact).

• An adversary A3 that outputs a forgery (M
∗,DID∗,ADM∗, σ∗) which satisfies (ADM∗,DID∗) ∈

(QAD
Sign∪QAD

Redact). Moreover, there are no M̃ such that (M̃,ADM∗, DID∗) ∈ (QSign∪QRedact)

and M̃ ⊈M .

To prove the theorem, for each Ai, we consider a sequential of games from the original

unforgeability game to game which is directly related to solving the co-CDH problem. Then,

We construct Bi which breaking the co-CDH assumption using Ai. B1 breaks the co-CDH

assumption using the forgery σ∗
Fix. In the case of B2 and B3, they use the forgery Σ∗

agg to break

the co-CDH assumption. One difference between B2 and B3 is how to program the hash value.

Theorem 4.7. In the random oracle model, if the computational co-Diffie-Hellman problem

assumption holds, then our proposed t-out-of-n redactable signature scheme in the one-time

redaction model (t, n)-RS Π1 satisfies the unforgeability property.

proof. We consider three types of adversary described above.

Case 1:

We consider an adversary A1 that can generate a valid forgery with ϵUf1 against our proposal

redactable signature scheme. Let Game1−0 be the original unforgeability game in a redactable

signature scheme and Game1−5 be directly related to solving the computational co-Diffie-

Hellman problem. Define AdvA1 [Game1−X] as the advantage of an adversary A1 in Game1−X .

44

• Game1−0: Original unforgeability game in a redactable signature scheme.

AdvA1 [Game1−0] = ϵUf1

• Game1−1: We change a key generation algorithm RS.KeyGen in Step 1.

Choose x̃
$←− Zq, r̃

$←− Zq and compute u← gx̃2 , ỹ ← gx̃+r̃
2 .

Set (vkFix, skFix)← (ỹ, x̃+ r̃).

• Game1−2:We change a setting of the random oracle OH . Fix h
$←− G2 and let T be a

table that maintains a list of tuples ⟨v, w, b, c⟩ as explain below. We refer to this list for

the query to Oh. The initial state of T is empty. For queries v(i) to OH :

– If ⟨v(i), w(i), ·, ·⟩ (Here, ‘·’ represents an arbitrary value) already appears in T, then
return w(i).

– Choose s(i)
$←− Zq.

– Flip a biased coin c(i) ∈ {0, 1} such that Pr[c(i) = 0] = 1− 1/(qs + 1) and Pr[c(i) =

1] = 1/(qs + 1).

– If c(i) = 0, compute w(i) = ϕ(g2)
b(i) .

– If c(i) = 1, compute w(i) = h · ϕ(g2)b
(i)
.

– Insert ⟨v(i), w(i), s(i), c(i)⟩ in T and return w(i).

• Game1−3: We modify the signing algorithm RS.Sign in Step 4 as follows:

– Set v(0) ← (DID||ord(ADM)).

– Query v(0) to OH . We assume ⟨v(0), w(0), b(0), c(0)⟩ to be the tuple in T for v(0).

– If c(0) = 1, return ⊥ and abort.

• Game1−4: We modify the signing algorithm RS.Sign in Step 6 as follows:

– Compute σFix ← ϕ(u)b
(0) · ϕ(g2)r̃b

(0)
.

(A signature σFix can be generated without a knowledge of skFix.)

• Game1−5: We receive a valid forgery (M∗,ADM∗DID∗, σ∗) from the adversary A1, we

operate as follows:

– Set v(0) ← (DID∗||ord(ADM∗)).

45

– Query v(0) to OH . We assume ⟨v(0), w(0), s(0), c(0)⟩ to be the tuple in T for each v(0).

– If c(0) = 0, then abort.

Lemma 4.8. The following equation holds.

AdvA1 [Game1−1] = AdvA1 [Game1−0].

Since the distribution of (vkFix, skFix) in Game1−0 and Game1−1 are same.

Lemma 4.9. If H is the random oracle model, the following eqauation holds.

AdvA1 [Game1−2] = AdvA1 [Game1−1]

Since the distribution of outputs of OH in Game1−1 and Game1−2 are identical.

Lemma 4.10. The following inequality holds.

AdvA1 [Game1−3] ≥ (1− 1/(qs + 1))qs × AdvA1 [Game1−2].

Since the probability that each signing query does not abort at least 1− 1/(qs + 1).

Lemma 4.11. The following equation holds.

AdvA1 [Game1−4] = AdvA1 [Game1−3].

Since outputs of Sign in Game1−3 and Game1−4 are same.

Lemma 4.12. The following inequality holds.

AdvA1 [Game1−5] ≥ (1/(qs + 1))× AdvA1 [Game1−4].

Since the probability that the forged signature satisfies c(0) = 1 at least 1/(qs + 1).

To summarize from Lemma 4.8 to Lemma 4.12, the following holds.

(In the following equation, e represents the Napier’s constant.)

AdvA1 [Game1−5] ≥ (1− 1/(qs + 1))qs × (1/(qs + 1))× AdvA1 [Game1−0]

≥ (1/e)× (1/(qs + 1))× AdvA1 [Game1−0]

Now we construct the algorithm B1 which breaking the computational co-Diffie-Hellman

assumption using the algorithm A1. The operation of B1 for the input co-Diffie-Hellman

problem instance (g2, g
α
2 , h

∗) is changed to h to h∗ and u to gα2 in Game1−5. Suppose B1 does

not abort receiving a forgery (M∗,ADM∗,DID∗, σ∗) from A1.

46

B1 parses σ
∗ as (σ∗

Fix∗ ,Σ
∗
agg), sets v

(0) ← (DID∗||ord(ADM∗)) and computes w(0) ← h∗ ·ϕ(g2)b
(0)
.

Since (M∗,ADM∗,DID∗, σ∗) is valid and vkFix = gα+r̃
2 , e(σ∗

Fix, g2) = e((w(0))α+r̃, g2) holds. It

implies that σ∗
Fix = (w(0))α+r̃ = (h∗ · ϕ(g2)b

(0)
)α+r̃. Therefore, B1 computes (h∗)α = σ∗

Fix ·
(ϕ(u)b

(0) · (h∗)r̃ · ϕ(g2)r̃b
(0)
)−1 and outputs the solution (h∗)α of the computational co-Diffie-

Hellman problem instance (g2, g
α
2 , h

∗).

Let ϵco-cdh is the probability that B1 break the computational co-Diffie-Hellman assumption.

We can bound the probability ϵco-cdh1 ≥ AdvA1 [Game 1−5] and ϵco-cdh1 ≥ (1/e)×(1/qs+1)×ϵuf1
holds. (e represents the Napier’s constant.) Hence, if ϵuf1 is non-negligiable in λ, B1 breaks

the computational co-Diffie-Hellman assumption with non-negligiable in ϵco-cdh1.

Case 2:

We consider an adversary A2 that can generate a valid forgery with ϵuf2 against our pro-

posal redactable signature scheme. Let Game2−0 be the original unforgeability game in a

redactable signature scheme and Game2−6 be directly related to solve the computational

co-Diffie-Hellman problem. Define AdvA2 [Game2−X] as the advantage of an adversary A2 in

Game2−X .

• Game2−0: Original unforgeability game in a redactable signature scheme.

AdvA2 [Game2−0] = ϵuf2

• Game2−1: We change a setting of ORedact.

We introduce a table Lu that store DIDs and L0 = ∅.
For a u-th query (M,ADM,DID, σ,MOD) to ORedact:

– Parse vk as (vkFix, vkAgg, t, n) and σ as (σFix,Σagg).

– If DID ∈ Lu−1, then abort.

– Set Lu ← Lu−1 ∪ {DID}.

– If MOD ⊈M ∨MOD ∩ ADM ̸= ∅, then abort.

– Compute hADM ← H(DID||ord(ADM)).

ord(ADM) denotes a lexicographic ordering to the elements in ADM.

– For mj ∈M , compute hmj
← H(DID||mj).

– If e(σFix, g2) ̸= e(hADM, vkFix), then abort.

47

– If e(Σagg, g2) ̸= e (hADM, vkAgg) ·
∏

mj∈M e(hmj
, vkAgg), then abort.

– For mj ∈ MOD, compute σmj
← H(DID||mj)

skAgg .

– Compute σMOD ←
∏

mj∈MOD σmj
, Σ′

agg ← Σagg/σMOD.

– Set M ′ ←M\MOD, σ′ ← (σFix,Σ
′
agg).

– Return (M ′,ADM,DID, σ′).

(Redactions are done using skAgg instead of using {rk[i]}ni=1.)

• Game2−2: We change settings of RS.KeyGen and OCorrupt.

– We change a key generation algorithm RS.KeyGen in Step 2 to 6.

∗ Choose x
$←− Zq, r

$←− Zq, compute u← gx, y ← gx+r
2 .

∗ Set vkAgg ← y, skAgg ← x+ r.

∗ Return (vk, sk)← ((vkFix, vkAgg, t, n), (skFix, skAgg)).

(Redactor’s keys {rk[i]}ni=1 are not generated in the KeyGen.)

– We change the setting of OCorrupt as follows:

Let CR is a list to store a redactor’s key information (i, rk[i])

For a query i to OCorrupt,

∗ If (i, rk[i]) already appears in CR, then return rk[i].

∗ Choose f(i)
$←− Zq, set CR← CR ∪ {(i, f(i))}.

∗ Return rk[i]← (i, f(i)).

• Game2−3: We change a setting of the random oracle OH . Fix h
$←− G2 and let T be a

table that maintains a list of tuples ⟨v, w, b, c⟩ as explain below. We refer to this list for

the query to Oh. The initial state of T is empty. For queries v(i) to OH :

– If ⟨v(i), w(i), ·, ·⟩ (Here, ‘·’ represents an arbitrary value) already appears in T, then
return w(i).

– Choose s(i)
$←− Zq.

– Flip a biased coin c(i) ∈ {0, 1, 2} such that such that Pr[c(i) = 1] = 1−1/((ℓ+1)(qs+

qr)+1), Pr[c(i) = 1] = 1/(2(ℓ+1)(qs+qr)+2), Pr[c(i) = 2] = 1/(2(ℓ+1)(qs+qr)+2).

– If c(i) = 0, compute w(i) = ϕ(g2)
b(i) .

– If c(i) = 1, compute w(i) = h · ϕ(g2)b
(i)
.

48

– If c(i) = 2, compute w(i) = h−1 · ϕ(g2)b
(i)
.

– Insert ⟨v(i), w(i), s(i), c(i)⟩ in T and return w(i).

• Game2−4:We modify the signing algorithm RS.Sign in Step 6 as follows:

– Set v(0) ← (DID||ord(ADM)), v(j) ← (DID||mj) (1 ≤ j ≤ #M).

– Query v(j) (0 ≤ j ≤ #M) to OH . We assume ⟨v(j), w(j), b(j), c(j)⟩ to be the tuple in

T for each v(j) (1 ≤ j ≤ #M).

– If c(0) = 2, c(1) = 1, c(j) = 0 (2 ≤ ∀j ≤ #M) or c(j) = 0 (0 ≤ ∀j ≤ #M), go to

Step 6 of Sign. Otherwise return ⊥ and abort.

• Game2−5: We modify the signing algorithm RS.Sign in Step 7, 8 as follows:

– If c(0) = 2, c(1) = 1, c(j) = 0 (2 ≤ ∀j ≤ #M),

∗ Compute σADMm1 ← ϕ(u)b
(0)+b(1) · ϕ(g2)r(b

(0)+b(1)).

∗ For all mj ∈M\{m1}, compute σmj
← ϕ(u)b

(j) · ϕ(g2)rb
(j)
.

∗ Compute Σagg ← σADMm1 ·
∏

mj∈M\{m1} σmj
.

– If c(j) = 0 (0 ≤ ∀j ≤ #M),

∗ Compute σADM ← ϕ(u)b
(0) · ϕ(g2)rb

(0)
.

∗ For all mj ∈M , compute σmj
← ϕ(u)b

(j) · ϕ(g2)rb
(j)
.

∗ Compute Σagg ← σADM ·
∏

mj∈M σmj
.

(By above modification, a signature Σagg can be generated without a knowledge of the

skAgg.)

• Game2−6: We change a setting of ORedact.

– Parse vk as (vkFix, vkAgg, t, n) and σ as (σFix,Σagg).

– If DID ∈ Lu−1, then abort.

– Set Lu ← Lu−1 ∪ {DID}.

– If MOD ⊈M ∨MOD ∩ ADM ̸= ∅, then abort.

– Set v(0) ← (DID||ord(ADM)), v(j) ← (DID||mj) (1 ≤ j ≤ #M).

– Query v(j) (0 ≤ j ≤ #MOD) to OH . We assume ⟨v(j), w(j), b(j), c(j)⟩ to be the tuple

in T for each v(j) (1 ≤ j ≤ #MOD).

49

– If e(σFix, g2) ̸= e(w(0), vkFix), then abort.

– If e(Σagg, g2) ̸=
∏

0≤j≤#M e(w(j), vkAgg), then abort.

– If c(j) = 0 (∀mj ∈ MOD), go to next step. Otherwise return ⊥ and abort.

– For all mj ∈ MOD, compute σmj
← ϕ(u)b

(j) · ϕ(g2)rb
(j)
.

– Compute σMOD ←
∏

mj∈MOD σmj
, Σ′

agg ← Σagg/σMOD.

– Set M ′ ←M\MOD, σ′ ← (σFix,Σ
′
agg).

– Return (M ′,ADM,DID, σ′).

(Redactions can be done without the knowledge of the skAgg.)

• Game2−7: We receiving the output forgery (M∗,ADM∗,DID∗, σ∗) from the adversary

A3,

– Set v(0) ← (DID∗||ord(ADM∗)), v(j) ← (DID||m∗
j) (1 ≤ j ≤ #M∗).

– Query v(j) (0 ≤ j ≤ #M∗) to OH . We assume ⟨v(j), w(j), s(j), c(j)⟩ to be the tuple

in T for each v(j) (0 ≤ j ≤ #M∗).

– If c(0) = 1 and c(j) = 0 (1 ≤ j ≤ #M∗), then accept. Otherwise reject and abort.

Lemma 4.13. The following equation holds.

AdvA2 [Game2−1] = AdvA2 [Game2−0].

Since outputs of ORedact in Game2−0 and Game2−1 are same.

Lemma 4.14. The following equation holds.

AdvA2 [Game2−2] = AdvA2 [Game2−1].

To simplify the discussion, let A2 get rk[i], . . . , rk[t− 1] from OCorrupt. In [Game2−1], the

following equation holds.

V



a0

a1

a2
...

at−1


=



f(0)

f(1)

f(2)
...

f(t− 1)


where V =



1 0 0 · · · 0

1 1 1 · · · 1

1 2 22 · · · 2t−1

...
...

... · · · ...

1 t− 1 (t− 1)2 · · · (t− 1)t−1


.

50

Since V is the Vandermonde matrix, V is the regular matrix. Distributions of (a0, a1, · · · , at−1)

and (f(0), f(1), . . . , f(t−1)) are identical. Therefore, distributions of (skAgg, rk[1], . . . , rk[t−
1]) in [Game2−1] and [Game2−2] are same.

Lemma 4.15. If H is the random oracle model, the following equation holds.

AdvA2 [Game2−3] = AdvA2 [Game2−2].

Since the distribution of outputs of OH in Game2−3 and Game2−2 is identical.

Lemma 4.16. The following inequality holds.

AdvA2 [Game2−4] ≥ (1− 1/((ℓ+ 1)(qs + qr) + 1))(ℓ+1)qs × AdvA2 [Game2−3].

Since the probability that each signing query does not abort at least

(1− 1/((ℓ+ 1)(qs + qr) + 1))(ℓ+1).

Lemma 4.17. The following equation holds.

AdvA2 [Game2−5] = AdvA2 [Game2−4].

Since outputs of Sign in Game2−5 and Game2−4 are same.

Lemma 4.18. The following inequality holds.

AdvA2 [Game2−6] ≥ (1− 1/((ℓ+ 1)(qs + qr) + 1))(ℓ+1)qr × AdvA2 [Game2−5].

Since the probability that each redaction query does not abort at least

(1− 1/((ℓ+ 1)(qs + qr) + 1))(ℓ+1).

Lemma 4.19. The following inequality holds.

AdvA2 [Game2−7]

≥

(
1

2(ℓ+1)(qs+qr)+2

)2
(
1− 1

(ℓ+1)(qs+qr)+1

)2
+
(

1
2(ℓ+1)(qs+qr)+2

)2 × AdvA2 [Game2−6]

= (1/(4(ℓ+ 1)2(qs + qr)
2 + 1))× AdvA2 [Game2−6].

Since an output (M∗,ADM∗,DID∗, σ∗) satisfies (c(0), c(1)) = (0, 0) or (2, 1).

51

To summarize from Lemma 4.13 to Lemma 4.19, the following holds.

(In the following equation, e represents the Napier’s constant.)

AdvA2 [Game2−7] ≥ (1− 1/((ℓ+ 1)(qs + qr) + 1))(ℓ+1)(qs+qr)

× 1/(4(ℓ+ 1)2(qs + qr)
2 + 1)× AdvA2 [Game2−0]

≥ (1/e)× (1/(4(ℓ+ 1)2(qs + qr)
2 + 1))× AdvA2 [Game2−0]

Now we construct the algorithm B2 which breaking the computational co-Diffie-Hellman

assumption using the algorithm A2. The operation of B2 for the input co-Diffie-Hellman prob-

lem instance (g2, g
α
2 , h

∗) is changed to h in Game2−7 to h∗ and u to gα2 .

Suppose B2 do not abort receiving a forgery (M∗,ADM∗,DID∗, σ∗) from A2. B3 parses σ∗

as (σ∗
ADM∗ ,Σ∗

agg), sets v
(j) ← (DID∗||m∗

j) (1 ≤ j ≤ #M∗), and computes w(1) ← h · ϕ(u)b(1) ·
ϕ(g2)

rb(1) , w(j) ← ϕ(u)b
(j) ·ϕ(g2)rb

(j)
(2 ≤ j ≤ #M∗). Then B3 computes σ∗

m∗
1
← Σ∗

agg/
∏#M∗

j=2 σmj
.

Since (M∗,ADM∗,DID∗, σ∗) is valid signature and vkAgg = gα+r
2 , e(σ∗

m∗
1
, g2) = e

(
(w(1))α+r, g2

)
holds. It implies that σ∗

m∗
1
= (w(1))α+r = (h∗ · ϕ(g2)b

(1)
)α+r. Therefore, B3 computes (h∗)α =

σ∗
m∗

1
· (ϕ(u)b(1) · (h∗)r · ϕ(g2)rb

(1)
)−1 and outputs the solution (h∗)α of the computational co-

Diffie-Hellman problem instance (g2, g
α
2 , h

∗).

Let ϵco-cdh2 is the probability that B2 break the computational co-Diffie-Hellman assump-

tion. We can bound the probability ϵco-cdh2 ≥ AdvA2 [Game2−7] and ϵco-cdh2 ≥ (1/e)×(1/(4(ℓ+

1)2(qs+ qr)
2+1))× ϵuf2 holds. (e represents the Napier’s constant.) If ϵuf2 is non-negligiable in

λ, B2 breaks the computational co-Diffie-Hellman assumption with non-negligiable in ϵco-cdh2.

Case 3:

We consider an adversary A3 that can generate a valid forgery with ϵuf3 against our pro-

posal redactable signature scheme. Let Game3−0 be the original unforgeability game in a

redactable signature scheme and Game3−6 be directly related to solve the computational

co-Diffie-Hellman problem. Define AdvA3 [Game3−X] as the advantage of an adversary A3 in

Game3−X .

• Game3−0: Original unforgeability game in a redactable signature scheme.

AdvA3 [Game3−0] = ϵuf3

• Game3−1: Game3−1 is the same as Game2−1.

• Game3−2: Game3−2 is the same as Game2−2.

52

• Game3−3: We change a setting of the random oracle OH . Fix h
$←− G2 and let T be a

table that maintains a list of tuples ⟨v, w, b, c⟩ as explain below. We refer to this list for

the query to Oh. The initial state of T is empty. For queries v(i) to OH :

– If ⟨v(i), w(i), ·, ·⟩ (Here, ‘·’ represents an arbitrary value) already appears in T, then
return w(i).

– Choose s(i)
$←− Zq.

– Flip a biased coin c(i) ∈ {0, 1} such that Pr[c(i) = 0] = 1− 1/((ℓ+ 1)(qs + qr) + ℓ),

Pr[c(i) = 1] = 1/((ℓ+ 1)(qs + qr) + ℓ).

– If c(i) = 0, compute w(i) = ϕ(g2)
b(i) .

– If c(i) = 1, compute w(i) = h · ϕ(g2)b
(i)
.

– Insert ⟨v(i), w(i), s(i), c(i)⟩ in T and return w(i).

• Game3−4:We modify the signing algorithm RS.Sign in Step 6 as follows:

– Set v(0) ← (DID||ord(ADM)), v(j) ← (DID||mj) (1 ≤ j ≤ #M).

– Query v(j) (0 ≤ j ≤ #M) to OH . We assume ⟨v(j), w(j), b(j), c(j)⟩ to be the tuple in

T for each v(j) (1 ≤ j ≤ #M).

– If c(j) = 0 (0 ≤ ∀j ≤ #M), go to Step 6 of RS.Sign. Otherwise return ⊥ and abort.

• Game3−5: We modify the signing algorithm RS.Sign in Step 7, 8 as follows:

– Compute σADM ← ϕ(u)b
(0) · ϕ(g2)rb

(0)
.

– For all mj ∈M , compute σmj
← ϕ(u)b

(j) · ϕ(g2)rb
(j)
.

– Compute Σagg ← σADM ·
∏

mj∈M σmj
.

(By above modification, a signature Σagg can be generated without a knowledge of the

skAgg.)

• Game3−6: We change a setting of ORedact.

– Parse vk as (vkFix, vkAgg, t, n) and σ as (σFix,Σagg).

– If DID ∈ Lu−1, then abort.

– Set Lu ← Lu−1 ∪ {DID}.

– If MOD ⊈M ∨MOD ∩ ADM ̸= ∅, then abort.

53

– Set v(0) ← (DID||ord(ADM)), v(j) ← (DID||mj) (1 ≤ j ≤ #M).

– Query v(j) (0 ≤ j ≤ #MOD) to OH . We assume ⟨v(j), w(j), b(j), c(j)⟩ to be the tuple

in T for each v(j) (1 ≤ j ≤ #MOD).

– If e(σFix, g2) ̸= e(w(0), vkFix), then abort.

– If e(Σagg, g2) ̸=
∏

0≤j≤#M e(w(j), vkAgg), then abort.

– If c(j) = 0 (∀mj ∈ MOD), go to next step. Otherwise return ⊥ and abort.

– For all mj ∈ MOD, compute σmj
← ϕ(u)b

(j) · ϕ(g2)rb
(j)
.

– Compute σMOD ←
∏

mj∈MOD σmj
, Σ′

agg ← Σagg/σMOD.

– Set M ′ ←M\MOD, σ′ ← (σFix,Σ
′
agg).

– Return (M ′,ADM,DID, σ′).

(Redactions can be done without the knowledge of the skAgg.)

• Game3−7: We receiving the output forgery (M∗,ADM∗,DID∗, σ∗) from the adversary

A3,

– Set v(0) ← (DID∗||ord(ADM∗)), v(j) ← (DID||m∗
j) (1 ≤ j ≤ #M∗).

– Query v(j) (0 ≤ j ≤ #M∗) to OH . We assume ⟨v(j), w(j), s(j), c(j)⟩ to be the tuple

in T for each v(j) (0 ≤ j ≤ #M∗).

– If c(1) = 1 and c(j) = 0 (2 ≤ j ≤ #M∗), then accept. Otherwise reject and abort.

Lemma 4.20. If H is the random oracle model, the following equation holds.

AdvA3 [Game3−3] = AdvA1 [Game3−2]

Since the distribution of outputs of OH in Game3−3 and Game3−2 is identical.

Lemma 4.21. The following inequality holds.

AdvA3 [Game3−4] ≥ (1− 1/((ℓ+ 1)(qs + qr) + ℓ))(ℓ+1)qs × AdvA3 [Game3−3].

Since the probability that each signing query does not abort at least

(1− 1/((ℓ+ 1)(qs + qr) + (ℓ+ 1)))(ℓ+1).

Lemma 4.22. The following equation holds.

AdvA3 [Game3−5] = AdvA3 [Game3−4].

54

Since outputs of Sign in Game3−5 and Game3−4 are same.

Lemma 4.23. The following inequality holds.

AdvA3 [Game3−6] ≥ (1− 1/((ℓ+ 1)(qs + qr) + ℓ))(ℓ+1)qr × AdvA3 [Game3−5].

Since the probability that each redaction query does not abort at least

(1− 1/((ℓ+ 1)(qs + qr) + ℓ))(ℓ+1).

Lemma 4.24. The following inequality holds.

AdvA3 [Game3−7] ≥(1− 1/((ℓ+ 1)(qs + qr) + ℓ))ℓ−1

× (1/((ℓ+ 1)(qs + qr) + ℓ))× AdvA3 [Game3−6].

Since an output (M∗,ADM∗,DID∗, σ∗) satisfies c(0) = 0. The probability that (M∗,ADM∗,DID∗, σ∗)

satisfies c(1) = 1 and c(i) = 0 (2 ≤ i ≤ #M∗) at least (1− 1/((ℓ+ 1)(qs + qr) + ℓ))(ℓ−1)×
(1− 1/((ℓ+ 1)(qs + qr) + ℓ)).

To summarize from Lemma 4.13, Lemma 4.14, and from Lemma 4.20 to Lemma 4.24, the

following holds. (In the following equation, e represents the Napier’s constant.)

AdvA3 [Game3−7] ≥ (1− 1/((ℓ+ 1)(qs + qr) + ℓ))(ℓ+1)(qs+qr)+ℓ−1

× (1/((ℓ+ 1)(qs + qr) + ℓ))× AdvA3 [Game3−0]

≥ (1/e)× (1/((ℓ+ 1)(qs + qr) + ℓ))× AdvA3 [Game3−0]

Now we construct the algorithm B3 which breaking the computational co-Diffie-Hellman

assumption using the algorithm A3. The operation of B3 for the input co-Diffie-Hellman prob-

lem instance (g2, g
α
2 , h

∗) is changed to h in Game3−7 to h∗ and u to gα2 .

Suppose B3 do not abort receiving a forgery (M∗,ADM∗,DID∗, σ∗) from A3. B3 parses σ∗

as (σ∗
ADM∗ ,Σ∗

agg), sets v
(j) ← (DID∗||m∗

j) (1 ≤ j ≤ #M∗), and computes w(1) ← h · ϕ(u)b(1) ·
ϕ(g2)

rb(1) , w(j) ← ϕ(u)b
(j) ·ϕ(g2)rb

(j)
(2 ≤ j ≤ #M∗). Then B3 computes σ∗

m∗
1
← Σ∗

agg/
∏#M∗

j=2 σmj
.

Since (M∗,ADM∗,DID∗, σ∗) is valid signature and vkAgg = gα+r
2 , e(σ∗

m∗
1
, g2) = e

(
(w(1))α+r, g2

)
holds. It implies that σ∗

m∗
1
= (w(1))α+r = (h∗ · ϕ(g2)b

(1)
)α+r. Threfore, B3 computes (h∗)α =

σ∗
m∗

1
· (ϕ(u)b(1) · (h∗)r · ϕ(g2)rb

(1)
)−1 and outputs the solution (h∗)α of the computational co-

Diffie-Hellman problem instance (g2, g
α
2 , h

∗).

Let ϵco-cdh3 is the probability that B3 break the computational co-Diffie-Hellman assump-

tion. We can bound the probability ϵco-cdh3 ≥ AdvA3 [Game3−7] and ϵco-cdh3 ≥ (1/e)× (1/((ℓ+

1)(qs+qr)+ℓ))×ϵuf3 holds. (e represents the Napier’s constant.) Hence, if ϵuf3 is non-negligiable

in λ, B3 breaks the computational co-Diffie-Hellman assumption with non-negligiable in ϵco-cdh3.

55

4.7 Security Proof for Transparency

　

Theorem 4.25. Our proposed t-out-of-n redactable signature scheme in the one-time redac-

tion model (t, n)-RS Π1 satisfies the transparency.

proof. We proceed by a sequence of games. Define AdvA[Gamei] as the advantage of an

adversary A in Gamei.

• Game0: Original transparency game in a redactable signature scheme.

• Game1: We change the redaction algorithm RS.Redact in OSign/Redact.

– Skip the step 2 of RS.RedInf.

Let qr be the total number of queries from an adversary A to ORedact. Then, |AdvA[Game1]−
AdvA[Game0]| ≤ qr × qr/2

d holds. We consider distribution of output OSign/Redact in case

of b = 0 and b = 1 of Game1. Given an input (M,ADM,MOD) to OSign/Redact, OSign/Redact

compute

• (M,ADM,DID0, σ)← Sign(pp, sk,M,ADM).

• RIi ← RS.RedInf(pp, vk, rk[i],M,ADM,DID0, σ,MOD) for 1 ≤ i ≤ n.

• (M ′,ADM′,DID0, σ0)← RS.ThrRed(pp, vk,M,ADM,DID0, σ, {RIi}ni=1).

• (M ′,ADM′,DID1, σ1)← Sign(pp, sk,M ′,ADM′).

Distributions of DID0 and DID1 in Game1 are identical and OSign/Redact skips the step 2

of RS.RedInf. Therefore, distributions of {(M ′,ADM′,DID0, σ0)} and {(M ′,ADM′,DID1, σ1)}
outputted by OSign/Redact are identical. It means that AdvA[Game1] = 1/2. Let ϵTran is

the advantage of an adversary A in original Game0. We can bound the probability ϵTran ≤
qr×qr/2d+1/2. Therefore, our proposed t-out-of-n redactable signature scheme in the one-time

redaction model (t, n)-RS Π1 satisfies transparency.

By Theorem 4.6 and Theorem 4.25, our proposed scheme satisfies the privacy.

56

Chapter 5

Conclusion

In this thesis, first, we give a new security proof for the synchronized aggregate signature

scheme by Lee et al. [38] under the OT-EUF-CMA security for the DSMCL scheme in the

ROM. Since the OT-EUF-CMA security for the DSMCL scheme is proven under the 1-MSDH-2

assumption, our result shows that the aggregate signature by Lee et al. [38] can be proven

under the non-interactive and static assumption in the ROM.

However, there still have problems for the security of the synchronized aggregate signature

scheme by Lee et al. [38]. First, the 1-MSDH-2 assumption is not standard assumption, it is

desirable that the security is proven under a standard assumption (e.g., CDH assumption).

Second, we prove the EUF-CMA for the aggregate signature scheme by Lee et al. in the certify

key model. This model limits the use scenarios for the synchronized aggregate signature

scheme. Removing the certify key model is an important open problem for practicality.

Second, we introduce the new notion of t-out-of-n redactable signature. Then we construct

the t-out-of-n redactable signature scheme based on the aggregate signature scheme by Boneh

et al. [11] and Shamir’s secret sharing schemes. Then, we prove that our construction satisfies

unforgeability and transparency.

However, our proposed model supports only the one-time redaction model which allows

redacting signed message only one time for each signature. Our construction Π1 does not

satisfy the unforgeability in a model that allows redacting signed message many times. For

example, M = {m1,m2,m3} and ADM = ∅, an adversary who does the following operation

generates a valid forgery in a multiple redactions model.

1. Given vk from C.

2. Query (M,ADM) to OSign and get (M,ADM,DID, σ).

57

3. Let MOD1 = {m1} MOD2 = {m2}. Query (M,ADM,DID, σ,MOD1) to ORedact and get

(M ′,ADM,DID, σ′) and query (M ′,ADM,DID, σ′,MOD2) to ORedact and get (M ′′,ADM,

DID, σ′′).

4. Parse σ as (σFix,Σagg), σ
′ as (σ′

Fix,Σ
′
agg), and σ

′′ as (σ′′
Fix,Σ

′′
agg).

5. Compute σm1 ← Σagg · (Σ′
agg)

−1, Σ∗
agg ← σm1 · Σ′′

agg.

6. Set M∗ ← {m1,m3}, σ∗ ← (σFix,Σ
∗
agg) and output (M∗,DID,ADM, σ∗)

Giving a construction of (t, n)-RS in the multiple redactions model is an interesting open

problem.

58

Bibliography

[1] J. H. Ahn, M. Green, and S. Hohenberger. Synchronized aggregate signatures: new

definitions, constructions and applications. In Proceedings of the 17th ACM Conference

on Computer and Communications Security, CCS 2010, Chicago, Illinois, USA, October

4-8, 2010, pages 473–484, 2010. URL: https://doi.org/10.1145/1866307.1866360,

doi:10.1145/1866307.1866360.

[2] G. Ateniese, D. H. Chou, B. de Medeiros, and G. Tsudik. Sanitizable signatures. In

S. D. C. di Vimercati, P. F. Syverson, and D. Gollmann, editors, Computer Security -

ESORICS 2005, 10th European Symposium on Research in Computer Security, Milan,

Italy, September 12-14, 2005, Proceedings, volume 3679 of Lecture Notes in Computer

Science, pages 159–177. Springer, 2005. URL: https://doi.org/10.1007/11555827_10,

doi:10.1007/11555827_10.

[3] M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing

efficient protocols. In CCS ’93, Proceedings of the 1st ACM Conference on Computer

and Communications Security, Fairfax, Virginia, USA, November 3-5, 1993., pages 62–

73, 1993. URL: http://doi.acm.org/10.1145/168588.168596, doi:10.1145/168588.

168596.

[4] A. Bender, J. Katz, and R. Morselli. Ring signatures: Stronger definitions, and construc-

tions without random oracles. In Theory of Cryptography, Third Theory of Cryptography

Conference, TCC 2006, New York, NY, USA, March 4-7, 2006, Proceedings, pages 60–79,

2006. URL: https://doi.org/10.1007/11681878_4, doi:10.1007/11681878_4.

[5] D. Bernhard, G. Fuchsbauer, E. Ghadafi, N. P. Smart, and B. Warinschi. Anonymous

attestation with user-controlled linkability. Int. J. Inf. Sec., 12(3):219–249, 2013. URL:

https://doi.org/10.1007/s10207-013-0191-z, doi:10.1007/s10207-013-0191-z.

59

https://doi.org/10.1145/1866307.1866360
http://dx.doi.org/10.1145/1866307.1866360
https://doi.org/10.1007/11555827_10
http://dx.doi.org/10.1007/11555827_10
http://doi.acm.org/10.1145/168588.168596
http://dx.doi.org/10.1145/168588.168596
http://dx.doi.org/10.1145/168588.168596
https://doi.org/10.1007/11681878_4
http://dx.doi.org/10.1007/11681878_4
https://doi.org/10.1007/s10207-013-0191-z
http://dx.doi.org/10.1007/s10207-013-0191-z

[6] P. Bichsel, J. Camenisch, G. Neven, N. P. Smart, and B. Warinschi. Get shorty via

group signatures without encryption. In Security and Cryptography for Networks, 7th

International Conference, SCN 2010, Amalfi, Italy, September 13-15, 2010. Proceedings,

pages 381–398, 2010. URL: https://doi.org/10.1007/978-3-642-15317-4_24, doi:

10.1007/978-3-642-15317-4_24.

[7] A. Bilzhause, H. C. Pöhls, and K. Samelin. Position paper: The past, present, and

future of sanitizable and redactable signatures. In Proceedings of the 12th International

Conference on Availability, Reliability and Security, Reggio Calabria, Italy, August 29 -

September 01, 2017, pages 87:1–87:9. ACM, 2017. URL: https://doi.org/10.1145/

3098954.3104058, doi:10.1145/3098954.3104058.

[8] A. Boldyreva, C. Gentry, A. O’Neill, and D. H. Yum. Ordered multisignatures and

identity-based sequential aggregate signatures, with applications to secure routing. In

Proceedings of the 2007 ACM Conference on Computer and Communications Security,

CCS 2007, Alexandria, Virginia, USA, October 28-31, 2007, pages 276–285, 2007. URL:

https://doi.org/10.1145/1315245.1315280, doi:10.1145/1315245.1315280.

[9] D. Boneh and X. Boyen. Short signatures without random oracles. In Advances in

Cryptology - EUROCRYPT 2004, International Conference on the Theory and Ap-

plications of Cryptographic Techniques, Interlaken, Switzerland, May 2-6, 2004, Pro-

ceedings, pages 56–73, 2004. URL: https://doi.org/10.1007/978-3-540-24676-3_4,

doi:10.1007/978-3-540-24676-3_4.

[10] D. Boneh, X. Boyen, and E. Goh. Hierarchical identity based encryption with con-

stant size ciphertext. In Advances in Cryptology - EUROCRYPT 2005, 24th An-

nual International Conference on the Theory and Applications of Cryptographic Tech-

niques, Aarhus, Denmark, May 22-26, 2005, Proceedings, pages 440–456, 2005. URL:

https://doi.org/10.1007/11426639_26, doi:10.1007/11426639_26.

[11] D. Boneh, C. Gentry, B. Lynn, and H. Shacham. Aggregate and verifiably encrypted

signatures from bilinear maps. In Advances in Cryptology - EUROCRYPT 2003, In-

ternational Conference on the Theory and Applications of Cryptographic Techniques,

Warsaw, Poland, May 4-8, 2003, Proceedings, pages 416–432, 2003. URL: https:

//doi.org/10.1007/3-540-39200-9_26, doi:10.1007/3-540-39200-9_26.

60

https://doi.org/10.1007/978-3-642-15317-4_24
http://dx.doi.org/10.1007/978-3-642-15317-4_24
http://dx.doi.org/10.1007/978-3-642-15317-4_24
https://doi.org/10.1145/3098954.3104058
https://doi.org/10.1145/3098954.3104058
http://dx.doi.org/10.1145/3098954.3104058
https://doi.org/10.1145/1315245.1315280
http://dx.doi.org/10.1145/1315245.1315280
https://doi.org/10.1007/978-3-540-24676-3_4
http://dx.doi.org/10.1007/978-3-540-24676-3_4
https://doi.org/10.1007/11426639_26
http://dx.doi.org/10.1007/11426639_26
https://doi.org/10.1007/3-540-39200-9_26
https://doi.org/10.1007/3-540-39200-9_26
http://dx.doi.org/10.1007/3-540-39200-9_26

[12] D. Boneh, B. Lynn, and H. Shacham. Short signatures from the weil pairing. In C. Boyd,

editor, Advances in Cryptology - ASIACRYPT 2001, 7th International Conference on the

Theory and Application of Cryptology and Information Security, Gold Coast, Australia,

December 9-13, 2001, Proceedings, volume 2248 of Lecture Notes in Computer Science,

pages 514–532. Springer, 2001. URL: https://doi.org/10.1007/3-540-45682-1_30,

doi:10.1007/3-540-45682-1_30.

[13] C. Brzuska, H. Busch, Ö. Dagdelen, M. Fischlin, M. Franz, S. Katzenbeisser, M. Manulis,

C. Onete, A. Peter, B. Poettering, and D. Schröder. Redactable signatures for tree-

structured data: Definitions and constructions. In J. Zhou and M. Yung, editors, Applied

Cryptography and Network Security, 8th International Conference, ACNS 2010, Beijing,

China, June 22-25, 2010. Proceedings, volume 6123 of Lecture Notes in Computer Science,

pages 87–104, 2010. URL: https://doi.org/10.1007/978-3-642-13708-2_6, doi:10.

1007/978-3-642-13708-2_6.

[14] J. Camenisch, M. Dubovitskaya, K. Haralambiev, and M. Kohlweiss. Composable and

modular anonymous credentials: Definitions and practical constructions. In T. Iwata

and J. H. Cheon, editors, Advances in Cryptology - ASIACRYPT 2015 - 21st Interna-

tional Conference on the Theory and Application of Cryptology and Information Security,

Auckland, New Zealand, November 29 - December 3, 2015, Proceedings, Part II, volume

9453 of Lecture Notes in Computer Science, pages 262–288. Springer, 2015. URL: https:

//doi.org/10.1007/978-3-662-48800-3_11, doi:10.1007/978-3-662-48800-3_11.

[15] J. Camenisch, S. Hohenberger, and M. Ø. Pedersen. Batch verification of short signa-

tures. In Advances in Cryptology - EUROCRYPT 2007, 26th Annual International Con-

ference on the Theory and Applications of Cryptographic Techniques, Barcelona, Spain,

May 20-24, 2007, Proceedings, pages 246–263, 2007. URL: https://doi.org/10.1007/

978-3-540-72540-4_14, doi:10.1007/978-3-540-72540-4_14.

[16] J. Camenisch and A. Lysyanskaya. Signature schemes and anonymous credentials from

bilinear maps. In Advances in Cryptology - CRYPTO 2004, 24th Annual International

CryptologyConference, Santa Barbara, California, USA, August 15-19, 2004, Proceedings,

pages 56–72, 2004. URL: https://doi.org/10.1007/978-3-540-28628-8_4, doi:10.

1007/978-3-540-28628-8_4.

61

https://doi.org/10.1007/3-540-45682-1_30
http://dx.doi.org/10.1007/3-540-45682-1_30
https://doi.org/10.1007/978-3-642-13708-2_6
http://dx.doi.org/10.1007/978-3-642-13708-2_6
http://dx.doi.org/10.1007/978-3-642-13708-2_6
https://doi.org/10.1007/978-3-662-48800-3_11
https://doi.org/10.1007/978-3-662-48800-3_11
http://dx.doi.org/10.1007/978-3-662-48800-3_11
https://doi.org/10.1007/978-3-540-72540-4_14
https://doi.org/10.1007/978-3-540-72540-4_14
http://dx.doi.org/10.1007/978-3-540-72540-4_14
https://doi.org/10.1007/978-3-540-28628-8_4
http://dx.doi.org/10.1007/978-3-540-28628-8_4
http://dx.doi.org/10.1007/978-3-540-28628-8_4

[17] S. Canard, D. Pointcheval, O. Sanders, and J. Traoré. Divisible e-cash made practi-

cal. In Public-Key Cryptography - PKC 2015 - 18th IACR International Conference on

Practice and Theory in Public-Key Cryptography, Gaithersburg, MD, USA, March 30

- April 1, 2015, Proceedings, pages 77–100, 2015. URL: https://doi.org/10.1007/

978-3-662-46447-2_4, doi:10.1007/978-3-662-46447-2_4.

[18] D. Chaum. Security without identification: Transaction systems to make big brother

obsolete. Commun. ACM, 28(10):1030–1044, 1985. URL: https://doi.org/10.1145/

4372.4373, doi:10.1145/4372.4373.

[19] H. Delfs and H. Knebl. Introduction to Cryptography - Principles and Applications,

Third Edition. Information Security and Cryptography. Springer, 2015. URL: https:

//doi.org/10.1007/978-3-662-47974-2, doi:10.1007/978-3-662-47974-2.

[20] D. Demirel, D. Derler, C. Hanser, H. Pöhls, D. Slamanig, and G. Traverso. PRIS-

MACLOUD D4.4: Overview of Functional and Malleable Signature Schemes. 2015.

[21] D. Derler, H. C. Pöhls, K. Samelin, and D. Slamanig. A general framework for redactable

signatures and new constructions. In S. Kwon and A. Yun, editors, Information Secu-

rity and Cryptology - ICISC 2015 - 18th International Conference, Seoul, South Ko-

rea, November 25-27, 2015, Revised Selected Papers, volume 9558 of Lecture Notes

in Computer Science, pages 3–19. Springer, 2015. URL: https://doi.org/10.1007/

978-3-319-30840-1_1, doi:10.1007/978-3-319-30840-1_1.

[22] S. D. Galbraith, K. G. Paterson, and N. P. Smart. Pairings for cryptographers. Discrete

Applied Mathematics, 156(16):3113–3121, 2008. URL: https://doi.org/10.1016/j.

dam.2007.12.010, doi:10.1016/j.dam.2007.12.010.

[23] C. Gentry and Z. Ramzan. Identity-based aggregate signatures. In Public Key Cryptog-

raphy - PKC 2006, 9th International Conference on Theory and Practice of Public-Key

Cryptography, New York, NY, USA, April 24-26, 2006, Proceedings, pages 257–273, 2006.

URL: https://doi.org/10.1007/11745853_17, doi:10.1007/11745853_17.

[24] S. Haber, Y. Hatano, Y. Honda, W. G. Horne, K. Miyazaki, T. Sander, S. Tezoku,

and D. Yao. Efficient signature schemes supporting redaction, pseudonymization, and

data deidentification. In M. Abe and V. D. Gligor, editors, Proceedings of the 2008

ACM Symposium on Information, Computer and Communications Security, ASIACCS

62

https://doi.org/10.1007/978-3-662-46447-2_4
https://doi.org/10.1007/978-3-662-46447-2_4
http://dx.doi.org/10.1007/978-3-662-46447-2_4
https://doi.org/10.1145/4372.4373
https://doi.org/10.1145/4372.4373
http://dx.doi.org/10.1145/4372.4373
https://doi.org/10.1007/978-3-662-47974-2
https://doi.org/10.1007/978-3-662-47974-2
http://dx.doi.org/10.1007/978-3-662-47974-2
https://doi.org/10.1007/978-3-319-30840-1_1
https://doi.org/10.1007/978-3-319-30840-1_1
http://dx.doi.org/10.1007/978-3-319-30840-1_1
https://doi.org/10.1016/j.dam.2007.12.010
https://doi.org/10.1016/j.dam.2007.12.010
http://dx.doi.org/10.1016/j.dam.2007.12.010
https://doi.org/10.1007/11745853_17
http://dx.doi.org/10.1007/11745853_17

2008, Tokyo, Japan, March 18-20, 2008, pages 353–362. ACM, 2008. URL: https:

//doi.org/10.1145/1368310.1368362, doi:10.1145/1368310.1368362.

[25] G. Hartung, B. Kaidel, A. Koch, J. Koch, and A. Rupp. Fault-tolerant aggregate sig-

natures. In Public-Key Cryptography - PKC 2016 - 19th IACR International Confer-

ence on Practice and Theory in Public-Key Cryptography, Taipei, Taiwan, March 6-

9, 2016, Proceedings, Part I, pages 331–356, 2016. URL: https://doi.org/10.1007/

978-3-662-49384-7_13, doi:10.1007/978-3-662-49384-7_13.

[26] S. Hohenberger, V. Koppula, and B. Waters. Universal signature aggregators. In Ad-

vances in Cryptology - EUROCRYPT 2015 - 34th Annual International Conference on

the Theory and Applications of Cryptographic Techniques, Sofia, Bulgaria, April 26-

30, 2015, Proceedings, Part II, pages 3–34, 2015. URL: https://doi.org/10.1007/

978-3-662-46803-6_1, doi:10.1007/978-3-662-46803-6_1.

[27] S. Hohenberger, A. Sahai, and B. Waters. Full domain hash from (leveled) multilinear

maps and identity-based aggregate signatures. In Advances in Cryptology - CRYPTO

2013 - 33rd Annual Cryptology Conference, Santa Barbara, CA, USA, August 18-22,

2013. Proceedings, Part I, pages 494–512, 2013. URL: https://doi.org/10.1007/

978-3-642-40041-4_27, doi:10.1007/978-3-642-40041-4_27.

[28] S. Hohenberger and B. Waters. Short and stateless signatures from the RSA as-

sumption. In Advances in Cryptology - CRYPTO 2009, 29th Annual International

Cryptology Conference, Santa Barbara, CA, USA, August 16-20, 2009. Proceedings,

pages 654–670, 2009. URL: https://doi.org/10.1007/978-3-642-03356-8_38, doi:

10.1007/978-3-642-03356-8_38.

[29] S. Hohenberger and B. Waters. Synchronized aggregate signatures from the RSA assump-

tion. In J. B. Nielsen and V. Rijmen, editors, Advances in Cryptology - EUROCRYPT

2018 - 37th Annual International Conference on the Theory and Applications of Crypto-

graphic Techniques, Tel Aviv, Israel, April 29 - May 3, 2018 Proceedings, Part II, volume

10821 of Lecture Notes in Computer Science, pages 197–229. Springer, 2018. URL: https:

//doi.org/10.1007/978-3-319-78375-8_7, doi:10.1007/978-3-319-78375-8_7.

[30] T. Izu, M. Izumi, N. Kunihiro, and K. Ohta. Yet another sanitizable and deletable

signatures. In 25th IEEE International Conference on Advanced Information Networking

and Applications Workshops, WAINA 2011, Biopolis, Singapore, March 22-25, 2011,

63

https://doi.org/10.1145/1368310.1368362
https://doi.org/10.1145/1368310.1368362
http://dx.doi.org/10.1145/1368310.1368362
https://doi.org/10.1007/978-3-662-49384-7_13
https://doi.org/10.1007/978-3-662-49384-7_13
http://dx.doi.org/10.1007/978-3-662-49384-7_13
https://doi.org/10.1007/978-3-662-46803-6_1
https://doi.org/10.1007/978-3-662-46803-6_1
http://dx.doi.org/10.1007/978-3-662-46803-6_1
https://doi.org/10.1007/978-3-642-40041-4_27
https://doi.org/10.1007/978-3-642-40041-4_27
http://dx.doi.org/10.1007/978-3-642-40041-4_27
https://doi.org/10.1007/978-3-642-03356-8_38
http://dx.doi.org/10.1007/978-3-642-03356-8_38
http://dx.doi.org/10.1007/978-3-642-03356-8_38
https://doi.org/10.1007/978-3-319-78375-8_7
https://doi.org/10.1007/978-3-319-78375-8_7
http://dx.doi.org/10.1007/978-3-319-78375-8_7

pages 574–579. IEEE Computer Society, 2011. URL: https://doi.org/10.1109/WAINA.

2011.117, doi:10.1109/WAINA.2011.117.

[31] T. Izu, N. Kanaya, M. Takenaka, and T. Yoshioka. PIATS: A partially sanitizable signa-

ture scheme. In Information and Communications Security, 7th International Conference,

ICICS 2005, Beijing, China, December 10-13, 2005, Proceedings, pages 72–83, 2005. URL:

https://doi.org/10.1007/11602897_7, doi:10.1007/11602897_7.

[32] T. Izu, N. Kunihiro, K. Ohta, M. Sano, and M. Takenaka. Sanitizable and deletable

signature. In K. Chung, K. Sohn, and M. Yung, editors, Information Security Appli-

cations, 9th International Workshop, WISA 2008, Jeju Island, Korea, September 23-25,

2008, Revised Selected Papers, volume 5379 of Lecture Notes in Computer Science, pages

130–144. Springer, 2008. URL: https://doi.org/10.1007/978-3-642-00306-6_10,

doi:10.1007/978-3-642-00306-6_10.

[33] T. Izu, N. Kunihiro, K. Ohta, M. Sano, and M. Takenaka. Yet another sanitizable

signature from bilinear maps. In Proceedings of the The Forth International Conference

on Availability, Reliability and Security, ARES 2009, March 16-19, 2009, Fukuoka, Japan,

pages 941–946. IEEE Computer Society, 2009. URL: https://doi.org/10.1109/ARES.

2009.14, doi:10.1109/ARES.2009.14.

[34] T. Izu, N. Kunihiro, K. Ohta, M. Takenaka, and T. Yoshioka. A sanitizable signature

scheme with aggregation. In E. Dawson and D. S. Wong, editors, Information Secu-

rity Practice and Experience, Third International Conference, ISPEC 2007, Hong Kong,

China, May 7-9, 2007, Proceedings, volume 4464 of Lecture Notes in Computer Science,

pages 51–64. Springer, 2007. URL: https://doi.org/10.1007/978-3-540-72163-5_6,

doi:10.1007/978-3-540-72163-5_6.

[35] R. Johnson, D. Molnar, D. X. Song, and D. A. Wagner. Homomorphic signature schemes.

In B. Preneel, editor, Topics in Cryptology - CT-RSA 2002, The Cryptographer’s Track

at the RSA Conference, 2002, San Jose, CA, USA, February 18-22, 2002, Proceedings,

volume 2271 of Lecture Notes in Computer Science, pages 244–262. Springer, 2002. URL:

https://doi.org/10.1007/3-540-45760-7_17, doi:10.1007/3-540-45760-7_17.

[36] E. Kiltz, A. Mityagin, S. Panjwani, and B. Raghavan. Append-only signatures. In

L. Caires, G. F. Italiano, L. Monteiro, C. Palamidessi, and M. Yung, editors, Automata,

64

https://doi.org/10.1109/WAINA.2011.117
https://doi.org/10.1109/WAINA.2011.117
http://dx.doi.org/10.1109/WAINA.2011.117
https://doi.org/10.1007/11602897_7
http://dx.doi.org/10.1007/11602897_7
https://doi.org/10.1007/978-3-642-00306-6_10
http://dx.doi.org/10.1007/978-3-642-00306-6_10
https://doi.org/10.1109/ARES.2009.14
https://doi.org/10.1109/ARES.2009.14
http://dx.doi.org/10.1109/ARES.2009.14
https://doi.org/10.1007/978-3-540-72163-5_6
http://dx.doi.org/10.1007/978-3-540-72163-5_6
https://doi.org/10.1007/3-540-45760-7_17
http://dx.doi.org/10.1007/3-540-45760-7_17

Languages and Programming, 32nd International Colloquium, ICALP 2005, Lisbon, Por-

tugal, July 11-15, 2005, Proceedings, volume 3580 of Lecture Notes in Computer Sci-

ence, pages 434–445. Springer, 2005. URL: https://doi.org/10.1007/11523468_36,

doi:10.1007/11523468_36.

[37] S. Krenn, H. C. Pöhls, K. Samelin, and D. Slamanig. Protean signature schemes.

In J. Camenisch and P. Papadimitratos, editors, Cryptology and Network Security -

17th International Conference, CANS 2018, Naples, Italy, September 30 - October 3,

2018, Proceedings, volume 11124 of Lecture Notes in Computer Science, pages 256–

276. Springer, 2018. URL: https://doi.org/10.1007/978-3-030-00434-7_13, doi:

10.1007/978-3-030-00434-7_13.

[38] K. Lee, D. H. Lee, and M. Yung. Aggregating cl-signatures revisited: Extended func-

tionality and better efficiency. In Financial Cryptography and Data Security - 17th In-

ternational Conference, FC 2013, Okinawa, Japan, April 1-5, 2013, Revised Selected Pa-

pers, pages 171–188, 2013. URL: https://doi.org/10.1007/978-3-642-39884-1_14,

doi:10.1007/978-3-642-39884-1_14.

[39] S. Lim, E. Lee, and C. Park. A short redactable signature scheme using pairing. Security

and Communication Networks, 5(5):523–534, 2012. URL: https://doi.org/10.1002/

sec.346, doi:10.1002/sec.346.

[40] S. Lu, R. Ostrovsky, A. Sahai, H. Shacham, and B. Waters. Sequential aggregate

signatures and multisignatures without random oracles. In Advances in Cryptology -

EUROCRYPT 2006, 25th Annual International Conference on the Theory and Appli-

cations of Cryptographic Techniques, St. Petersburg, Russia, May 28 - June 1, 2006,

Proceedings, pages 465–485, 2006. URL: https://doi.org/10.1007/11761679_28,

doi:10.1007/11761679_28.

[41] A. Lysyanskaya, S. Micali, L. Reyzin, and H. Shacham. Sequential aggregate signa-

tures from trapdoor permutations. In Advances in Cryptology - EUROCRYPT 2004,

International Conference on the Theory and Applications of Cryptographic Techniques,

Interlaken, Switzerland, May 2-6, 2004, Proceedings, pages 74–90, 2004. URL: https:

//doi.org/10.1007/978-3-540-24676-3_5, doi:10.1007/978-3-540-24676-3_5.

[42] A. Lysyanskaya, R. L. Rivest, A. Sahai, and S. Wolf. Pseudonym systems. In Selected

Areas in Cryptography, 6th Annual International Workshop, SAC’99, Kingston, Ontario,

65

https://doi.org/10.1007/11523468_36
http://dx.doi.org/10.1007/11523468_36
https://doi.org/10.1007/978-3-030-00434-7_13
http://dx.doi.org/10.1007/978-3-030-00434-7_13
http://dx.doi.org/10.1007/978-3-030-00434-7_13
https://doi.org/10.1007/978-3-642-39884-1_14
http://dx.doi.org/10.1007/978-3-642-39884-1_14
https://doi.org/10.1002/sec.346
https://doi.org/10.1002/sec.346
http://dx.doi.org/10.1002/sec.346
https://doi.org/10.1007/11761679_28
http://dx.doi.org/10.1007/11761679_28
https://doi.org/10.1007/978-3-540-24676-3_5
https://doi.org/10.1007/978-3-540-24676-3_5
http://dx.doi.org/10.1007/978-3-540-24676-3_5

Canada, August 9-10, 1999, Proceedings, pages 184–199, 1999. URL: https://doi.org/

10.1007/3-540-46513-8_14, doi:10.1007/3-540-46513-8_14.

[43] J. Ma, J. Liu, M. Wang, and W. Wu. An efficient and secure design of redactable

signature scheme with redaction condition control. In M. H. A. Au, A. Castiglione,

K. R. Choo, F. Palmieri, and K. Li, editors, Green, Pervasive, and Cloud Computing -

12th International Conference, GPC 2017, Cetara, Italy, May 11-14, 2017, Proceedings,

volume 10232 of Lecture Notes in Computer Science, pages 38–52, 2017. URL: https:

//doi.org/10.1007/978-3-319-57186-7_4, doi:10.1007/978-3-319-57186-7_4.

[44] K. Miyazaki, G. Hanaoka, and H. Imai. Digitally signed document sanitizing scheme based

on bilinear maps. In F. Lin, D. Lee, B. P. Lin, S. Shieh, and S. Jajodia, editors, Proceedings

of the 2006 ACM Symposium on Information, Computer and Communications Security,

ASIACCS 2006, Taipei, Taiwan, March 21-24, 2006, pages 343–354. ACM, 2006. URL:

https://doi.org/10.1145/1128817.1128868, doi:10.1145/1128817.1128868.

[45] K. Miyazaki, G. Hanaoka, and H. Imai. Invisibly sanitizable digital signature scheme.

IEICE Trans. Fundam. Electron. Commun. Comput. Sci., 91-A(1):392–402, 2008.

URL: https://doi.org/10.1093/ietfec/e91-a.1.392, doi:10.1093/ietfec/e91-a.

1.392.

[46] K. Miyazaki, M. Iwamura, T. Matsumoto, R. Sasaki, H. Yoshiura, S. Tezuka,

and H. Imai. Digitally signed document sanitizing scheme with disclosure condi-

tion control. IEICE Trans. Fundam. Electron. Commun. Comput. Sci., 88-A(1):239–

246, 2005. URL: http://search.ieice.org/bin/summary.php?id=e88-a_1_239&

category=D&year=2005&lang=E&abst=.

[47] M. O. Ozmen, R. Behnia, and A. A. Yavuz. Fast authentication from aggregate sig-

natures with improved security. In Financial Cryptography and Data Security - 23rd

International Conference, FC 2019, Frigate Bay, St. Kitts and Nevis, February 18-22,

2019, Revised Selected Papers, pages 686–705, 2019. URL: https://doi.org/10.1007/

978-3-030-32101-7_39, doi:10.1007/978-3-030-32101-7_39.

[48] H. C. Pöhls and K. Samelin. On updatable redactable signatures. In I. Boure-

anu, P. Owesarski, and S. Vaudenay, editors, Applied Cryptography and Network Se-

curity - 12th International Conference, ACNS 2014, Lausanne, Switzerland, June 10-

13, 2014. Proceedings, volume 8479 of Lecture Notes in Computer Science, pages 457–

66

https://doi.org/10.1007/3-540-46513-8_14
https://doi.org/10.1007/3-540-46513-8_14
http://dx.doi.org/10.1007/3-540-46513-8_14
https://doi.org/10.1007/978-3-319-57186-7_4
https://doi.org/10.1007/978-3-319-57186-7_4
http://dx.doi.org/10.1007/978-3-319-57186-7_4
https://doi.org/10.1145/1128817.1128868
http://dx.doi.org/10.1145/1128817.1128868
https://doi.org/10.1093/ietfec/e91-a.1.392
http://dx.doi.org/10.1093/ietfec/e91-a.1.392
http://dx.doi.org/10.1093/ietfec/e91-a.1.392
http://search.ieice.org/bin/summary.php?id=e88-a_1_239&category=D&year=2005&lang=E&abst=
http://search.ieice.org/bin/summary.php?id=e88-a_1_239&category=D&year=2005&lang=E&abst=
https://doi.org/10.1007/978-3-030-32101-7_39
https://doi.org/10.1007/978-3-030-32101-7_39
http://dx.doi.org/10.1007/978-3-030-32101-7_39

475. Springer, 2014. URL: https://doi.org/10.1007/978-3-319-07536-5_27, doi:

10.1007/978-3-319-07536-5_27.

[49] H. C. Pöhls and K. Samelin. Accountable redactable signatures. In 10th International

Conference on Availability, Reliability and Security, ARES 2015, Toulouse, France, Au-

gust 24-27, 2015, pages 60–69, 2015. URL: https://doi.org/10.1109/ARES.2015.10,

doi:10.1109/ARES.2015.10.

[50] D. Pointcheval and O. Sanders. Reassessing security of randomizable signatures. In

Topics in Cryptology - CT-RSA 2018 - The Cryptographers’ Track at the RSA Con-

ference 2018, San Francisco, CA, USA, April 16-20, 2018, Proceedings, pages 319–

338, 2018. URL: https://doi.org/10.1007/978-3-319-76953-0_17, doi:10.1007/

978-3-319-76953-0_17.

[51] K. Samelin, H. C. Pöhls, A. Bilzhause, J. Posegga, and H. de Meer. Redactable signatures

for independent removal of structure and content. In M. D. Ryan, B. Smyth, and G. Wang,

editors, Information Security Practice and Experience - 8th International Conference,

ISPEC 2012, Hangzhou, China, April 9-12, 2012. Proceedings, volume 7232 of Lecture

Notes in Computer Science, pages 17–33. Springer, 2012. URL: https://doi.org/10.

1007/978-3-642-29101-2_2, doi:10.1007/978-3-642-29101-2_2.

[52] O. Sanders. Efficient redactable signature and application to anonymous credentials. In

A. Kiayias, M. Kohlweiss, P. Wallden, and V. Zikas, editors, Public-Key Cryptography

- PKC 2020 - 23rd IACR International Conference on Practice and Theory of Public-

Key Cryptography, Edinburgh, UK, May 4-7, 2020, Proceedings, Part II, volume 12111

of Lecture Notes in Computer Science, pages 628–656. Springer, 2020. URL: https:

//doi.org/10.1007/978-3-030-45388-6_22, doi:10.1007/978-3-030-45388-6_22.

[53] O. Sanders. Improving revocation for group signature with redactable signature. In

J. A. Garay, editor, Public-Key Cryptography - PKC 2021 - 24th IACR International

Conference on Practice and Theory of Public Key Cryptography, Virtual Event, May

10-13, 2021, Proceedings, Part I, volume 12710 of Lecture Notes in Computer Science,

pages 301–330. Springer, 2021. URL: https://doi.org/10.1007/978-3-030-75245-3_

12, doi:10.1007/978-3-030-75245-3_12.

[54] A. Saxena, J. Misra, and A. Dhar. Increasing anonymity in bitcoin. In Finan-

cial Cryptography and Data Security - FC 2014 Workshops, BITCOIN and WAHC

67

https://doi.org/10.1007/978-3-319-07536-5_27
http://dx.doi.org/10.1007/978-3-319-07536-5_27
http://dx.doi.org/10.1007/978-3-319-07536-5_27
https://doi.org/10.1109/ARES.2015.10
http://dx.doi.org/10.1109/ARES.2015.10
https://doi.org/10.1007/978-3-319-76953-0_17
http://dx.doi.org/10.1007/978-3-319-76953-0_17
http://dx.doi.org/10.1007/978-3-319-76953-0_17
https://doi.org/10.1007/978-3-642-29101-2_2
https://doi.org/10.1007/978-3-642-29101-2_2
http://dx.doi.org/10.1007/978-3-642-29101-2_2
https://doi.org/10.1007/978-3-030-45388-6_22
https://doi.org/10.1007/978-3-030-45388-6_22
http://dx.doi.org/10.1007/978-3-030-45388-6_22
https://doi.org/10.1007/978-3-030-75245-3_12
https://doi.org/10.1007/978-3-030-75245-3_12
http://dx.doi.org/10.1007/978-3-030-75245-3_12

2014, Christ Church, Barbados, March 7, 2014, Revised Selected Papers, pages 122–

139, 2014. URL: https://doi.org/10.1007/978-3-662-44774-1_9, doi:10.1007/

978-3-662-44774-1_9.

[55] D. Schröder. How to aggregate the CL signature scheme. In Computer Security -

ESORICS 2011 - 16th European Symposium on Research in Computer Security, Leu-

ven, Belgium, September 12-14, 2011. Proceedings, pages 298–314, 2011. URL: https:

//doi.org/10.1007/978-3-642-23822-2_17, doi:10.1007/978-3-642-23822-2_17.

[56] A. Shamir. How to share a secret. Commun. ACM, 22(11):612–613, 1979. URL: http:

//doi.acm.org/10.1145/359168.359176, doi:10.1145/359168.359176.

[57] R. Steinfeld, L. Bull, and Y. Zheng. Content extraction signatures. In K. Kim, editor, In-

formation Security and Cryptology - ICISC 2001, 4th International Conference Seoul, Ko-

rea, December 6-7, 2001, Proceedings, volume 2288 of Lecture Notes in Computer Science,

pages 285–304. Springer, 2001. URL: https://doi.org/10.1007/3-540-45861-1_22,

doi:10.1007/3-540-45861-1_22.

[58] M. Tezuka and K. Tanaka. Redactable signature with compactness from set-commitment.

IEICE Transactions on Fundamentals of Electronics, Communications and Computer

Sciences, E104.A(9):1175–1187, 2021. doi:10.1587/transfun.2020DMP0013.

[59] Y. Zhao. Practical aggregate signature from general elliptic curves, and applications

to blockchain. In Proceedings of the 2019 ACM Asia Conference on Computer and

Communications Security, AsiaCCS 2019, Auckland, New Zealand, July 09-12, 2019,

pages 529–538, 2019. URL: https://doi.org/10.1145/3321705.3329826, doi:10.

1145/3321705.3329826.

68

https://doi.org/10.1007/978-3-662-44774-1_9
http://dx.doi.org/10.1007/978-3-662-44774-1_9
http://dx.doi.org/10.1007/978-3-662-44774-1_9
https://doi.org/10.1007/978-3-642-23822-2_17
https://doi.org/10.1007/978-3-642-23822-2_17
http://dx.doi.org/10.1007/978-3-642-23822-2_17
http://doi.acm.org/10.1145/359168.359176
http://doi.acm.org/10.1145/359168.359176
http://dx.doi.org/10.1145/359168.359176
https://doi.org/10.1007/3-540-45861-1_22
http://dx.doi.org/10.1007/3-540-45861-1_22
http://dx.doi.org/10.1587/transfun.2020DMP0013
https://doi.org/10.1145/3321705.3329826
http://dx.doi.org/10.1145/3321705.3329826
http://dx.doi.org/10.1145/3321705.3329826

