T2R2東京工業大学リサーチリポジトリ Tokyo Tech Research Repository

論文 / 著書情報 Article / Book Information

論題(和文)	ギャップブレースを有する鉄骨架構のブレース稼働に伴う影響 その2 実験結果および計測の妥当性	
Title(English)	Impact of brace operation on steel frames with gap braces Part2 Experimental results and validity of measurements	
著者(和文)	高橋周吾, 佐藤大樹, 矢野将斗志, Alex Shegay, 笠井和彦	
Authors(English)	Shugo Takahashi, Daiki Sato, Masatoshi Yano, Aleksey Vadimovich Shegay, Kazuhiko Kasai	
出典 / Citation	 日本建築学会関東支部研究報告集, , , pp. 285-288	
Citation(English)	, , , рр. 285-288	
発行日 / Pub. date	2022, 3	

ギャップブレースを有する鉄骨架構のブレース稼働に伴う影響

その2 実験結果および計測の妥当性

IJ

IJ

構造-振動

変形制御機構 ギャップブレース 応力のつり合い 静的載荷実験 M-N相関

1. はじめに

本報その2 では,前報で示した計測方法に基づき得ら れる実験結果をもとに,部材の節点における応力のつり 合い検討を行い,計測の妥当性を示す.さらに,計測断面 に生じる応力についても検討する.

2. 外力と内力のつり合いの検討

本章では、本実験における外力(=ジャッキ荷重 Q_J)と 内力(=システムせん断力 Q_S(本報その1式(15)))のつり 合い検討を行う.Fig.1に外力と内力のつり合い結果を示 す.Fig.1(a)より、B60試験体およびB80試験体の外力と 内力の誤差は Q_J=800 kN サイクルまで10%以内に収まっ ていることを確認でき、システムせん断力 Q_Sの計測とし ては妥当であると言える.またFig.1(b)より、Q_J=1000 kN サイクルでは、部分的に誤差が10%を上回って Q_Sの値が 大きく算出されていることを確認できるが、これは、本実 験における応力算出時に材料非線形性を考慮した応力算 出を行っているものの、両試験体ともブレース材の塑性 化が著しくなり、歪ゲージによる計測精度が低下したた めであると考えられる.

3. 力のつり合いの検討

本章では、左ジャッキによる載荷(正載荷)を行った時 に試験体の接合部各所に生じる軸力およびせん断力のつ り合い検討結果を示す. Fig.2 に力のつり合いの検討を示 す. なお、右ジャッキによる載荷(負載荷)の結果につい ては正載荷時と同様の傾向を示すことを確認しているた め本報では省略する.

3.1 左柱-上梁接合部(正載荷時)

本節では、 Fig.2 における左ジャッキからの圧縮力 Q_{II} と、左柱せん断力 Q_{CI} および上梁 L 断面における軸力 N_{Gul} の和を比較し、結果を Fig.3 に示す. Fig.3 より B60 試験 体においては、+800 kN サイクルまで概ね力のつり合いを

Impact of brace operation on steel frames with gap braces Part2 Experimental results and validity of measurements

- 正会員 高橋周吾*1 正会員 佐藤大樹*2

TAKAHASHI Shugo, SATO Daiki, YANO Masatoshi, Alex SHEGAY, KASAI Kazuhiko と荷重増大とともに誤差が大きくなる傾向を確認できる が,+800 kN サイクル時においても誤差 10%程度と概ね つり合っていると言える.

3.2 左側ビームヘッジ周辺(正載荷時)

本節では、Fig.2 における上梁 L 断面における軸力 N_{Gul} と、上梁 C 断面における軸力 N_{Guc} およびブレースせん断 カ Q_B の差を比較し、結果を Fig.4 に示す.Fig.4 より、B60 試験体においては、+800 kN サイクルまで概ね力のつり合 いを確認でき、+1000 kN サイクルで誤差が大きくなる傾 向が見られる.B80 試験体においては、B60 試験体と比較 すると荷重増大とともに誤差が大きくなる傾向を確認で きるが、+800 kN サイクル時においても誤差 10%程度と 概ねつり合っていると言える.

3.3 右柱-上梁接合部(正載荷時)

本節では、Fig.2 における上梁 C 断面における軸力 N_{Guc} と、右ジャッキによる反力 Q_{Jr} および右柱せん断力 Q_{Cr} の 差を比較し、結果を Fig.5 に示す. Fig.5 より、両試験体と も+1000 kN サイクルまでつり合いを確認できている.

4. 左柱-上梁接合部におけるモーメントつり合いの検討

本章では、 左柱-上梁接合部におけるモーメントのつり 合いについて検討を行う. 上梁のモーメント分布は, 正載 荷時と負載荷時で算出方法が異なる(その1^{4.1 節}). Fig.6 に 正載荷時と負載荷時におけるモーメントつり合い概要を 示す. B60 試験体および B80 試験体の左柱上端のモーメ ント M^{ue}_{Cl} と上梁左端のモーメント M^{le}_{Gu} のつり合い検討結 果を Fig.7, Fig.8 に示す. Fig.7 より, B60 試験体における モーメントのつり合い結果では、QJ= ±600 kN サイクル までは誤差 10%以内でつり合いを確認できており、Q₁= ±800 kN サイクル以降で誤差が大きくなる傾向を確認で きる.これは、±800 kN サイクル以降では上梁の塑性化 が著しくなったためであると考えられる.また,負載荷時 より正載荷時における誤差が大きく示されているが、こ れは、負載荷時には上梁6断面のモーメント結果に最小 二乗法を用いてのモーメント分布を算出しているのに対 し、正載荷時は3断面のモーメント結果しか用いていな い点などが原因として考えられる. 続いて Fig.8 より, B80 試験体におけるモーメントのつり合い結果では、ブレー ス稼働前の Q_J = ±400 kN サイクルの時点で誤差が非常 に大きい結果となっており,この原因は現在検討中であ る.本報における上梁のモーメントに関する評価および 考察では、B60 試験体の結果のみを対象として行うこと とする. なお,本章では,左柱-上梁接合部における検討 を行っているが、右柱-上梁接合部の結果においても同様 の傾向であることを確認している.

Fig.6 左柱-上梁におけるモーメントのつり合い概要

5. 計測断面における M-N 相関

本章では、歪計測断面に生じる応力について考察を行 う. Fig.9 に本章で検討を行う歪計測断面位置を Table1 に 各部材における降伏軸力および降伏モーメントを示す. なお、ブレースにおいては、材料試験結果における比例限 度の時の応力度より求まる値を上段に、0.2%オフセット 耐力値より求まる値を下段()内に示す.

5.1 上梁における M-N 相関(B60 試験体)

Fig.10 に正載荷時における上梁計測断面での M-N 相関 を示す. なお, ここでは Q_J=+400 kN, +600 kN, +800 kN サイクル時の LL 断面, CC 断面, RR 断面における結果を 示している. 上梁 LL に着目すると, +400 kN サイクル時 において計測断面は弾性であるが, +600 kN サイクルのブ レース稼働に伴い軸力が増大することで降伏曲線に達す ることを確認できる.また, +800 kN サイクルでは降伏曲 線上に沿って推移していく様子を確認できる.CC 断面に 着目すると, +400 kN サイクル時にはモーメントはほとん ど生じず, 軸力のみが断面に生じている.ブレース稼働後

Table1 降伏軸力および降伏モーメント

	Ny [kN]	My [kN∙mm]
上梁	1209.9	89023.5
柱	2407.4	98560
ブレース(B80)	392.1	9120
) V (B80)	(555.5)	(12920)
ブレース(B60)	210.2	3690
> • • • • (D00)	(297.8)	(5227.5)

の+600 kN, +800 kN サイクル以降では,上梁に曲げ戻し が生じることにより,上梁モーメント分布が変化するた め, CC 断面にもわずかにモーメントが生じる. RR 断面 に着目すると,ブレース稼働の影響はほとんど生じず,い ずれのサイクルでも同様の傾向を示す.

5.2 柱における M-N 相関

Fig.11 に柱の歪計測断面における M-N 相関を示す. こ こでは, $Q_J = \pm 600$ kN, ± 800 kN サイクルにおける両試験 体の結果を示す. Fig.11 より, 柱においてはブレース稼働 の影響はほとんど生じず, $Q_J = \pm 800$ kN サイクルにおい ても部材は弾性であることを確認できる.

5.3 ブレースにおける M-N 相関

Fig.12 に B80 試験体, Fig.13 に B60 試験体のブレース 歪計測断面における M-N 相関を示す.ブレース稼働前に は,架構の変形に追従してブレース材にも曲げ変形が生 じる.ブレース稼働後には,いずれの断面でも軸力が増大 するが,断面位置によりモーメントの変化の傾向が異な る結果となった.また, $Q_J = \pm 600 \text{ kN}$ サイクル時に着目す ると,両試験体とも部材は弾性範囲に留まっているが, $Q_J = \pm 800 \text{ kN}$ サイクル時には, B80 試験体では部材が弾性範 囲に留まるが (Fig.12),B60 試験体では部材が塑性域に 達することを確認できる (Fig.13).

6. まとめ

本報その2では、計測の妥当性の検証および計測断面 に生じる応力について検討した.

謝辞はその3にまとめて記す.

*1 学生会員 東京工業大学 大学院生
*2 東京工業大学 未来産業技術研究所 准教授・博士(工学)
*3 東京工業大学 未来産業技術研究所 助教・Ph. D.
*4 東京工業大学 科学技術創成研究院 特任教授・Ph. D.

Graduate Student, Tokyo Institute of Technology ^{*1} Associate Prof, FIRST, Tokyo Institute of Technology, Dr.Eng. ^{*2} Assistant Prof, FIRST, Tokyo Institute of Technology, Dr.Eng. ^{*3} Specially Appointed Prof., IIR, Tokyo Institute of Technology, Ph.D. ^{*4}